
Code Action Network for Binary
Function Scope Identification?

Van Nguyen1, Trung Le1, Tue Le2, Khanh Nguyen2, Olivier de Vel3, Paul Montague3,
John Grundy1, and Dinh Phung1

1 Monash University, Australia
{van.nk,trunglm,john.grundy,dinh.phung}@monash.edu

2 AI Research Lab, Trusting Social, Australia
tue.le.ict@jvn.edu.vn, khanh@trustingsocial.com

3 Defence Science and Technology Group, Australia
{Olivier.DeVel,Paul.Montague}@dst.defence.gov.au

Abstract. Function identification is a preliminary step in binary analysis for
many applications from malware detection, common vulnerability detection and
binary instrumentation to name a few. In this paper, we propose the Code Action
Network (CAN) whose key idea is to encode the task of function scope identifi-
cation to a sequence of three action states NI (i.e., next inclusion), NE (i.e., next
exclusion), and FE (i.e., function end) to efficiently and effectively tackle function
scope identification, the hardest and most crucial task in function identification.
A bidirectional Recurrent Neural Network is trained to match binary programs
with their sequence of action states. To work out function scopes in a binary,
this binary is first fed to a trained CAN to output its sequence of action states
which can be further decoded to know the function scopes in the binary. We un-
dertake extensive experiments to compare our proposed method with other state-
of-the-art baselines. Experimental results demonstrate that our proposed method
outperforms the state-of-the-art baselines in terms of predictive performance on
real-world datasets which include binaries from well-known libraries.

Keywords: Cyber security · Function Scope Identification · Machine learning ·
Deep learning.

1 Introduction
In computer security, we often encounter situations where source code is not available
or impossible to access and only binaries are accessible. In these situations, binary anal-
ysis is an essential tool enabling many applications such as malware detection, common
vulnerability detection [9], and etc. Function identification is usually the first step in
many binary analysis methods. This aims to specify function scopes in a binary and is a
building block to a diverse range of application domains including binary instrumenta-
tion [5], vulnerability research [10] and binary protection structures with Control-Flow
Integrity. In both binary analysis and function identification, tackling the loss of high-
level semantic structures in binaries which results from compilers during the process of
compilation is likely the most challenging problem.
? Acknowledgement: This research was supported under the Defence Science and Technology

Group‘s Next Generation Technologies Program.

John Grundy
24th Pacific-Asia Conference on Knowledge Discovery and Data Mining 2020 (PAKDD 2020), 11-14 May, Singapore

2 V. Nguyen et al.

There have been many effective methods for dealing with the function identification
problem from heuristic solutions (statistical methods for binary analysis) to complicated
approaches employing machine learning or deep learning techniques. In an early work,
Kruegel et. al. [4] through his research which leveraged statistical methods with con-
trol flow graphs concluded that the task of function start identification can be trivially
solved for regular binaries. However, later research in [14] argued that this task is non-
trivial and complex in some specific cases wherein it is too challenging for heuristics-
based methods to discover all function boundaries. Other influential works and tools
that rely on signature database and structural graphs include IDA Pro, Dyninst, (Binary
Analysis Platform) BAP, and Nucleus [1]. Andriesse et. al. [1] has recently proposed
a new signature-less approach to function detection for stripped binaries named Nu-
cleus which is based on structural Control Flow Graph analysis. More specifically, Nu-
cleus identifies functions in the intraprocedural control flow graph (ICFG) by analyzing
the control flow between basic blocks, based on the observation that intraprocedural
control flow tends to use different types and patterns of control flow instructions than
inter-procedural control flow.

Machine learning has been applied to binary analysis and function identification in
particular. The seminal work of [11] modeled function start identification as a Condi-
tional Random Field (CRF) in which binary offsets and a number of selected patterns
appear in the CRF. Since the inference on a CRF is very expensive, though feature
selection and approximate inference were adopted to speed up this model, its com-
putational complexity is still very high. ByteWeight [2] is another successful machine
learning based method for function identification aiming to learn signatures for function
starts using a weighted prefix tree, and recognizes function starts by matching binary
fragments with the signatures. Each node in the tree corresponds to either a byte or an
instruction, with the path from the root node to any given node representing a possible
sequence of bytes or instructions. Although ByteWeight significantly outperformed dis-
assembler approaches such as IDA Pro, Dyninst and Binary Analysis Platform (BAP),
it is not scalable enough for even medium-sized datasets [12].

