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Abstract. Owing to the ubiquity of computer software, software vulnerability
detection (SVD) has become an important problem in the software industry and
computer security. One of the most crucial issues in SVD is coping with the
scarcity of labeled vulnerabilities in projects that require the laborious manual
labeling of code by software security experts. One possible solution is to employ
deep domain adaptation (DA) which has recently witnessed enormous success in
transferring learning from structural labeled to unlabeled data sources. Generative
adversarial network (GAN) is a technique that attempts to bridge the gap between
source and target data in the joint space and emerges as a building block to de-
velop deep DA approaches with state-of-the-art performance. However, deep DA
approaches using the GAN principle to close the gap are subject to the mode col-
lapsing problem that negatively impacts the predictive performance. Our aim in
this paper is to propose Dual Generator-Discriminator Deep Code Domain Adap-
tation Network (Dual-GD-DDAN) for tackling the problem of transfer learning
from labeled to unlabeled software projects in SVD to resolve the mode collaps-
ing problem faced in previous approaches. The experimental results on real-world
software projects show that our method outperforms state-of-the-art baselines by
a wide margin.

Keywords: Domain adaptation · Cyber security · Software vulnerability detec-
tion ·Machine learning · Deep learning.

1 Introduction

In the software industry, software vulnerabilities relate to specific flaws or oversights
in software programs which allow attackers to expose or alter sensitive information,
disrupt or destroy a system, or take control of a program or computer system. The
software vulnerability detection problem has become an important issue in the software
industry and in the field of computer security. Computer software development employs
of a vast variety of technologies and different software development methodologies, and
much computer software contains vulnerabilities.
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This has necessitated the development of automated advanced techniques and tools
that can efficiently and effectively detect software vulnerabilities with a minimal level
of human intervention. To respond to this demand, many vulnerability detection sys-
tems and methods, ranging from open source to commercial tools, and from manual to
automatic methods have been proposed and implemented. Most of the previous works
in software vulnerability detection (SVD) [1,8] have been developed based on hand-
crafted features which are manually chosen by knowledgeable domain experts who
may have outdated experience and underlying biases. In many situations, handcrafted
features normally do not generalize well. For example, features that work well in a
certain software project may not perform well in other projects. To alleviate the depen-
dency on handcrafted features, the use of automatic features in SVD has been studied
recently [12,13,11]. These works have shown the advantages of automatic features over
handcrafted features in the context of software vulnerability detection.

However, most of these approaches lead to another crucial issue in SVD research,
namely the scarcity of labeled projects. Labelled vulnerable code is needed to train
these models, and the process of labeling vulnerable source code is very tedious, time-
consuming, error-prone, and challenging even for domain experts. This has led to few
labeled projects compared with the vast volume of unlabeled ones. A viable solution is
to apply transfer learning or domain adaptation which aims to devise automated meth-
ods that make it possible to transfer a learned model from the source domain with labels
to the target domains without labels. Studies in domain adaptation can be broadly cat-
egorized into two themes: shallow [6] and deep domain adaptations [3,14,18]. These
recent studies have shown the advantages of deep over shallow domain adaptation (i.e.,
higher predictive performance and capacity to tackle structural data). Deep domain
adaptation encourages the learning of new representations for both source and target
data in order to minimize the divergence between them [3,14,18]. The general idea is to
map source and target data to a joint feature space via a generator, where the discrep-
ancy between the source and target distributions is reduced. Notably, the work of [3,18]
employed generative adversarial networks (GANs) [4] to close the gap between source
and target data in the joint space. However, most of aforementioned works mainly focus
on transfer learning in the computer vision domain. The work of [16] is the first work
which applies deep domain adaptation to SVD with promising predictive performance
on real-world source code projects. The underlying idea is to employ the GAN to close
the gap between the source and target domains in the joint space and enforce the clus-
tering assumption [2] to utilize the information carried in the unlabeled target samples
in a semi-supervised context.

