
Title: Towards a Constructor Kit for Visual Notations

Warwick B. Mugridge, John G. Hosking, and John Grundy§

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand
rick@cs.auckland.ac.nz

§Department of Computer Science, University of Waikato,
Hamilton, New Zealand

Contact Person: Dr Rick Mugridge
Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand
rick@cs.auckland.ac.nz

In Proceedings of OZCHI’96, Nov 24-27 Hamilton, New Zealand, IEEE CS Press.

 © 1996 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
 component of this work in other works must be obtained from the IEEE.

Towards a Constructor Kit for Visual Notations

Abstract
BuildByWire is a constraint-based environment for

specifying and implementing visual notations for
environments developed using the MViews framework.
Previous approaches to user-interface construction based on
constraint propagation approaches have been limited We
describe a new approach that avoids some of these
difficulties through the use of the multi-directional
constraints of Snart, an object-oriented extension of
Prolog.

1. Introduction

The aim of the BuildByWire project is to design, build,
evaluate and evolve a construction kit for visual notations.
This work is motivated by our development and use of
MViews, a general-purpose framework for implementing
software development environments that maintain
consistency between multiple graphical and textual views
[1]. For example, MViews has been used to construct:
SPE, the Snart Programming Environment [2]; Cerno, a
program visualisation system [3]; ViTABaL, a tool-based
system [4]; and Serendipity, a work-flow modelling system
[5]. In such development environments the user is able to
manipulate specialised visual notations in graphical views.
For example, in SPE, the user may add new classes,
change superclass relationships, rename class attributes etc;
these changes are reflected in other views, including
program text views.

The MViews framework has strong support for
consistency management (including for multi-user
collaboration) but is somewhat lacking in high-level
support for user interface construction. In the MViews-
based environments that have been constructed so far, the
program code that allows the end user to manipulate
notations in graphical views is constructed manually.
BuildByWire aims to eliminate much of this effort by
providing a high-level tool for creating notations and
defining how they may be manipulated by the end user.
The prototype of BuildByWire presented here is itself based
on the same metaphor: that of creating and manipulating
visual notations; a longer-term aim of our work is to use
BuildByWire to implement its own user interface.

BuildByWire allows a visual notation designer to
compose the elementary graphical elements that make up a
visual notation and to specify: how those elements may be
related, how they change under transformations (such as
resizing) and how changes are to be mapped to and from an
underlying representational layer. The prototype is
implemented in Snart, an object-oriented extension to

Prolog that incorporates high-level, multi-directional
constraint expressions [6,7,8].

The remainder of the paper is organised as follows. In
the next section, we introduce requirements for a visual
notation constructor kit. This is followed by the design of
BuildByWire and a description of the first prototype. The
next section describes how Snart constraints are used to
implement some of the features of BuildByWire. This is
followed by a description of related work, discussion, and
conclusions.

2. Requirements of a Visual Notation
Constructor for MViews

In order to determine the requirements for a visual
notation constructor kit, it is instructive to examine the
visual notations and user interfaces of existing tools built
using MViews. Fig. 1 shows SPE in action, with three
graphical views representing aspects of the design of an
object-oriented program. The annotated boxes represent
classes in the design while the arcs represent relationships,
such as inheritance or client-supplier, between the classes.
A tool palette at the left of each window allows users to
select tools to manipulate the design.

A visual notation has two aspects: the visual form, ie
the rendering of components of the notation, and the
manipulation semantics, or the way in which the user can
interact with the components to manipulate a diagram. A
constructor kit needs to be able to specify both of these
aspects, together with the way in which the visual
components interact with the underlying application data
structures. Following are examples of each of these aspects
that can be seen in SPE.

The tool palette consists of a collection of iconic
renderings, laid out regularly, but fixed in position. The
icons are sensitive to mouse clicks, inverting their
rendering to indicate selection. Selection indicates a change
to the editing "mode" of the window, ie the manipulation
semantics of the window changes according to the
selection.