Deep learning has undergone a renaissance in the past few years, achieving break-
through results in multiple application domains such as visual object recognition [3],
language modeling [13], and software vulnerability detection [6,7,8]. The study in [12]
is the first work which applied a deep learning technique for the function identification
problem. In particular, a bidirectional Recurrent Neural Network (Bidirectional RNN)
was used to identify whether a byte is a start point (or end point) of a function or not.
This method was proven to outperform ByteWeight [2] while requiring much less train-
ing time. However, to address the boundary identification problem with [12], a simple
heuristic to pair adjacent function starts and function ends was used (see Section 5.3
in that paper). Consequently, this approach is not able to efficiently utilize the context
information of consecutive bytes and machine instructions in a function and the pair-
ing procedure might lead to inconsistency since the networks for function start and end
were trained independently. Furthermore, this method cannot address the function scope
identification problem, the hardest and most essential sub problem in function identifi-
cation, wherein the scope (i.e., the addresses of all machine instructions in a function)
of each function must be specified.

Code Action Network for Binary Function Scope Identification 3

Inspired from the idea of a Turing machine, we imagine a memory tape consisting
of many cells on which machine instructions of a binary are stored. The head is first
pointed to the first machine instruction located in the first cell. Each machine instruc-
tion is assigned to an action state in the action state set {NI, NE, FE} depending on its
nature. After reading the current machine instruction and assigning the corresponding
action state to it, the head is moved to the next cell and this procedure is halted as we
reach the last cell in the tape (see Section 3.1). Eventually, the sequence of machine in-
structions in a given binary is translated to the corresponding sequence of action states.
Based on this incentive, in this paper, we propose a novel method named the Code
Action Network (CAN) whose underlying idea is to equivalently transform the task of
function scope identification to learning a sequence of action states. A bidirectional Re-
current Neural Network is trained to match binary programs with their corresponding
sequences of action states. To predict function scopes in any binary, the binary is first
fed to a trained CAN to output its corresponding sequence of action states on which we
can then work out function scopes in the binary. The proposed CAN can tackle binaries
for which there exist external gaps between functions and internal gaps inside functions
wherein each internal gap in a function does not contain instructions from other func-
tions. By default, our CAN named as CAN-B operates at the byte level and can cope
with all binaries that satisfy the aforementioned condition. However, for the binaries
that can be further disassembled into machine instructions, another variant named as
CAN-M is able to operate at the machine instruction level. CAN-M can efficiently ex-
ploit the semantic relationship among bytes in an instruction and instructions in a func-
tion as well as requiring much shorter sequence length compared with the Bidirectional
RNN in [12] which also works at the byte level. In addition, our proposed CAN-B and
CAN-M can directly address the function scope identification task, hence inherently
offering the solution for other simpler tasks including the function start/end/boundary
identifications.

We undertake extensive experiments to compare our proposed CAN-B and CAN-M
with state-of-the-art methods including IDA, the Bidirectional RNN, ByteWeight no-
RFCR and ByteWeight on the dataset used in [12,2]. The experimental results show that
our proposed CAN-B and CAN-M outperform the baselines on function start, function
end and function boundary identification tasks as well as achieving very good perfor-
mance on function scope identification and also surpass the Nucleus [1] on this task.
Our proposed methods slightly outperform the Bidirectional RNN proposed in [12] on
the function start and end identification tasks, but significantly surpass this method on
the function boundary identification task – the more important task. This demonstrates
the capacity of our methods in efficiently utilizing the contextual relationship carried in
consecutive machine instructions or bytes to properly match the function start and end
entries for this task. As expected, our CAN-M obtains the best predictive performances
on most experiments and is much faster than the Bidirectional RNN proposed in [12].
Particularly, CAN-M takes about 1 hour for training with 20,000 iterations which is
nearly 4 times faster than the Bidirectional RNN proposed in [12] using the same num-
ber of iterations for training and the same number of bytes for handling input. This is
due to the fact that CAN-M operates at the machine instruction level, while the Bidi-
rectional RNN proposed in [12] operates at the byte level.

4 V. Nguyen et al.

We also do error analysis to qualitatively compare our CAN-M and CAN-B with
the baselines. We observe that there are a variety of instruction styles for the function
start and function end (e.g., in the experimental dataset, there are a thousand different
function start styles and function end styles). In their error analyses, Shin et. al. [12]
and Bao et. al. [2] mentioned that for functions which encompass several function start
styles or function end styles, their proposed methods tend to make mistakes in predict-
ing the function start or end bytes with many false positives and negatives. However, it
is not the case for our proposed methods, since we further observe that for the functions
which contain more than one function start style or function end style which account
for 98.38% and 28% of the testing set respectively, our proposed CAN-M has 0.24%
and 1.09% false positive rates respectively.

