
Deploying Multi-Agents for Intelligent Aspect-Oriented
Web Services

Santokh Singh, John Hosking, John Grundy

Computer Science Dept, University of Auckland, Private Bag 92019, Auckland, New Zealand

{santokh,john,john-g}@cs.auckland.ac.nz

Abstract. The limited description, discovery and integration mechanisms of current
web service-based systems have many setbacks that hinder the extension and
incorporation of dynamic capabilities into these systems. In this paper we present a
novel software architecture called intelligent aspect-oriented web services (IAOWS)
which addresses these problems and further improves on this technology by
allowing for dynamic look-up and integration. IAOWS use a combination of Aspect-
Oriented Multi-Agents and aspectual service descriptors for aspect-oriented web
services to cater for more complete and thorough descriptions of services, thus
supporting better dynamic discovery of both services and components, and their
seamless integration and consumption by clients. We describe our IAOWS
architecture and an initial implementation using .NET web services technology to
engineer and deploy the Multi-Agents and capture the rich cross-cutting aspects
together with their behavior and interaction within our highly distributed system.

1 Introduction

We have been investigating and incorporating the use multi-agents [1, 4] into our

research and development on complex and dynamic web service based systems. Web
services hold the promise of realizing remote business-to-business integration irrespective
of language or platform of the interacting software systems. They achieve this by using
proxies to communicate through standard mutually acceptable protocols, the most popular
being SOAP over HTTP. They are identified by their unique URIs, whose exposed public
interfaces are defined and described in service description documents, the most widely
used being Web Services Description Language (WSDL) documents [6, 8, 9]. WSDL uses
its W3C XML Schema for defining service interfaces and their disparate endpoints
together with data types in an abstract manner, and can map them to any language or
middleware interfaces thus providing platform and language independence. These
description documents can be discovered by other systems using discovery agencies like
the Universal Description, Discovery and Integration (UDDI) [9].

Service requesters (clients) may then interact with the web service in a manner
prescribed by its contract, using XML based messages handled by the wsdl proxies.
Current web service design techniques and methodologies tend to focus on low level
component interface design and implementation. This can result in the development of
components whose services are both difficult to comprehend and combine [14, 15].

 1

jgrundy
2005 Pacific Rim Workshop on Intelligent Multi-agents, Kuala Lumpur, 14-16 September 2005, Lecture Notes in Artificial Intelligence, © Springer 2005

jgrundy

Aspect Oriented Component Engineering (AOCE) is a complete Component Based
Software Development methodology that we have developed, refined and used
extensively to better characterize and categorize different systemic cross-cutting
capabilities of software components and to reason about inter-component relationships
using aspects [15, 16]. Leveraging on AOCE, we have developed a new approach for
describing, discovering and integrating web services-based components and have
extended the WSDL and UDDI mechanisms to encompass specifications of aspectual
properties in web services, characterized these systemic, cross-cutting concerns that
impact such systems. These additional aspectual features provide clearer, more enriched
and detailed description of web services, thus enabling more comprehensive dynamic
discovery, integration and consumption through the use of multi agents.

In the following sections we provide the motivation and significance for our work,
give an overview of where and why it is needed with reference to a real situation, then
describe the new intelligent aspect-oriented web services (IAOWS) architecture and its
specifications We also share our experiences in implementing a prototype .NET-based
web services system using our approach. We discuss the strengths and weaknesses of our
IAOWS approach and present some directions for future research, particularly in the area
concerning multi-agents and web-service based systems.

2 Motivation

Current web service-based systems have many limitations that hamper the
incorporation and deployment of dynamic capabilities into these systems. Factors that
cause web services to be limited in their description, discovery and integration need to be
clearly identified and urgently resolved. The motivation behind this being that web
services had held the promise to allow for application to application communication
without human intervention, and although it has realized inter-application interaction, so
far it has failed to live up to its expectations with regards to automation. In this paper we
present a novel software architecture called intelligent aspect-oriented web services
(IAOWS) which addresses these problems and further improves on this technology by
allowing for dynamic look-up and integration. IAOWS use a combination of Multi-Agents
and aspectual service descriptors for aspect-oriented web services to cater for more
complete and thorough descriptions of the services, thus supporting better dynamic
discovery and seamless integration.