GANs are known to be affected by the mode collapsing problem [5,17,7,10]. In
particular, the study in [17] recently studied the mode collapsing problem and further
classified this into the missing mode problem i.e., the generated samples miss some
modes in the true data, and the boundary distortion problem i.e., the generated sam-
ples can only partly recover some modes in the true data. It is certain that deep domain
adaptation approaches that use the GAN principle will inherently encounter both the
missing mode and boundary distortion problems. Last but not least, deep domain adap-
tation approaches using the GAN principle also face the data distortion problem. The
representations of source and target examples in the joint feature space degenerate to
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very small regions that cannot preserve the manifold/clustering structure in the original
space.

Our aim in this paper is to address not only deep domain adaptation mode col-
lapsing problems but also boundary distortion problems when employing the GAN as
a principle in order to close the gap between source and target data in the joint fea-
ture space. Our two approaches are: i) apply manifold regularization for enabling the
preservation of manifold/clustering structures in the joint feature space, hence avoid-
ing the degeneration of source and target data in this space; and ii) invoke dual dis-
criminators in an elegant way to reduce the negative impacts of the missing mode and
boundary distortion problems in deep domain adaptation using the GAN principle as
mentioned before. We name our mechanism when applied to SVD as Dual Generator-
Discriminator Deep Code Domain Adaptation Network (Dual-GD-DDAN). We em-
pirically demonstrate that our Dual-GD-DDAN can overcome the missing mode and
boundary distortion problems which is likely to happen as in Deep Code Domain Adap-
tation (DDAN) [16] in which the GAN was solely applied to close the gap between the
source and target domains in the joint space (see the discussion in Sections 2.3 and
3.3, and the visualization in Fig. 3). In addition, we incorporate the relevant approaches
– minimizing the conditional entropy and manifold regularization with spectral graph
– proposed in [16] to enforce the clustering assumption [2] and arrive at a new model
named Dual Generator-Discriminator Semi-supervised Deep Code Domain Adaptation
Network (Dual-GD-SDDAN). We further demonstrate that our Dual-GD-SDDAN can
overcome the mode collapsing problem better than SCDAN in [16], hence obtaining
better predictive performance.

We conducted experiments using the data sets collected by [13], that consist of five
real-world software projects: FFmpeg, LibTIFF, LibPNG, VLC and Pidgin to compare
our proposed Dual-GD-DDAN and Dual-GD-SDDAN with the baselines. The baselines
consider to include VULD (i.e., the model proposed in [12] without domain adaptation),
MMD, DIRT-T, DDAN and SCDAN as mentioned [16] and D2GAN [15] (a variant of
the GAN using dual-discriminator to reduce the mode collapse for which we apply this
mechanism in the joint feature space). Our experimental results show that our proposed
methods are able to overcome the negative impact of the missing mode and boundary
distortion problems inherent in deep domain adaptation approaches when solely using
the GAN principle as in DDAN and SCDAN [16]. In addition, our method outperforms
the rival baselines in terms of predictive performance by a wide margin.

2 Deep Code Domain Adaptation with GAN

2.1 Problem Statement

A source domain data set S = {(xS
1,y1), . . . ,(xS

NS
,yNS)} where yi ∈ {−1,1} (i.e., 1:

vulnerable code and -1: non-vulnerable code) and xS
i = [xS

i1, . . . ,x
S
iL] is a sequence of

L embedding vectors, and the target domain data set T = {xT
1 , . . . ,x

T
NT
} where xT

i =

[xT
i1, . . . ,x

T
iL] is also a sequence of L embedding vectors. We wish to bridge the gap be-

tween the source and target domains in the joint feature space. This allows us to transfer
a classifier trained on the source domain to predict well on the target domain.
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2.2 Deep Code Domain Adaptation with a Bidirectional RNN