Class icons are composite graphical objects, displaying
the class name and class features as text, bordered by a
round box and a line separator. Their manipulation
semantics differs with the tool mode. With the select tool,
for example, the class icon may be dragged around the
window to change its location. Dragging the class icon
causes all of its constituent components to move in
unison. Selection of a class icon is indicated by addition of
four handles to the icon. The handles, however, cannot be
used to resize the icon.

Figure 1. SPE in action

Internally, a class icon has a number of "click points",
as shown in Fig. 2. Clicking in these with the select tool
permits navigation to other relevant views, such as other
views containing the class or feature or the textual
implementation view of the class or feature. The visual
manipulation must thus be translated into a service request
in the underlying application. Using other tools, different
semantics result. For example clicking on a feature text
using the feature tool permits attributes of the feature, such
as its name and type, to be edited. Clicking at the bottom
permits a new feature to be added to the class. Both of these
types of change result in a change in the icon rendering to
reflect the modifications made. Dragging from a class icon
with the inheritance tool causes an inheritance arc to be
added. A new class icon may also be added.

figure

window
draw
hide
pt_in_figure

{ }

Class views Class text

Feature textFeature views

Class features All class features

Figure 2. Structure of a class icon in SPE

Relationship arcs are also composite graphical objects,
consisting of a styled line and optionally a triangular
arrowhead, and/or a textual annotation. Relationship arcs
move with the class icons they are attached to. As an arc
moves, the arrow head and textual annotation maintain
their original proportional distances along the arc. Arcs

may also be manipulated by the select tool using drag
handles at each end. These permit the ends of an arc to be
moved, but the movement is constrained to be around the
perimeter of the attached class icon. Some of the other
tools permit interaction with arcs; for example clicking on
an arc with the hide tool causes the arc to be removed from
the view, but not the underlying application database.

MViewsDP, a visual dialog box editor, introduces
some additional manipulation semantics. Forms are
constructed as rectangular boxes, with fields (annotated
rectangular boxes) inside them. Fields and dialog boxes
may be resized, using handles. Fields may be moved around
inside the form by dragging. However field resizes and
moves are constrained to keep all of the field inside the
dialog box. It is also desirable to avoid overlap of fields
within the dialog box.

The structure of all the visual notations used in tools
built with MViews have thus been based on a mixture of
graph and simple containment notations. In the existing
framework, both the visual form and the manipulation
semantics must be defined procedurally, using textual code.
Some elements are reusable. For example, the connector
arcs have a fairly common form in all applications, and
simple parameterisation based on line style, and presence or
absence of annotations and arrow heads is sufficient.
However more complex, and hence more interesting,
components require substantial input from the framework
user. For example, the SPE class icon requires several
pages of code to define. In addition, the visual form and
manipulation semantics are defined separately, reducing the
understandability.

Our aim with BuildByWire is to eliminate as much as
possible the writing of procedural code to define such
graphical components, by permitting a declarative graphical

specification. This approach emphasises composition of
basic components, including appropriate composition
semantics such as composed objects moving together, and
visual specification of manipulation semantics using
constraint tools.

3. Design of BuildByWire

In this section we describe a design for BuildByWire,
focussing on the way in which the visual form and
manipulation semantics are specified. The mechanism for
mapping changes at the user-interface level of the tool into
changes at the underlying representation layer, and vice
versa is reasonably straightforward and has been addressed
in other work [9], so will not be discussed further here. We
initially focus on the specification of composite figures,
considering more complex aspects of manipulation
semantics later.

Composite figures are constructed from component
figures (both built-in atomic figures and other composites)
visually by direct manipulation. Three main categories of
atomic elements are provided:

 • figures, such as boxes, ovals, lines, text, images,
pop-up menus and buttons. These have associated
properties (size, position, filling, line width, font
size, etc) and “reshaping” handles (for resizing,
rotating, shearing, etc).

• wires, which impose constraints on the properties
of figures. Some wires, such as relative and
proportional wires, also introduce pins, which may
be used to attach further wires (discussed below).

• containers, which organise collections of figures,
such as vertical lists, organisational chart
structures, card stacks (which display one of several
sub-figures, in order to show state changes) and
other layout managers. A variant is also used to
transport sets of figures around.

