In Proceedings of OZCHI'96, Nov 24-27 Hamilton, New Zealand, IEEE CS Press.

© 1996 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Low-level and High-level CSCW Support in the Serendipity Process
Modelling Environment

John C. GrundyT, John G. Hoskingﬂ, Warwick B. Mugridgeﬂ

Department of Computer Science '
University of Waikato

Private Bag 3105, Hamilton, New Zealand

jgrundy @cs.waikato.ac.nz

Abstract

In order to effectively collaborate using large
cooperative work systems, both low-level and high-level
CSCW facilities are required. Low-level mechanisms,
including collaborative editing, messaging, annotations
and communication, are needed. For large-scale
cooperation, they should be augmented with higher-level
process modelling, work coordination and work context
awareness facilities. We describe the integration of both
low-level and high-level support for cooperative work in
the Serendipity process modelling environment, and
discuss our experience of using these facilities.

1. Introduction

Much recent work has focused on integrating CSCW
technologies, process-centred environments and existing
tools for doing various kinds of work, such as software
development and general business activities. Examples of
such efforts include those of Di Nitto and Fuggetta [25],
wOrlds [4], Oz [32], and those discussed in [20]. However,
much work still needs to be done to achieve true
integration of these technologies [20, 25]. Problems with
existing approaches include the difficulty of adding CSCW
capabilities to existing tools, finding a balance of
responsibilities between the process modelling and CSCW
parts of an environment, and achieving true, high-level
support for cooperative work in a large environment.

The Serendipity process modelling environment
supports the definition, enactment, reuse and improvement
of work processes via high-level, graphical process model
views [12]. It also integrates both low-level and high-level
CSCW capabilities. Low-level cooperative work facilities

Department of Computer Science T
University of Auckland
Private Bag, Auckland, New Zealand
{john, rick} @cs.auckland.ac.nz

include collaborative text chats, notes, messages, view
editing, and version merging. Higher-level work
coordination capabilities include group awareness via
enacted process model animation, annotation of deltas
with work context information, and work context
definition, determination and visualisation. These
capabilities have been added to the environment using a
variety of techniques, including integration of existing
CSCW tools, addition of CSCW capabilities to the
framework used to construct Serendipity, and use of
Serendipity’s own graphical event processing notation to
define actions to assist in supporting cooperative work.

This paper presents a case study of using the CSCW
capabilities of Serendipity integrated with SPE, an
Integrated Software Development Environment (ISDE) for
object-oriented software development [8]. This case study
uses the ISPW6 software process model, which focuses on
designing, coding, unit testing and managing a localised
change to an object-oriented video rentals system [19]. We
also briefly describe the architecture and implementation
of Serendipity and our future research directions.

2. The Serendipity Environment

Serendipity is a process modelling, enactment and
work planning environment, which also supports event
handling, group communication, and group awareness
facilities [12]. Serendipity’s notations are designed to be
high-level and graphical in nature, and its coordination and
rule mechanisms are easily extended by users. The
notation is based on Swenson’s Visual Planning
Language [29] but extends it to support artefact, tool and
role modelling, and arbitrary event handling.

The left and bottom windows shown in Figure 1 are
Serendipity views modelling part of the ISPW6 software

process example. Stages describe steps in the process of
modifying an arbitrary software system, with each stage
containing a unique id, the role which will carry out the
stage, and the name of the stage. Enactment event flows

link stages. If labelled, the label is the finishing state of
the stage the flow is from (e.g. “changed design”). There
are a number of specialised types of stage including start,
finish, AND, and OR stages (empty round circle).

ESO=———— ispw6.3:Monitor Progress-coord

RE

= e

N
T
E @ stact dezigning eha identify errars
uses () uses (A)

=B & .