Multi-Agents in web services are semi-autonomous computer programs that employ
artificial intelligence techniques to carry out specific tasks, for instance they can assist in
the discovery and integration of useful services. These agents can learn through example-
based reasoning and are able to improve their performance over time [4, 25]. Multi-
Agents can inhabit the complex, dynamic environments of distributed systems, and they
can be programmed to sense and act autonomously in these environments. These software
robots can think and will act on behalf of a user to realize a set of goals or tasks. We use
agents to help fulfill their growing need in our increasing functional, flexible, and highly
distributed autonomous web services systems. Uses for these intelligent agents here

 2

include carrying out self-contained tasks, operating semi-autonomously, and
communicating between the user and systems resources [3, 16].

A novel Component Based Software Development methodology called AOCE was
used because it produces more reusable, scalable, understandable and maintainable
software and subsystems compared to existing methodologies. Current CBSD approaches,
such as the Architecture Based Component Composition Approach (ABC)[2], TopCoderR,
Select PerspectiveTM [7], OMG’s Model Driven Architecture (MDA) [22], and
CatalysisTM [12], attempt to use the best approaches from existing traditional software
development methodologies including utilizing the power of community-based
development, but have not sufficiently addressed the all-important issues of code and
designs reusability, understandability, scalability and cross-cutting concerns. They tend to
focus on low level features of components rather than component requirements and inter-
component relationships, making the components hard to understand, refactor or integrate
with each other.

The most comprehensive and one that has a wide range of tool-support is OMG’s
MDA. It defines software based on UML models, relying on base models called Platform-
Independent Models that specify business functionality and behavior in a technology
independent manner. An intermediate model called the Platform-Specific Model (PSM)
reflects non-business, computing-related details, for instance those affecting performance
and resource utilization. The PSM is added to the Platform-Independent Model by the web
services’ architects and can be used to generate software components. Though it can be
applied to model and develop large web service-based systems, it has several setbacks,
these include the huge amount of work required to meticulously get all the models and
designs of large systems correct, right down to minute details because code is to be
generated from them. It is always necessary to improve and tweak the generated code and
if mistakes were made in the designs/models the errors will flow through to the generated
code requiring further refactoring and debugging. Furthermore, the models and
implementations place great emphasis on lower-level systemic features, and this
compounds to the inefficiencies introduced and makes the components produced by using
OMG’s MDA difficult to understand, reconfigure or reuse.

In the Architecture Based Component Composition Approach (ABC)[2] methodology,
it is proposed to use Software Architectures (SA) to compose prefabricated components to
solve the key issue of component-based reuse. The downside is that SA provides a top-
down approach to realizing component-based reuse, but doesn’t pay enough attention to
the refinement and implementation of the architectural descriptions, thus it is not fully
able to automate the transformation or composition to form an executable applications.
Though the name ABC may sound simple but in effect it is a complicated CBSD
methodology with many strict development rituals and rules to abide by. For developers
who are not familiar with ABC or were not involved in the initial development of the
particular software, it will pose as a very challenging and uphill task for them as they try
to decipher a multitude of architectural diagrams and designs obtained from different
phases that are not exactly helpful for reuse, refactoring, maintenance or scaling purposes.