To handle sequential data in the context of domain adaptation of software vulnera-
bility detection, the work of [16] proposed an architecture referred to as the Code
Domain Adaptation Network (CDAN). This network architecture recruits a Bidirec-
tional RNN to process the sequential input from both source and target domains (i.e.,
xS

i = [xS
i1, . . . ,x

S
iL] and xT

i = [xT
i1, . . . ,x

T
iL]). A fully connected layer is then employed to

connect the output layer of the Bidirectional RNN with the joint feature layer while
bridging the gap between the source and target domains. Furthermore, inspired by the
Deep Domain Adaptation approach [3], the authors employ the source classifier C to
classify the source samples, the domain discriminator D to distinguish the source and
target samples and propose Deep Code Domain Adaptation (DDAN) whose objective
function is as follows:

J (G, D,C) =
1

NS

NS

∑
i=1

`(C(G(xS
i )),yi)+λ(

1
NS

NS

∑
i=1

log D(G(xS
i ))+

1
NT

NT

∑
i=1

log [1−D(G(xT
i ))])

2.3 The shortcomings of DDAN

We observe that DDAN suffers from several shortcomings. First, the data distortion
problem (i.e., the source and target data in the joint space might collapse into small
regions) may occur since there is no mechanism in DDAN to circumvent this. Sec-
ond, since DDAN is based on the GAN approach, DDAN might suffer from the mode
collapsing problem [5,17]. In particular, [17] has recently studied the mode collapsing
problem of GANs and discovered that they are also subject to i) the missing mode prob-
lem (i.e., in the joint space, either the target data misses some modes in the source data
or vice versa) and ii) the boundary distortion problem (i.e., in the joint space either the
target data partly covers the source data or vice versa), which makes the target distri-
bution significantly diverge from the source distribution. As shown in Fig. 1, both the
missing mode and boundary distortion problems simultaneously happen since the target
distribution misses source mode 2, while the source distribution can only partly cover
the target mode 2 in the target distribution and the target distribution can only partly
cover the source mode 1 in the source distribution.

Fig. 1. An illustration of the missing mode and boundary distortion problems of DDAN. In the
joint space, the target distribution misses source mode 2, while the source distribution can only
partly cover the target mode 2 in the target distribution and the target distribution can only partly
cover the source mode 1 in the source distribution.
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3 Dual Generator-Discriminator Deep Code Domain Adaptation
3.1 Key Idea of Our Approach

We employ two discriminators (namely, DS and DT ) to classify the source and target
examples and vice versa and two separate generators (namely, GS and GT ) to map the
source and target examples to the joint space respectively. In particular, DS produces
high values on the source examples in the joint space (i.e., GS(xS)) and low values on
the target examples in the joint space (i.e., GT (xT )), while DT produces high values on
the target examples in the joint space (i.e., GT (xT )) and low values on the source exam-
ples (i.e., GS(xS)). The generator GS is trained to push GS

(
xS
)

to the high value region
of DT and the generator GT is trained to push GT (xT ) to the high value region of DS.
Eventually, both DS(GS(xS)) and DS(GT (xT )) are possibly high and both DT (GS(xS))
and DT (GT (xT )) are possibly high. This helps to mitigate the issues of missing mode
and boundary distortion since as in Fig. 1, if the target mode 1 can only partly cover
the source mode 1, then DT cannot receive large values from source mode 1. Another
important aspect of our approach is to maintain the cluster/manifold structure of source
and target data in the joint space via the manifold regularization to avoid the data dis-
tortion problem.

3.2 Dual Generator-Discriminator Deep Code Domain Adaptation Network

To address the two inherent problems in the DDAN mentioned in Section 2.3, we em-
ploy two different generators GS and GT to map source and target domain examples
to the joint space and two discriminators DS and DT to distinguish source examples
against target examples and vice versa together with the source classifier C which is
used to classify the source examples with labels as shown in Fig. 2. We name our pro-
posed model as Dual Generator-Discriminator Deep Code Domain Adaptation Network
(Dual-GD-DDAN).

