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Abstract. Owing to the sharp rise in the severity of the threats imposed by soft-
ware vulnerabilities, software vulnerability detection has become an important
concern in the software industry, such as the embedded systems industry, and
in the field of computer security. Software vulnerability detection can be carried
out at the source code or binary level. However, the latter is more impactful and
practical since when using commercial software, we usually only possess binary
software. In this paper, we leverage deep learning and kernel methods to propose
the Deep Cost-sensitive Kernel Machine, a method that inherits the advantages of
deep learning methods in efficiently tackling structural data and kernel methods
in learning the characteristic of vulnerable binary examples with high general-
ization capacity. We conduct experiments on two real-world binary datasets. The
experimental results have shown a convincing outperformance of our proposed
method over the baselines.

1 Introduction

Software vulnerabilities are specific flaws or oversights in a piece of software that can
potentially allow attackers exploit the code to perform malicious acts including expos-
ing or altering sensitive information, disrupting or destroying a system, or taking control
of a computer system or program. Because of the ubiquity of computer software and
the growth and the diversity in its development process, a great deal of computer soft-
ware potentially possesses software vulnerabilities. This makes the problem of software
vulnerability detection an important concern in the software industry and in the field of
computer security.

Software vulnerability detection consists of source code and binary code vulnerabil-
ity detection. Due to a large loss of the syntactic and semantic information provided by
high-level programming languages during the compilation process, binary code vulner-
ability detection is significantly more difficult than source code vulnerability detection.
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In addition, in practice, binary vulnerability detection is more applicable and impactful
than source code vulnerability detection. The reason is that when using a commercial
application, we only possess its binary and usually do not possess its source code. The
ability to detect the presence or absence of vulnerabilities in binary code, without get-
ting access to source code, is therefore of major importance in the context of computer
security. Some work has been proposed to detect vulnerabilities at the binary code level
when source code is not available, notably work based on fuzzing, symbolic execution
[1], or techniques using handcrafted features extracted from dynamic analysis [4]. Re-
cently, the work of [10] has pioneered learning automatic features for binary software
vulnerability detection. In particular, this work was based on a Variational Auto-encoder
[7] to work out representations of binary software so that representations of vulnerable
and non-vulnerable binaries are encouraged to be maximally different for vulnerability
detection purposes, while still preserving crucial information inherent in the original
binaries.

By nature, datasets for binary software vulnerability detection are typically imbal-
anced in the sense that the number of vulnerabilities is very small compared to the
volume of non-vulnerable binary software. Another important trait of binary software
vulnerability detection is that misclassifying vulnerable code as non-vulnerable is much
more severe than many other misclassification decisions. In the literature, kernel meth-
ods in conjunction with the max-margin principle have shown their advantages in tack-
ling imbalanced datasets in the context of anomaly and novelty detection [21,13,18].
The underlying idea is to employ the max-margin principle to learn the domain of nor-
mality, which is decomposed into a set of contours enclosing normal data that helps
distinguish normality against abnormality. However, kernel methods are not able to
efficiently handle sequential machine instructions in binary software. In contrast, deep
recursive networks (e.g., recurrent neural networks or bidirectional recurrent neural net-
works) are very efficient and effective in tackling and exploiting temporal information
in sequential data like sequential machine instructions in binary software.

To cope with the difference in the severity level of the kinds of misclassification,
cost-sensitive loss has been leveraged with kernel methods in some previous works,
notably [2,12,5]. However, these works either used non-decomposable losses or were
solved in the dual form, which makes them less applicable to leverage with deep learn-
ing methods in which stochastic gradient descent method is employed to solve the cor-
responding optimization problem.

To smoothly enable the incorporation of kernel methods, cost-sensitive loss, and
deep learning in the context of binary code vulnerability detection, we propose a novel
Cost-sensitive Kernel Machine (CKM) which is developed based on the max-margin
principle to find two optimal parallel hyperplanes and employs cost sensitive loss to
find the best decision hyperplane. In particular, our CKM first aims to learn two paral-
lel hyperplanes that can separate vulnerability and non-vulnerability, while the margin
which is defined as the distance between the two parallel hyperplanes is maximized.
The optimal decision hyperplane of CKM is sought in the strip formed by the two par-
allel hyperplanes. To take into account the difference in importance level of two kinds
of misclassification, we employ a cost-sensitive loss, where the misclassification of vul-
nerability as non-vulnerability is assigned a higher cost.
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Fig. 1. An overview of the data processing and embedding process.