2 The Function Identification Problem

This section discusses the function identification problem. We begin with definitions
of the sub problems in the function identification problem, followed by an example of
source code in the C language and its binaries compiled with optimization levels O1
using gcc on the Linux platform for the x86-64 architecture.

2.1 Problem Definitions

Given a binary program P, our task is to identify the necessary information (e.g., func-
tion starts, function ends) in its n functions { f1, ..., fn} which is initially unknown. De-
pending on the nature of information we need from { f1, ..., fn}, we can categorize the
task of function identification into the following such problems.

Function start/end/boundary identification In the first problem, we need to specify
the set S = {s1, ...,sn} which contains the start instruction byte for each of the corre-
sponding functions in { f1, ..., fn}. If a function (e.g. fi) has multiple start points, si will
be the first start instruction byte for fi. In the second problem, we need to identify the
set E = {e1, ...,en} which contains the end instruction byte for each of the correspond-
ing functions in { f1, ..., fn}. If a function (e.g. fi) has multiple exit points, ei will be the
last end instruction byte for fi. In the last problem, we have to point out the set of (start,
end) pairs SE = {(s1,e1) , ...,(sn,en)} which contains the pairs of the function start and
the function end for each of the corresponding functions in { f1, ..., fn}.

Function scope identification This is the hardest problem in the function identification
task. In this problem, we need to find out the set {(f1,s1 , ..., f1,e1) , ...,(fn,sn , ..., fn,en)}
which specifies the instruction bytes in each function f1, ..., fn in the given binary pro-
gram P. Here we note that because functions may be not contiguous, the instruction
bytes (fi,si , ..., fi,ei) may also be not contiguous. It is apparent that the solution of this
problem covers the three aforementioned problems. Since our proposed CAN addresses
this problem, it inherently offers solutions for the other problems.

2.2 Running Example

In Fig. 1, we show an example of a short source code fragment for a function in the
C programming language, the corresponding assembly code in the machine instruction

Code Action Network for Binary Function Scope Identification 5

and corresponding hexadecimal mode of the binary code respectively, which was com-
piled using gcc with the optimization level O1 for the x86-64 architecture on the Linux
platform. We further observe that in real binary code, the patterns for the entry point
vary over a wide range and can start with push, mov, movsx, inc, cmp, or, and, etc. In
the example, the assembly code corresponding with the optimization level O1 on Linux
has three ret statements. Furthermore, in real binary code, the ending point of a function
can vary in pattern beside the ret pattern. These make the task of function identification
very challenging. For the challenges of the function scope identification task, we refer
the readers to [2,12] and the discussions therein.

Fig. 1. Example source code of a function in the C language programming (Left), the corre-
sponding assembly code (Middle) with some parts omitted for brevity and the corresponding
hexadecimal mode of the binary code (Right).

3 Code Action Network for The Function Identification Problem

3.1 Key idea

In what follows, we present the key idea of our CAN. In a binary, there are external
gaps between functions as well as internal gaps inside a non-contiguous function. The
external gaps might contain data, jump tables or padding-instruction bytes which do
not belong to any function (e.g., additional instructions generated by a compiler such as
nop, int3). The internal gaps in general might contain data, jump tables or instructions
from other functions (e.g., nested functions). We further assume that the internal gaps do
not contain any instruction from other functions. It means that if there exist functions
nested in a function, our CAN ignores these internal functions. However, we believe
that the nested functions are extremely rare in real-world binaries. For example, in the
experimental dataset, we observe that there are only 506 nested functions over the total
of 757,125 functions (i.e., the occurrence rate is 0.067%).

