
Generating Service Models by Trace Subsequence
Substitution

Miao Du
Faculty of Information and

Communication Technologies
Swinburne University of

Technology
Hawthorn, VIC 3122, Australia

miaodu@swin.edu.au

Jean-Guy Schneider
Faculty of Information and

Communication Technologies
Swinburne University of

Technology
Hawthorn, VIC 3122, Australia
jschneider@swin.edu.au

Cameron Hine
Faculty of Information and

Communication Technologies
Swinburne University of

Technology
Hawthorn, VIC 3122, Australia

chine@swin.edu.au
John Grundy

Faculty of Information and
Communication Technologies

Swinburne University of
Technology

Hawthorn, VIC 3122, Australia
jgrundy@swin.edu.au

Steve Versteeg
CA Labs

Level 2, 380 St. Kilda Rd
Melbourne, VIC 3004,

Australia
steven.versteeg@ca.com

ABSTRACT
Software service emulation is an emerging technique for cre-
ating realistic executable models of server-side behaviour
and is particularly useful in quality assurance: replicating
production-like conditions for large-scale enterprise software
systems. This allows performance engineers to mimic very
large numbers of servers and/or provide a means of con-
trolling dependencies on diverse third-party systems. Pre-
vious approaches to service emulation rely on manual defi-
nition of interaction behaviour requiring significant human
effort. They also rely on either a system expert or documen-
tation of system protocol and behaviour, neither of which
are necessarily available. We present a novel method of au-
tomatically building client-server and server-server interac-
tion models of complex software systems directly from in-
teraction trace data, utilising longest common subsequence
matching and field substitution algorithms. We evaluate
our method against two common application-layer proto-
cols: LDAP and SOAP. The results show that without ex-
plicit knowledge of the protocol specifications, our generated
service models can produce well-formed responses for inter-
actions. These responses can then be used within an em-
ulation framework for large-scale enterprise system quality
assurance purposes.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2126-6/13/06 ...$15.00.

reengineering ; D.2.11 [Software Engineering]: Software
Architectures—Languages, Patterns

General Terms
Design, Measurement, Verification

Keywords
Service emulation; Interaction emulation; Automatic mod-
elling; Quality assurance

1. INTRODUCTION
Modern enterprise software environments integrate a large

number of software systems to facilitate complex business
processes. Many of these software systems are part of “sys-
tems of systems” and, consequently, need to interact with
services provided by other systems in order to fulfill their
responsibilities. CA IdentityMinder (IM) [8], for instance,
is an enterprise-grade identity management suite supporting
management and provisioning of users, identities and roles in
large organisations across a spectrum of different endpoint
systems. It is typically deployed into large corporations,
such as banks and telecommunications providers, who use it
to manage the digital identities of personnel and to control
access of their vast and distributed computational resources
and services. A significant and non-trivial engineering chal-
lenge is how to assure, before live deployment, the quality
of such software systems that are to be able to interoperate
across the often heterogeneous services provided by a large-
scale environments and to investigate the effects of different
environment configurations on their operational behaviour.

Due to the often non-trivial interaction patterns between
a software system and its operating environment, traditional
standalone-system-oriented testing techniques are inadequate
and ineffective in assuring quality of such systems (cf. [12]
for a detailed discussion). Enterprise software environment
emulation [13, 14] has been postulated as an alternative ap-
proach to providing executable, interactive representations

of operating environments. By modelling the interaction be-
haviour of individual systems in an environment and subse-
quently simultaneously executing a number of those models,
an enterprise software environment emulator provides an in-
teractive representation of an environment which, from the
perspective of an external software system, appears to be a
real operating environment. Hence, the emulation approach
allows for a more systematic approach to assure quality of
enterprise systems in a “system of systems” context [12].

Being able to create light-weight executable models is piv-
otal to the emulation approach. The most common approach
is to manually define interaction models with the use of avail-
able knowledge about the underlying interaction protocol(s)
and system behaviour(s), respectively. This entails defining
sometimes complex sequences of request/response patterns
between elements of the system including suitable parame-
ter values. However, in a realistic environment, neither of
these are necessarily available at the required level of de-
tail (if at all), a scenario not uncommon when third-party,
legacy and/or mainframe systems are involved. Addition-
ally, the large number of components and component inter-
actions in such systems makes manual approaches very time-
consuming and error-prone. If the environment changes
with new enterprise elements or communication between ele-
ments, these manual protocol specifications must be further
updated.

In order to address this problem, we describe a new ap-
proach that infers enterprise system element interaction be-
haviour via mining interaction recordings (henceforth re-
ferred to as interaction traces). These interactions are be-
tween an endpoint system and elements in its deployment
environment. More specifically, we introduce a framework
that, given an incoming request to a modelled system, our
technique (i) searches for a suitably “similar” request in a
database of previously recorded interaction traces, (ii) iden-
tifies the commonalities and differences between the incom-
ing request and the recorded request, and (iii) generates a
response based on the identified commonalties and differ-
ences and pre-recorded responses. In a proof of concept im-
plementation, we use longest common subsequence match-
ing and field substitution to realise these message processing
steps. To evaluate our approach, we report on its applicabil-
ity using the common enterprise application-layer protocols
LDAP [23] and SOAP [1], respectively.

The rest of this paper is organised as follows: Section 2
introduces the key motivation for this work using a concrete
enterprise system emulation example. Section 3 discusses
related work, followed by the presentation of the various
components of the response-generation framework in Section
4. In Section 5, we present the results of our evaluation and
discuss the relevant findings as well as identified limitations.
Section 6 concludes the paper and gives directions for future
work.