Using wires, the relative (cartesian coordinate) position
of component figures can be specified, as well as the
manner in which repositioning and reshaping (resizing,
rotating, swivelling, shearing) of one component affects
another.

Text

Figure 3. A composite graphical element

For example, Fig. 3 consists of a text field contained
within a box with a drop shadow and resize handles
positioned at the boundary of the whole figure. This figure
is constructed from several atomic figures, including a text
field, two boxes, two relative wires, four equality wires,
and four proportional wires. The equality and relative wires
are used to position the shadow relative to the main box,

while the proportional wires position new handles relative
to the composed figure.

The pin of a relative wire is offset from a “home “ pin
(a handle or another pin). It may be moved relative to the
home pin, changing its offset, but when the home pin is
moved, the offset is maintained. This allows for offsets to
be defined graphically, such as the offset of the shadow in
Fig. 3. An equality wire, dragged between two pins,
imposes a constraint so that the two pins remain
superimposed, regardless of which is moved. The pin of a
proportional wire is positioned relative to two home pins.
It may be dragged around to reposition it relative to the
home pins. If one of the home pins is moved, the
proportional pin moves to retain its relative proportional
position between the two home pins. For example, if the
new pin is positioned half-way between the home pins, it
will remain half-way between, regardless of the movements
of either of the home pins. This may be used, for
example, to position a text label two-thirds of the way
along an arc. In Fig. 3 proportional pins maintain the extra
handles proportionally to the top left and bottom right
corners.

Fig. 4 shows how Fig. 3 is constructed. In Step 1, the
box tool is selected and a box is interactively dragged out;
this will eventually be the shadow box. In Step 2, the
relative pin tool is selected and two relative pins, offset
from the corners of the box by the same amount, are added
(by dragging from the box handles). These pins are used to
define the offset to the text box that is added in Step 3. In
Step 4, the equality wire tool is selected and equality wires
are connected by dragging between the corners of the text
box and the relative pins. The combined effect of these is
to constrain the text box to be at a defined offset from the
shadow box and the size of the shadow box and text box to
remain equal. Step 5 adds proportional pins on each side of
the main box, between the top and the bottom, together
with the text field. In Step 6, equality wires between the
bottom text handles and the proportional pins position the
text in the top half of the main box. The two extra handles
at the top-right and bottom-left are created in step 7, using
proportional pins, with the top left handle of the text box
and the bottom right handle of the shadow box used as
home pins (note that relative pins could have been used
instead). The text box is coloured white and the shadow
grey in step 8, by manipulating the properties of those
figures.

Finally, in step 9, the composite figure definition is
completed by hiding pins and handles used purely for
internal construction. All the handles of the original text
area are invisible in the final figure, as are three of the
handles of each of the two original boxes. Also hidden are
the constraints that ensure that the two boxes remain the
same size; hence the end user is unable to alter the relative
distance between the main box and its shadow. However,
the end user is able to alter the text and to resize the figure;
the boxes grow larger if necessary, to accomodate any text
changes, the text is recentred in the space available if the
figure is resized, while the text’s font size will be reduced if
the user makes the main box size too small.

1 2 3

4 5
Text

6

Text

7

Text

8

Text

9

Text

Figure 4. Steps in composing a shadow box with text

The resulting new figure may be added to the set of
atomic figures provided by BuildByWire and used in the
construction of more complex figures. As the standard
transformations may be applied to the new figure, the way
in which the figure was composed will determine how any
transformation will be applied to the components of the
new figure. For example, a translation of the the shadow-
box figure of Fig. 4 will translate all of its components by
the same amount. However, sometimes such standard
transformations are not what is required.

OK

Figure 5. Limiting the effect of reshaping

Consider the development of the dialog box shown in
Fig. 5, which has an OK button constrained by a
proportional pin to be proportionally offset from the
bottom right hand corner. The user interface this
component is being developed for is to provide two
different ways of resizing the dialog box. The first, or
shrink, operation, uses the standard approach: resizing the
dialog box as a whole also resizes its internal components,
ie dragging on the bottom right hand corner causes a
proportional resizing of the OK box. In the second, or
resize, operation, the dialog resize results simply in a
change of position of the OK button rather than a
proportional resizing, ie the components of the dialog are
squashed together (or pulled apart) but retain their original
size. There is thus a need to have different manipulation

semantics depending on the reason for the manipulation
(resize or shrink).