The key idea of CAN is to encode the task of function scope identification to a
sequence of three action states NI (i.e., next inclusion), NE (i.e., next exclusion), and
FE (i.e., function end). With the aforementioned assumption, the binaries of interest
consist of several functions and the functions in a binary do not intermingle, that is, each
function only contains its machine instructions, data, or jump-tables and do not contain
any machine instruction of other functions. Each function can be therefore viewed as a
collection of bytes where each byte is from a machine instruction of this function (i.e.,
instruction byte) or data/jump-tables inside this function (i.e., non-instruction byte). To
clarify how to proceed over a binary function given a sequence of action states, let us

6 V. Nguyen et al.

Fig. 2. (The left-hand figure) The key idea of Code Action Network. Assume that we have a
sequence of instruction bytes in three functions where the functions may not be contiguous and
there exist gaps between the functions. The Code Action Network transforms this sequence of
instruction bytes to those of action states (i.e., NI, NE, and FE).
(The right-hand figure) The architecture of the Code Action Network. Each output value takes
one of three action states NI, NE, or FE. The Code Action Network will learn to map the input
sequences of items (i1, i2, ..., il) to the target output sequence (y1,y2, ...,yl) with the loss Li at
each time step t. The h represents for the forward-propagated hidden state (toward the right)
while the g stands for the backward-propagated hidden state (toward the left). At each time step
t, the predicted output ot can benefit from the relevant information of the past from its h and the
future from its g.

imagine this binary program including many instruction and non-instruction bytes as
a tape of many cells wherein each cell contains a instruction or non-instruction byte
and a pointer firstly points to the first cell in the tape. The action state NI includes the
current instruction or non-instruction byte in the current cell to the current function and
moves the pointer to the next cell (i.e., the next instruction or non-instruction byte). The
action state NE excludes the current instruction or non-instruction byte in the current
cell from the current function and moves the pointer to the next cell. The action state
FE counts the current instruction or non-instruction byte in the current cell, ends the
current function, starts reading a new function, and moves the pointer to the next cell.

To further explain how to transform a binary program to a sequence of action states,
we consider an example binary code depicted in Fig. 2 (the left-hand figure). Assume
that we have a sequence of instruction and non-instruction bytes, which belong to Func-
tion 1, Function 2 and Function 3, respectively where the functions may be not con-
tiguous and there exist gaps between the functions (e.g., the gap between Function 1
and Function 2 includes the padding-instruction byte (pad-ins-byte) G2 and the non-
instruction (non-ins-byte) byte G3). The pointer of CAN firstly points to G1, labels this
padding-instruction byte (pad-ins-byte) as NE since G1 does not belong to any function,
and moves to the instruction byte F11. The instruction byte F11 is labeled as NI since it
belongs to the function Function 1. The pointer then moves to the non-instruction byte
F12 which can come from a jump-table or data and labels it as NE because F12 does
not belong to any function. After that, the pointer moves to the instruction byte F13 and
the non-instruction byte F14 subsequently. F13 and F14 are then labeled as NI and NE
respectively since F13 belong to the function Function 1 while F14 does not belong to

Code Action Network for Binary Function Scope Identification 7

any function, and the pointer moves to the instruction byte F15 and labels it as FE since
it is the end of the function Function 1 and we need to start reading the new function
(i.e., the function Function 2). The pointer subsequently moves to the instruction byte
G2 and the non-instruction G3 which can come from a jump-table or data and labels
them as NE since they do not belong to any function. The pointer then traverses across
the instruction bytes F21, F22, F23 and labels them as NI, NI, FE. The pointer now
starts reading the new function (i.e., the function Function 3). This process is repeated
until the pointer reaches the last instruction or non-instruction byte and we eventually
identify all functions.

It is worth noting that if binaries can be disassembled and a function in these bi-
naries can be thus viewed as a collection of instructions and non-instructions, we can
perform the aforementioned idea at the machine instruction level wherein each cell in
the tape represents an instruction or non-instruction of a binary. The advantages of per-
forming the task of function identification at the machine instruction level include: i)
the sequence length of the bidirectional RNN is significantly reduced and ii) the se-
mantic relationship among bytes in a machine instruction and machine instructions can
be further exploited. As a consequence, the gradient exploding and vanishing which
often occur with long RNNs can be avoided and the model is easier to train while ob-
taining higher predictive performance and much shorter training times as shown in our
experiments.

3.2 Preprocess input statement

Byte level and Machine instruction level To process data for the byte level, we simply
take the raw bytes in the text segment of the given binary and input them to CAN-B.
To process data for the machine instruction level, we first use Capstone4 to disassemble
the binaries and preprocess the machine instructions obtained from the text segment
of a binary before inputting them to CAN-M. This preprocessing step aims to work out
fixed length inputs from machine instructions. For each machine instruction, we employ
Capstone to detect entire machine instructions, then eliminate redundant prefixes to
obtain core parts that contain the opcode and other significant information (see our
Supplementary Material for details, available at https://app.box.com/s/iq9u8r).