We conduct experiments over two datasets, the NDSS18 binary dataset whose source
code was collected and compiled to binaries in [15,10] and binaries compiled from 6
open-source projects, which is a new dataset created by us. We strengthen and extend
the tool developed in [10] to allow it to be able to handle more errors for compiling the
source code in the six open-source projects into binaries. Our experimental results over
these two binary datasets show that our proposed DCKM outperforms the baselines by
a wide margin.

The major contributions of our work are as follows:

– We upgrade the tool developed in [10] to create a new real-world binary dataset.
– We propose a novel Cost-sensitive Kernel Machine that takes into account the dif-

ference in incurred costs of different kinds of misclassification and imbalanced data
nature in binary software vulnerability detection. This CKM can be plugged neatly
into a deep learning model and be trained using back-propagation.

– We leverage deep learning, kernel methods, and a cost-sensitive based approach to
build a novel Deep Cost-sensitive Kernel Machine that outperforms state-of-the-art
baselines on our experimental datasets by a wide margin.

2 Our Approach: Deep Cost-sensitive Kernel Machine
By incorporating deep learning and kernel methods, we propose a Deep Cost-sensitive
Kernel Machine (DCKM) for binary software vulnerability detection. In particular, we
use a bidirectional recurrent neural network (BRNN) to summarize a sequence of ma-
chine instructions in binary software into a representation vector. This vector is then
mapped into a Fourier random feature space via a finite-dimensional random feature
map [19,11,17,9,14]. Our proposed Cost-sensitive Kernel Machine (CKM) is invoked
in the random feature space to detect vulnerable binary software. Note that the Fourier
random feature map which is used in conjunction with our CKM and BRNN enables
our DCKM to be trained nicely via back-propagation.

2.1 Data Processing and Embedding
Figure 1 presents an overview of the code data processing steps required to obtain the
core parts of machine instructions from source code. From the source code repository,
we identify the code functions and then fix any syntax errors using our automatic tool.
The tool also invokes the gcc compiler to compile compilable functions into binaries.
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Subsequently, utilizing the objdump4 tool, we disassemble the binaries into assembly
code. Each function corresponds to an assembly code file. We then process the as-
sembly code files to obtain a collection of machine instructions and eventually use the
Capstone5 framework to extract their core parts. Each core part in a machine instruction
consists of two components: the opcode and the operands, called the instruction infor-
mation (a sequence of bytes in hexadecimal format, i.e., memory location, registers,
etc.). The opcode indicates the type of operation, whilst the operands contain the neces-
sary information for the corresponding operation. Since both opcode and operands are
important, we embed both the opcode and instruction information into vectors and then
concatenate them.

Fig. 2. Machine instruction embedding process with
examples. The opcode embedding eop is concatenated
with instruction information embedding eii to obtain
the output embedding e, a 2d-dimensional vector.

To embed the opcode, we un-
dertake some preliminary analysis
and find that there were a few hun-
dred opcodes in our dataset. We
then build a vocabulary of the op-
codes, and after that embed them
using one-hot vectors to obtain the
opcode embedding eop.

To embed the instruction infor-
mation, we first compute the fre-
quency vector as follows. We con-
sider the operands as a sequence
of hexadecimal bytes (i.e., 00, 01 to

FF ) and count the frequencies of the hexadecimal bytes to obtain a frequency vector
with 256 dimensions. The frequency vector is then multiplied by the embedding matrix
to obtain the instruction information embedding eii.

More specifically, the output embedding is e = eop ‖ eii where eop = one-hot(op)×
W op and eii = freq (ii)×W ii with the opcode op, the instruction information ii, one-
hot vector one-hot(op), frequency vector freq (ii), and the embedding matrices W op ∈
RV×d and W ii ∈ R256×d, where V is the vocabulary size of the opcodes and d is the
embedding dimension. The process of embedding machine instructions is presented in
Figure 2.

