
GUITAR: an Ontology-based Automated
Requirements Analysis Tool

Tuong Huan Nguyen, John Grundy, Mohamed Almorsy
Faculty of Science, Engineering and Technology

Swinburne University of Technology
Melbourne, Australia

{huannguyen, jgrundy, malmorsy}@swin.edu.au

Abstract— Combining goal-oriented and use case modeling has
been proven to be an effective method in requirements elicitation
and elaboration. However, current requirements engineering
approaches generally lack reliable support for automated
analysis of such modeled artifacts. To address this problem, we
have developed GUITAR, a tool which delivers automated
detection of incorrectness, incompleteness and inconsistency
between artifacts. GUITAR is based on our goal-use case
integration meta-model and ontologies of domain knowledge and
semantics. GUITAR also provides comprehensive explanations
for detected problems and can suggest resolution alternatives.

Index Terms—Goal-oriented requirements engineering; Use

case; Ontology-based requirements analysis; incorrectness;
incompleteness; inconsistency; detection and resolution

I. INTRODUCTION
Goal-use case coupling techniques have been proven to be

an effective method in requirements elicitation and elaboration
[6]. 3Cs problems (incorrectness, incompleteness and
inconsistency) are key challenges of the modeled artifacts’
quality. Several techniques have been developed to help in
requirements management and analysis. KAOS [7] supports the
management of requirements conflicts. However, it does not
explicitly detect inconsistency between goals and use cases,
incorrectness and incompleteness among the artifacts. Cesar [5]
allows the analysis of natural language requirements using
domain ontologies. However, its ontological term-mapping
technique for 3Cs problem detection may not be sufficient to
deal with complicated cases. In addition, it does not support
analysis in goal-use case models. RAT/QRA analysis tool [1]
depends on adopting linguistic techniques and domain
ontologies, which make it limited to linguistic defects (i.e.
ambiguity, readability or subjectivity), similarity between pairs
of requirements, and unused boilerplates. Thus, there is still a
lack of comprehensive automated supports dedicated for goal-
use case integration models. For instance, how to verify if a
goal or use case is not correctly specified? How to ensure a use
case is matched with its associated goal? How to identify
whether a required goal/use case has not been elicited? How to
identify inconsistent artifact specifications?

To automatically deal with these 3Cs related problems,
artifact specifications need to be transformed into a form that is
syntactically and semantically understandable by machines. We
developed GUITAR (Goal-Use case Integration Tool for
Analysis of Requirements) as an extension to our previous

Fig. 1 GUITAR Process

work on inconsistency detection in goal models [3, 4].
GUITAR allows a wide range of natural language artifacts
descriptions to be translated into Manchester OWL Syntax and
integrated with ontologies of domain knowledge and semantics
to automate the analysis process. In addition, our developed
meta-model for goal-use case integration enables the detection
of syntactical problems. GUITAR also automatically generates
explanations and possible resolutions for identified problems.

More information about GUITAR can be obtained from
http://www.it.swin.edu.au/personal/huannguyen/guitar.html.

II. GUITAR’S PROCESS
Fig. 1 shows an overview of GUITAR. The tool consists of

the requirements modeling, knowledge and analysis modules
which support the modeling and analysis of requirements.

A. Modelling process
GUITAR allows the modeling of goals and use cases

(referred to as artifacts in this paper). These two concepts are
integrated based on a meta-model that provides the
categorization and valid relationships between them. For each
artifact, the tool requires both a natural language specification
and a structured specification that is used for automated
analysis. In our work, functional grammar [2] is used as the
underlining model for structured specifications due to its
integration capability with domain ontologies. In this structured
specification, each term is mapped to an ontological concept to
allow semantic analysis. To help ensure artifact specification’s

GUITAR

Boilerplate
Database

Domain Ontology

Modelling Process
Goal-Use Case

models
Natural

Language
Specs

Structured
Specs

Knowledge
Module

Knowledge
Controller

Analysis Module

Reasoner Problem
Resolver

Explanation
Generator

Analysis Process

Resolutions
Incorrectness

Incompleteness
 Inconsistencies

Requirements Modelling
Module

Artifact
Modeller

Knowledge
Editor

<interact> <interact>

<retrieve> <update>

<realize> <realize>

<transform> <transform>

Goal-Use Case
Integration Meta-Models

http://www.it.swin.edu.au/personal/huannguyen/guitar.html
jgrundy
22nd IEEE International Conference on Requirements Engineering (RE'14), Karlskrona, Sweden, August 25-29, 2014, © IEEE