2. MOTIVATION
Consider the IdentityMinder (IM) enterprise system, our

system-under-test, in a proposed deployment environment,
as shown in Figure 1. Engineers want to evaluate whether
the IM can scale to handling the number of likely endpoints
in the deployment scenario, given (i) likely maximum num-
ber of endpoints; (ii) likely maximum number of messages
between endpoint and system; (iii) likely frequency of mes-

Meta-
Model

Message

Behaviour

Data Store

Protocol

Model
Emulation Environment

System
Under Test

Figure 1: Service Emulation Approach.

sage sends/receives needed for the system to respond in
acceptable timeframe; (iv) likely size of message payloads
given deployment network latency and bandwidth; and (v)
the system’s robustness in the presence of invalid messages,
too-slow response from end-points, or no-response from end-
points. Messages being exchanged between the system and
endpoints adhere to various protocols. For example, an
LDAP message sent by an endpoint to the IM needs to be
responded to with a suitable response message sent in reply
by the IM, in an acceptable timeframe and with acceptable
message payload. Subsequent messages sent by the endpoint
to the IM using the LDAP response message payload need
to utilise the previous response information.

In previous work we developed an emulator that could
scale to thousands of virtual endpoints to validate such de-
ployment scenarios [12, 25]. Endpoint emulations would
send and receive messages to the system under test, generat-
ing suitable messages to confirm to its protocol and expecta-
tions. Unfortunately, considerable manual effort is required
to define protocols, such as LDAP and SOAP messaging,
and also, considerable effort to implement suitable endpoint
behavioural emulation within the emulator. This also re-
quired considerable expert knowledge of the protocol.

Key requirements that we have identified and that we
want to address in our current work include:

• we need to be able to record and then analyse real
system and real endpoint interactions, to enable us to
synthesise a protocol definition from these observed
interaction traces;

• when our emulation environment is emulating an end-
point, upon the endpoint receiving a message, we need
to be able to deduce a best-matching response message
and suitable payload;

• we need to reply to the sending system with appropri-
ate message and payload synthesised via the analysis
and matching process.

3. RELATED WORK
A major challenge when attempting to assure the quality

of large enterprise systems is producing a suitable test-bed
environment. To this end, physical replication of a real-
world deployment environments very quickly becomes diffi-
cult to effectively manage, or even achieve. Recreating the
heterogeneity and massive scale of typical production en-
vironments is, in many cases, simply impossible given QA
team’s resources. As outlined above, in our domain, we
need a real system-under-test - such as IM - to be able

to communicate with literally thousands of endpoints, be-
having as they would in a real production environment.
Provisioning such a testing environment with thousands of
real client and server hardware platforms, suitably config-
ured networks, and appropriately configured software appli-
cations for our IM system-under-test to communicate with,
is near-impossible.

Over the years, a number of approaches have been pro-
posed that aim to provision testing environments suitable
for quality assurance activities required to test enterprise
software systems. Hardware virtualization tools, such as
VMWare [24] and VirtualBox [16], are capable of replicat-
ing specific facets of deployment environments. However, a
general rule of thumb states that a virtual CPU to phys-
ical core ratio in the order of ten to one as the practical
upper limit [22]. Hence hardware virtualization tools suffer
similar scalability limitations as physical recreation of de-
ployment environments. Mock objects [7] mitigate some of
the scalability concerns. However, they are often too lan-
guage specific and require the re-implementation of some of
an environment’s functionality, resulting in testing environ-
ment configuration and maintenance problems and requiring
detailed knowledge of environment components.

Performance and load testing tools, such as the ones pro-
posed in [6, 10, 11, 21], provide a means to emulate many
thousands of software system clients with limited resources.
However, they are designed to generate scalable client load
towards a target system, rather than the opposite direction
needed for our problem situation. Thus while they provide
a suitable platform to scale client-to-server load, enterprise
systems like CA IM require a test environment with system-
under-test to environment load scaling, a related but funda-
mentally different challenge.

In order to overcome shortcomings with these existing en-
terprise system QA approaches and tools, the creation of
“virtual”, or emulated, deployment environments has been
proposed. Ghosh and Mathur [9] state that “an emulation
environment, which is able to provision representations of
diverse components, enables tests of components that inter-
act with a heterogeneous environment, while scalable mod-
els put scalability and performance testing for components
into practice.” In our prior work [12, 13, 14], we proposed
an enterprise software environment emulator, called Kaluta.
It provides a large-scale and heterogeneous emulation envi-
ronment capable of simultaneously emulating thousands of
endpoint systems on one or a few physical machines. We
have shown this scales very well to the needs of enterprise
system QA as outlined above. However, the creation of exe-
cutable endpoint models relies on the availability of a precise
specification of the interaction protocols used. It is also time
consuming, error-prone and subject to considerable mainte-
nance effort in heterogeneous deployment environments.

ITKO LISA [18] is a commercial software tool which aims
to emulate the behaviour of services which a system under
test interacts with in its deployment environment. It does
this by ‘mimicking’ responses that a real service would pro-
duce when sent a request by the enterprise system under
test. One of the key features of LISA is that, after recording
a set of real interactions between an enterprise system and
an endpoint, it uses these to produce responses to further
requests, thus behaving like a ‘virtual’ service. LISA is able
to consider the interaction state when sending a response,
and uses field substitution (called magic strings) in the re-

sponses for fields it detects are identical in the request and
response. LISA requires the transport protocol and the ser-
vice protocol to be known in advance of the recording for
the modelling to be effective.