= e 2 510 Tginess
By :

Tesign Changes ntify Froblems

o Ed changed design fix design design ervor
bl areates (O]

sode srvor
B ispws 2.2 :designer
- | Feview Design Changes
2 reviews
i} reviewed design

sign dos)

£fix code
. - . design errer
*uses [RA), ispwt .23 coders
 [Cham o

code errox

SFE 0OR/D

P

. &
= (AT N
i =l : ispwé .2 4:0A Engineer
= [mim
SPE closs/method views

)
edits [AU)

shanges somplete

e @
= B

FLnllI E
— — —
— B Horify Testing Sunmarize Chmg@,
= Hotify Changes sm@ '---‘,,_W..-j B
i ;u e * ~
.m . ! changes list (CU)
) role
wole ?
ispwd .3 :iproject menmger | ouner () W
ki

ispu .2 project teum
Design, Code & Test | -

"lsed-in (AU)
S

[[mesting Begun

A

test pls
. et plans izput . Liproject manager
I S i

e

start planning

finish assign

ispwé.2:project teum
Tesign, Code & Test

test results finish changes £ir erewrs reschedule
£inish changes
ispwt .3 iproject manager

[Menitor Progress

zpprove changes reject changes

s

Figure 1. Part of the ISPW6 software process example modelled in Serendipity.

Modularity is provided in the form of hierarchical
subprocess models. The window at the left of Fig. 1 is a
subprocess model refining the “ispw6.2:Design, Code &
Test” stage of the process in the bottom window.
Underlined stage IDs/roles mark the presence of a
subprocess model. The shadowing of the
“ispw6.2.3:Modify Code” stage indicates that multiple
implementers can work on this stage (i.e. the stage has
multiple subprocess enactments).

Serendipity supports artefact, tool and role modelling
for processes. Usage connections show how stages,
artefacts (eg the change requirements document "changes
req"), tools (such as SPE's OOA/D class/method views)
and roles (such as the project manager) are used. Optional
annotations indicate: data is created (C), accessed (A),
updated (U), or deleted (D); whether a stage must use only
the tools, artefacts or roles defined (\/); and whether a stage
cannot use a particular tool, artefact or role (—).

In addition to specifying the static usages and
enactment event flows between process model stages,
Serendipity supports filters (rectangular icons) and actions

(ovals), which process arbitrary enactment and work
artefact modification events. For example, the
coordination of the process model via the
“ispw6.3:Monitor Progress” stage is defined by the top-
right window of Fig. 1. This uses two filters and three
actions to carry out the coordination. The Enacted filter
selects only stage enactment events, in this case when the
ispw6.2 stage is enacted. This triggers the "Notify
Changes Started action", which notifies its associated role
(in this case, the project manager) that changes have
commenced. The other filter acts similarly to notify
commencement of testing. The other action takes artefact
modification events from the OOA/D design document and
accumulates them into a changes summary. Serendipity
models may be used to guide work or to enforce particular
work processes (by defining rules with filters and actions).

3. Low-level CSCW Support

In order to use the general process model defined in
Fig. 1, users create copies of this “template” for the
specific project they are working on. For example, in

Figure 2, a project team is updating the video rentals
system by adding a fining facility. The ISPW6 process
template has been instantiated as process model “aff” (add
fines facility), with roles and artefacts also instantiated
(Designer = “judy”, Coder = “john”, QA Engineer =
“rick”, etc). The model is then enacted and each project
team member may view the process model views, enact
and complete stages, etc. as permitted by the filter/actions
defined for these models. For example, in figure 2 the
enacted process model is being viewed by user “judy” (the
“Designer”). Stage “aff.2.2:Review Design Changes” is
highlighted, indicating it is her current enacted stage.
Collaborative notes, messages and talk-style
dialogues, based on the MVNotes system [l], are
integrated with Serendipity to facilitate collaborative
dialogue between collaborators. These are context-
sensitive, recording the artefact(s) and stage(s) (i.e. the
work contexts of the collaborators) they are associated
with, in contrast to traditional email and talk systems.
Messages and dialogue contents are recorded as notes
associated with the appropriate stage/artefact to retain a
permanent, shared history of communication for a project.
Figure 2 illustrates these facilities. Two collaborators
are discussing design decisions using a simple talk-style
text chat (“Conversation with rick™), and user “rick” has
left a shared note attached to process “aff.2.5:Identify
Problems”, read here by user “judy”. Developers may
further refine their work plans, define extra filters/actions

to coordinate their work with other people, and so on.
This may even be done while the model is enacted.