This is achieved by propagating not only the changes
to values along wires, but also the reason for the change.
At various points along the connections, it may then be
necessary to map from one reason to another to achieve the
appropriate semantics. For example, Fig. 6 shows the
reason mapping that occurs along the equality wire joining
the proportional pin to the OK box corner. If the
proportional pin location changes because of a shrink, this
is converted to a modification of the corner of the OK box
with a resize reason, resulting in a resizing of the box.
However, if the proportional pin location changes due to a
move or resize reason, the box corner is changed with a
move reason. This causes the whole OK box to shift
location, rather than resize. The ability to manage this
degree of flexibility in the specification of manipulation
semantics is due to the unique nature of the Snart dual
constraint propagation mechanism used to construct
BuildBy Wire. This is discussed further in the next section.
Similar reason mapping tables are required for specifying
the drag semantics of composite objects (eg does dragging a
component shift it, or attach a new arc to it).

Reason in Reason out
shrink resize
resize move
move move

Figure 6. Reason mapping

Rotational constraints and relative polar coordinates can
also be specified with wires. Fig. 7a shows a rotated box
which contains text. The rotation is fixed here and cannot
be altered by the end user. On the other hand, Fig.7b
shows a directed arc made up of three lines and some text.

a

Text

b Text
c Text

Text
Text
Text

d

Figure 7. Some composite graphical elements

This arc is to be connected between two figures (nodes)
in the final application, so the orientation of the arc needs
to change as those nodes are moved. Hence the orientation
of both the text and the lines making up the arrow head are
based on the orientation of the main line. When either of
the connected nodes are moved by the end user, the arc is to
resize; however, if the arc is moved, the connected nodes
are to move. Hence the connections that are made between
them have to include reason mappings, as with the
previous example with the OK button. In addition, there
are likely to be restrictions on what connections can be
made with such arcs. Our current approach is to assume
that the underlying implementation of the notation handles
the rejection of incorrect connections; another approach
would be to define restrictions on the connection points
themselves.

Containers organise sets or sequences of elements. For
example, Fig. 7c includes a vertical list of text that can be
altered by the end user (or by the underlying tool), as well
as two areas at the top which act as buttons (these need not
be visible). Fig. 7d shows a container that organises a
collection of elements into a hierarchy.

4. An Initial Prototype

An initial prototype of BuildByWire has been
developed in Snart. A screen dump is shown in Fig. 8, in
which the user is in the process of building a shadow box
with text. The prototype permits the composition of
elementary graphical components for use by the end-user of
the visual notation. A subset of the wires, pins, containers
and atomic figures have been implemented using Snart’s
multi-directional constraints and demons. These are shown
in the tools on the left hand side of the window.

Implemented figures include generic boxes (which can
be “morphed” between three basic types: box, oval and
text), lines (which can be “morphed” between line, arrow
and double-arrow). Figures have handles, which are used
for resizing and which can be used to constrain the figure;
other forms of reshaping have not yet been implemented.

The following types of wire have been implemented:
relative (with associated pin); equality; horizontal
alignment (dragged between two pins, they impose a
constraint ensuring that the y-dimension of the two pins
remains the same, regardless of which is moved); vertical
alignment; arc (to connect a line between two pins, to be
maintained when either or both pins are moved); and
owner (which connects two pins to combine the effect of a
relative wire and an equality wire: when the first pin

moves, the second pin moves with it; however, the second
pin moves independently of the first).

Figure 8. Initial prototype of BuildByWire

BuildByWire containers include “open” containers,
teleporters and tables. Once a figure is placed inside an
“open” container, the figure moves along with the
container. A teleporter has a window associated with it.
Any figure dragged into the teleporter appears in that

window1. A table holds a horizontal or vertical list of
elements. New elements can be added to a table by
dropping a component onto the head of the table.
Components can also be added to or removed from existing
elements of the table.