Research in protocol reverse engineering is an important
reference to our work. Early effort in reverse engineering was
for protocol determination. By analysing a large amount of
packets and traces captured on networks, researchers are
able to obtain structure information of the target protocol
for network analysis and even automatically reverse engi-
neering the state-machine model of network protocols [3].
Cui et al. [4], for example, proposed an emulator aiming to
mimic both client and server side behaviours. With the em-
ulator, they can record/replay the interactions of web appli-
cations for checking conformance of web server behaviours.
Although the proposed approach deals with the emulation
of interaction process, they essentially intend to test con-
formance of the client-side systems rather than work in the
opposite direction as we do.

4. APPROACH
In essence, our approach works as follows:

• A large enterprise system-under-test, such as IM, is
observed communicating with endpoint(s) in its de-
ployment environment using a tool such as Wireshark.

• The emulation environment uses this trace recording as
a source for protocol analysis and response generation,
storing it in a repository of request/response pairs.

• When running QA tests against the system-under-test,
the emulation environment receives a request from the
system-under-test and uses the trace history to identify
potential valid response messages.

• We use a set of algorithms to compare the current re-
quest, previous request/response pairs, set of historical
sequences of request/response pairs, and the set of val-
ues in the request to synthesise a response message.

• The emulation environment returns the generated re-
sponse message to the system-under-test, fulfilling its
expectations of a response message.

• The system-under-test consumes the generated response
message and continues running.

This is in contrast to existing emulation approaches where
requests received by the emulation environment are pro-
cessed using (typically) manually-specified scripts to gen-
erate a response.

4.1 Preliminaries
For the purpose of the proposed technique, we assume

that for a given protocol under investigation, we are able
to record a sufficiently large number of interactions between
two (or more) software endpoints. Tools like Wireshark [15]
have the functionality to filter network traffic and record
messages of interest in a suitable format for further process-
ing. We also assume that these recordings are “valid”, that
is, that the sequence of recorded interactions are (i) correct
with regards to the temporal properties of the underlying
protocol and that (ii) each request and response message is
well-formed.

Without loss of generality, we assume that each request
is always followed by a single response. If a request does
not generate a response, we insert a dedicated “no-response”
message into the recorded interaction traces. If, on the other
hand, a request leads to multiple responses, these are con-
catenated into a single response. We use such an approach
in our evaluation (cf. Section 5) to merge multiple LDAP
search result entries into a single response.

Given these assumptions, we define a number of constructs
needed to express our framework more formally. We start
with the notion of the most basic building block, the set of
message characters, denoted by C. We require equality and
inequality to be defined for the elements of C. For the pur-
pose of our study, C will most likely comprise of the set of
valid Bytes that can be transmitted over a network or the set
of printable Characters as a dedicated subset. Furthermore,
we define M to be the set of all (possibly) empty messages
that can be defined using the message characters. A message
m ∈ M is a non-empty, finite sequence of message charac-
ters c1c2c3 . . . cn with ci ∈ C, 1 ≤ i ≤ n. We consider two
messages m1 = c1,1c1,2 . . . c1,l and m2 = c2,1c1,2 . . . c2,n to
be equal if l = n and c1,i = c2,i, 1 ≤ i ≤ n.

A single interaction I consists of a request, denoted by
Req, as well as the corresponding response, denoted by Res.
Both Req and Res are elements ofM and we write (Req,Res)
to denote the corresponding request/response pair. An in-
teraction trace is defined as a finite, non-empty sequence of
interactions, that is, I1I2I3 . . . In. Finally, we define the set
of interactions I as a non-empty set of interaction traces.

4.2 Processing Requests
The motivation behind our approach is that if an incom-

ing request is very similar to one of the recorded requests
(having a suitable notion of “similarity”), then the response
should also be similar to the corresponding previously recor-
ded response. Hence, identifying the differences between the
incoming and previously recorded requests should give us a
good indication how the corresponding recorded response
can be altered in order to synthesize a matching response.

For example, assume that the recorded interaction traces
between an LDAP client and server contain a search request
for all entries with the name Baker. If an incoming request
defines a search for all entries with the name Parker, then the
two requests can be considered to be similar (both are search
requests; only the name is different). Hence, if we replace
all occurrences of ‘Baker’ with ‘Parker’ and the adjust the
LDAP message-id accordingly, then the altered response to
the recorded search for Baker is probably a “good enough”
response to the search for Parker for emulation purposes.

Consequently, our proposed framework consists of two
main processing steps: (i) given an incoming request to an
emulated enterprise system endpoint from the system un-
der test, we search for a suitably “similar” request in the
previously recorded interaction traces. (ii) Our system then
synthesizes a response for the incoming request based on
the similarities in the request itself and the “similar” request
identified in the interaction traces, as well as the recorded
response of the “similar” request.

Using the definitions introduced above, our framework can
thus be formalized as below. To facilitate the presentation,
we denote Reqin as the incoming request and I∗(I) as the
set of all interactions in I.

Resout = trans (Reqin,Reqsim,Ressim)

with

• (Reqsim,Ressim) ∈ I∗(I); and

• ∀ (Reqi,Resi) : dist(Reqin,Reqsim) ≤ dist(Reqin,Reqi)

where dist and trans denote user-defined distance and trans-
lation functions, respectively, allowing the framework to be
tailored for the specific needs of given context.

The distance function dist is used to compute the distance
between two requests. We require (i) the distance of a mes-
sage m with itself to be zero, that is dist(m,m) = 0, and
(ii) the distance between two non-identical messages m1 and
m2 to be greater than zero. Depending on what kind of dis-
tance function is used, a different pre-recorded request will
be chosen to be the most “similar” to the incoming request.