Updating the discriminators The two discriminators DS and DT are trained to distin-
guish the source examples against the target examples and vice versa as follows:

min
DS

(
(1+θ)

NS

NS

∑
i=1

[− log DS(GS(xS
i ))]+

1
NT

NT

∑
i=1

[− log [1−DS(GT (xT
i ))]]

)
(1)

min
DT

(
1

NS

NS

∑
i=1

[− log [1−DT (GS(xS
i ))]]+

(1+θ)

NT

NT

∑
i=1

[− log DT (GT (xT
i ))]

)
(2)

where θ > 0. Note that a high value of θ encourages DS and DT place higher values on
GS

(
xS
)

and GT
(
xT

)
respectively.

Updating the source classifier The source classifier is employed to classify the source
examples with labels as: minC

1
NS

∑
NS
i=1 `(C (GS(xS

i )),yi), where ` specifies the cross-
entropy loss function for the binary classification (e.g., using cross-entropy).

Updating the generators The two generators GS and GT are trained to i) maintain the
manifold/cluster structures of source and target data in their original spaces to avoid the
data distortion problem and ii) move the target samples toward the source samples in
the joint space and resolve the missing mode and boundary distortion problems in the
joint space.
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To maintain the manifold/cluster structures of source and target data in their original
spaces, we propose minimizing the manifold regularization term as: minG M (GS,GT )
where M (GS,GT ) is formulated as:

M (GS,GT ) =
NS

∑
i, j=1

µi j||GS(xS
i )−GS(xS

j )||2 +
NT

∑
i, j=1

µi j||GT (xT
i )−GT (xT

j )||2

in which the weights are defined as µi j = exp{−||h(xi)− h(x j)||2/(2σ
2
)} with h(x) =

concat(
←−
hL(x),

−→
hL(x)) where

−→
hL(x) and

←−
hL(x) are the last hidden states of the bidirec-

tional RNN with input x.
To move the target samples toward the source samples and resolve the missing mode

and boundary distortion problems in the joint space, we propose minimizing the follow-
ing objective function: minD K (GS,GT ) where K (GS,GT ) is defined as:

K (GS,GT ) =
1

NS

NS

∑
i=1

[− log DT (GS(xS
i ))]+

1
NT

NT

∑
i=1

[− log DS(GT (xT
i ))] (3)

Moreover, the source generator GS has to work out the representation that is suitable
for the source classifier, hence we need to minimize the following objective function:

min
GS

1
NS

NS

∑
i=1

`(C (GS(xS
i )),yi)

Finally, to update GS and GT , we need to minimize the following objective function:

1
NS

NS

∑
i=1

`(C (GS(xS
i )),yi)+αM (GS,GT )+βK (GS,GT )

where α, β > 0 are two non-negative parameters.

3.3 The rationale for our Dual Generator-Discriminator Deep Code Domain
Adaptation Network approach

Below we explain why our proposed Dual-GD-DDAN is able to resolve the two critical
problems that occur with the DDAN approach. First, if xS

i and xS
j are proximal to each

other and are located in the same cluster, then their representations h(xS
i ) and h(xS

j) are
close and hence, the weight µi j is large. This implies GS(xS

i ) and GS(xS
j) are encour-

aged to be close in the joint space because we are minimizing µi j||GS(xS
i )−GS(xS

j)||2.
This increases the chance of the two representations residing in the same cluster in the
joint space. Therefore, Dual-GD-DDAN is able to preserve the clustering structure of
the source data in the joint space. By using the same argument, we reach the same
conclusion for the target domain.

Second, following Eqs. (1, 2), the discriminator DS is trained to encourage large
values for the source modes (i.e., GS(xS)), while the discriminator DT is trained to
produce large values for the target modes (i.e., GT (xT )). Moreover, as in Eq. (3), Gs is
trained to move the source domain examples xS to the high-valued region of DT (i.e., the
target modes or GT (xT )) and GT is trained to move the target examples xT to the high-
valued region of DS (i.e., the source modes or GS(xS)). As a consequence, eventually,
the source modes (i.e., GS(xS)) and target modes (i.e., GT (xT )) overlap, while DS and
DT place large values on both source (i.e., GS(xS)) and target (i.e., GT (xT )) modes. The
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mode missing problem is less likely to happen since, as shown in Fig. 1, if the target
data misses source mode 2, then DT cannot receive large values from source mode 2.
Similarly, the boundary distortion problem is also less likely to happen since as in Fig.
1, if the target mode 1 can only partly cover the source mode 1, then DT cannot receive
large values from source mode 1. Therefore, Dual-GD-DDAN allows us to reduce the
impact of the missing mode and boundary distortion problems, hence making the target
distribution more identical to the source distribution in the joint space.