 3

To further complicate matters, TopCoderR, which is a commercially used CBSD
technique, not only relies heavily on the lower-level features of software, it also specifies
a cycle of four distinct stages to emphasize these features. These stages are the software’s
specification, architecture/design, development/testing, and certification, and if any phase
were to fail an acceptance test, the phase is restarted all over again from the beginning. As
can be seen, this methodology can be tedious. It also focuses on lower-level features of
the component/system thereby making designs and implementations hard to understand at
abstract levels or during refactoring. Higher level component descriptors such as
persistency, distribution, security, performance, transaction processing are not taken into
account in any of its four phases. These high-level features are important for
understanding and combining systemic components and their functionalities, especially in
complex and distributed systems like web services. All the CBSD approaches listed here
[2, 7, 12, 22, 24] cannot provide proper support to develop software components for the
dynamic discovery and integration of web services because they do not have proper
descriptors and formal mechanisms to take these high level features into account, nor do
they address critical cross-cutting concerns in these highly distributed systems.

In our earlier work [5] we had laid down the foundations for realizing automation in
web services by developing aspect-oriented web services using the AOCE methodology.
In that research, we had developed Aspect-Oriented Web Services (AOWS) that had
better and more comprehensive descriptors in its exposed interfaces within its Aspect-
Oriented WSDL (AOWSDL) documents. This even allows for whole components to be
located and consumed by clients instead of just individual operations. Each component
has a clearly defined and interrelated set of exposed APIs and by using the whole
component we are able to carry out a whole series of related tasks to satisfy a particular
goal. Furthermore, the aspectual elements [5] within the AOWSDL service description
document enables more complete and accurate discovery of required services. To achieve
maximum benefit from our earlier system we refactored and incorporated aspect-oriented
multi-agents into our AOWS and called the resulting system IAOWS. The objective here
is to enable the realization of more accurate dynamic discovery and integration in our web
services model through the use of multi-agents.

3 Intelligent Aspect-oriented Web Services

IAOWS uses the concept of multi-agents and aspects, in this case aspects that impact
on different parts of not only the web services, but also the agents. Figure 1 below shows
an example from the prototype travel planner system that we developed based on IAOWS.
Using discovery agents the client/requester looks-up various services from a registry (1).
We deployed Discovery Agents to coordinate with the client’s Requesting Agents to
search the repository of the AOUDDI, and return results best matching the web service
descriptions requested for, including descriptions for their components, aspects, aspect
details and provided/required aspectual features

 4

Travel Planner
Client

findFlights()
bookFlights()
payBookings()
cancelBook()

Flights Search
#1

findFlights()
bookFlights()

Flights Search
#2

findFlights()

via Travel-agencies
bookItems()
doPayment()
undoBooking()

Payment Service

processPayment()

UDDI

Payment Adaptor
doPayment()
creditReversal()

Security Agents
Authenticate()
Encrypt()

2
1

3

4

Requesting Agents

Broadcast Agents

Dynamic Proxy Building
(DPB) Agents

Discovery Agents

Publishing Agents

Integration Agents

Publish Requester
Agents

Publish Requester
Agents

Figure 1. Example of web-service based travel planner utilizing multi-agents.

As shown, flight searches for clients are performed by dynamically integrating with
various discovered flight service providers (2) using the integration and proxy building
agents. Bookings can be made directly or through agents (3), and if required payment
subsequently made through a web-service based allowable mode of payment (4), this
series of transactions can be verified by security agents. The Travel Agencies (3) are used
as a back-up manual measure for those who do not have the time to search, book etc., and
are more comfortable paying others to do these activities for them. Security issues handled
by security agents may include a need for user authentication and data
encryption/decryption. In specifying client needs and web services providing them, we
need to specify these security requirements, and the relevant Multi-Agents will interact,
coordinate and negotiate with each other to produce an optimal solution. Aspectual
constraints and their required/provided properties are used in testing and validating any
discovered service.

 To support better dynamic discovery, integration and subsequent consumption of
services in web-service based systems, we designed and developed Intelligent Aspect-
oriented Web Services (IAOWS) using Multi-Agents. This research further extends our
AOCE work in which we developed extensions to the object component model to support
component design, de-coupled implementation and run-time discovery and integration
using component aspects [5, 6, 16]. Component aspects are cross-cutting concerns
impacting on components, including persistency management, distribution, security,
transaction processing and resource use. Components provide capabilities to others or
require services from them across these different system aspects. Aspect details capture

 5

functional and non-functional properties and allow design-time reasoning and run-time
component description and adaptation.