3.3 Code Action Network architecture

Training procedure The Code Action Network (CAN) is a multicell bidirectional
RNN whose architecture is depicted in Fig. 2 (the right-hand figure) where we as-
sume the number of cells over the input is 2. Our CAN takes a binary program B =
(i1, i2, . . . , il) including l instructions (non-instructions) for CAN-M or instruction bytes
(non-instruction bytes) for CAN-B and learns to output the corresponding sequence of
action states Y = (y1,y2, ...,yl) where each yk takes one of three action states NI (i.e.,
yk = 1), NE (i.e., yk = 2), or FE (i.e., yk = 3). The computational process of CAN is as
follows:

h1
k = tanh(H>h1

k−1+U>ik); g1
k = tanh(G>g1

k+1+V>ik); h2
k = tanh(H>h2

k−1+W>[h
1
k

g1
k
])

4 www.capstone-engine.org

https://app.box.com/s/iq9u8rugyieflwwbk9vzudj0cq0vc0os

8 V. Nguyen et al.

g2
k = tanh(G>g2

k+1 +R>[h
1
k

g1
k
]); ok = S>[h

2
k

g2
k
]; pk = softmax(ok)

where k= 1, ...l, h1
0, h2

0, g1
l+1 = g1

0, g2
l+1 = g2

0 are initial hidden states and θ=(U,V,W, H,
G, R, S) is the model. We further note that pk, k = 1, . . . , l is a discrete distribution over
the three labels NI, NE, and FE.

To find the best model θ∗, we need to solve the following optimization problem:

max
θ

∑
(B,Y)∈D

log p(Y | B) (1)

where D is the training set including pairs (B,Y) of the binaries and their corresponding
sequence of action states.

Because ok is a function (lossy summary) of i1:l , we further derive logp(Y | B) as:

log p(Y | B) =
l

∑
k=1

log p
(
yk | y1:k−1, i1:l

)
=

l

∑
k=1

log p(yk | ok)

Substituting back to the optimization problem in Eq. (1), we arrive the following
optimization problem:

max
θ

∑
(B,Y)∈D

l

∑
k=1

log p(yk | ok)

where p(yk | ok) is the yk- th element of the discrete distribution pk or in other words,
we have p(yk | ok) = pk,yk

.

Testing procedure In what follows, we present how to work out the function scopes in
a binary using a trained CAN. The machine instructions/non-instructions for CAN-M or
instruction/non-instruction bytes for CAN-B in the testing binary are fed to the trained
model to work out the predicted sequence of action states. This predicted sequence of
action states is then decoded to the function scopes inside the binary. As shown in Fig.
3, the binary in Fig. 2 when inputted to the trained CAN outputs the sequence of action
states NE, NI, ..., NI, FE and is later decoded to the scopes of the functions Function 1,
Function 2 and Function 3.

Fig. 3. The testing procedure of our Code Action Network. The sequence of machine
instructions/non-instructions or instruction bytes/non-instruction bytes in a binary program is fed
to the trained Code Action Network to work out the sequence of action states. Subsequently, the
sequence of action states is decoded to the set of functions in this binary.

Code Action Network for Binary Function Scope Identification 9

4 Experiments

In this section, firstly, we present the experimental results of our proposed Code Action
Network for the machine instruction level (CAN-M) and the byte level (CAN-B) com-
pared with other baselines including IDA, ByteWeight (BW) no-RFCR, ByteWeight
(BW) [2], the Bidirectional RNN (BRNN) [12] and Nucleus [1]. Secondly, we perform
error analysis to qualitatively investigate our proposed methods. We also investigate the
model behaviour of our CAN-M with various RNN cells and with different size for hid-
den states (see in our Supplementary Material, available at https://app.box.com/s/iq9u8r).

4.1 Experimental Dataset
We used the dataset from [2,12], which consists of 2,200 different binaries including
2,064 binaries obtained from the findutils, binutils, and coreutils packages and com-
piled with both icc and gcc for Linux at four optimization levels O0, O1, O2, and O3.
The remaining binaries for Windows are from various well-known open-source projects
which were compiled with Microsoft Visual Studio for the x86 (32 bit) and the x86-64
(64 bit) architectures at four optimization levels Od, O1, O2, and Ox.