For example, in Figure 3 coder “john” has defined a
new view and added filter/actions to keep him aware of
modifications done by “judy” ("judy" here is used as a
filter, thus selecting only her changes) on the artefact
“video class” (by storing the artefact changes in a “change
list” artefact), and to inform him when “rick” starts work
on “Do Testing”. This ability to extend process model
specifications with arbitrary artefact and enactment event
handling mechanisms provides an extremely flexible way
for users to specify interest in, and be made aware of,
others” work.

Serendipity and SPE support asynchronous, semi-
synchronous and synchronous editing of process model
and software development views [9, 10, 12]. We have
found synchronous editing, where all developers share the
same view version, is most useful for high-level process
model or analysis/design view changes. Semi-synchronous
editing, where each developer has an alternative view
version, propagates changes to other developers, but the
change is not immediately actioned. This is most
appropriate for lower-level process models and design
views, which are shared but may need to evolve separately
for a time. Asynchronous editing, where developers have
alternative view versions, edit these separately and then
merge changes, is most appropriate for personal process
models and SPE implementation views.

aff.2:besign, Code & Test-subprocess

K @&
= I,
.o
=B

start designing

fix errors

uses (A] vides sangss 4| JUdY'S comments:
e
Work contexrt:aff.2.1:0esign Changes

Conversation with rick

odin

a5 | am adding a "last_fines_calc_date" attribute to the customer class |it
- ¥ g design to fix the problem of too much fines being calculated. =]
@ @ o £ix 4 gk - I'll fin that up too. Any other problems | should deal with at this
=5 stage?
arentes [CI) -
: 0k
E R Feview lesign Changes
: o rick's comments:
reviens (R Work context:aff.2.5:1dentify Problems
Fevieued dezign Good idea. You'll need to fix the logic in the "calc_fines" method too. i
f Notes for customer class \f No - I'll check out how the new fines calculation works first.
rick's work context: aff.2.5:1dentify Problems |
Send to: |judg | i
Kind: [comment ~] G
N

4

B

The customer::calc_fines method is not
correctly calculating the amount to fine . It
seems to be calculating all fines every time,
rather than adding new fines. | think you need
to have another attribute which remembers
the last time fines were calculated. [

[seaw’sawe | [Reply |

[Uiew All][Prev][Mol][Cancel]

x 4

2f£.2. 4:xick | A&

To Testing

done testing

£inish changes

oy test plans

b
0]

tast rasults

Figure 2. Collaborative notes and text chats in Serendipity.

aff.2.3:Modify Code-john's interest

=1

rideo cluss

Judy

stora in (CRU]

judy's changes

RS

aff . 2. 4:rick

[[e Gaseone]

(Hotify with m;@)
L

xole ™

(.S‘eox’c 9

storz for

cowner (RS)
John
S

role

nff.2

Madify Code

Figure 3. Actions used for low-level awareness.

4. High-level CSCW Support

In order to effectively collaborate on a large project,
developers need higher-level awareness support in addition
to the low-level messaging, communication and view
editing mechanisms described in the previous section.

One aspect of awareness requirements is the need for
collaborating users to be aware of other’s work and be
informed of tool events and changes to artefacts they are
interested in. Figure 3 showed a low level approach to this
using filters/actions to define how and when users are
informed of changes that interest them. Figure 4 shows a
higher-level approach using animation of the Serendipity
process models.

Enacted stages (ie those that may be worked on) for all
users are highlighted; the users who have enacted the stage
can be viewed in a dialog. Current enacted stages (ie stages
currently being worked on) are further highlighted with
coloured borders, with different colours assigned to each
collaborator. Built in template actions can also be used to
highlight the tool(s) and artefact(s) currently (or recently)
used by collaborators (for example, designer “judy” can see
that the SPE class/method view editor is being used by
coder “john” to edit the “video system classes” artefacts).
Our integrated SPE-Serendipity environment allows
developers to work in SPE (or Serendipity) and have
views from the other environment open. This is illustrated
in Figure 4, with an SPE class diagram and class interface
view open, and a Serendipity model in the background.