The translation function’s responsibility is to synthesize a
response for the incoming request. As a simplification of our
work, we made the decision to ignore temporal properties in
our framework, that is, the synthesized response solely de-
pends on the incoming request and the recorded interaction
traces, but not on any previously received or transmitted
requests or responses, respectively, Adding a temporal di-
mension to the framework is part of our future work.

4.3 Common Subsequence Alignment
What kind of distance measure(s) should we choose in or-

der to best express our intention of similarity as discussed
in the previous section? A widely used notion of similarity
is the edit distance [20] between two sequences s1 and s2, in-
dicating the minimum number of modifications (insertions,
deletions, and substitutions) in order to obtain s2 from s1.
A very similar problem has also been identified in the area
of bioinformatics in order to determine the similarities in
the amino acide sequences of proteins [19]. For the purpose
of this work, we are using a modified version of the solu-
tion presented by Needleman and Wunsch [19] as our dis-
tance measure. This is because as the stochastic approach
presented by Ristad and Yianilos [20] relies on a suitably
configured benchmark corpus, we may not always be able to
generate this from the recorded interaction traces.

The basic idea of the sequence alignment is align all com-
mon subsequences of two sequences under comparison and
insert gaps into either of the sequences when they differ. In
order to avoid “random” alignments of a small size, we mod-
ified the algorithm in such a way that a minimum length is
required in order to identify common subsequences as such.

The following example briefly shows how our message
alignment process works. Consider the following two text
sequences:

• Where is my computer book?
• Where is your computer magazine?

The common subsequences are “Where is ”, “ computer ”,
and “?”. (Note the spaces in around “ computer ”.) “my”
versus “your” and “book” versus “magazine” are the two dif-
fering parts of the two sequences. The standard Needleman-
Wunsch algorithm would align the character ‘y’ common to
“my” and “your”, although it probably makes more sense not
to identify ’y’ as a common subsequence, hence the need
for a minimum length of common subsequence. The fully
aligned sequences will be as follows (we use the character ‘?’
to denote an inserted gap):

• Where is my???? computer book?????????
• Where is ?? your computer ????magazine?

The distance between two sequences is defined by the
number of gaps inserted to both sequences in the alignment
process – 18 in the example above. In order to allow for
a better comparison of similarity across multiple protocols
and/or scenarios, we define the dissimilarity ratio as the ra-
tio of the“raw”edit distance divided by the length (i.e. num-
ber of elements) of both sequences, e.g. 18/(26 + 32) = 0.31
in the example given above. The dissimilarity ratio, as illus-
trated in this section, was used as the distance measure for
the evaluation of our approach (cf. Section 5). Two iden-
tical sequences will have a dissimilarity ratio of 0 and the
bigger the ratio, the more dissimilar two sequences are.

4.4 Symmetric Field Identification
The second step in our approach is to synthesize a re-

sponse for the incoming request, exploiting the commonal-
ities between this request, its best match, as well as the
associated recorded response. In order to do so, we again
rely on common subsequence identification.

Many protocols encode information in request messages
that are subsequently used in the corresponding responses.
For example, application-level protocols such as LDAP add
a unique message identifier to each request message. The
corresponding response message must contain the same mes-
sage identifier in order to be seen as a valid response. There-
fore, any approach that attempts to synthesize responses for
LDAP must “copy” the message-id into the corresponding
response message. Similarly, information associated with a
specific request operation (e.g., a search pattern for a search
request) will often also be“copied”across from the request to
its response. We will refer to such information as symmetric
fields for the rest of this work.

We use the common subsequence algorithm described in
the previous section in order to identify symmetric fields:
they are the common subsequences of a request and its as-
sociated response. However, as the symmetric fields of a
request may not appear in the same order and/or cardinal-
ity, we cannot rely on a “simple” sequence alignment. In-
stead we have to compute the entire alignment matrix (as
defined by [19]) to identify common subsequences. Again,
in order to avoid small, “random” common subsequences, a
threshold has to be defined as to when a common sequence
of characters is considered a symmetric field.1

Once the symmetric fields between Reqsim and Ressim are
determined, the corresponding field information has to be
identified in the incoming request Reqin and substituted in
Ressim in order to synthesise the final response Resout.

The following example will help illustrating the identifica-
tion of symmetric fields and how symmetric fields are used
in the response generation process. Consider the following
LDAP search request2

Message ID: 18
ProtocolOp: searchRequest
ObjectName: cn=Mal BAIL,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU

1A detailed description of the actual algorithm had to be
omitted due to space limitations.
2For presentation purposes, we use a more user-friendly lay-
out of the corresponding LDAP messages. For processing, all
messages were “normalized”, that is, newlines, leading white
spaces etc. were removed from the textual representation.

Scope: 0 (baseObject)

we are looking to generate a response for. The search for
the most similar request in the available interaction traces
returns the following request

Message ID: 37
ProtocolOp: searchRequest
ObjectName: cn=Miao DU,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

that is paired-up with the following response:

Message ID: 37
ProtocolOp: searchResEntry
ObjectName: cn=Miao DU,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

Message ID: 37
ProtocolOp: searchResDone
resultCode: success

Symmetric field identification results in two substrings that
are identical across request and response:

Message ID: 37
ProtocolOp:

and

ObjectName: cn=Miao DU,ou=Administration,
ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 (baseObject)

Substituting the corresponding values from the incoming re-
quest, we synthesize the following response:

Message ID: 18
ProtocolOp: searchResEntry
ObjectName: cn=Mal BAIL,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

Message ID: 18
ProtocolOp: searchResDone
resultCode: success

4.5 Implementation
We have developed a proof of concept realisation of our

framework, including the sequence alignment, the symmet-
ric field identification and substitution algorithms, as well
as the underlying modified Needleman-Wunsch algorithm.
This was proof of concept prototype was implemented in
the Java programming language. Both Wireshark and LISA
were used to capture network traffic and exported into a
format suitable for input into our Java implementation. At
the time of writing, the implementation was not specifically
optimized (both from a performance and memory consump-
tion perspective). This is a task we intend to cover in future
work.