Constraints are thus used to compose figures and to
specify how such compositions change when they are
resized and when they are connected to other components.
Constraints will also be used to maintain consistency
between visual objects and their underlying representational
objects. The reflexive nature of Snart means that new
constraints (types of wire) can be defined on-the-fly,
allowing BuildByWire to be easily extended. A demon is a
piece of procedural code that is executed when there are
changes to the variables that is references. Demons are
used for redrawing figures that have changed and to handle
processing that is beyond the constraints (such as handling
containers).

This initial prototype has already shown some of the
benefits and limitations of our approach. The basic
elements are straightforward to use, although they are rather
limited in their scope. There is a clear need for a wider
range of building blocks. The architecture of the prototype
enables additional building blocks to be added dynamically,
as it is likely that notation designers will want to add their
own figures and constraints. Once a wire has been added,
it’s currently not possible to remove it. Wires therefore
need a visual form so that they can also be manipulated.
Such a visual form for constraints is provided in the
PlanEntry system [9]. Another approach is to have a
“Show wires list” dialog which lists the wires attached to a
figure and allows deletion of any of them.

Reason mappings are hard-coded in the wires at present;
due to the large number of mappings possible, we plan to
make the selection of reason mappings more dynamic,
leading to changes in the implementation of constraints in
Snart. Lack of speed is the major problem with this
prototype; the slow response makes it difficult to compose
and use complex figures. This is due in large part to the
implementation of constraint propagation in Prolog, which
is not well suited to the task. Hence we are extending Java
with the constraint mechanism of Snart. BuildByWire will
then be implemented and extended in this new language;
this will markedly improve both the speed and accessibility
of this work to others.

5. Snart Constraints

The initial prototype was developed in Snart, an object-
oriented extension of Prolog [2] that has been extended
further with multi-directional constraints [6,7]. Constraint
expressions are expressed directly in the language. Snart

1 Constraints are used in the underlying
implementation to connect handles to boxes, lines, and
containers. A bug in the early implementation of
teleporters meant that when one of its handles was moved
to reduce its size, the handle itself was teleported to the
associated window!

constraints have been used to build two other applications:
PlanEntry, a multi-view building plan drawing package [9],
and DrawByWire, a drawing package [8].

Snart introduces a new approach to resolving the
ambiguity of a multi-directional constraint involving more
than two variables. Directions specify locally how
constraints are to be interpreted, independent of other
constraints. The directions need not be given explicitly;
default directions are provided for constraints without them.
For example, consider the following constraint.

a + b = c

The default directions for this constraint are given
explicitly as follow:

a + b = c with (a =>b, b => a, c => a)

The directions specify that when the value of a
changes, the constraint is resatisfied by reevaluating the
value of b (ie b := c - a), while if the value of b or c
change, a is reevaluated (ie a := c - b).

 Directions can also specify several interpretations of a
constraint, depending on the reason for a change. Dual-
propagation is used to propagate both values and reasons
through a constraint network. Reasons in Snart constraints
have strongly influenced the design and initial
implementation of BuildByWire, providing for interaction
between visual elements of a notation which cannot be
handled by any other constraint system.

For example, the class arc defines a line that remains
connected between two pins (start and end), regardless of
which is moved. The constraints of this class are defined
in Fig. 8. The first constraint defines a simple equality
between the x coordinates of the orgin (top-left corner of
the arc itself) and start, along with a direction that defines a
mapping. If the origin of the arc is moved, this will move
the start pin. If the position of the start pin is changed,
this leads to a resize change of the origin of the line. This
is due to the mapping in the direction “start@x =>
resize(origin@x)”, which means that a change to the value
of start@x, regardless of the current reason, will be mapped
to a change to the value of origin@x, with reason resize.
So the line is resized, regardless of the reason for the shift
in position of the start.

The class proportional_pin, as shown in Fig. 9, makes
use of constraints to maintain a pin in relative position
between two other pins (otherPin and owner). The pin is
at position (x,y), while the current offset ratio of the pin is
kept in the vector offsetRatio. If the pin itself is directly
moved (with reason move_pin), the offset ratio is altered;
otherwise a change to the position of either otherPin or
owner leads to a change in position of the proportional pin.

class(arc, inherits(morphic_line,wire),
 % inherits start, end, origin, corner & line drawing
 ...
 constraints(
 origin@x = start@x and_with (start@x=>resize(origin@x)),
 origin@y = start@y and_with (start@y=>resize(origin@y)),
 corner@x = end@x and_with (end@x=>resize(corner@x)),
 corner@y = end@y and_with (end@y=>resize(corner@y))
)).