aff.. Z'I]esign Code & Test-subprocess

URF A I
MH fe @

I

Mo !

stare designing

uﬁei 0} vldxo chonges

arentes

wvideo system O0R/D e code

T uses (A o o
)., B3EE2 3 chy

design error

root class

L]
Ter E%
80
E X

rertals 0in

" EHadify Coders

customer-class interface

" FFupdntes_start(t0]
.

cccccc Eines_owed
sustoner: cale_fines

(i) wpdates_end. +/
s

SIT clagsfrevbad views e

~
<dirs (AU
. slazsloustoner,
. £eatuzes(

L Spdaee(2a) 8 [622 1:lesign Changes—john] vad fevrure

pdnt (25). 5 [2££.2.1:Design Changes-john] add feature

* Customer cluse represents inpertant custemer dats
* and provides modification Teutines on

this duta

Chartl

affZ S:1dentify Problems

aff2. 4:D0 Testing

aff2.3:Modify Code

aff2.2 Review Design
Changes

aff.2.1:Design Changes

W Est. time Teft (mins)

W Time spent £mins)

&00

Figure 4. Examples of work context awareness and communication support.

Additonal high level support is provided by process
model analysis and metrics facilities. These enable users
to analyse process models and work histories, thereby
assisting in the improvement of these processes. The
complexity of subprocess models, ie the number of work
artefacts stored by a stage, time spent by a stage as the
current enacted stage, and so on may be analysed and
graphed (via MS Excel [13]), as shown in Figure 5.

Another aspect of awareness support is the need to be
aware of why changes have been made. For example,
when views are modified in SPE, “change descriptions”
are generated to document these edits. SPE (and
Serendipity) use these change event representations to
maintain view consistency, by presenting change
descriptions to developers to indicate view inconsistencies
[10, 8]. However, change descriptions only describe what
has changed, not why it has changed nor who made the
change. Explicating and capturing this "work context"
information is a key component of awareness support.

Using Serendipity, work contexts correspond to the
currently enacted process or work plan stage of each user.
When modifications are made to a work artefact using
SPE, the change descriptions generated are augmented
with the current context by Serendipity. These change
descriptions are also stored by Serendipity in artefact
change histories for each process stage. An example is

399

shown in Figure 5 for designer “judy”’s work modifying
the video and customer tables. The left hand (Serendipity)
dialog lists the artefact changes made for the aff2.1 stage.
The right hand (SPE) dialog shows a history of changes
made to the customer class. The centre SPE textual view
of class customer includes a header indicating currently
unenacted changes to that view sourced from another view.
Each change is annotated with work context information.

5. Architecture and Implementation

Serendipity itself has no built-in tools for performing
work, and so must be combined with software
development tools, such as SPE, or office automation
tools. SPE and Serendipity were developed by reusing the
MViews framework for constructing ISDEs [6, 7, 11].
MViews provides a general model for defining software
system data structures and tool views, with a flexible
mechanism for propagating changes between software
components, views and tools. ISDE data is described by
components with attributes, linked by a variety of
relationships. Multiple views are supported by
representing each view as a graph linked to the base
software system graph. Each view is rendered and edited in
a graphical or textual form. Tools are interfaced as view
editors, by external translators, or multiple base layers.

aff.2:Design, Code & Test-subprocess

22 . video::fine_amount : change attribute video::fine_foustomer::cule_fines

23 . root class—is_class_iconlivideo : change_feature |updates_end. *7

24 . spe_programivides system : 2dd spe_buse_femture of s+

25 . videe : 2dd fewture video::fine pericd

root class-is_cluss_iconlivideo : modify fentures
nss : shift icons .