Key aspects that multi-agents use when discovering web services to interact with
include security model, transaction management, performance measures for operations,
and fault and exception-handling approaches. As such, when building web services we
may describe data persistency approach, database transactional behaviour for operations,
resource utilization, communications infrastructure, monitoring and logging, etc. During
discovery and integration, we may need to locate adaptors, transaction managers, and
security managers, and compose (or orchestrate) services. We aim to better support this
range of activities when designing, implementing and deploying web services using
IAOWS. We have developed a model of IAOWS-based systems, together with a variety
of multi-agents, and proof-of-concept implementation of the model with .NET web
services.

4 Multi-Agents of the IAOWS

We used a variety of agents, each assigned clear and specific tasks, to enable the
dynamic discovery and integration of the web services to be realized, including
consuming the services. We had to be very careful to assign tasks to the correct agents
that are most appropriate to handle them and to ensure that there were no overlapping
tasks [25]. We also had to ensure that the agents were communicating and coordinating
with their appropriate counter-parts/subsystems. These agents were run using their own
separate threads asynchronously so that they did not hold up processing time and can
compete with each other for resources on a first-come-first-served basis.

Figure 2 below shows the architecture of our IAOWS. As depicted here, IAOWS uses
the concept of multi-agents and aspects, in this case aspects that impact on different parts
of web services that can be captured and utilized by the agents. We had used our novel
AOCE methodology to develop IAOWS because the other current CBSD methodologies
discussed earlier neither identify nor address the issues of these cross-cutting concerns
called aspects. Furthermore, they do not produce aspect-oriented components which are
the highly reusable and understandable building blocks of our IAOWS and its various
subsystems. Even our multi-agents are composed of aspect-oriented components to make
them more reusable and efficient, and our IAOWS as a whole more modularized.

 6

SOAP/HTTP

Test Providers

Figure 2. The architecture of Intelligent Aspect-oriented Web Services

In this figure, Aspect-oriented web service providers use their own Publish Requester
Agents (PR Agents) to publish their services to the AOUDDI. PR Agents do this by
transmitting and depositing the unique AOWSDL document of their respective provider to
the registry. Publishing agents in the AOUDDI coordinate with the PR agents and if the

 7

publishing is successful, issue the PR agents with a unique identity number called an
ID_Publishing number. Publishing agents in the AOUDDI will first check to see whether
the document already exists in their repository and if so, whether it is a duplicate copy or
an updated version. No new ID_Publishing number is issued in either of these cases. But
if it was a new service the publishing agent will automatically generate and issue a new ID
which it will also store in its database together with the AOWSDL document. If there is
an exact copy already registered in its repository, then the redundant AOWSDL document
that was submitted is discarded and no further action needs to be taken by the publishing
agents. All actions taken and processing done by the publishing agents is stored in a cache
so that it can be indexed first and action taken almost instantaneously. This makes the
agents more efficient and can safeguard against multiple attacks by unscrupulous
providers making repeated publications to overload the AOUDDI.

If it is an updated AOWSDL version, the publishing agents will call the broadcast
agents in the AOUDDI to broadcast to all requesters via their requesting agents registered
with the AOUDDI that a new version of the AOWSDL document from a particular
service provider is available. The requesting agents will verify with their integration
agents whether the particular web service is currently being consumed. If the reply is
positive, the integration agents will give a complete list of services used and their required
aspectual features to the requesting agents. The requesting agents will then communicate
with the discovery agents in the AOUDDI to verify whether the required services are still
available from the provider. It does multiple XML queries on the discovery agents which
include requesting for particular aspects, the details and provided/required properties. The
discovery agents resort to case based reasoning to answer the queries of the requestors.
The discovery agents also have efficient parsers that parse the whole AOWSDL document
and pull out all the information within the document and store it in Hash Tables for
detailed look-up purposes. All communication between the distributed and collaborating
agents on different machines is done in XML format using the SOAP over HTTP
protocol.

