
DBRG: Description-based Non-quality
Requirements Generator

1st Mohamed Osama ∗, 2nd Aya Zaki-Ismail ∗, 3rd Mohamed Abdelrazek ∗, 4th John Grundy †, and 5th Amani Ibrahim ∗

Information Technology
∗ Deakin University , † Monash University

Melbourne, Australia
∗ {amohamedzakiism, mdarweish, mohamed.abdelrazek, amani.ibrahim}@deakin.edu.au , †<john.grundy@monash.edu>

Abstract—Requirements quality checking is a key process in
requirements engineering. For complex and large scale systems,
it is recommended to use automated requirements quality check-
ing tools because of the size and complexity of requirements.
However, such tools are typically evaluated on a small set
of manually curated requirements. This limitation affects the
comprehensiveness and reliability of the evaluation and leaves
several possible quality issues undetected. In this paper, we de-
scribe a novel quality-checking-oriented synthesised requirements
generator. We provide an input description language so that
several quality checking issues and scenarios can be defined.
The generator utilises an input dictionary of nouns and verb
frames, and generates requirements sentences complying to a
user-defined description of a quality affected requirement.

Index Terms—Requirements Generation, Requirements Engi-
neering

I. INTRODUCTION

Evaluating the performance of quality checking tools is
limited and constrained by the scope of quality issues available
within a given suite of requirements in a provided dataset. In
[1] specific requirements are selected through a case study
to illustrate their defined quality indicators in the evaluation.
Similarly, in [2], the defined indicators are evaluated on
a synthesised case study. In [3], the authors evaluated six
indicators on three datasets with a total of 244 requirements.
These datasets had only three instances in total, for the two
indicators being evaluated.

Such manually curated small requirements datasets are not
enough to robustly evaluate approaches performing require-
ments manipulation and translation [4]. In many cases, the
evaluation dataset is also not accessible due to confidentiality
issues and this makes it very difficult to replicate or benchmark
new tools against existing work. It would be very helpful to
have a requirements generator that is configurable to create a
large set of example requirements with seeded quality issues
that conform to specific scenarios described by the researchers.

Motivated by these limitations, we aim to facilitate the
evaluation and benchmarking of requirements quality checking
tools by providing researchers with a new description-based
requirements generator (DBRG) tool. DBRG can be used for
the automated generation of synthesised non-quality textual
requirements. To generate requirements that satisfy certain
properties or reflect specific scenarios, DBRG supports de-

scribing these scenarios at different levels of granularity using
a novel description language. It then parses these scenarios
and generates requirements instances (sentences) that satisfy
the specified description. In addition, DBRG can also provide
detailed breakdowns of the generated requirements sentences.
Further details about DBRG is available here 1.

II. DBRG TOOL

Figure 1 summarises the process flow and interactions
within DBRG. It consists of two main parts: the input de-
scription language (governing both the single, and multi level
description formats), and the generation approach.

Single-Level
Description Format

Multi-Level
Description Format

DBRG Generation
Technique

Generated
Requirements

noun(1,'the regulator mode').
noun(2,'the output regulator status').
noun(3,'Reset').
noun(4,'the Monitor_Init_Timeout').
noun(5,'the Monitor Status’).

.

.
verbFrame(1,'set',['to’,’adj']).
verbFrame(2,'equal', ['to’,’adj']).
verbFrame(3,'turn', ['to',’n']).
verbFrame(4,'receive', ['from',’n']).
verbFrame(5,'send', ['to',’n’]).

.

.
adjective('True').
adjective('False’).
adjective('NORMAL’).

.

.

Dictionary
ID

Fig. 1: DBRG Framework

DBRG accepts requirements descriptions as input. The
structure of the utilised description language is based on an
analysis that we conducted on several quality checking tools
to identify the key quality indicators required to be supported.
We identified their key quality indicators and added more
hand crafted indicators to further exploit and demonstrate the
potential of DBRG. This allows DBRG to generate require-
ments with both single and multi level quality issues (i.e.,
quality issues defined on a single requirement, or multiple
requirements). We achieved this by supporting the description
of inter-requirements relations through the multi-level format
of the developed language.

To parse the descriptive language, DBRG utilises the Prolog
variable binding approach [5] to assign concrete identifiers for
representing the variables in the language. Parsing constructs

1DBRG-UI: https://github.com/ABC-7/DBRG/blob/main/DBRG_Annex.
pdf

https://github.com/ABC-7/DBRG/blob/main/DBRG_Annex.pdf
https://github.com/ABC-7/DBRG/blob/main/DBRG_Annex.pdf
John Grundy
29th IEEE International Requirements Engineering Conference (RE2021), 20-24 Sept 2021, South Bend, USA

0 0 1 1 0(1) Content determination:

Trigger Condition actionPre-conditional
Scope

Action-conditional
Scope

(2) Textual Structuring: action, Condition

(3) Sentence aggregation: (subj). (mainVerb). (adjective) , (ConditionalHead). (subj). (mainVerb). (adjective)

(4) Lexicalisation: (the signal) (set to) (False) , (if) (the monitor status) (equal) (True)