Fig. 2. The architecture of our Dual-GD-DDAN. The generators GS and GT take the sequential
code tokens of the source domain and target domain in vectorial form respectively and map this
sequence to the joint layer (i.e., the joint space). The vector representation of each statement x in
source code is denoted by i. The discriminators DS and DT are invoked to discriminate the source
and target data. The source classifier C is trained on the source domain with labels. We note that
the source and target networks do not share parameters and are not identical.

3.4 Dual Generator-Discriminator Semi-supervised Deep Code Domain
Adaptation Network

Our proposed model can be incorporated with minimizing the conditional entropy and
using the spectral graph to inspire the smoothness to enforce the clustering assump-
tion [2] proposed in [16] to form Dual Generator-Discriminator Semi-supervised Deep
Code Domain Adaptation Network (Dual-GD-SDDAN). Please read our Supplemen-
tary Material for more technical details, available at https://app.box.com/s/aijcavbcp.

4 Experiments
In this section, firstly, we compare our proposed Dual-GD-DDAN with VulDeePecker
without domain adaptation, MMD, D2GAN, DIRT-T and DDAN using the architec-
ture CDAN proposed in [16]. Secondly, we do Boundary Distortion Analysis to further
demonstrate the efficiency of our proposed Dual-GD-DDAN in alleviating the bound-
ary distortion problem caused by using the GAN principle. Finally, we compare our
Dual-GD-SDDAN and SCDAN introduced in [16].

4.1 Experimental Setup

Experimental Data Set We use the real-world data sets collected by [13], which con-
tain the source code of vulnerable and non-vulnerable functions obtained from five

https://app.box.com/s/aijcavbcp47vwrkss07uwud4ik0n29q5
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real-world software projects, namely FFmpeg (#vul-funcs: 187, #non-vul-funcs: 5,427),
LibTIFF (#vul-funcs: 81, #non-vul-funcs: 695), LibPNG (#vul-funcs: 43, #non-vul-
funcs: 551), VLC (#vul-funcs: 25, #non-vul-funcs: 5,548) and Pidgin (#vul-funcs: 42,
#non-vul-funcs: 8,268) where #vul-funcs and #non-vul-funcs is the number of vulner-
able and non-vulnerable functions respectively. The data sets contain both multimedia
(FFmpeg, VLC, Pidgin) and image (LibPNG, LibTIFF) application categories. In our
experiment, data sets from the multimedia category were used as the source domain
whilst data sets from the image category were used as the target domain (see Table 1).

Model Configuration For training the eight methods – VulDeePecker, MMD, D2GAN,
DIRT-T, DDAN, Dual-GD-DDAN, SCDAN and Dual-GD-SDDAN – we use one-layer
bidirectional recurrent neural networks with LSTM cells where the size of hidden states
is in {128,256} for the generators. For the source classifier and discriminators, we use
deep feed-forward neural networks with two hidden layers in which the size of each
hidden layer is in {200,300}. We embed the opcode and statement information in the
{150,150} dimensional embedding spaces respectively (see our Supplementary Mate-
rial for Data Processing and Embedding, available at https://app.box.com/s/aijcavbcp).
We employ the Adam optimizer with an initial learning rate in {10−3,10−4}. The mini-
batch size is 64. The trade-off parameters α, β, γ, λ are in {10−1,10−2,10−3}, θ is in
{0,1} and 1/(2σ2) is in {2−10,2−9}.