2.2 General Framework of Deep Cost-sensitive Kernel Machine
We now present the general framework for our proposed Deep Cost-sensitive Kernel
Machine. As shown in Figure 3, given a binary x, we first embed its machine in-
structions into vectors (see Section 2.1); the resulting vectors are then fed to a Bidi-
rectional RNN with the sequence lenght of L to work out the representation h =

concat
(←−
h L,
−→
h L

)
for the binary x, where

←−
h L and

−→
h L are the left and right L-th

hidden states (the left and right last hidden states) of the Bidirectional RNN, respec-
tively. Finally, the vector representation h is mapped to a random feature space via a
random feature map Φ̃ (·) [19] where we recruit a cost-sensitive kernel machine (see
Section 2.3) to classify vulnerable and non-vulnerable binary software. Note that the
formulation for Φ̃ is as follows:

4 https://www.gnu.org/software/binutils/
5 https://www.capstone-engine.org
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Fig. 3. General framework of Deep Cost-sensitive Kernel Machine.

Φ̃ (h) =

[
1√
D

cos
(
ωT

i h
)
,

1√
D

sin
(
ωT

i h
)]D

i=1

∈ R2D (1)

where ω1, . . . ,ωD are the Fourier random elements as in [19] and the dimension of
random feature space is hence 2D.

We note that the use of a random feature map in conjunction with cost-sensitive
kernel machine and bi-directional RNN allows us to easily do back-propagation when
training our Deep Cost-sensitive Kernel Machine. In addition, let us denote the training
set of binaries and their labels by D = {(xi, yi)}Ni=1 where xi is a binary including
many machine instructions and yi ∈ {−1; 1} where the label −1 stands for vulnerable
binary and the label 1 stands for non-vulnerable binary. Assume that after feeding the
binaries x1, . . . ,xN into the corresponding BRNN as described above, we obtain the
representations h1, . . . ,hN . We then map these representations to the random feature
space via the random feature map Φ̃ (·) as defined in Eq. (1). We finally construct a
cost-sensitive kernel machine (see Section 2.3) in the random feature space to help us
distinguish vulnerability against non-vulnerability.

2.3 Cost-sensitive Kernel Machine
General Idea of Cost-sensitive Kernel Machine We first find two parallel hyper-
planes H−1 and H1 in such a way that H−1 separates the non-vulnerable and vulner-
able classes, H1 separates the vulnerable and non-vulnerable classes, and the margin,
which is the distance between the two parallel hyperplanesH−1 andH1, is maximized.
We then find the optimal decision hyperplane Hd by searching in the strip formed by
H−1 andH1 (see Figure 4).
Formulations of The Hard and Soft Models Let us denote the equations of H−1
and H1 by H−1 : wTΦ̃ (h) − b−1 = 0 and H1 : wTΦ̃ (h) − b1 = 0 where b1 > b−1.
The margin is hence formulated as d (H−1,H1) =

|b1−b−1|
‖w‖ = b1−b−1

‖w‖ . We arrive at the
optimization problem:

max
w,b−1,b1

(
b1 − b−1

‖w‖

)
s.t. :yi

(
wTΦ̃ (hi)− b−1

)
≥ 0, ∀i = 1, . . . , N

yi
(
wTΦ̃ (hi)− b1

)
≥ 0, ∀i = 1, . . . , N

It is worth noting that the margin d (H−1,H1) is invariant if we scale (w, b−1, b1) by a
factor k > 0 as (kw, kb−1, kb1). Therefore, we can safely assume that b1 − b−1 = 1,
and hence the following optimization problem:
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min
w,a

(
1

2
‖w‖2

)
s.t. :yi

(
wTΦ̃ (hi)− a

)
≥ 0, ∀i = 1, . . . , N

yi
(
wTΦ̃ (hi)− 1− a

)
≥ 0, ∀i = 1, . . . , N

where b−1 = a and b1 = 1 + a.
Invoking slack variables, we obtain the soft model:

min
w,a

(
λ

2
‖w‖2 + 1

N

N∑
i=1

(ξi + ψi)

)
s.t. :yi

(
wTΦ̃ (hi)− a

)
≥ −ξi, ∀i = 1, . . . , N

yi
(
wTΦ̃ (hi)− 1− a

)
≥ −ψi, ∀i = 1, . . . , N

where [ξi]
N
i=1 and [ψi]

N
i=1 are non-negative slack variables and λ > 0 is the regulariza-

tion parameter.
The primal form of the soft model optimization problem is hence of the following

form:

min
w,a

(
λ

2
‖w‖2 + 1

N

N∑
i=1

(
max

{
0,−yi

(
wTΦ̃ (hi)− a

)}
+

max
{
0,−yi

(
wTΦ̃ (hi)− 1− a

)}))
(2)