If an already consumed but updated provider can still provide the services that the
requester needs, then the remote web reference (proxy) [8, 21] in the requester needs to be
updated dynamically. The requesting agents will call the integrating agents to update the
reference. The integrating agents will instruct the dynamic proxy building (DPB) robot in
the requester to dynamically destroy the existing proxy of the web service if the provider
is not currently being called to carry out remote processing. The DPB robot then
dynamically recreates a new proxy class based on the updated AOWSDL file, adding all
the relevant assemblies and functions to it in C#. It then compiles the AOWSDL proxy
class into a dynamic link library (.dll) file, saves it in the BIN (.NET’s binaries) folder and
adds a reference to it for the requester. This completes the task of dynamically updating
the proxy class. The DPB robot can then use reflection to dynamically discover and call
all methods, with their parameters and properties on this proxy class. The integrating
agents are notified that the dynamic proxy is created and these agents in turn pass on the
command to the requester so that the proxy can now be used by clients.

 8

Figure 3. Sequence diagram showing dynamic discovery, integration and

consumption of a flights web service using multi-agents
Figure 3 above shows an example of an AO-Sequence Diagram for the collaborative

Travel Planner with aspects and Multi-Agents, it describes the sequence of events for
searching, integrating and consuming a Flights web service. The requesting agents here
request for a flights service for making reservations on flights. Discovery agents do an AI
search and return a best matched service based on the request. An interplay of AI agents
with the help of aspect-enriched queries and responses together with coordinated effort
allows this to be achieved. The Multi-agents shown here follow all the procedures and
transactions explained earlier in this section. Shown here also are security agents that only

 9

allow service bindings and interactions with clients that are authorized to use the services.
This is achieved by inserting secret encoded keys [6] for access to the web service by the
client in its XML requests that are deciphered by the security agents. Access is only
allowed if the correct code is used by the client, and this kind of transactions are for
instance used to authorize staff to edit databases entries etc. that normal customers do not
have permission to do.

5 Implementation

We designed and developed a prototype collaborative Travel Planner based on the
IAOWS model of deploying Multi-Agents in a remotely connected server that can
dynamically discover and integrate with relevant aspect-oriented web service providers so
that users can use it to plan and make bookings for various itinerary items for their travel
or holidays. Figure 4(a.) below shows a section of the GUI of this web-based Travel
Planner developed using AOCE. It shows the web form (a .aspx type file) of the
application used to search and subsequently book and make payments for flights to
particular destinations. We also implemented a trimmed down version of the GUI
containing all its functionalities in a smart device application shown in Figure 4(b.).

Figure 4. Travel planner applications (a.) web based in PC (b) smart device
application that interacts with the web services.

 10

Figure 5 C# Code of the dynamic proxy building (DPB) robot in the requesters.
Figure 5 shows a sample of the code written in C# of the dynamic proxy building

(DPB) agent in the requesters. This agent is used to dynamically create or update a web
service proxy based on an AOWSDL file found to be suitable through the coordinated
effort of the requesting agents in the clients and discovery agents in the AOUDDI.
Integrating agents instruct the DPB robot in the requester to dynamically destroy the ‘old’
proxy (if any) first before it creates a new proxy class based on the discovered service
document. As can be seen, all the relevant assemblies and functions are added to the
proxy first. The AOWSDL proxy class is then generated, compiled and referenced by the
DPB agent so that it can be used by the requester. The integrating agents dynamically
create instances of this proxy to enable remote execution of operations on it using the
SOAP/HTTP as the transport protocol.