We split the data of the source domain into two random partitions containing 80%
for training and 20% for validation. We also split the data of the target domain into
two random partitions. The first partition contains 80% for training the models of
VulDeePecker, MMD, D2GAN, DIRT-T, DDAN, Dual-GD-DDAN, SCDAN and Dual-
GD-SDDAN without using any label information while the second partition contains
20% for testing the models. We additionally apply gradient clipping regularization to
prevent over-fitting in the training process of each model. We implement eight men-
tioned methods in Python using Tensorflow which is an open-source software library
for Machine Intelligence developed by the Google Brain Team.

4.2 Experimental Results

Code Domain Adaptation for a Fully Non-labeled Target Project

We investigate the performance of our proposed Dual-GD-DDAN compared with other
methods including VulDeePecker (VULD) without domain adaptation [12], DDAN
[16], MMD [14], D2GAN [15] and DIRT-T [18] with VAP applied in the joint fea-
ture layer using the architecture CDAN introduced in [16]. The VulDeePecker method
is only trained on the source data and then tested on the target data, while the MMD,
D2GAN, DIRT-T, DDAN and Dual-GD-DDAN methods employ the target data without
using any label information for domain adaptation.

In Table 1, the experimental results show that our proposed Dual-GD-DDAN achieves
a higher performance for detecting vulnerable and non-vulnerable functions for most
performance measures, including FNR, FPR, Recall, Precision and F1-measure in al-
most cases of the source and target domains, especially for F1-measure. Particularly,
our Dual-GD-DDAN always obtains the highest F1-measure in all cases. For example,
for the case of the source domain (FFmpeg) and target domain (LibPNG), Dual-GD-
DDAN achieves an F1-measure of 88.89% compared with an F1-measure of 84.21%,

https://app.box.com/s/aijcavbcp47vwrkss07uwud4ik0n29q5
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Table 1. Performance results in terms of false negative rate (FNR), false positive rate (FPR),
Recall, Precision and F1-measure of VulDeePecker (VULD), MMD, D2GAN, DIRT-T, DDAN
and Dual-GD-DDAN for predicting vulnerable and non-vulnerable code functions on the testing
set of the target domain (Best performance in bold).