(5) Realisation: the signal shall be set to False , if the monitor status equals True

Clauses with RE-Roles

Generated requirement: “the signal shall be set to False if the monitor status equals True”
[inReq(‘R1’, [inComp(‘A1’, ‘act’, [’’, ’’, ’’, ‘the signal’, ‘shall be’, ‘set’, [prep(‘to’,
‘False’)]], ‘the signal shall be set to False’), inComp(‘C1’, ‘cond’, [’’, ‘if’, ’’, ‘the
monitor status’, ’’, ‘equals’, [prep(’’, ‘True’)]], ‘if the monitor status equals True’),],
[’’,’’,’’,’’,’’], the signal shall be set to False if the monitor status equals True’)]

Example of formal
grammar

Fig. 2: Requirement Sentence Generation Example

the requirement sentence in a top-down paradigm. The existing
variables in the input description determine the required parts
in the sentence to be generated. Then, a suitable grammatical
rule is selected by our generation approach [6]. Finally, the
input variables are bound with concrete values (lexical words)
to produce a requirement sentence. The utilised tokens are
sourced from the supplied dictionary containing the lexical
words, grammatical words, and verb frames to be used in the
generation process.

A. Generation Approach

Our generation approach [6] follows the common genera-
tion tasks: content determination, textual structuring, sentence
aggregation, lexicalisation and realisation. The role of the five
main tasks within our approach are:

1) Content determination: is responsible for deciding which
parts or blocks are included in the text. In this task we
decide the number and type of clauses that will be present
in the requirement sentence.

2) Textual structuring: determines the order of the selected
parts in the text. It refers to the order of the clauses within
the sentence.

3) Sentence aggregation: is responsible for deciding which
parts are included in an individual clause. In this task, the
clause breakdowns (predicate and subject structures) are
decided (e.g., is the subject simple noun or noun-phrase,
which structure is selected for the complement)

4) Lexicalisation: replaces the included parts with suitable
words and phrases. Each clause is filled with the suitable
terminal words from the input dictionary while adhering
to the syntactic constraints within the selected structures).

5) Realisation: combines all the words and phrases in a well-
formed sentence .

Figure 2 shows the step by step generation process for a
single requirement sentence. We benefit from the backtracking
support of Prolog (a logic descriptive language [7]), and its
underlying inference engine to bind the free variables and
match the input values.

III. EVALUATION

We evaluated DBRG from two different aspects, applica-
bility and effectiveness. For the applicability evaluation, we
crafted 19 single-level and 10 multi-level input descriptions
each corresponding to a different quality metric. The input
descriptions and the corresponding outputs are available online
2. For evaluating the effectiveness, we used DBRG to generate
110 non-quality requirements scenarios (i.e., 10 different sce-
narios for 11 different quality multi-level quality indicators)
with a total of 240 synthesised requirements sentences.

IV. CONCLUSION

We presented DBRG, a tool supporting the generation of
synthesised non-quality requirements for evaluating quality
checking tools. It enables the users to describe the require-
ment(s) to be generated according to their needs.

REFERENCES

[1] F. Konig, L. C. Ballejos, and M. A. Ale, “A semi-automatic verification
tool for software requirements specification documents,” in Simposio
Argentino de Ingeniería de Software (ASSE)-JAIIO 46 (Córdoba, 2017).,
2017.

[2] A. Ciemniewska, J. Jurkiewicz, Ł. Olek, and J. Nawrocki, “Supporting
use-case reviews,” in International Conference on Business Information
Systems. Springer, 2007, pp. 424–437.

[3] G. Lucassen, F. Dalpiaz, J. M. E. Van Der Werf, and S. Brinkkem-
per, “Forging high-quality user stories: towards a discipline for agile
requirements,” in 2015 IEEE 23rd international requirements engineering
conference (RE). IEEE, 2015, pp. 126–135.

[4] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner,
“Arsenal: automatic requirements specification extraction from natural
language,” in NASA Formal Methods Symposium. Springer, June 2016,
pp. 41–46.

[5] J. Cheney and C. Urban, “αprolog: A logic programming language with
names, binding and α-equivalence,” in International Conference on Logic
Programming. Springer, 2004, pp. 269–283.

[6] A. Zaki-Ismail, M. Osama, M. Abdelrazek, J. Grundy, and A. Ibrahim,
“Corg: A component-oriented synthetic textual requirements generator,”
in Requirements Engineering: Foundation for Software Quality: 27th
International Working Conference, REFSQ 2021, Essen, Germany, April
12–15, 2021, Proceedings. Springer Nature.

[7] F. C. Pereira and S. M. Shieber, Prolog and natural-language analysis.
Microtome Publishing, 2002.

2Descriptive Input and Generated requirements: https://github.com/
ABC-7/DBRG/tree/main/Evaluation

https://github.com/ABC-7/DBRG/tree/main/Evaluation
https://github.com/ABC-7/DBRG/tree/main/Evaluation

	Introduction
	DBRG Tool
	Generation Approach

	Evaluation
	Conclusion
	References