Figure 8. Constraints in class arc

class(proportional_pin(otherPin:pin),
 inherits(pin), % inherits owner (a pin) from pin
 features(offsetRatio:vector, ...),
 constraints(
 x = offsetRatio@x * (otherPin@x - owner@x) + owner@x and_with
 move_pin(x =>offsetRatio@x),
 y = offsetRatio@y * (otherPin@y - owner@y) + owner@y and_with
 move_pin(y =>offsetRatio@y)),
 ...).

Figure 9. Constraints in class proportional_pin

6. Other Work

Several systems for building user interfaces have been
based on constraint processing, most using constraint
propagation. An early example is ThingLab, which was
developed in Smalltalk, with methods used to define how
constraints are to be satisfied [10]. Garnet [11], Rendezvous
[12] and Escalante [13] are user-interface building systems
that are based on uni-directional constraints. The ideas of
Garnet have been ported to Amulet, which extends C++
with constraints [14].

These systems are somewhat limited in expression by
uni-directional constraints, and are unable to handle
different change semantics, as provided by Snart’s reasons.
In addition, they do not offer the same level of interactive
specification as that provided by BuildByWire.

Constraint hierarchies are used in the programming
language Kaleidoscope [15] and have been incorporated into
a version of Garnet. The relative strengths of constraints
are used to remove ambiguity and to allow for over-
constraint. Some user-interface development has been
carried out using Kaleidoscope. However, due to the non-
local nature of hierarchical constraints, “... large constraint
networks can be difficult to construct and understand”
(Sanella, 1994). In contrast, Snart constraints can be
understood locally and Kaleidoscope could only handle
reasons in an indirect and clumsy fashion. The main
advantage of constraint hierarchies over the Snart approach
is that they handle over-constrained networks better.

Skin [17] takes a visual language approach to
developing visual components in a system for debugging
object-oriented programs. In Skin, the composition of
composite figures is defined in a functional language style,
rather than by direct manipulation.

QOCA is a constraint solving toolkit that has been
used to develop a graphical editing framework [16]. While

in many ways the QOCA approach to constraints is more
general than our own, it is unclear whether it handles some
of the problems that we have addressed. It is also unclear
whether it suffers from the fundamental problems of
general constraint-solving approaches: efficiency, knowing
when constraints are beyond the capabilities of the solver,
and in understanding and debugging the constraints when
they go wrong [18].

7. Conclusions

BuildByWire has been designed as a constructor kit for
visual notations in MViews-based systems. It offers a new
direct-manipulation approach to composing graphical
figures, defining how they may be reshaped and connected,
and defining how changes are to be propagated through
those connections. It offers several advantages over
existing approaches. These include the use of direct
manipulation to define the appearance and change semantics
of composite figures. In addition, it is based on a very
flexible and “extensible” constraint-based implementation
language that avoids limiting the notation designer to a
fixed set of building blocks.

While an initial prototype has shown the benefits of
our approach, performance is poor. This has been due to
using Prolog as our means of implementation. Hence the
next prototype of BuildByWire will be built in Lava, a
constraint-propagation extension of Java whose
implementation is almost completed. Initial timings show
a performance improvement approaching 1000 times over
the Prolog implementation, making it practical to produce
a responsive BuildByWire system.

In addition, further work is required to extend the basic
building blocks; we are currently redesigning the basic
elements to include a smaller set which can be combined in
more powerful ways. Visual forms for the constraints are
also needed. For the latter, we plan to explore the use of

movable filters [19] to avoid clutter. Using this approach,
a lens may be moved over areas of a composite in order to
show the detail of the constraints that have been imposed.
Having a visual form of constraints will also mean that
constraints may be imposed on constraints; for example,
the offset of two relative pins could be constrained to be
equal.