5. EVALUATION
In this section, we present the experiments that we con-

ducted to evaluate the effectiveness of the approach pre-
sented in the previous section and discuss the results of our
experiments. More specifically, we introduce our experimen-
tal setup as well as our evaluation criteria in sections 5.1
and 5.2, respectively. In Section 5.3, we present the re-
sults of our cross-validation and illustrate the accuracy of
the synthesized responses. Finally, we discuss limitations of
our current approach and identify possible areas of future
improvements in Section 5.4.

5.1 Experimental Setup
Although one of the aims of our work is to enable emu-

lation for unknown or ill-specified protocols, for evaluation
purposes, we used two protocols where the precise message
structures as well as the corresponding temporal proper-
ties are known: the Simple Object Access Protocol (SOAP)
[1] and the Lightweight Directory Access Protocol (LDAP)
[23]. Both are commonly used application-layer protocols
and hence lend themselves as case studies for our evalua-
tion. SOAP is a light-weight protocol designed for exchang-
ing structured information in a decentralised, distributed
environments whereas LDAP is widely used in large enter-
prises for maintaining and managing directory information.

The interaction trace for SOAP used for our evaluation
was generated based on a recording of a banking example
using the LISA tool [18]. The protocol consists of 7 different
request types, each with a varying number of parameters, en-
coding “typical” transactions one would expect from a bank-
ing service. From a pre-defined set of account id’s, account
names etc. we then randomly generated an interaction trace
containing 1, 000 request/response pairs. Amongst those, we
had 548 unique requests (with only 22 requests occurring
multiple times), 714 uniqe responses (the replicated ones
are predominantly due to the fact that the deleteToken-

Response message only had true or false as possible return
values), and 23 duplicated request/response pairs. For the
purpose of our evaluation, we considered this a sufficiently
diverse “population” of message to work with.

The following is one of the recorded requests:3

<?xml version="1.0"?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getAccount xmlns:ns2="http://bank/">
<accountId>867-957-31</accountId></ns2:getAccount>

</S:Body>
</S:Envelope>

with the following the corresponding response:

<?xml version="1.0"?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getAccountResponse xmlns:ns2="http://bank/">
<return>
<accountId>867-957-31</accountId>
<fname>Steve</fname>
<lname>Hine</lname>
</return>
</ns2:getAccountResponse>
</S:Body>
</S:Envelope>

This example illustrates that besides the structural SOAP
information encoded in both messages, there is specific infor-
mation that appears in both, the SOAP request and SOAP
response, such as the account-ID in the example above.

LDAP is a binary protocol that uses an ASN.1 encoding to
encode and decode text-based message information to and
from its binary representation, respectively. For the purpose
of our study, we used a corresponding decoder in order to
translate recorded LDAP messages into a text format and

3Similar to the LDAP example given in Section 4.4, we re-
moved any newlines, whitespaces etc. introduced for pre-
sentation purposes during processing.

an encoder to check whether the synthesized responses were
well-formed (cf. Section 5.2). In future work, we plan to in-
vestigate whether we can omit the encoding/decoding steps
and directly manipulate the corresponding binary represen-
tations.

The LDAP interaction trace used for the evaluation con-
sisted of 498 unique interactions containing the core LDAP
operations, such as adding, searching, modifying etc. applied
to CA’s DemoCorp sample directory [2]. The trace did not
contain any duplicated requests or responses, and the search
responses contained a varying number of matching entries,
ranging from zero to 12.

The following briefly illustrates the textual representation
of a search request:

Message ID: 15
ProtocolOp: searchRequest
ObjectName: cn=Juliet LEVY,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

and the corresponding response, consisting of the merge of
a search result entry and a search result done message:

Message ID: 15
ProtocolOp: searchResEntry
ObjectName: cn=Juliet LEVY,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

Message ID: 15
ProtocolOp: searchResDone
resultCode: success

This example LDAP request contains a (unique) message
identifier (Message ID: 15) and a specific object name (Ob-
jectName: . . .) as the root node for the search to be used.
The corresponding responses use the same message identi-
fier (to indicate the request they are in response to) and the
searchResEntry message refers to the same object name as
the request. For our approach to synthesize correct LDAP
responses, the corresponding information needs to be copied
across from the incoming request to the most similar re-
sponse to be modified.

5.2 Cross-Validation Approach and Evaluation
Criteria

A cross-validation approach [5] is one of the most popular
methods for assessing how the results of a statistical analysis
will generalise to an independent data set. For the purpose
of our evaluation, we applied the commonly used 10-fold
cross-validation approach [17] to both the recorded SOAP
and LDAP messages, respectively.

As shown in Figure 2, we randomly partitioned the origi-
nal interactions’ data set into 10 groups. Of the 10 groups,
group i (cf. top-left rectangle in Figure 2) is considered to
be the evaluation group for testing our approach, and the
remaining 9 groups constitute the training set. The cross-
validation process is then repeated 10 times (the same as
the number of groups), so that each of the 10 groups will be
used as the evaluation group once.

In order to investigate the applicability and effectiveness
of our approach, for each message in the evaluation group,
we compared the resulting synthesized response with the
corresponding recorded response. We defined the following
criteria to evaluate the “validity” of synthesized responses:

Group i Emulator
Group 1 to i-1

Group i+1 to 10Response(s)

Request

Group1

10
G
ro
up
s

.
.
.
.