Finding The Optimal Decision Hyperplane After solving the optimization problem
in Eq. (2), we obtain the optimal solution

(
w∗, b∗−1, b

∗
1

)
where b∗−1 = a∗ and b∗1 = 1+a∗

for the two parallel hyperplanes. Let us denote the strip S formed by the two parallel
hyperplanes and the set of training examples I in this strip as:

S =
{
v | (w∗)

T
u− b∗1 ≤ v ≤ (w∗)

T
u− b∗−1 for someu

}
I =

{
i | Φ̃ (hi) ∈ S, 1 ≤ i ≤ N

}
where u, v lie in the random feature space R2D.

Fig. 4. Cost-sensitive kernel machine in the random
feature space. We first find two optimal parallel hy-
perplanes H1 and H−1 with maximal margin and
then search for the optimal decision hyperplane in
the strip S formed by H1 and H−1 to balance be-
tween precision and recall for minimizing the cost-
sensitive loss and obtaining a good F1 score.

As shown in Figure 4, when slid-
ing a hyperplane fromH1 toH−1, the
recall is increased, but the precision
is decreased. In contrast, when slid-
ing a hyperplane fromH−1 toH1, the
precision is increased, but the recall
is decreased. We hence desire to find
out the optimal decision hyperplane
to balance between precision and re-
call for minimizing the cost-sensitive
loss and obtaining good F1 scores. We
also conduct intensive experiments on
real datasets to empirically demon-
strate this intuition in Section 3.4.
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Inspired by this observation, we seek the optimal decision hyperplane Hd by min-
imizing the cost-sensitive loss for the training examples inside the strip S, where we
treat the two kinds of misclassification unequally. In particular, the cost of misclas-
sifying a non-vulnerability as a vulnerability is 1, while misclassifying a vulnerabil-
ity as a non-vulnerability is θ. The value of θ, the relative cost between two kinds of
misclassification, is set depending on specific applications. In this application, we set
θ = #non-vul : #vul >> 1, which makes sense because, in binary software vulnerabil-
ity detection, the cost suffered by classifying vulnerable binary code as non-vulnerable
is, in general, much more severe than the converse.

Let |I| = M where |·| specifies the cardinality of a set and arrange the elements of
I according to their distances to H−1 as I = {i1, i2, . . . , iM} where (w∗)

T
Φ̃ (hi1) ≤

(w∗)
T
Φ̃ (hi2) ≤ · · · ≤ (w∗)

T
Φ̃ (hiM ). We now define the cost-sensitive loss for a

given decision hyperplane: (w∗)T Φ̃ (h)− bmd = 0 in which we denote

b1d =
b∗−1 + (w∗)T Φ̃ (hi1)

2
,

bmd =
(w∗)T Φ̃

(
him−1

)
+ (w∗)T Φ̃ (him)

2
, 2 ≤ m ≤M,

bM+1
d =

(w∗)T Φ̃ (hiM ) + b∗1
2

and the optimal decision hyperplane (w∗)
T
Φ̃ (h)− b∗d = 0 as:

l (w∗, bmd ) = θ
∑
yik=1

I(w∗)TΦ̃(hik)−b
m
d <0 +

∑
yik=−1

I(w∗)TΦ̃(hik)−b
m
d >0

m∗ = argmin
1≤m≤M+1

l (w∗, bmd ) and b∗d = bm
∗

d

where the indicator function IS returns 1 if S is true and 0 if otherwise.
It is worth noting if #non-vul ≈ #vul (i.e., θ ≈ 1), we obtain a Support Vector

Machine [3] and if #non-vul >> #vul (i.e., θ ≈ 0), we obtain a One-class Support
Vector Machine [21]. We present Algorithm 1 to efficiently find the optimal decision
hyperplane. The general idea is to sequentially process theM+1 possible hyperplanes:
(w∗)

T
Φ̃ (h) − bmd = 0, ∀i = 1, . . . ,M + 1 and compute the cost-sensitive loss cu-

mulatively. The computational cost of this algorithm includes: i) the cost to determine
S, which is O (2DN), ii) the cost to sort the elements in S according to their distances
to H−1, which is O (M logM), and iii) the cost to process the possible hyperplanes,
which is O (M + 1).

