
Marama AI: Automated and Visual Approach for Inconsistency Checking of

Requirements

Massila Kamalrudin
Department of Electrical & Computer

Engineering

University of Auckland

Private Bag 92019 Auckland 1142

New Zealand

Mkam032@aucklanduni.ac.nz

John Hosking
Dept of Computer Science,

University of Auckland

Private bag 92019 Auckland 1142

New Zealand

john@cs.auckland.ac.nz

John Grundy
Swinburne University of Technology

Centre for Complex Software, Systems

& Services, PO Box 218, Hawthorn

Victoria 3122, Australia

jgrundy@swin.edu.au

Abstract— Requirements are commonly vague and

ambiguous. In this paper, we describe an automated

Inconsistency Checker called Marama AI for checking for

high- level inconsistency between textual requirements,

abstract interactions and Essential Use Cases. We use

concepts of phrase extraction and essential interaction

patterns to carry out these checks. We provide further

support for checking of requirements quality attributes such

as completeness and correctness using visual differencing.

Keywords-higher level inconsistency, essential interaction

pattern, visual differencing

I. INTRODUCTION

It is acknowledged by many that natural language
requirements are very often error prone, imprecise and
ambiguous [1], [2]. In order to deal with these issues much
research has been aimed at checking of requirements
consistency, completeness and correctness either by using
heuristic algorithms and formal models [3],[4] or semi-
formal models [5],[6]. In our previous work [7, 8], we have
introduced the MaramaAI tool for capturing requirements
from natural language descriptions and helping to manage
requirements inconsistency. The tool captures the essential
requirements in the form of abstract interactions from
natural language requirements and then transforms it to a
semi-formal representation called Essential Use Cases.
Besides capturing requirements, it also triggers
inconsistency warnings if any inconsistency occurs between
the textual requirement, abstract interaction and Essential
Use Cases. However, triggering simple inconsistency
warnings between these requirement elements is not
adequate to make sure the requirements are completely
consistent.

II. OUR WORK

Based on the motivations found from previous work, we
have enhanced our tool in two key ways. Firstly, to have
higher level inconsistency checking of the requirements with
the essential interaction pattern library together with the
visual help for requirements engineers. This means that each
requirements component will be checked for its consistency
with an essential interaction pattern library if any changes
such as delete, add and change ordering are done. An

essential interaction pattern is a sequence of expected
essential interactions between user and system [8]. We have
developed a library of such patterns to support interaction
extraction from natural language [8] and analysis of
interaction sequences. Figure 1 shows how the higher level
inconsistency checking is performed in MaramaAI when the
requirements engineer adds a new essential requirement
(abstract interaction). If a new abstract interaction is added,
the tool will automatically update the textual requirement
based on the correct interaction pattern because the new
added abstract interaction is inconsistent with the textual
requirement and the interaction pattern library.

Figure 1. Add New Essential requirement

jgrundy
IEEE International Conference on Requirements Engineering, Sydney, Australia, Sept 27 - Oct 1, 2010. © IEEE 2010

jgrundy

jgrundy

jgrundy

However, the tool also provides flexibility by allowing user
to ignore the addition if they think the addition is needed in
the requirements. The inconsistency can be tracked by
MaramaAI and later resolved by the requirements engineer.
Figure 3. shows inconsistency checking when the ordering
of interactions has been changed. The related component
change color to red and the textual requirement is
highlighted (***) in order to show the user the affected
requirement component from the modification. The problem
marker will also shows the warning if change is made as the
inconsistency will still exist in the textual requirement.

Figure 4. Change ordering

The second part of the tool is to allow requirements
engineers to check for requirements completeness and
correctness as shown in Figure 4. Users are able to check for
the completeness and correctness of the requirements
captured by checking the consistency between the modeled
Essential Use Cases diagram with the EUC templates that
exist in the interaction pattern library. A visual differencing
is performed in order to show the difference between the
modeled Essential Use Cases and the interaction pattern
template. If any parts of the Essential Use cases are missing,
extra or in incorrect ordering, the tool will visualize the
incompleteness and incorrectness. Users are then able to
choose either that they want to keep their requirements as
modeled or change their model to follow the suggested
template.

III. CONCLUSION AND FUTURE WORK

We have developed an automated inconsistency checker for

checking for higher level inconsistencies between the

requirements component and essential interaction patterns.

Requirements quality checking such as completeness and

correctness is also supported by using visual differencing

against an interaction pattern library. Key future work is to

conduct further evaluation of the tool in term of cognitive

dimensions and usability and support consistency

management with other models.

Figure 3. Visual Differencing for completeness and

correctness checking

ACKNOWLEDGEMENT

This research is funded by Ministry of Higher Education

Malaysia (MOHE) and University of Auckland.

REFERENCES

[1] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, "The linguistic

approach to the natural language requirements quality: benefit

of the use of an automatic tool," in Software Engineering

Workshop, 2001. Proceedings. 26th Annual NASA Goddard,

2001, pp. 97-105.

[2] C. Denger, D. M. Berry, and E. Kamsties, "Higher Quality

Requirements Specifications through Natural Language

Patterns," in Proceedings of the IEEE International Conference

on Software-Science, Technology & Engineering: IEEE

Computer Society, 2003, pp. 80.

[3] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer, "Flexible

consistency checking," ACM Trans. Softw. Eng. Methodol., vol.

12, pp. 28-63, 2003.

[4] M. Ouimet and K. Lundqvist, "Automated Verification of

Completeness and Consistency of Abstract State Machine

Specifications using a SAT Solver," Electronic Notes in

Theoretical Computer Science, vol. 190, pp. 85-97, 2007.

[5] A. Egyed, "Instant consistency checking for the UML," in

Proceedings of the 28th international conference on Software

engineering Shanghai, China: ACM, 2006, pp. 381-390

[6] F. P. Richard, J. B. Phillip, and S. O. Jonathan, "Metamodel-based

model conformance and multiview consistency checking,"

ACM Trans. Softw. Eng. Methodol., vol. 16, p. 11, 2007.

[7] M.Kamalrudin, J. Hosking, John Grundy, "MaramaAI: Tool support

for capturing requirement and checking the inconsistency " in

21st Australian Software Engineering Conference, Auckland,

New Zealand, 2010, pp. 145-149.

[8] M.Kamalrudin, J.Grundy, J.Hosking, , "Managing consistency

between textual requirements, abstract interactions and

Essential Use Cases," in 34th Annual IEEE International

Computer Software& Applications seoul, Korea, 2010.