*

(Tew) ctsstesstons,
[Contexnt] [Undo] [Redo] f::;:iiﬁm

\ return_rides,
[cale_total_cost,

areate,

delete,

change. namne,

change_address,

phone_ne:integer,

address2 string,

sddresslistring,

K & D)
w T,
start designing £ind errors
3_5 2] root class
=B X e
_- [cnla_fines
FLiK, ; '-‘5'
) /= Fi TE“ £ines_cwed
changed design Tix design pent_video
F . 2 F [return_video
@ [25 ettt aost
arentas (CUN - [create
bt B nff 2.2 judy X e lete
Feview Design Changes [| cbange_name
— <hange_address
reviews (A phene_no
; PR 2ddress2
= reviewed design 2ddress1
= l J—y -
p —— . e
Artefact updates for: aff.2.1:0esign Changes L
rentals 0:n
14 spe_program:video system : add spe_bnse_feature component |4y
15 . video : wdd femture video::fine_ameunt & o [days_overdus Updates on: customer
16 . root class-is_class_iconlivides : modify features -
17 . wvideo::fine_amount : change attribute video::fine_: customer-class interface 12 . [eustomer: rentals, -3, zentals] : base_from subser &
1& . spe_program:video system : add mv_version_vecord d ftupdutes_start(t0). 15 . change elient/suppliex [customes: rentals, -», rentals] clis
19 . wideo::fine_amount : change attribute video::fine_dupdate(24). $ [2f£.2.1:Design Changes—judy] add feature 14 . change client/supplicr [customex:irentals, -», rentals] or
20 . root elass-is_class_iconlivideo : change fenture |oustomer::fines_owed 15 . ohange attribute customer::phene_no type integer
21 . video::fine amount : change attribute video::fine Jupdate(25). ¥ [2££.2.1:Design Changes—judy] add feature 16 . change attribute customer::addrezs? type string

17 . change class custoner::zddress2 kind to attribute

15 . chonge class customes ::phone_no kind to attribute
19 . chonge attribute customer::nddressl type stringf
* Customer class represents important customer duta 20 . change class austoner ::addressl kind to attribute
* and provides medification routines on this duta 21 . change attribute custoner::addressl type string
22 . odd fenture customer:return_rideo

rame

Figure 5. An example of work context capture and presentation in SPE-Serendipity.

SPE View

SPE view updated

class lcon

. SPE base comp.

. base component

Other SPE views affected
by base comp.
augmented change descriptions

update sent

updated

augmented change
descriptions

stores

S
Ow2 @

SPE Base View

3.

8. SPE base view returns
augmented change descriptions
to base component

Base comp forwards
change descriptions
to base view

4. SPE base view forwards
e change descriiptions to

Serendipity

Serendipity View

. Stage augments change
descrlptlons & stores them

Q ¢

artefact

mod. history \‘,\

Serendipity Base View

5. Serendipity base view
forwards SPE change descriptions
to current enacted stage

Augmented change

inter-repository 7.
rel descriptions sent back to

SPE base view

Figure 6. Integrating SPE and Serendipity environments: flow of change descriptions

When a software or view component is updated, a
change description is generated. This is of the form
UpdateKind(UpdatedComponent, ...UpdateKind-specific
Values...). For example, an attribute update on Comp1 of
attribute Name is represented as: update(Compl, Name,
0Oldvalue, NewValue). All basic graph editing
operations generate change descriptions and pass them to
the propagation system. Change descriptions are
propagated to all related components that are dependent
upon the updated component’s state. Dependents interpret
these change descriptions and possibly modify their own
state, producing further change descriptions. This change
description propagation mechanism supports a diverse
range of software development environment facilities,
including attribute recalculation, multiple views with
flexible, bi-directional textual and graphical view
consistency, a generic undo/redo mechanism, component
versioning, and collaborative view editing [10]. New
software components and editing tools are constructed by
reusing abstractions provided by an object-oriented
framework. ISDE developers specialise MViews classes to
define software components, views and editing tools to
produce the new environment. A persistent object store is
used to store component and view data.

SPE and Serendipity have been integrated by
modifying MViews so that it sends change descriptions
generated by tools to Serendipity, and by extending
Serendipity to handle these “artefact update” events.
Relationships between the Serendipity base view and SPE
base view translate events (in the form of change
descriptions) from one environment into appropriate
events in the other. Figure 6 shows graphically how the
integration mechanism works, with an update of an SPE
view leading to a sequence of change description
propagations between SPE and Serendipity.