3 Experiments
3.1 Experimental Datasets
Creating labeled binary datasets for binary code vulnerability detection is one of the
main contributions of our work. We first collected the source code from two datasets on
GitHub: NDSS186 and six open-source projects7 collected in [16] and then processed
to create 2 labeled binary datasets.

6 https://github.com/CGCL-codes/VulDeePecker
7 https://github.com/DanielLin1986/TransferRepresentationLearning



8 T. Nguyen et al.

Algorithm 1 Pseudo-code for seeking the optimal decision hyperplane.
Input: D = {(x1, y1) , . . . , (xN , yN )}, w∗, b∗−1, b

∗
1

Output: m∗, b∗d
1: Determine S and I
2: Sort the elements in I as (w∗)T Φ̃ (hi1) ≤ (w∗)T Φ̃ (hi2) ≤ · · · ≤ (w∗)T Φ̃ (hiM )
3: loss = |{i ∈ I | yi = −1}| ; //all in S are classified as +
4: m∗ = 1; b∗d = b1d;minLoss = loss; t = 1;
5: repeat
6: (yit == 1)?loss = loss+ θ : loss = loss− 1;
7: if loss < minLoss then
8: minLoss = loss; m∗ = t;
9: end if

10: t = t+ 1;
11: until t > M + 1

Table 1. The statistics of the two binary datasets.
#Non-vul #Vul #Binaries

NDSS18
Windows 8, 999 8, 978 17, 977

Linux 6, 955 7, 349 14, 304
Whole 15, 954 16, 327 32, 281

6 open-source
Windows 26, 621 328 26, 949

Linux 25, 660 290 25, 950
Whole 52, 281 618 52, 899

The NDSS18 binary dataset was cre-
ated in previous work [10] – the functions
were extracted from the original source
code and then compiled successfully to
obtain 8, 991 binaries using an automated
tool. However, the source code in the
NDSS18 dataset involves the code weak-
nesses CWE119 and CWE399, resulting in short source code chunks used to demon-
strate the vulnerable examples, hence not perfectly reflecting real-world source code,
while the source code files collected from the six open-source projects, namely FFmpeg,
LibTIFF, LibPNG, VLC, Pidgin and Asterisk are all real-world examples. The statistics
of our binary datasets are given in Table 1.

3.2 Baselines

We compared our proposed DCKM with various baselines:

– BRNN-C, BRNN-D: A vanilla Bidirectional RNN with a linear classifier and two
dense layers on the top.

– Para2Vec: The paragraph-to-vector distributional similarity model proposed in [8]
which allows us to embed paragraphs into a vector space which are further classi-
fied using a neural network.

– VDiscover: An approach proposed in [4] that utilizes lightweight static features to
“approximate” a code structure to seek similarities between program slices.

– VulDeePecker: An approach proposed in [15] for source code vulnerability detec-
tion.

– BRNN-SVM: The Support Vector Machine using linear kernel, but leveraging our
proposed feature extraction method.

– Att-BGRU: An approach developed by [22] for sequence classification using the
attention mechanism.

– Text CNN: An approach proposed in [6] using a Convolutional Neural Network
(CNN) to classify text.
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– MDSAE: A method called Maximal Divergence Sequential Auto-Encoder in [10]
for binary software vulnerability detection.

– OC-DeepSVDD: The One-class Deep Support Vector Data Description method
proposed in [20].

The implementation of our model and the binary datasets for reproducing the experi-
mental results can be found online at https://github.com/tuanrpt/DCKM.

Table 2. The experimental results (%) except for the column CS of the proposed method com-
pared with the baselines on the NDSS18 binary dataset. Pre, Rec, and CS are shorthand for the
performance measures precision, recall, and cost-sensitive loss, respectively.