4.2 Experimental Setting
We divided the binaries into three random parts; the first part contains 80% of the bi-
naries used for training, the second part contains 10% of the binaries used for testing,
and the third part contains 10% of the binaries for validation. For CAN-M, we used
a sequence of 250 hidden states for the x86 architecture and 125 hidden states for the
x86-64 architecture where the size of hidden states is 256. For CAN-B, akin to the Bidi-
rectional RNN in [12], we used a sequence length of 1,000 hidden states for the x86 and
x86-64 architectures. We employed the Adam optimizer with the default learning rate
0.001 and the mini-batch size of 32. In addition, we applied gradient clipping regular-
ization to prevent the over-fitting problem when training the model. We implemented
the Code Action Networks in Python using Tensorflow, an open-source software library
for Machine Intelligence developed by the Google Brain Team.

4.3 Experimental Results
Code Action Network versus baselines We compared our CAN-M and CAN-B us-
ing the Long Short Term Memory (LSTM) cell and the hidden size of 256 with IDA,
the Bidirectional RNN (BRNN), ByteWeight (BW) no-RFCR and ByteWeight (BW) in
the task of function start, function end, function boundary and function scope identi-
fication. For the well-known tool IDA as well as the Bidirectional RNN, ByteWeight
no-RFCR, and ByteWeight methods, we reported the experimental results presented in
[2] and [12]. Obviously, the task of function scope identification wherein we need to
specify addresses of machine instructions in each function is harder than that of func-
tion boundary identification. To compute the function scope results, given a predicted
function by CAN variants, we considered their start and end instructions for CAN-M
and start and end bytes for CAN-B, and then evaluated measures (e.g., Precision, Re-
call, and F1 score) based on this pair. In addition, in the function scope identification
task, a pair is counted as a correct pair if all predicted bytes or machine instructions
accompanied with this pair forms a function that exactly matches to a valid function

https://app.box.com/s/iq9u8rugyieflwwbk9vzudj0cq0vc0os

10 V. Nguyen et al.

in the ground truth. In contrast, in the function boundary identification task, we only
require the start and end positions of this pair to be correct.

The experimental results in Table 1 show that our proposed CAN-M and CAN-B
achieved better predictive performances (i.e., Recall, Precision, and F1 score) com-
pared with the baselines in most cases (PE x86, PE x86-64, ELF x86 and ELF x86-64).
For the function boundary identification task, our CAN-B and CAN-M significantly
outperformed the baselines in all measures, especially for CAN-M. Interestingly, the
predictive performance of our proposed methods on the harder task of function scope
identification was higher or comparable with that of the baselines on the easier task of
function boundary identification. In comparison with the Bidirectional RNN proposed
in [12], our proposed methods slightly outperform it on the function start and function
end identification tasks, but significantly surpass this method on the function boundary
identification task - the more important task. This result demonstrates the capacity of
our methods in efficiently utilizing the contextual relationship carried in consecutive
machine instructions or bytes to properly match the function start and end entries for
this task. Regarding the amount of time taken for training, our CAN-M took approxi-
mately 3,490 seconds for training in 20,000 iterations, while our CAN-B and the Bidi-
rectional RNN using the same number of iterations with the sequence length 1,000 took
about 12,030 seconds (i.e., roughly four times slower). This is due to a much smaller
sequence length of CAN-M compared with CAN-B and the Bidirectional RNN.

Code Action Network versus Bidirectional RNN, ByteWeight and Nucleus We also
compared the average predictive performance for case by case including the function
start, function bound and function scope identifications of our CAN-M and CAN-B
using the hidden size of 256 and LSTM cell with the Bidirectional RNN, ByteWeight,
and Nucleus in both Linux and Windows platforms. For Nucleus [1], we reported the
experimental results reported in that paper. The experimental results in Table 2 indicate
that our CAN-M and CAN-B again outperformed the baselines, while CAN-M obtained
the highest predictive performances in all measures (Recall, Precision and F1 score).

4.4 Error Analysis

For a qualitative assessment, we performed error analysis of our CAN-M and CAN-B
for all cases including PEx86, PEx64, ELFx86 and ELFx64.