This solution to SPE-Serendipity integration works
for any other MViews ISDE. We have integrated OOEER
(an EER/OOA modeller) [11], NIAMER (an ER/NIAM
modeller), MViewsDP (a dialog painter) [10], and
MVNotes [1] with Serendipity using a similar approach.

The C-MViews collaborative editing extensions to
MViews [9] implement SPE and Serndipity's low-level
synchronous, semi-synchronous and asynchronous view
editing capabilities. The text chat facility was built as
another, small MViews tool and integrated with
Serendipity by extending a default MViews menu to allow
access to this tool’s facilities. Most of the process model
visualisation and work context awareness facilities were
built using Serendipity’s own event process filters and
actions.

We have also integrated Serendipity with non-MViews
office automation programs, such as Microsoft Word™,
Microsoft Excel™, Global/Fax™ and Eudora™ [12].
These office automation programs are launched and sent
instructions via Apple Events, generated by Serendipity
actions.

6. Other Work

Much research into Computer Supported Cooperative
Work (CSCW) has focused on low-level interaction
mechanisms, such as synchronous and asynchronous
editing. Examples include most Groupware systems [5],
GroupKit [27], Mjglner [22], C-MViews [9], and
Rendezvous [16]. These systems lack information about
the “work context” that changes have been carried out in,
which Serendipity describes via work process models.
Because of Serendipity’s tight integration with its CSCW
facilities and work tools, high-level information about
work contexts is incorporated with other CSCW support.

Some work has been done on providing higher-level
process modelling and coordination facilities, such as
workflow configuration in Action Workflow [24],
TeamWARE Flow [31], and VPL [30], software process
protocols in ConversationBuilder [18] and Oz [3], and
various kinds of shared workspace awareness in GroupKit
[27]. Most of these tools do not currently use their high
level descriptions of work contexts to augment
descriptions of changes, highlight artefacts, tools and
workflow/process model items, or augment traditional
lower-level CSCW capabilities as does Serendipity.
Serendipity’s notion of a work context is similar to the
idea of locales embodied in wOrlds [4], although we use
an informal notion of work context which is user-defined.
Obligations in ConversationBuilder and wOrlds may be
thought of as similar to Serendipity filter/actions.
However we claim our approach provides a higher-level of
graphical expression for users, and is generally more
flexible, able to be driven by all kinds of process model,
tool or artefact update events.

Process-Centred Environments (PCEs) define the
processes used to construct software systems. Examples
include Merlin [26], Marvel [2], Oz [3], CPCE [21], and
EPOS [17]. Computer-Aided Method Engineering
(CAME) tools support evolution of the methodologies
and notations used for software development. Examples
include Decamerone [15] and MethodBase [28]. Many of
these environments use complex, textual descriptions of
processes and tool configurations which are difficult to
understand and modify, often can not be modified while in
use, and have poor exception handling. Some provide
high-level, graphical process modelling tools but most
lack arbitrary event handling (from either the process
model or work artefacts). A few provide triggering
mechanisms which carry out actions based on some event.
Rule-based PCEs provide complex, textual rules which
specify constraints over process models, which are often
difficult for users to understand and modify. This is
particularly true in process modelling domains such as
office automation, where end-users do not understand
triggering or rule-based languages. A key design goal of
Serendipity was to make process models and event
handling mechanisms graphical and widely accessible, and
to provide a range of both low-level and high-level CSCW
capabilities to assist cooperative work in large systems.

Many workflow tools and PCEs are not well
integrated with existing tools used to perform work [20,
23]. They thus can not achieve the same degree of
utilisation of high-level workflow and process model
information to augment work tool and low-level CSCW
capabilities as supported by Serendipity. Some work,
including ConversationBuilder [18], MultiviewMerlin
[23], wOrlds [4], and Oz [32], attempts to bridge the gap
between workflow/PCEs and CSCW. So far these have
had limited success, due to continuing problems of

integrating existing tools into the environments and the
limitations of process modelling tools used [23, 4, 32].