jgrundy

Fig. 2 An Inconsistency Example

quality (i.e. unambiguousness), GUITAR incorporates a
database of boilerplates to help writing natural language
specifications. For example, if we have a goal “System shall
send update email to users every two weeks”, a requirements
analyst can choose a boilerplate (i.e. <agent> shall <action>
<object> <beneficiary> <frequency>) and fill in the
parameters (i.e., <agent>). Based on the specified parameters,
GUITAR automatically transforms the natural language
specification into a structured specification (i.e., Agent(System)
+ Verb(Send) + Object(UpdateEmail) + Beneficiary(User) +
Frequency (Quantity(2) + MeasurementUnit(Week)), the terms
within parenthesis are ontological concepts). Domain
ontologies and boilerplates can be edited (via knowledge editor
and knowledge controller components) and reused in different
projects.

B. Analysis Process
GUITAR supports the detection and resolution of 3Cs

problems in modeled goals and use cases.
1) Problem Detection - Syntactical problem detection is

supported by a 2-layer goal-use case integration meta-model.
The artifact layer defines different types of artifacts across
levels of abstraction and their relationships while the
specification layer provides guidance on the composition of
artifacts. The meta-model helps, for instance, with the
detection of a missing goal type, an incorrect artifact’s
specification, or inconsistent links between artifacts.

GUITAR relies on ontologies of domain knowledge and
semantics for semantic requirements analysis. At the core of
our technique is the representation of activities. Each activity
contains an action and an object (i.e. create reviews). Since
various relationships between activities may exist in a domain
(i.e., “create content” requires “edit content”), capturing such
relations into ontologies is useful to identify mismatches
between artifacts (inconsistencies) or missing artifacts
(incompleteness). In addition, relationships between concepts
or activities (i.e. user and traveller are equivalent, in a traveller
network domain, so are ‘write review’ and ‘create review’ even
write and create are not) provide the semantics of terms used in
structured artifact specifications. GUITAR’s reasoner allows

structured specifications to be automatically transformed into
Manchester OWL Syntax for automated reasoning. Fig. 2
shows an example of a detected inconsistency. The involved
artifacts are highlighted (a) and the explanation is provided (b).

2) Problem explanations and resolution suggestions - For
detected problems, GUITAR automatically generates
resolution alternatives together with detailed problem
explanations based on domain ontologies. Explanations are
helpful for requirements analysts to get insight into the issues
and select appropriate repairing alternatives.

III. EVALUATION
We have evaluated GUITAR with two industrial case

studies, one for a traveller social network system and another
for an online publishing system. We used precision and recall
metrics to assess GUITAR’s soundness and completeness in
detecting 3Cs problems. Given domain ontologies of high
quality, we have obtained 95% and 90% on average for
soundness and completeness respectively.

IV. CONCLUSION AND FUTURE WORK
In this paper, we have presented GUITAR, a tool providing

automated analysis of goals and use cases for incompleteness,
incorrectness and inconsistencies. GUITAR also enables the
generation of problem explanations and resolution alternatives.
Our planned future works include: (1) support automated
transformation of natural language requirements into goal-use
case models. (2) Improve the ontology editor with visualization
editing support. (3) Conduct a formal user evaluation on
industry practitioners to assess the usability of the tool.

V. ACKNOWLEDGEMENT
This research is supported by the Victorian Government

under the Victorian International Research Scholarships
scheme and the Australian Research Council under Linkage
Project LP130100201.

REFERENCES
[1] Requirements Quality Suite. Available from:

http://www.reusecompany.com/requirements-quality-suite.
[2] S.C. Dik, “The theory of functional grammar,” Walter de

Gruyter, 1989.
[3] T.H. Nguyen, B.Vo, M. Lumpe, J.C. Grundy, “KBRE: a

framework for knowledge-based requirements engineering,”
Software Quality Journal, vol. 22, p. 1-33, March 2014.

[4] T.H. Nguyen, B.Vo, M. Lumpe, J.C. Grundy, “REInDetector: a
framework for knowledge-based requirements engineering,” in
Proceedings of the 27th International Conference on Automated
Software Engineering, 2012.

[5] A. Rajan and T. Wahl, “CESAR: Cost-efficient Methods and
Processes for Safety-relevant Embedded Systems,” Springer,
2013.

[6] C. Rolland, C. Souveyet, and C.B. Achour, “Guiding goal
modeling using scenarios,” IEEE Transactions on Software
Engineering, vol. 24, 1998, p. 1055-1071.

[7] A. V. Lamsweerde, “Goal-oriented requirements engineering: A
guided tour,” in Proceedings of Fifth IEEE International
Symposium on Requirements Engineering, 2001.