At the machine instruction level, we observed that there are 4,714, 4,464, 3,320 and
8,147 different types of machine instructions for function start while there are 1,926,
5,523, 9,082 and 11,421 different types of machine instructions for function end in the
PEx86, PEx64, ELFx86 and ELFx64 datasets respectively. At byte level, we found that
there are 91, 49, 41 and 53 different types of instruction bytes for function start while
there are 166, 125, 133 and 126 different types of bytes for function end in the PEx86,
PEx64, ELFx86 and ELFx64 datasets respectively. Obviously, these diverse ranges in
the function start and function styles make the task of function identification really
challenging. In all four cases (PEx86, PEx64, ELFx86 and ELFx64), the compilers in
use often add padding between functions such as nop, int3.

We summarize some observations for our methods performance as follows:
– Shin et al. [12] and Bao et al. [2] commonly mentioned that for the functions that

contain either several function start or function end styles inside, their models tend

Code Action Network for Binary Function Scope Identification 11

to confuse in determining the true start or end points, hence offering many false
positives. This is due to a high level of ambiguity in the start or end entries for these
functions. However, it is not the case for our proposed CAN-M and CAN-B. For
example, at the machine instruction level with PE x86, we found that the functions
which contain more than one function start style or function end style account for
98.38% and 28.00% of the testing set and when predicting these functions, our
proposed CAN-M has 0.28% false negative rate and 0.24% false positive rate as
well as 1.56% false negative rate and 1.09% false positive rate.

– Our proposed methods also share the same behavior as the method in [12] in pre-
dicting some first and last items in an input sequence, that is, the CAN-M and
CAN-B sometimes offer false positives and negatives when predicting some first
and last instructions or bytes in an input sequence. More specifically, if an input
sequence involves several functions, the start of the first function and the end of the
last function are more likely to be predicted incorrectly. This is possibly due to the
scarcity of context before or after them. For example, at the machine instruction
level with PE x86, we record that there is about 2.39% of input sequences which
contain function ends at some first and last input items. When predicting these
function end entries, our proposed CAN-M obtains 21.21% false positive rate and
27.27% false negative rate.

Table 1. Comparison of our Code Action Network and baselines (Best in bold, second best in
underline). Noting that f.s, f.e, f.b and f.sc stand for func. start, func. end, func. boundary and
func. scope while R, P, and F1 represent Recall, Precision and F1 score respectively.

Task Architectures ELF x86 ELF x86-64 PE x86 PE x86-64
Methods R P F1 R P F1 R P F1 R P F1

(f.s)

IDA 58.34% 70.97% 64.04% 55.50% 74.20% 63.50% 87.80% 94.67% 91.11% 93.34% 98.22% 95.72%
BW no-RFCR 96.17% 98.36% 97.25% 97.57% 99.11% 98.33% 92.13% 96.75% 94.38% 96.22% 97.74% 96.97%

BW 97.94% 98.41% 98.17% 98.47% 99.14% 98.80% 95.37% 93.78% 94.57% 97.98% 97.88% 97.93%
BRNN 99.06% 99.56% 99.31% 97.80% 98.80% 98.30% 98.46% 99.01% 98.73% 99.09% 99.52% 99.30%
CAN-B 99.23% 99.41% 99.32% 98.19% 99.05% 98.62% 98.95% 99.53% 99.24% 99.20% 99.46% 99.33%
CAN-M 99.35% 99.61% 99.48% 98.02% 99.34% 98.68% 99.52% 99.67% 99.59% 99.05% 99.53% 99.29%

(f.e)
BRNN 97.87% 98.69% 98.28% 95.03% 97.45% 96.22% 98.35% 99.24% 98.79% 99.20% 99.28% 99.24%
CAN-B 99.16% 99.38% 99.27% 98.34% 99.20% 98.77% 98.82% 99.39% 99.10% 99.15% 99.30% 99.22%
CAN-M 99.30% 99.56% 99.43% 97.97% 99.29% 98.63% 99.56% 99.71% 99.64% 99.12% 99.31% 99.21%

(f.b)

IDA 56.53% 70.63% 62.80% 53.46% 72.84% 61.66% 87.10% 93.93% 90.39% 93.24% 98.11% 95.61%
BW no-RFCR 90.58% 92.85% 91.70% 91.59% 93.17% 92.37% 90.48% 95.03% 92.70% 91.35% 92.87% 92.10%

BW 92.29% 92.78% 92.53% 92.52% 93.22% 92.87% 93.91% 92.30% 93.10% 93.13% 93.04% 93.08%
BRNN 95.34% 97.75% 96.53% 89.91% 94.85% 92.31% 95.27% 97.53% 96.39% 97.33% 98.43% 97.88%
CAN-B 98.08% 98.29% 98.18% 96.45% 97.24% 96.84% 97.81% 98.36% 98.08% 97.89% 98.27% 98.08%
CAN-M 98.43% 98.68% 98.55% 96.13% 97.34% 96.73% 98.99% 99.14% 99.06% 97.63% 98.39% 98.01%