7. Discussion and Conclusions

We have used Serendipity as a stand-alone work
process modelling and enactment tool, integrated it with
other MViews environments to facilitate collaborative
software development, and integrated it with existing
Office Automation applications to support coordinated use
of these tools [12, 13, 14]. Serendipity has been used to
model small-to-medium process models and work plans,
with the largest so far developed having over 200 process
stages, artefacts, tools and roles, with over 60 process
model and filter/action views. Collaborative process
modelling and enactment support allows groups of
workers to coordinate their work using both low-level
editing and communication facilities and higher-level work
context awareness. Experience to date with using
Serendipity has indicated it provides very abstract, and yet
flexible, process modelling and enactment support, and its
CSCW facilities aid collaborators in more effectively
using both the process models and the tools they
coordinate [12, 13]. Some of the high-level awareness
capabilities use process model views which can consume
much screen real estate. Users can choose to hide these
views, using the other facilities to remain aware of
collaborators’ work contexts. We have found that leaving
enacted process model views visible behind other windows
is useful when using other multi-view tools.

We are continuing to develop Serendipity by
incorporating further CSCW capabilities, such as
telepointers, multiple scrollbars, and improved
collaborative editing support. We have recently been
implementing additional work context determination and
visualisation facilities using filter/actions to produce
“intelligent agents” to perform these tasks. We are also
developing work context awareness widgets to incorporate
in the views of environments integrated with Serendipity.

References

[1] Apperley, M.D., Gianoutsos, S., Grundy, J.C., Paynter,
G., Reeves, S., and Venable, J.R. “A generic, light-
weight collaborative notes and messaging facility for
groupware applications,” Working Paper, Department
of Computer Science, University of Waikato, 1996.

[2] Barghouti, N.S., “Supporting Cooperation in the
Marvel Process-Centred SDE,” in Proceedings of the
1992 ACM Symposium on Software Development
Environments, ACM Press, 1992, pp. 21-31.

[3] Ben-Shaul, I.Z. and Kaiser, G.E., “A Paradigm for
Decentralized Process Modeling and its Realization in
the Oz Environment,” in 16th International Conference
on Software Engineering, May 1994, pp. 179-188.

[4] Bogia, D.P. and Kaplan, S.M., “Flexibility and Control
for Dynamic Workflows in the wOrlds Environment,” in
Procs. of the Conference on Organisational Computing
Systems, ACM Press, Milpitas, CA, November 1995.

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Ellis, C.A., Gibbs, S.J., and Rein, G.L., “Groupware:
Some Issues and Experiences,” Communications of the
ACM, vol. 34, no. 1, 38-58, January 1991.

Grundy, J.C. and Hosking, J.G., “A framework for
building visusal programming environments,” in
Proceedings of the 1993 IEEE Symposium on Visual
Languages, IEEE CS Press, 1993, pp. 220-224.
Grundy, J.C. and Hosking, J.G., “Constructing
Integrated Software Development Environments with
Dependency Graphs,” Working Paper, Department of
Computer Science, University of Waikato, 1995.
Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Chapter 11 in Visual Object-Oriented
Programming. Manning/Prentice-Hall, 1995.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Amor, R., “Support for Collaborative, Integrated
Software Development,” in Proceeding of the 7th
Conference on Software Engineering Environments,
IEEE CS Press, April 5-7 1995, pp. 84-94.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via
discrete change description propagation,” to appear in
Software - Practice and Experience

Grundy, J.C. and Venable, J.R., “Providing Integrated
Support for Multiple Development Notations,” in
Proceedings of CAiSE'95, LNCS 932, Springer-Verlag,
Finland, June 1995, pp. 255-268.

Grundy, J.C. and John G. Hosking “Serendipity:
integrated environment support for process modelling,
Working Paper, Department of Computer Science,
University of Waikato, 1996.

Grundy, J.C., “Supporting flexible collaborative
software development with SPE-Serendipity,” Working
Paper, Department of Computer Science, University of
Waikato, 1996.