Interaction

recordings

Figure 2: 10-fold Cross Validation Approach

1. Identical: the synthesized response is identical to the
recorded response if all characters in the synthesized
response exactly match those in the recorded response
(as per our definition in Section 4.1.)

2. Well-Formed: this criterion indicates that the syn-
thesized responses correspond to the structure required
for responses as defined by the underlying protocol.
Synthesized responses that do not meet this criteria
are considered to be Ill-Formed.

3. Protocol Conformant: this criterion requires that
synthesized responses are well-formed. On top of that,
it requires that the responses conform to the temporal
interaction properties of the given protocol, that is, the
temporal consistency between request and response is
preserved.

For the purpose of our evaluation, we used a weaker notion
of protocol conformance as the order in which the requests
are selected from the evaluation set is random and, as a
consequence, unlikely to conform to a sequence of protocol
conformant requests. Therefore, we consider a synthesized
response to be protocol conformant if it conforms to the
temporal properties at some point in time.

If a synthesized response is identical, then the other two
properties (well-formed and protocol conformant) are im-
plied. We can guarantee this under the assumption that
the recorded interaction traces we use are considered to be
valid and conform to the temporal interaction properties of
the protocol. However, it is very well possible that the re-
sponse generation process synthesises a well-formed response
that is not protocol conformant (as we will further discuss
in Section 5.4).

For the purpose of emulation, protocol conformance is the
most important property a synthesized response needs to
exhibit. The aim of an emulatable endpoint model is not
necessarily to reproduce the behaviour of a real endpoint
to 100% - as long as the responses an emulated endpoint
provides are “good enough”, this will be sufficient for many
quality assurance activities [12].

5.3 Evaluation Results
To benchmark the effectiveness of our approach for syn-

thesizing responses, we used a random selection strategy as
baseline where for an “incoming” request, the corresponding
response is randomly selected from the responses contained
in the training set. All generated responses for both, the
approach based on common subsequence alignment (CSA)
as well as the random selection strategy, were categorised
according to the criteria introduced in Section 5.2.

Table 1 summarizes the result of our experiments. Be-
sides the number of responses falling in each of the four
categories, it lists the number of valid response messages,
that is, the sum of identical and protocol-conformant mes-
sages. Please note that the column Well-form. does not
include the number of valid messages, that is, only those
well-formed responses that are not protocol conformant are
listed. Furthermore, for all non-identical responses, Table 1
also lists the median as well as the maximum dissimilarity
ratios, respectively.

5.3.1 Evaluation results for SOAP.
Table 1 compares the different outcomes of the random re-

sponse strategy and our CSA approach. Most importantly,
no ill-formed SOAP responses were generated by either the
baseline approach or the common subsequence alignment
approach. However, our approach outperformed the ran-
dom selection strategy in a number of aspects. Specifically,
(i) all 1, 000 synthesized responses using our approach were
protocol conformant, compared to only 33 of the randomly
selected responses, and (ii) 9.3% of the generated responses
were identical to the recorded responses in our approach,
compared to 3.3% in the random selection strategy.

Analysing the non-identical responses in more detail, we
observed that the worst dissimilarity ratio of the common
subsequence alignment approach is 0.046 (all other dissimi-
larity ratios are smaller). With an average response length
of 239 characters, this gives us a maximum edit distance of
24 between the synthesized response and the “expected” re-
sponse (i.e. the response associated with the most similar
request). This shows that for the SOAP case study used,
our approach was able to synthesize responses significantly
more accurately than the random strategy.

5.3.2 LDAP results
A summary of the result of the LDAP experiments are also

given in Table 1. For the common subsequence alignment
approach, 466 (out of 498) generated response messages were
identical to the corresponding recorded responses (89.9%),
and an additional 18 of the generated responses met the
protocol conformant criterion (3.6%). Therefore, a total of
487 (or 97.8%) of all generated responses were considered
to be valid. Of the remaining 14 responses, 9 were well-
formed, but had the wrong message type, and 5 responses
were ill-formed. Both aspects will be discussed further in
the following section.

In case of the random selection strategy, all responses
were well-formed (as expected), but as many as 438 re-
sponses were valid (87.5%), which is not much worse than
the CSA approach. This rather surprising result can be
explained by the fact that about 90% of all recorded re-
quests are searchRequest messages (with different search
criteria), and hence the likelihood of randomly choosing an-
other searchRequest as the “best” match is rather high.

Experiment No. Valid Ident. Conf. Well-form. Ill-form. Mean dsim.∗ Max dsim.∗
SOAP Random 1,000 33 33 0 967 0 0.046 0.259
SOAP CSA 1,000 1,000 93 907 0 0 0.020 0.046
LDAP Random 498 438 2 436 39 0 0.067 0.873
LDAP CSA 498 484 466 18 9 5 0.200 0.775

Table 1: Summary of Evaluation Results.

This also explains the rather low number of only well-formed
messages.

With regards to the rather high maximum dissimilarity
ratio, there are a number of very similar search requests in
our data set, some of them resulting in responses with zero or
one search result entries only, others with a large number of
entries. Therefore, if a response with a small number of en-
tries is used as the basis to synthesize a response for a request
that expects a large number of entries (or vice versa), then
the edit difference between the synthesized and expected re-
sponses is rather large and, consequently, the dissimilarity
ratio as well. However, for the purpose of our overall goal of
being able to generate valid responses, this is not a problem
as despite a high dissimilarity, a valid response is generated
as long as all symmetric fields are replaced correctly.

