

To appear in the Proceedings of OZCHI’95, Wollongong, Australia, Nov 28-30, 1995.
COVER YOUR SELF WITH SKIN

John G. Hosking†, Warwick B. Mugridge†, Stephen Fenwick†† and John C. Grundy†††

†Department of Computer Science
University of Auckland

Private Bag 92019, Auckland,
New Zealand

{john, rick}@cs.auckland.ac.nz

††Department of Computer Science
Australian National University

Canberra, ACT
stevef@cs.anu.edu.au

†††Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton,
New Zealand

jgrundy@cs.waikato.ac.nz

ABSTRACT

A visual functional language for constructing user interface
components is described. The language, Skin, assumes a
simple object-oriented interface to the underlying
application and components may flexibly adapt to changes
in the application. The language avoids the need for absolute
or relative coordinate specification for subcomponents. An
interesting feature of the language is that meaningful icons
for user-defined functions are able to be automatically
constructed using prototype applications of the function.

INTRODUCTION

The definition of user interface components can often be a
tedious process, involving trial and error construction of the
layout of components using a textual definition language
[10]. More rapid layout definition is provided by using
direct manipulation user construction tools [10,3], which
provide immediate feedback on the appearance of
components. However, these often lead to somewhat
inflexible components due to the poor expressive power of
the tools and notations used.

In our work, we have been particularly interested in flexible
user interface components, i.e. those which can visualise a
variety of underlying program elements and can adapt to
changes in those elements (often resulting in large changes
to the interface components). Fig. 1 shows some examples
of such user interface components.

 W

10000
drawing_window

buttons
current_button

figures

lpa_window Drawing …
clicked(162, 2…

10001
rect_button

frame
window

add_figure(249…
3

6

fig_create(100…

20

rectangle

frame

height 6
location

visible

width 8
window

create(rectang…

shape

17

c_linked_list

Name Type Value
1 integer 7
2 integer -7
3 integer 3
4 integer -4
5 integer 1
6 integer 2
7 integer 3

10

-10
1 2 3 4 5 6 7

(a)

(b)

Fig. 1 Examples of flexible user interface components

Figs 1(a) and 1(b), constructed by the Cerno program
debugger/visualiser [6], show components visualising the
execution state of objects (or abstractions of objects). In Fig
1(a) the states of three objects are shown, with information
on object attributes (highlighting indicates values
incompatible with declared types) active methods,
references to other objects (boxes plus dark arrows), and
method calls (grey arrows). Fig 1(b) shows another Cerno
component providing two abstract views of a linked list of
objects - as a list of element number, node type and value
triples, and as a bar graph. As objects change state, these
user interface components must update themselves to reflect
the new state. Also, regions of the components must be
sensitive to user interaction. Eg clicking in the square box of
an object reference attribute causes that reference to be
expanded as a new interface component.

A challenge is to be able to create succinct, generic
component specifications that can be applied to visualise
different underlying program entities. For example, a single
specification should suffice to generate each of the three
components shown in Fig 1(a), and this specification should
cope with changes to the component (eg addition of extra
attributes in the list) as the program executes. The aim of the
work described in this paper is to develop a visual user
interface construction language. This combines the
immediate feedback of direct manipulation "constructor
kits" with enough expressive power to permit definition of
genuinely flexible interface components, ie ones that adapt
their composition and layout automatically as the needs of
the underlying application change, as well as more
conventional dialog box, menu, and window components.

Many user interface toolkits, such as Fabrik [8] and
Interviews [9], provide good support for direct manipulation
construction of traditional "dialogue box" style interface
components. These are generally focused on the widget
(icon composition) level, however, and construction of the
sorts of flexible iconic components shown in Fig. 1 is
beyond the means of most UI toolkits. Such complex icons,
and editors to manipulate them, can be defined using
programming techniques. However, these use textual,
procedural languages, and the resulting icon definitions are
often inflexible, and difficult to maintain and understand due
to their low-level, complex details [7].

In the next section, we review existing work in this area.
Thefollowing section provides a brief overview of Skin, our

user interface component description language, with the
Skin environment described next. A more detailed
description of Skin is then given. A brief description of
implementation issues is followed by conclusions and future
work.

RELATED WORK

Traditional UI construction can be done via toolkits,
frameworks and UIMSs [9]. Interviews [9] provides a
framework of object-oriented classes which are specialised
to define user interface components such as edit boxes, text
captions and buttons. Such systems rely on textual
programming of interface components. Their programs must
be run to test the interface appearance and functionality.
Interface builders, like Peridot [11] or FormsVBT [2], allow
specification of interface components by direct
manipulation. Interface semantics are programmed textually.
FormsVBT keeps the graphical appearance of the interface
consistent with a textual description, allowing specification
in whichever form is most convenient. A problem with this
approach is the cluttering of the direct manipulation view for
complex interfaces [7]. FormsVBT also provides a view
showing the resultant user interface [3]. This can be
interacted with to test the interface.

Prograph [4] includes a graphical interface builder and
allows the interface semantics to be programmed visually.
Fabrik [8] uses a similar dataflow metaphor but its data
entities directly correspond to user interface components.
Fabrik diagrams are live (even when incomplete), similar to
FormsVBT. The interface can thus be incrementally tested
during construction. A disadvantage is the use of absolute
co-ordinates for positioning interface components, making
the system less adaptive to application change.