(f.sc) CAN-B 98.03% 98.25% 98.14% 96.28% 97.10% 96.69% 97.75% 98.31% 98.03% 97.83% 98.22% 98.02%
CAN-M 98.40% 98.65% 98.52% 95.94% 97.21% 96.57% 98.97% 99.12% 99.05% 97.52% 98.28% 97.90%

Table 2. Comparison with the baselines (the Bidirectional RNN, ByteWeight and Nucleus) using
average scores for all architectures (x86 and x86-64) for both Linux and Windows of our Code
Action Network. The experimental results for Nucleus are from the original paper using the same
dataset (Best performance in bold, second best in underline).

Tasks Function Start Function Bound Function Scope
Methods Recall Precision F1 Recall Precision F1 Recall Precision F1
Nucleus 94% 96% 94.99% 88% 96% 91.83% 88% 96% 91.83%

ByteWeight 97.44% 97.30% 97.37% 92.96% 92.84% 92.90% - - -
Bidirectional RNN 98.60% 99.22% 98.92% 94.46% 97.14% 95.78% - - -

CAN-B 98.89% 99.36% 99.12% 97.56% 98.04% 97.80% 97.47% 97.97% 97.72%
CAN-M 98.99% 99.54% 99.26% 97.80% 98.39% 98.09% 97.71% 98.32% 98.01%

12 V. Nguyen et al.

5 Conclusion
In this paper, we have proposed the novel Code Action Network (CAN) for dealing with
the function identification problem, a preliminary and significant step in binary analysis
for many security applications such as malware detection, common vulnerability detec-
tion and binary instrumentation. Specifically, the CAN leverages the underlying idea of
a multicell bidirectional recurrent neural network with the idea of encoding the task of
function scope identification to a sequence of three action states NI (i.e., next inclusion),
NE (i.e., next exclusion), and FE (i.e., function end) in order to tackle function scope
identification, the hardest and most crucial task in function identification. The experi-
mental results show that the CAN can achieve state-of-the-art performance in terms of
efficiency and efficacy.

References
1. Andriesse, D., Slowinska, A., Bos, H.: Compiler-agnostic function detection in binaries. In:

IEEE European Symposium on Security and Privacy (EuroS&P) (2017)
2. Bao, T., Burket, J., Woo, M.: Byteweight: Learning to recognize functions in binary code.

In: 23rd USENIX Security Symposium (USENIX Security 14) (2014)
3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems 25 (2012)
4. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries.

In: Proceedings of Conference on USENIX Security Symposium (2004)
5. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: Pebil: Efficient static binary

instrumentation for linux. International Symposium on Performance Analysis of Systems
and Software (ISPASS) (2010)

6. Le, T., Nguyen, T., Le, T., Montague, P., De Vel, O., Qu, L., Phung, D.: Maximal diver-
gence sequential autoencoder for binary software vulnerability detection. In: In International
Conference on Learning Representations (2019)

7. Nguyen, T., Le, T., Nguyen, K., de Vel, O., Montague, P., Grundy, J., Phung, D.: Deep cost-
sensitive kernel machine for binary software vulnerability detection. In: Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining (2020)

8. Nguyen, V., Le, T., Le, T., Nguyen, K., DeVel, O., Montague, P., Qu, L., Phung, D.: Deep
domain adaptation for vulnerable code function identification. In: Int. Joint Conf. on Neural
Networks (2019)

9. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C.,
Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.F., Zibin, Y., Ernst, M.D., Rinard, M.:
Automatically patching errors in deployed software. In: Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (2009)

10. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug search in
binary executables. In: Proceedings of IEEE Symposium on Security and Privacy (2015)

11. Rosenblum, N.E., Zhu, X., Miller, B.P., Hunt, K.: Learning to analyze binary computer code.
In: AAAI. pp. 798–804 (2008)

12. Shin, E.C.R., Song, D., Moazzezi, R.: Recognizing functions in binaries with neural net-
works. In: 24th USENIX Security Symposium (USENIX Security 15) (2015)

13. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems
- Volume 2 (2014)

14. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of the 22Nd
USENIX Conference on Security (2013)

	Code Action Network for Binary Function Scope Identification