Source→ Target Methods FNR FPR Recall Precision F1-measure

Pidgin→ LibPNG

VULD 42.86% 1.08% 57.14% 80% 66.67%
MMD 37.50% 0% 62.50% 100% 76.92%

D2GAN 33.33% 1.06% 66.67% 80% 72.73%
DIRT-T 33.33% 1.06% 66.67% 80% 72.73%
DDAN 37.50% 0% 62.50% 100% 76.92%

Dual-GD-DDAN 33.33% 0% 66.67% 100% 80%

FFmpeg→ LibTIFF

VULD 43.75% 6.72% 56.25% 50% 52.94%
MMD 28.57% 12.79% 71.43% 47.62% 57.14%

D2GAN 30.77% 6.97% 69.23% 64.29% 66.67%
DIRT-T 25% 9.09% 75% 52.94% 62.07%
DDAN 35.71% 6.98% 64.29% 60% 62.07%

Dual-GD-DDAN 12.5% 8.2% 87.5% 56% 68.29%

FFmpeg→ LibPNG

VULD 25% 2.17% 75% 75% 75%
MMD 12.5% 3.26% 87.5% 70% 77.78%

D2GAN 14.29% 2.17% 85.71% 75% 80%
DIRT-T 15.11% 2.2% 84.89% 80% 84.21%
DDAN 0% 3.26% 100% 72.73% 84.21%

Dual-GD-DDAN 0% 2.17% 100% 80% 88.89%

VLC→ LibPNG

VULD 57.14% 1.08% 42.86% 75% 54.55%
MMD 45% 4.35% 55% 60% 66.67%

D2GAN 28.57% 4.3% 71.43% 55.56% 62.5%
DIRT-T 50% 1.09% 50% 80% 61.54%
DDAN 33.33% 2.20% 66.67% 75% 70.59%

Dual-GD-DDAN 28.57% 2.15% 71.43% 71.43% 71.43%

Pidgin→ LibTIFF

VULD 35.29% 8.27% 64.71% 50% 56.41%
MMD 30.18% 12.35% 69.82% 50% 58.27%

D2GAN 40% 7.95% 60% 60% 60%
DIRT-T 38.46% 8.05% 61.54% 53.33% 57.14%
DDAN 27.27% 8.99% 72.73% 50% 59.26%

Dual-GD-DDAN 29.41% 6.76% 70.59% 57.14% 63.16%

84.21%, 80%, 77.78% and 75% obtained with DDAN, DIRT-T, D2GAN, MMD and
VulDeePecker respectively.

Boundary Distortion Analysis

Quantitative Results To quantitatively demonstrate the efficiency of our proposed Dual-
GD-DDAN in alleviating the boundary distortion problem caused by using the GAN
principle, we reuse the experimental setting in Section 5.2 [17]. The basic idea is, given
two data sets S1 and S2, to quantify the degree of cover of these two data sets. We train
a classifier C1 on S1, then test on S2 and another classifier C2 on S2, then test on S1. If
these two data sets cover each other well with reduced boundary distortion, we expect
that if C1 predicts well on S1, then it should predict well on S2 and vice versa if C2
predicts well on S2, then it should predict well on S1. This would seem reasonable since
if boundary distortion occurs (i.e., assume that S2 partly covers S1), then C2 trained on
S2 would struggle to predict S1 well which is much larger and possibly more complex.
Therefore, we can utilize the magnitude of the accuracies and the accuracy gap of C1 and
C2 when predicting their training and testing sets to assess the severity of the boundary
distortion problem.

Inspired by this observation, we compare our Dual-GD-DDAN with DDAN using
the representations of the source and target samples in the joint feature space corre-
sponding to their best models. In particular, for a given pair of source and target data
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Table 2. Accuracies obtained by the DDAN and Dual-GD-DDAN methods when predicting vul-
nerable and non-vulnerable code functions on the source and target domains. Note that tr src, ts
tar, tr tar, ts src, and acc gap are the shorthands of train source, test target, train target, test source,
and accuracy gap respectively. For the accuracy gap, a smaller value is better.

Source→ Target Methods Accuracy Accuracy
Tr src / Ts tar/acc gap Tr tar / Ts src/ acc gap

Pidgin→ LibPNG
DDAN 98.8% 96% 2.8% 97% 92% 5%

Dual-GD-DDAN 99% 97% 2% 97% 95% 2%

FFmpeg→ LibPNG
Methods Accuracy Accuracy

Tr src / Ts tar/acc gap Tr tar / Te src/acc gap
DDAN 95.9% 92% 3.9% 91% 83.3% 7.7%

Dual-GD-DDAN 97% 96% 1% 98% 95.6% 2.4%

sets and for comparing each method, we train a neural network classifier on the best
representations of the source data set in the joint space, then predict on the source and
target data set and do the same but swap the role of the source and target data sets. We
then measure the difference of the corresponding accuracies as a means of measuring
the severity of the boundary distortion. We choose to conduct such a boundary dis-
tortion analysis for two pairs of the source (FFmpeg and Pidgin) and target (LibPNG)
domains. As shown in Table 2, all gaps obtained by our Dual-GD-DDAN are always
smaller than those obtained by DDAN, while the accuracies obtained by our proposed
method are always larger. We can therefore conclude that our Dual-GD-DDAN method
produces a better representation for source and target samples in the joint space and is
less susceptible to boundary distortion compared with the DDAN method.
Visualization We further demonstrate the efficiency of our proposed Dual-GD-DDAN
in alleviating the boundary distortion problem caused by using the GAN principle. Us-
ing a t-SNE [9] projection, with perplexity equal to 30, we visualize the feature dis-
tributions of the source and target domains in the joint space. Specifically, we project
the source and target data in the joint space (i.e., G(x)) into a 2D space with domain
adaptation (DDAN) and with dual-domain adaptation (Dual-GD-DDAN). In Fig. 3,
we observe these cases when performing domain adaptation from a software project
(FFmpeg) to another (LibPNG). As shown in Fig. 3, with undertaking domain adapta-
tion (DDAN, the left figure) and dual-domain adaptation (Dual-GD-DDAN, the right
figure), the source and target data sampled are intermingled especially for Dual-GD-
DDAN. However, it can be observed that DDAN when solely applying the GAN is
seriously vulnerable to the boundary distortion issue. In particular, in the clusters/data
modes 2, 3 and 4 (the left figure), the boundary distortion issue occurs since the blue
data only partly cover the corresponding red ones (i.e., the source and target data do not
totally mix up). Meanwhile, for our Dual-GD-DDAN, the boundary distortion issue is
much less vulnerable, and the mixing-up level of source and target data is significantly
higher in each cluster/data mode.