Any constraint approach is limited by the constraints
that can be realistically handled. Even with dual
propagation, our approach is limited by the expressiveness
of propagation mechanism. More general constraint
solvers are also limited in the range of constraints they can
realistically solve. Hence we plan to explore further the
use of demons, with associated procedural code, to avoid
the limitations of a purely constraint based approach.

Acknowledgments

The first two authors acknowledge the financial
assistance of the Auckland University Research
Committee.

References
[1] Grundy, JC, Hosking, JG, and Mugridge, WB, 1996,

“Supporting flexible consistency management via
discrete change description propagation”, to appear in
Software - Practice & Experience.

[2] Grundy JC, 1993. “Multiple textual and graphical views
for interactive software development environments”,
PhD thesis, Department of Computer Science, University
of Auckland, New Zealand, 1993.

[3] Grundy JC, Hosking JG, Fenwick S, and Mugridge WB,
Connecting the pieces. Chapter 11 in Visual Object-
Oriented Programming, Burnett M, Goldberg A, Lewis T,
Eds, Manning/Prentice-Hall, 1995.

[4] Grundy JC and Hosking JG ViTABaL: A Visual Language
Supporting Design By Tool Abstraction. In Proceedings
of the 1995 IEEE Symposium on Visual Languages, IEEE
CS Press, Darmsdart, Germany, September 1995, pp. 53-
60.

[5] Grundy JC, Hosking JG “Serendipity: integrated
environment support for process modelling, enactment
and improvement,” Working Paper, Department of
Computer Science, University of Waikato, 1996.

[6] Blackmore S, Hosking JG, Mugridge WB, 1994. “Dual
propagation in a multi-paradigm programming
language”, Report No. 86, Department of Computer
Science, University of Auckland, New Zealand, 1994,
8pp.

[7] Mugridge WB, 1995. “Snart95 Reference Manual”,
Department of Computer Science Report, University of
Auckland.

[8] Mugridge WB, Hosking JG and Grundy JC, 1995. “An
object-oriented programming language augmented with
mult-directional constraints”, Department of Computer
Science Report, University of Auckland .

[9] Hosking JG, Blackmore S, Mugridge WB, 1994. “Objects
and constraints: a constraint based approach to plan
drawing”, in Mingins, C. and Meyer, B. Technology of
object-oriented languages and systems TOOLS 15,
Prentice Hall, Sydney, pp 9-19, 1994.

[10] Borning A, 1981. “The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory”,
ACM Trans. Programming Languages and Systems, 3(4),
pp353-387.

[11] Myers B, Giuse D, Vander Zanden B, 1992. “Declarative
programming in a prototype-instance system: object-
oriented programming without writing methods”,
OOPSLA’92, pp184-200.

[12] Hill RD, 1993. “The Rendezvous constraint maintenance
system”, UIST’93.

[13] McWhirter JD and Nutt GJ, “An environment for the rapid
construction of visual language applications”, Procs.
IEEE 1994 Workshop on Visual Languages, VL’94.

[14] McDaniel R and Myers BA, “Amulet’s dynamic and
flexible prototype-instance object and constraint system
in C++”, Report CMU-CS-95-176, School of Computer
Science, Carnegie Mellon University.

[15] Freeman-Benson B, 1990. “Kaleidoscope: mixing
objects, constraints and imperative programming”,
ECOOP/OOPSLA’90, pp77-88.

[16] Helm R, Huynh T, Marriot K, and Vlissides J., “An
object-oriented architecture for constraint-based
graphical editing”, Advances in Object-Oriented Graphics
II, Springer Verlag, 1993.

[17] Hosking, J.G., Mugridge, W.B., Fenwick, S, and Grundy,
J.C., 1995: “Cover yourself with skin”, OZCHI'95,
Wollongong Nov 1995, pp101-106.

[18] Meier M (1995) Debugging constraint programs. In Proc.
Principles and Practice of Constraint Programming,
CP'95, LNCS 976, pp 204-221.

[19] Stone MC, Fishkin K and Bier EA, “The moveable filter
as a user interface tool”, CHI94, pp306-312.