5.4 Discussion and Limitations
Based on the investigation of both SOAP and LDAP ex-

perimental results, we can see that our approach is able to
automatically generate valid responses in most situations.
However, as illustrated in the results for LDAP, a small pro-
portion of protocol non-conformant or even ill-formed re-
sponses were synthesized. In order to better illustrate the
underlying reasons, consider the following example where
a protocol non-conformant response was synthesized. The
following request

Message ID: 171
ProtocolOp: addRequest
ObjectName: cn=Miao DU,ou=Finance,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

resulted in the generation of the following response:

Message ID: 171
ProtocolOp: modifyResponse
resultCode: success

The response is well-formed and the Message Id field has
been substituted properly. However, according to the LDAP
protocol specification, an addRequest adding an extra node
to an LDAP directory, must result in an addResponse, and
not in an modifyResponse as given in the example above.
The reason for this unexpected response can be explained
by the fact that the test set contains a modifyReqest with
precisely the same ObjectName and Scope as the addRequest
above and a Message ID of 151. Our distance measure iden-
tified this modifyRequest as the most similar match and
hence, the associated modify response was used as the basis
for synthesizing the response.

Most application-level protocols define message structures
containing some form of operation or service name in their
requests, followed by a payload on what data this service is
expected to operate upon [12]. In the example above, the
fact that addRequest and modfiyRequest denote different

operations was not taken into consideration when the most
similar request was chosen. In future work we intend to de-
vise suitable heuristics allowing us to (semi-)automatically
identify which part(s) of a request message most likely cor-
respond to a service name, use this information to divide
the set of interaction traces into clusters containing a single
service type only, and restrict the search for the most simi-
lar request to one cluster only. This should also improve the
run-time performance of our approach.

The following example indicates an ill-formed LDAP re-
sponse. It is worth noting that the Message Id and Ob-

jectName fields have been properly substituted from the
corresponding request. However, the protocolOp values of
addResEntry and addResDone are invalid LDAP operation
names and were flagged as such by the LDAP encoder used.

Message ID: 154
ProtocolOp: addResEntry
ObjectName: cn=Miao DU,ou=Legal,

ou=Corporate,o=DEMOCORP,c=AU
Scope: 0 (baseObject)

Message ID: 154
ProtocolOp: addResDone
resultCode: success

Similar to the previous example, there is a mismatch in
the operation name of the most similar request: whereas
the request message denotes an addRequest, the test set
contains a searchRequest with a very similar message id
and an identical ObjectName. The message id was substi-
tuted correctly, but all occurrences of search in the response
were substituted to add, resulting in an ill-formed LDAP re-
sponse. Again, clustering the set of interactions according
to the service/operation name would have most likely pre-
vented the selection of a searchRequest as the most similar
request to an addRequest.

Comparing the dissimilarity measures of our LDAP and
SOAP results (cf. the corresponding values in Table 1), we
noticed that non-zero SOAP similarities are generally sig-
nificantly lower than the non-zero LDAP results, indicating
that our non-exact matching SOAP responses are typically
less dissimilar to the real responses than their LDAP coun-
terparts. This can be attributed to the fact that SOAP mes-
sages contain a significant amount of structural information
which is easily duplicated in the generated responses. This
makes the generated and real SOAP responses similar even
when there are, perhaps significant, differences in the pay-
load.

This is not a major issue for our approach in general. How-
ever, it implies that comparing the effectiveness of various
distance and translation functions across protocols needs to
be done carefully as low(er) dissimilarity ratios in one pro-
tocol may be more due to the amount of common struc-
tural information than the properties of the distance and
translation functions used. Similar to the abovementioned

clustering approaches, we intend to use heuristics to (semi-
)automatically separate payload and structure in messages
and devise similarity measures that give payload informa-
tion a higher weighting than structural information in order
to improve the cross-protocol comparisons.

In our tests we have examined text-based messages with
SOAP being a text-based protocol and for LDAP, we used a
text representation. Future work will attempt to synthesise
responses directly for binary protocols. This will bring ex-
tra challenges. In order to give one example, binary packets
often contain the packet length as part of the encoding. Our
field substitution method could change the length of pack-
ets and, therefore easily produce an ill-formed response. In
order to address this issue, without using explicit knowledge
of the message structure, we will need to devise methods to
automatically identify fields such as the packet length.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated that it is feasible to create a system

which automatically builds executable interactive models of
software service behaviour from recorded message traces,
without requiring explicit knowledge of the internals of the
service or of the protocols the service uses to communi-
cate. This eliminates the human effort of manually speci-
fying models and furthermore reduces reliance on a system
expert or the need for extensive documentation of the service
protocol and behaviour, respectively.

Our approach is to build models directly from interaction
traces, recorded between a system-under-test and a software
service which it depends upon. The interaction traces are
used as a library with which to compare new requests from
a system-under-test. The Needleman-Wunsch longest com-
mon subsequence alignment method is used to calculate the
distances between a new request and requests in the inter-
action traces. In our initial approach, we assume that the
response corresponding to closest matching request, is the
best response to send back to a system-under-test. Symmet-
ric field substitution is used to modify the sent response so
that it is tailored to the new request.

The Needleman-Wunsch longest common subsequence dis-
tance measure combined with symmetric field substitution
produces promising results for the two protocols tested. For
LDAP, 94% of synthesised responses were identical to that of
the real service, and 98% of generated responses were proto-
col conformant. For the more complexly structured SOAP,
while only 9% of synthesised responses were identical, 100%
were protocol conformant.