Datasets Windows Linux Whole

Methods Pre F1 Rec AUC CS Pre F1 Rec AUC CS Pre F1 Rec AUC CS

Para2Vec 17.5 24.1 38.9 67.6 0.98 36.4 44.4 57.1 77.6 0.83 28.6 26.7 25.0 61.9 0.96

Vdiscover 58.8 57.1 55.6 77.4 0.90 52.9 58.1 64.3 81.6 0.68 48.4 47.6 46.9 72.9 0.93

BRNN-C 80.0 84.2 88.9 94.2 0.89 76.9 74.1 71.4 85.5 0.65 84.6 75.9 68.7 84.2 0.87

BRNN-D 77.8 77.8 77.8 88.7 0.92 92.3 88.9 85.7 92.8 0.68 85.2 78.0 71.9 85.8 0.81

VulDeePecker 70.0 73.7 77.8 88.6 0.98 80.0 82.8 85.7 92.6 0.70 85.2 78.0 71.9 85.8 0.84

BRNN-SVM 79.0 81.1 83.3 91.4 0.98 92.3 88.9 85.7 92.8 0.68 85.7 80.0 75.0 87.4 0.84

Att-BGRU 92.3 77.4 66.7 83.3 0.97 92.3 88.9 85.7 92.8 0.68 86.5 79.3 71.9 85.8 0.82

Text CNN 92.3 77.4 66.7 83.3 0.99 91.7 84.6 78.6 89.2 0.74 84.6 75.9 68.7 84.2 0.85

MDSAE 77.7 86.4 97.2 84.4 0.11 80.6 88.3 97.7 86.8 0.05 78.4 87.1 98.1 85.2 0.72

OC-DeepSVDD 91.7 73.3 61.1 80.5 0.19 100 83.3 71.4 85.7 0.14 85.5 78.1 71.9 83.1 0.84

DCKM 84.2 86.5 88.9 94.3 0.06 92.9 92.9 92.9 96.4 0.03 87.1 85.7 84.4 92.1 0.58

Table 3. The experimental results (%) except for the column CS of the proposed method com-
pared with the baselines on the binary dataset from the six open-source projects. Pre, Rec, and CS
are shorthand for the performance measures precision, recall, and cost-sensitive loss, respectively.

Datasets Windows Linux Whole

Methods Pre F1 Rec AUC CS Pre F1 Rec AUC CS Pre F1 Rec AUC CS

Para2Vec 28.9 31.0 33.3 66.2 0.96 19.2 24.0 32.1 65.3 0.98 28.1 26.9 25.8 62.5 0.97

Vdiscover 23.3 22.2 21.2 60.2 0.98 42.1 34.0 28.6 64.1 0.92 18.0 13.9 11.3 55.3 0.98

BRNN-C 42.9 25.5 18.2 59.0 0.97 53.9 34.2 25.0 62.4 0.93 43.2 32.3 25.8 62.7 0.95

BRNN-D 30.8 27.1 24.2 61.8 0.96 46.2 29.3 21.4 60.6 0.96 36.7 25.3 19.4 59.5 0.98

VulDeePecker 31.6 23.1 18.2 58.9 0.97 53.9 34.2 25.0 62.4 0.94 65.5 41.8 30.7 65.2 0.93

BRNN-SVM 73.9 60.7 51.5 75.6 0.98 87.5 63.6 50.0 75.0 0.99 65.6 65.0 64.5 82.1 0.91

Att-BGRU 70.8 59.7 51.5 75.6 0.92 100 56.4 39.3 69.7 0.93 85.1 73.4 64.5 82.2 0.91

Text CNN 100 70.6 54.6 77.3 0.90 81.8 72.0 64.3 82.0 0.89 100 74.8 59.7 79.8 0.91

MDSAE 88.2 60.0 45.5 72.7 0.91 60.0 41.9 32.1 66.0 0.93 82.4 74.3 67.7 83.8 0.90

OC-DeepSVDD 100 77.8 63.6 81.8 0.83 88.9 69.6 57.1 78.5 0.90 100 70.8 54.8 77.4 0.89

DCKM 79.4 80.6 81.8 90.8 0.78 90.0 75.0 64.3 82.1 0.85 90.3 90.3 90.3 95.1 0.56

3.3 Parameter Setting
For our datasets, we split the data into 80% for training, 10% for validation, and the
remaining 10% for testing. For the NDSS18 binary dataset, since it is used for the
purpose of demonstrating the presence of vulnerabilities, each vulnerable source code
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Fig. 5. Predictive scores and the number of data examples in the S strip after 100 epochs.

is associated with its fixed version, hence this dataset is quite balanced. To mimic a real-
world scenario, we made this dataset imbalanced by randomly removing vulnerable
source code to keep the ratio #vul : #non-vul = 1 : 50. For the dataset from six open-
source projects, we did not modify the datasets since they are real-world datasets.

