
Enhancing NL Requirements Formalisation using A
Quality Checking Model

1st Mohamed Osama ∗, 2nd Aya Zaki-Ismail ∗, 3rd Mohamed Abdelrazek ∗, 4th John Grundy †, and 5th Amani Ibrahim ∗

Information Technology
∗ Deakin University , † Monash University

Melbourne, Australia
∗ {amohamedzakiism, mdarweish, mohamed.abdelrazek, amani.ibrahim}@deakin.edu.au , †<john.grundy@monash.edu>

Abstract—The formalisation of natural language (NL) require-
ments is a challenging problem because NL is inherently vague
and imprecise. Existing formalisation approaches only support
requirements adhering to specific boilerplates or templates, and
are affected by the requirements quality issues. Several quality
models are developed to assess the quality of NL requirements.
However, they do not focus on the quality issues affecting
the formalisability of requirements. Such issues can greatly
compromise the operation of complex systems and even lead to
catastrophic consequences or loss of life (in case of critical sys-
tems). In this paper, we propose a requirements quality checking
approach utilising natural language processing (NLP) analysis.
The approach assesses the quality of the requirements against a
quality model that we developed to enhance the formalisability of
NL requirements. We evaluate the effectiveness of our approach
by comparing the formalisation efficiency of a recent automatic
formalisation technique before and after utilising our approach.
The results show an increase of approximately 15% in the F-
measure (from 83.8% to 98%).

Index Terms—Requirements specification, Requirements anal-
ysis, Quality analysis

I. INTRODUCTION

Requirements quality issues affect the time and cost of the
development life-cycle and can lead to catastrophic conse-
quences in critical systems [1], [2]. Hence, several quality
standards (e.g., [3]) mandate the incorporation of formal
methods to detect issues at the early stages of development.
However, formal methods operate on requirements expressed
in formal notations only [4]. Nevertheless, the majority of
requirements are specified in natural language (NL) [5], [6].

Formalising NL requirements is affected by their quality
issues. Thus, identifying such issues and detecting them au-
tomatically, enhances the reliability and applicability formal-
isation approaches. This enables the application of formal
methods on a wider range of systems.

Informal quality checking aims to improve the quality of
requirements and detect the quality issues. Several quality
models have been proposed to assess the quality of the
requirements (e.g., [5], [7]). However, such models are not
designed to enhance the success rate of automated formali-
sation approaches and are only thought of as an independent
mean of quality checking.

We propose a quality checking tool to address the challenges
of detecting quality issues affecting the formalisability of

requirements. The intended users of this tool are the engineers
contributing to the specification of requirements and/or the
formalisation of system requirements. Additionally, the tool
can be used by researchers and/or developers working require-
ments formalisation approaches. We also developed a quality
model focusing on the quality issues that can affect require-
ments formalisation. This should encourage more research
targeting the development of NLP-based formalisation ap-
proaches (e.g., [8]) to support NL requirements with different
structures, and enable reliable verification of the requirements
of critical systems through formalisation). Further details about
the tool is available here 1.

II. QUALITY-CHECKING TOOL

To determine the quality metrics (affecting requirements for-
malisation) to be included in the proposed model, we analysed:
(1) the existing informal quality checking approaches, and (2)
the failure-reasons of the automated formalisation approaches.
Then we designed a multi-pipeline tool presented in Fig.1, to
support checking the included quality metrics.

Text Checking

POS Checking

TD Checking

PT Checking

Stanford
-NLP API

POS

PT

TDs

NL-
Requirements

Dictionaries

Hy
br

id 
Ch

ec
kin

g

Detected 
Issues

Pre-processing

Fig. 1: NL-Requirements Quality Checking Tool

A. Tool Description
The tool consists of four main pipelines: (1) Text checking,

(2) Part-of speech (POS) checking, (3) Typed-dependency
(TDs) checking, (4) Parse-tree (PT) checking, and (5) Hy-
brid checking. The developed set of patterns 2 are specified

1Tool-Annex (Quality-Model & UI): https://github.com/ABC-7/
QCModel/blob/main/QM_Annex.pdf

2Detection Patterns: https://github.com/ABC-7/QCModel/tree/main/
Patterns

John Grundy
29th IEEE International Requirements Engineering Conference (RE2021), 20-24 Sept 2021, South Bend, USA 



according to the developed quality indicators in our model.
The tool relies on the Stanford CoreNLP library for all the
NLP-analysis performed.

1) Text Checking Pipeline: Detects quality issues whose in-
dicators depend on the presence of a certain word or sequence
of words. The issues are detected through a set of crafted reg-
ular expression patterns investigating the requirements against
dictionaries of the considered quality metrics. The indication
words for each quality metric are grouped in one dictionary.
This facilitates the maintenance of the dictionaries for different
domains.

2) Part-of-Speech Checking Pipeline: Identifies issues re-
quiring the presence of a specific word-type attached with
grammatical information. The POS tags for every word in a
given requirement sentence are processed using the Stanford
POS tagger. The obtained POS is then checked against the
crafted regular expression patterns for the related quality
metrics.