All agents are placed within well defined aspect-oriented components [5, 15, 16] so

that they can be easily reused and to achieve better modularity. This high level of
modularity allowed us to rapidly and accurately refactor, update and test our AI

 11

algorithms, especially algorithms for conducting searches and case based reasoning
purposes. Also aspect-oriented components address cross cutting concerns [19, 20] and
are better characterized and categorized. Implementation was done entirely in C# using
Microsoft’s Visual Studio and the .NET Framework [8, 21] so that we could concentrate
on the core issues involving the architecture, design and deployment of Multi-Agents
within IAOWS without the strain of learning and debugging in a multitude of languages.

6 Discussion

We had to carefully plan and limit the number and different kinds of agents in our
IAOWS system to an optimal and controllable number [11, 25] so that the series of tasks
executed by each type of agent is clearly defined and not overlapped with other types of
agents. We had to define the tasks precisely so that when it needs to be executed we know
exactly which agent to call into action. Since we already had experience designing and
developing an earlier prototype of AOWS (without the multi-agents) based on our earlier
research, this extension was not too difficult as we already had the technical knowledge
and expertise of how the distributed system works. We reused the code and aspect-
oriented components from the earlier prototype, and refactored where necessary, and this
made our development based on AOCE techniques more efficient and effective.

We used AI algorithms e.g. CBR in discovery agents mining the AOUDDI repository,
and A* search algorithms to choose the best web service that meets the search criteria
composed of aspect-enhanced multiple queries. As the number or registered web services
in the repository of the registry grew, searches became slower because of the huge amount
of information that had to be processed based on the criteria the agents had to match and
satisfy. We tried using other algorithms like Best-First Search, Greedy Search and Means-
Ends Analysis, but we abandoned them as the results obtained through these techniques
were not as good as the A* Search which merges two heuristic functions into one superior
function and this can satisfactorily process aspectual queries.

We also discovered that the deployment of agents increased the modularity in our
software systems. All our sub-systems have become more lightweight as we have
extracted a multitude of key operations/components from our requesters, providers and
AOUDDI subsystems and placed them in Multi-Agents. In our updated system that we
presented in this paper, we now just need to call these agents to carry out their specific
tasks in the software. As such, our IAOWS system and its aspect-oriented components are
now easier to reuse and refactor, making the overall system more maintainable and
scalable.

In our ongoing and future work we are looking into avenues of extending and
deploying these agents in a semantic aspect-oriented web services system that we are
currently in the initial stages of designing and formulating. We will also add in other
coordinating agents here to carry out any additional tasks involved due to the introduction
of the new features. We believe that the semantics and aspects will give the agents their
full power and capabilities to carry out more comprehensive and accurate dynamic
discovery, integration and consumption of web services within our IAOWS framework.

 12

7 Summary

This extension to our earlier work where we had developed Aspect-Oriented Web
Services is a particularly significant phase in the design and development of web-service
based systems that can support automation in the area of dynamic discovery, integration
and subsequent consumption by clients through the use of Multi-Agents and aspectual
features. It allows us to come nearer at realizing the dream that web services can indeed
cater for dynamic application to application communication without human intervention.
The Multi-Agents deployed here not only addressed the issues that hampered dynamic
look-up and integration of web-service based systems, they also made such systems more
modular, maintainable, reusable and scalable.

Acknowledgements

We gratefully acknowledge the helpful comments of the anonymous referees on an earlier
draft of this paper. This work has been supported in part by the New Zealand Foundation
for Research, Science and Technology and the University of Auckland Research
Committee.

References

1. Secq, Y., Routier, J., Mathieu, P., Dynamic Organization of Multi-Agent Systems,
PRIMA '02 Tokyo, Japan.

2. Mei, H,, ABC: Supporting Software Architectures in the Whole Lifecycle,
Proceedings of the Second International Conference on Software Engineering and
Formal Methods (SEFM’04), IEEE.

3. Keller, R. M., Wolfe, S. R., Chen, J. R., Rabinowitz, J. L., Mathe, N., A
Bookmarking Service for Organizing and Sharing URLs; Proceedings of the Sixth
International WWW Conference, Santa Clara, CA, 1997.