We employed a dynamic BRNN to tackle the variation in the number of machine
instructions of the functions. For the BRNN baselines and our models, the size of the
hidden unit was set to 128 for the six open-source projects’s binary dataset and 256 for
the NDSS18 dataset. For our model, we used Fourier random kernel with the number
of random features 2D = 512 to approximate the RBF kernel, defined as K (x,x′) =

exp
{
−γ ‖x− x′‖2

}
, wherein the width of the kernel γ was searched in {2−15, 2−3}

for the dataset from 6 open-source projects and NDSS18 dataset, respectively. The reg-
ularization parameter λ was 0.01. We set the relative cost θ = #non-vul : #vul. We used
the Adam optimizer with an initial learning rate equal to 0.0005. The minibatch size
was set to 64 and results became promising after 100 training epochs. We implemented
our proposed method in Python using Tensorflow, an open-source software library for
Machine Intelligence developed by the Google Brain Team. We ran our experiments on
a computer with an Intel Xeon Processor E5-1660 which had 8 cores at 3.0 GHz and
128 GB of RAM. For each dataset and method, we ran the experiment five times and
reported the average predictive performance.

3.4 Experimental Results
Experimental Results on the Binary Datasets We conducted a variety of experiments
on our two binary datasets. We split each dataset into three parts: the subset of Windows
binaries, the subset of Linux binaries, and the whole set of binaries to compare our
methods with the baselines.

In the field of computer security, besides the AUC and F1 score which takes into
account both precision and recall, the cost-sensitive loss, wherein we consider the fact
that the misclassification of a vulnerability as a non-vulnerability is more severe than the
converse, is also very important. The experimental results on the two datasets are shown
in Table 2 and 3. It can be seen that our proposed method outperforms the baselines in all
performance measures of interest including the cost-sensitive loss, F1 score, and AUC.
Especially, our method significantly surpasses the baselines on the AUC score, one of
the most important measures of success for anomaly detection. In addition, although
our proposed DCKM aims to directly minimize the cost-sensitive loss, it can balance
between precision and recall to maintain very good F1 and AUC scores. In what follows,
we further explain this claim.
Inspection of Model Behaviors
Discovering the trend of scores and number of data points in the strip during the train-
ing process Figure 5 shows the predictive scores and the number of data examples
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Fig. 6. The variation of predictive scores when sliding the hyperplane in the strip formed byH−1

and H1 on the NDSS18 (left) and the dataset from six open-source projects (right). The red line
illustrates the tendency of the cost-sensitive loss, while the purple star and the red star represent
the optimal F1 and the optimal cost-sensitive loss values, respectively.

in the parallel strip on training and valid sets for the binary dataset from six open-
source projects across the training process. It can be observed that the model gradually
improves during the training process with an increase in the predictive scores, and a
reduction in the amount of data in the strip from around 1,700 to 50.
The tendency of predictive scores when sliding the decision hyperplane in the strip
formed byH−1 andH1 By minimizing the cost-sensitive loss, we aim to find the opti-
mal hyperplane which balances precision and recall, while at the same time maintaining
good F1 and AUC scores. Figure 6 shows the tendency of scores and cost-sensitive loss
when sliding the decision hyperplane in the strip formed by H−1 and H1. We espe-
cially focus on four milestone hyperplanes, namelyH−1,H1, the hyperplane that leads
to the optimal F1 score, and the hyperplane that leads to the optimal cost-sensitive loss
(i.e., our optimal decision hyperplane). As shown in Figure 6, our optimal decision hy-
perplane marked with the red stars can achieve the minimal cost-sensitive loss, while
maintaining comparable F1 and AUC scores compared with the optimal-F1 hyperplane
marked with the purple stars.

4 Conclusion
Binary software vulnerability detection has emerged as an important and crucial prob-
lem in the software industry, such as the embedded systems industry, and in the field
of computer security. In this paper, we have leveraged deep learning and kernel meth-
ods to propose the Deep Cost-sensitive Kernel Machine for tackling binary software
vulnerability detection. Our proposed method inherits the advantages of deep learning
methods in efficiently tackling structural data and kernel methods in learning the charac-
teristic of vulnerable binary examples with high generalization capacity. We conducted
experiments on two binary datasets. The experimental results have shown a convincing
outperformance of our proposed method compared to the state-of-the-art baselines.
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