Quantitative results of Dual Generator-Discriminator Semi-supervised Deep Code
Domain Adaptation In this section, we compare the performance of our Dual-GD-
SDDAN with Semi-supervised Deep Code Domain Adaptation (SCDAN) [16] on four
pairs of the source and target domains. In Table 3, the experimental results show that our
Dual-GD-SDDAN achieves a higher performance than SCDAN for detecting vulnerable
and non-vulnerable functions in terms of FPR, Precision and F1-measure in almost
cases of the source and target domains, especially for F1-measure. For example, to the
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Fig. 3. A 2D t-SNE projection for the case of the FFmpeg → LibPNG domain adaptation. The
blue and red points represent the source and target domains in the joint space respectively. In both
cases of the source and target domains, data points labeled 0 stand for non-vulnerable samples
and data points labeled 1 stand for vulnerable samples.

case of the source domain (VLC) and target domain (LibPNG), our Dual-GD-SDDAN
achieves an F1-measure of 76.19% compared with an F1-measure of 72.73% obtained
with SCDAN. These results further demonstrate the ability of our Dual-GD-SDDAN
for dealing with the mode collapsing problem better than SCDAN [16], hence obtaining
better predictive performance in the context of software domain adaptation.

Table 3. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Re-
call, Precision and F1-measure of SCDAN and Dual-GD-SDDAN for predicting vulnerable/non-
vulnerable code functions on the testing set of the target domain (Best performance in bold).

Source→ Target Methods FPR FNR Recall Precision F1-measure

FFmpeg→ LibTIFF
SCDAN 5.38% 14.29% 85.71% 57.14% 68.57%

Dual-GD-SDDAN 3.01% 35.29% 64.71% 73.33% 68.75%

FFmpeg→ LibPNG
SCDAN 1.08% 12.5% 87.5% 87.5% 87.5%

Dual-GD-SDDAN 0% 17.5% 82.5% 100% 90.41%

VLC→ LibPNG
SCDAN 1.06% 33.33% 66.67% 80% 72.73%

Dual-GD-SDDAN 4.39% 11.11% 88.89% 66.67% 76.19%

Pidgin→ LibTIFF
SCDAN 5.56% 30% 70% 58.33% 63.64%

Dual-GD-SDDAN 2.98% 37.5% 62.5% 71.43% 66.67%

5 Conclusion

Software vulnerability detection (SVD) is an important problem in the software indus-
try and in the field of computer security. One of the most crucial issues in SVD is
to cope with the scarcity of labeled vulnerabilities in projects that require the labori-
ous labeling of code by software security experts. In this paper, we propose the Dual
Generator-Discriminator Deep Code Domain Adaptation Network (Dual-GD-DDAN)
method to deal with the missing mode and boundary distortion problems which arise
from the use of the GAN principle when reducing the discrepancy between source and
target data in the joint space. We conducted experiments to compare our Dual-GD-
DDAN method with the state-of-the-art baselines. The experimental results show that
our proposed method outperforms these rival baselines by a wide margin in term of
predictive performances.
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