4. Rahwan, I., Graham, C., Sonenberg, L., Supporting Impromptu Coordination Using
Automated Negotiation, PRIMA 2004 New Zealand.

5. Singh, S., Grundy, J., Hosking, J.,. Developing .NET Web Service-based
Applications with Aspect-Oriented Component Engineering, AWSA’04, Australia.

6. Adams, C., Boeyen, S. UDDI and WSDL extensions for Web service: a security
framework, In Proc. 2002 ACM workshop on XML security, Fairfax, VA , 2002.

7. Allen, P., and Frost, S. Component-Based Development for Enterprise Systems:
Applying the Select Perspective, Addison-Wesley, 1998.

8. Ballinger, K., .NET Web Services: Architecture and Implementation, Addison-
Wesley, 2003.

9. Cerami, E. Web Services Essentials - Distributed Applications with XML-RPC,
SOAP, UDDI & WSDL, Feb 2002, O'Reilly.

10. Colyer A., Clement, A., Large-scale AOSD for Middleware, AOSD 04, ACM.

 13

11. Gómez, M., Plaza, E. Extending Matchmaking to Maximize Capability Reuse. In
Proc. Third International Joint Conference in Autonomous Agents and Multiagent
Systems (AAMAS’04), ACM.

12. D’Souza, D.F. and Wills, A.C. Objects, Components and Frameworks with UML,
The Catalysis Appproach, Addison-Wesley, 1999.

13. Gannod, C., Bhatia, S. Facilitating Automated Search for Web Services, In Proc.
IEEE International Conference on Web Services, ICWS’04, IEEE.

14. Grundy, J.C. and Hosking, J.G., In Engineering plug-in software components to
support collaborative work, S-P&E, 2002; vol. 32, pp. 983-1013.

15. Grundy, J. Multi Perspective Specification, Design and Implementation of Software
Components using Aspects, In Int. J. Soft. Eng. and Knowledge Eng. Vol. 10, No. 6
(2000), pp. 713-734, World Scientific.

16. Grundy, J. and Ding, G. Automatic Validation of Deployed J2EE Components Using
Aspects, In Proc. 2002 IEEE International Conference on Automated Software
Engineering, Edinburgh, UK, IEEE CS Press.

17. Hausmann, J.H.H., Heckel, R., Lohmann, M., Model-based Discovery of Web
Services, In Proc. ICWS’04.

18. Katara, M., Katz, S., Architectural Views of Aspects*, In Proc. AOSD 2003, Boston,
MA USA, ACM 2003.

19. Kiczales et al, Aspect-oriented Programming, In Proc. the 1997 European Conf. on
Object-Oriented Programming, Finland (June 1997), Springer-Verlag, LNCS 124.

20. Lieberherr, K. Connections between Demeter/Adaptive Programming and Aspect-
Oriented Programming (AOP), http://www.ccs.neu.edu/home/lieber/, 1999.

21. Microsoft, Visual Studio and .NET, http://www.microsoft.com/net/, 2003, Microsoft..
22. Siegel, J. Using OMG’s Model Driven Architecture (MDA) to Integrate Web

Services, http://www.omg.org/.
23. Stearns, M., Piccinelli, G., Managing Interaction Concerns in Web-Service Systems,

Proc. 22nd Int. Conf. on Distributed Computing Systems Workshops, pp. 424.
24. Vitharana, P., Mariam, F., and Jain, H., Design, Retrieval, And Assembly in

Component-based Software Development, CACM, vol. 46, no. 11, Nov. 2003.
25. Shen, J., Weber, I., Lesser, V., OAR: A Formal Framework for Multi-Agent

Negotiation, American Association for Artificial Intelligence, AAAI 2005

 14

	Abstract. The limited description, discovery and integration
	Introduction
	Motivation
	Intelligent Aspect-oriented Web Services
	Multi-Agents of the IAOWS
	Implementation
	Discussion
	Summary
	Acknowledgements
	References