Future work will refine our request matching algorithms.
For example, some fields in the request (such as the opera-
tion name) are more critical for identifying which response
should be sent back. We will explore methods for auto-
matically identifying critical fields. Possible approaches in-
clude reverse engineering the protocol structure, or using
clustering to group responses and requests and then infer
the critical junctures at which different types of responses
are sent for similar looking requests. Utilising conversation
state information may also improve the accuracy of synthe-
sised responses. Finally, there is a need to test our methods
on a wider range of protocols. Proprietary mainframe proto-
cols, which are often poorly documented, are a particularly
interesting category to test.

Acknowledgements
This work is supported by ARC Linkage Project LP100100622
Large-Scale Emulation for Enterprise Software Systems.

7. REFERENCES
[1] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew

Layman, Noah Mendelsohn, Henrik Frystyk Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access
Protocol (SOAP) 1.1,. W3C Note 8, W3C, May 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[2] CA Technologies. CA Directory Administration Guide
(r12.0 SP11), 2012.

[3] Paolo Milani Comparetti, Gilbert Wondracek,
Christopher Kruegel, and Engin Kirda. Prospex:
Protocol Specification Extraction. In Proceedings of
the 30th IEEE Symposium on Security and Privacy
(SP ’09), pages 110–125. IEEE, 2009.

[4] Weidong Cui, Vern Paxson, Nicholas C. Weaver, and
Randy .H. Katz. Protocol-independent Adaptive
Replay of Application Dialog. In Proceedings of the
13th Annual Network and Distributed System Security
Symposium, February 2006.

[5] P.A. Devijver and J. Kittler. Pattern recognition: A
statistical approach. Prentice/Hall International, 1982.

[6] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre,
and Marc Fisher II. Leveraging user-session data to
support web application testing. IEEE Transactions
on Software Engineering, 31:187–202, 2005.

[7] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe
Walnes. Mock roles, objects. In Companion to the 19th
annual ACM SIGPLAN conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 236–246, New York, NY, USA, 2004.

[8] Matthew Gardiner. CA Identity Manager, November
2006. White Paper on CA Identity Manager.

[9] Sudipto Ghosh and Aditya P. Mathur. Issues in
Testing Distributed Component-Based Systems. In In
First International ICSE Workshop on Testing
Distributed Component-Based Systems, 1999.

[10] John Grundy, Yuhong Cai, and Anna Liu. Generation
of Distributed System Test-Beds from High-Level
software Architecture Descriptions. In Proceedings of
the 16th IEEE International Conference on Automated
Software Engineering (ASE ’01), pages 193–200, San
Diego, November 2001.

[11] John Grundy, Yuhong Cai, and Anna Liu.
SoftArch/MTE: Generating Distributed System
Test-Beds from High-Level Software Architecture
Descriptions. Automated Software Engineering,
12(1):5–39, January 2005.

[12] Cameron Hine. Emulating Enterprise Software
Environments. Phd thesis, Swinburne University of
Technology, Faculty of Information and
Communication Technologies, 2012.

[13] Cameron Hine, Jean-Guy Schneider, Jun Han, and
Steve Versteeg. Scalable Emulation of Enterprise
Systems. In Proceedings of the 20th Australian
Software Engineering Conference (ASWEC 2009),
pages 142–151, Gold Coast, Australia, April 2009.
IEEE Computer Society Press.

[14] Cameron Hine, Jean-Guy Schneider, and Steve

Versteeg. Reac2o: a runtime for enterprise system
models. In Jamie Andrews and Elisabetta Di Nitto,
editors, Proceedings of the 26th IEEE/ACM
International Conference on Automated Software
Engineering (ASE 1́0), pages 177–178, Antwerp,
Belgium, September 2010. ACM.

[15] Ulf Lamping, Richard Sharpe, and Ed Warnicke.
Wireshark Users’s Guide, 2012.

[16] Pen Li. Selecting and Using Virtualization Solutions:
our Experiences with VMware and VirtualBox.
Journal of Computing Sciences in Colleges,
25(3):11–17, January 2010.

[17] Geoffrey J. McLachlan, Kim-Anne Do, and Christophe
Ambroise. Analyzing Microarray Gene Expression
Data. Wiley-Interscience, 2004.

[18] John Michelsen. Key Capabilities of a Service
Virtualization Solution, October 2011. ITKO White
Paper. Available at:
http://www.itko.com/resources/service_

virtualization_capabilities.jsp.

[19] Saul B. Needleman and Christian D. Wunsch. A
General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two
Proteins. Journal of Molecular Biology, 48(3):443–453,
1970.

[20] Eric Sven Ristad and Peter N. Yianilos. Learning
String-Edit Distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532,
May 1998.

[21] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, Lori
Pollock, and Amie Souter Greenwald. Applying
Concept Analysis to User-Session-Based Testing of
Web Applications. IEEE Transactions on Software
Engineering, 33(10):643–658, 2007.

[22] Joe Sanchez. Squeezing virtual machines out [of] CPU
cores, 2011. VM Install.

[23] J. Sermersheim. Lightweight Directory Access
Protocol (LDAP): The Protocol. RFC 4511 (Proposed
Standard), June 2006.

[24] Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing i/o devices on vmware
workstation’s hosted virtual machine monitor. In
Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, pages 1–14, Berkeley,
CA, USA, 2001. USENIX Association.

[25] Steve Versteeg, Cameron Hine, Jean-Guy Schneider,
and Jun Han. Emulation of Cloud-Scale Environments
for Scalability Testing. In Proceedings of the 12th
International Conference on Quality Software (QSIC
’12), pages 201–209, Xi’an, China, August 2012. IEEE.