Grundy, J.C., Venable, J.R., Hosking, J.G., and
Mugridge, W.B., “Coordinating collaborative work in
an integrated Information Systems engineering
environment,” in Procs. of 7th Workshop on the Next
Generation of CASE tools, Crete, 20-21 May 1996.
Harmsen, F., and Brinkkemper, S., “Design and
Implementation of a Method Base Management System
for a Situational CASE Environment,” in Proceedings of
the 2nd Asia-Pacific Software Engineering Conference
IEEE CS Press, Brisbane, December 1995, pp. 430-438.
Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F.,
and Wilner, W., “The Rendezvous Architecture and
Language for Constructing Multi-User Applications,”
ACM Trans. on Computer-Human Interaction, 1994.
Jaccheri, L., Larsen, J., and Conradi, R., “Software
Process Modeling and Evolution in EPOS,” in Proc.
Fourth International Conference on Software
Engineering and Knowledge Engineering (SEKE), Capri,
Italy, June 1992, pp. 17-29, .

Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli,
C., “Flexible, Active Support for Collaborative Work
with ConversationBuilder,” in 1992 ACM Conference
on Computer-Supported Cooperative Work, ACM Press,
1992, pp. 378-385.

Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama,
T., Osterweil, L.J., Penedo, M.H., and Rombach, H.D.,
“Software Process Modelling Example Problem,” in
Procs. of the 6th International Software Process
Workshop, 1IEEE CS Press, Hokkaido, Japan, 1990.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]

Krishnamurthy, B. and Hill, M., “CSCW'94 Workshop
to Explore Relationships between Research in Computer
Supported Cooperative Work & Software Process,” in
Procs. of CSCW'94, ACM Press, April 1995, pp. 34-35.
Lonchamp, J., “CPCE: A Kernel for Building Flexible
Collaborative Process-Centred Environments,” in
Procs. of the 7th Conference on Software Engineering
Environments, IEEE CS Press, 1995, pp. 95-105.
Magnusson, B., Asklund, U., and Minér, S., “Fine-
grained Revision Control for Collaborative Software
Development ,” in Procs. of thel993 ACM SIGSOFT
Conference on Foundations of Software Engineering,
Los Angeles CA, December 1993, pp. 7-10.

Marlin, C., Peuschel, B., McCarthy, M., and Harvey,
J., “MultiView-Merlin: An Experiment in Tool
Integration,” in Procs. of 6th Conference on Software
Engineering Environments, IEEE CS Press, 1993.
Medina-Mora, R., Winograd, T., Flores, R., and F., F.,
“The Action Workflow Approach to Workflow
Management Technology,” in Proceedings of
CSCW'92, ACM Press, 1992, pp. 281-288.

Nitto, E.D. and Fuggetta, A., “Integrating process
technology and CSCW,” in Proceedings of IV European
Workshop on Software Process Technology, LNCS,
Springer-Verlag, Leiden, The Nederlands, April 1995.
Peuschel, B., Schifer, W., and Wolf, S., “A knowledge-
based software development environment supporting
cooperative work,” Int. J. of Software Engineering and
Knowledge Engineering, vol. 2, no. 1, 76-106, 1992.
Roseman, M. and Greenberg, S., “Building Real Time
Groupware with GroupKit, A Groupware Toolkit ,” ACM
Transactions on Computer-Human Interaction, .

Saeki, M., Iguchi, K., and Wen-yin, K., “A Meta-model
for representing software specification and design
methods,” in Proceedings of the IFIP WGS8.1
Conference on Information Systems Development,
Prakash, N., Rolland, C., and Pernici, B., Como, 1993.
Swenson, K.D., “A Visual Language to Describe
Collaborative Work,” in Procs. of 1993 Symposium on
Visual Languages, IEEE CS Press, 1993, pp. 298-303.
Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari,
B., and Irwin, K., “A Business Process Environment
Supporting Collaborative Planning,” Journal of
Collaborative Computing, vol. 1, no. 1, .

TeamWARE Inc., TeamWARE Flow, 1996.

Valetto, G. and Kaiser, G.E., “Enveloping Sophisticated
Tools into Computer-Aided Software Engineering
Environments,” in [EEE Seventh International
Workshop on Computer-Aided Software Engineering,
July 1995, pp. 40-48.