3) Typed-Dependency Checking Pipeline: This pipeline ad-
dresses the metrics relying on the syntactic relation between
the words. The indicators of each quality metric are rep-
resented with regular expression patterns specified for TDs.
A supplementary string operations may be applied after the
patterns matching. For example, to properly identify multi-
subjects, it is essential to verify that the extracted "Subj"
mentions within the TDs, are related to the same verb (done
through string comparison operations over the extracted TDs).

4) Parsing-Tree Checking Pipeline: This pipeline includes
metrics that require certain syntactical structure information.
For example, to detect syntactic ambiguity, we can find verb
phrases comprising of multiple prepositional phrases. The
regular expression patterns in this pipeline are specified on
the PT.

5) Hybrid Checking: Pipelines are aggregated to support
metrics requiring checking multiple aspects of the syntactical
information. The nature of the metric decides which pipelines
are included in the checking. For example, the "implicity"
quality metric [9], the indication word "above" should be a
modifier to a noun. This requires merging: 1) textual checking
– ensuring the sentence contains the word "above"– and 2)
TDs checking – ensuring the word "above" is a modifier to the
main noun (e.g., the above threshold). Hence, false positives
are avoided (e.g., "X is above 2" is avoided because it does
not fit the analysis).

III. EVALUATION

We conducted two experiments recording the performance
measures for the proposed tool. We also conducted a third
impact evaluation experiment on the formalisation approach
proposed in [8] for critical systems to see the gain from util-
ising the proposed tool. For the performance experiments,
we used the requirements dataset used by the formalisation ap-
proach [8]. The first experiment is applied on the requirements
without correcting the incorrect grammar, while the grammar
was corrected for the second experiment. Table I shows the
performance measures (True Positive TP, False Positive FP,

True Negative TN, and False Negative FN) for the quality
model. our tool achieved very good accuracy (89% and 91%)
in identifying the quality issues.

TABLE I: Quality Model Performance

Dataset TP FP TN FN Recall Precision F-measure Accuracy
Exp1 36 14 108 4 90% 72% 80% 89%
Exp2 36 14 112 0 100% 72% 83.7% 91%

Impact Evaluation We applied the RCM-Extractor ap-
proach on its dataset after manually fixing the issues identified
by the tool. Table II shows that the extraction performance
improved by 23%, 3%, 15% and 23% in recall, precision, F-
measure and accuracy, respectively.

TABLE II: RCM-Extractor Performance

Dataset TP FP FN Recall Precision F-measure Accuracy
Original-DS 122 7 40 75% 95% 83.8% 72%
Updated-DS 158 4 4 98% 98% 98% 95%

IV. CONCLUSION

In this paper, we proposed an automated tool to detect NL
requirements quality-issues and support NLP-based formali-
sation approaches based on the proposed quality model. The
evaluation shows that our approach achieved 89% accuracy
in detecting requirements sentences with quality issues. In
addition, it shows the effectiveness of the tool by improving
the F-measure performance of the investigated formalisation
approach from 83.8% to 98%.

REFERENCES

[1] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Rcm: Requirement capturing model for automated requirements for-
malisation,” in Proceedings of the 9th MODELSWARD, INSTICC.
SciTePress, 2021, pp. 110–121.

[2] M. Osama., A. Zaki-Ismail., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Srcm: A semi formal requirements representation model enabling sys-
tem visualisation and quality checking,” in Proceedings of the 9th
MODELSWARD, INSTICC. SciTePress, 2021, pp. 278–285.

[3] I. ISO, “26262: Road vehicles-functional safety,” International Standard
ISO/FDIS, vol. 26262, 2011.

[4] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Requirements formality levels analysis and transformation of formal
notations into semi-formal and informal notations,” in Proceedings of
the 33rd SEKE 2021, 2021.

[5] J. Kocerka, M. Krześlak, and A. Gałuszka, “Analysing quality of textual
requirements using natural language processing: A literature review,” in
In 23rd MMAR. IEEE, 2018, pp. 876–880.

[6] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, and A. Ibrahim,
“Score-based automatic detection and resolution of syntactic ambiguity
in natural language requirements,” in In 36th ICSME. IEEE, 2020, pp.
651–661.

[7] R. Saavedra, L. C. Ballejos, and M. A. Ale, “Software requirements
quality evaluation: State of the art and research challenges,” in XIV
Simposio Argentino de Ingeniería de Software (ASSE)-JAIIO 42 (2013),
2013.

[8] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Rcm-extractor: Automated extraction of a semi formal representation
model from natural language requirements,” in Proceedings of the 9th
MODELSWARD, INSTICC. SciTePress, 2021, pp. 270–277.

[9] G. Lami, S. Gnesi, F. Fabbrini, M. Fusani, and G. Trentanni, “An
automatic tool for the analysis of natural language requirements,” Informe
técnico, CNR Information Science and Technology Institute, Pisa, Italia,
Setiembre, 2004.