EDGE [12] supports generation of graphical editors for
graph-based structures from a textual specification of the
graph. Graph node and edge icons must, however, be
programmed to achieve complex icons. Trip 3 [10] allows
graphical editors for graph structures to be specified via
visual examples of application data linked by a declarative
mapping. Complex graph nodes and their arcs, however, are
difficult to specify abstractly in this approach.

All of these systems focus on the widget level of user
interfaces i.e. edit boxes, text captions, buttons and sliders.
New iconic (widget) forms must typically be programmed
using the underlying implementation language, or can not be
supported at all. Thus these systems are inappropriate for
more general editing interfaces, such as the graphs used in
CernoII, and geometric drawing applications. Systems like
Unidraw [14] and EDGE which support the definition of
such editors are usually based on textual, specialisable
frameworks, making it hard to visualise the resulting user
interface while refining its definition.

Haarslev and Möller’s TEX-like layout language provides
an abstract way of specifying icon and glue structure [7],

plus a mechanism for mapping application data to icon data.
It is, however, text-based, making visualisation difficult
during construction. Iconographer [5] takes data from files
and converts it into application objects by a user-specified
filter. Icon attributes are linked to application data attributes
using a graphical switchboard metaphor. There is no tool for
easily defining new icons or specifying their attributes,
which limits its usefulness.

DSL [6] provides a text-based specification language for
defining icon structure based on application object
attributes. Attribute values are obtained from application
objects via hierarchical abstractors, allowing very complex
visualisations of complex application structures to be built.
DSL includes constructs for composing attribute values into
lists, vertical and horizontal alignment of lists, padding glue,
edit boxes, buttons, anchor points for glue connections, and
dialogue, menu and window components. This textual
notation is abstract, flexible and adaptive to application
object changes. Like Haarslev and Möller’s language,
however, it is difficult to build complex icons interactively
due to a lack of visual feedback during construction. We
have designed the Skin notation based on the components of
DSL, and developed a visual programming environment for
Skin to address this fundamental problem of interface
construction.

SKIN OVERVIEW

Skin is a visual functional language, using an icon and
connector model for program construction. Skin functions
define the layout of a user interaction component. A simple
interface to the underlying system is assumed.

Absolute and relative coordinates are avoided by the use of
fill and alignment primitives, and subcomponent sizes (eg
text box lengths) adapt to the actual size of run-time data
values they visualize. Skin functions can have multiple
clauses selected by pattern matching on parameters. This,
together with list processing capabilities, allows flexible
component construction based on actual parameter values.
Higher order functions may be defined and used.

All skin functions have (editable) default values for their
parameters. These are used to generate prototype examples
of interface components to provide immediate feedback to
the programmer and to automatically construct meaningful
icons for user defined Skin functions.

The visual language maps in a straightforward manner to
DSL, allowing programming in either visual or textual
modes. User interaction is handled via primitives which
sensitise regions to interactive events.

SKIN ENVIRONMENT

Fig. 2 shows a screen dump of the Skin programming
environment in use. Two windows are shown. The larger is
a visual programming window, in which a function is being

specified (centre) using a palette of functions (top).
Functions have input parameters at the top (solid line with
pin underneath) and result at the bottom (solid line with two
pins above and one below). The smaller window is a textual
view of the same function.

Skin functions are visually constructed by direct
manipulation. Dragging from the result (lower) pin of an
existing (non-palette) icon to an empty location clones the
currently selected palette icon and wires the output pin of
the existing icon to an input pin of the new icon. Clicking
elsewhere in the drawing window clones the current palette
icon. Pins of existing icons may also be wired together.

Textual views may be edited using free-form editing.
Multiple visual views can be created to edit the same or
different functions with views being kept consistent with
one another. This allows programmers to edit any type of
view and have changes propagate to all other affected views.
Changes may also be made to the graphical view which
cannot be directly translated to changes in the textual view
and vice versa, overcoming a disadvantage of the formsVBT
approach [7]. In the next section examples are used to
illustrate the major features of the language.

SKIN BY EXAMPLE

A simple function
Fig. 3 shows a Skin function. This takes two arguments and
constructs a horizontal list containing a textually formatted
version of the first argument, a block of white space, an
alignment marker (see below) and a horizontal bar, with
length specified by the second argument's value. The text
formatter (text) takes any value and constructs a printable
formatted version. The bar constructor () takes an
integer argument and constructs a bar of size proportional to
the argument. The white space constant ()uses a variant of
the palette icon cloning mechanism to construct a version of
the white space primitive with input argument (size) set, via
dialogue, to a constant value. The alignment primitive
()is used to line up icon components across multi
dimensional lists (see Section 5.2). A horizontal list
constructor ()is used to gather the above elements
together horizontally in sequence. List constructors have a
variable number of input pins. As wires are attached to
existing pins of such an icon, additional pins are created.

Attached to the function result pin is a viewer icon (attr1).
Viewers render a prototype version of the Skin fragment

they are attached to. In this case, the result of a prototype
application of the function is displayed. To allow
construction of such prototypes, each function input
(including primitives) has associated (editable) default
values. If nothing is attached to a function input, the default
is used whenever the function result is needed. The function
parameters in Fig. 3 have defaults of attr1 and 30 (defined
by dialog) resulting in the prototype icon shown.

The palette of functions may be extended by the user. To the
bottom right of Fig. 3 is a new palette icon constructed from
the function definition. This may be cloned in the same way
as primitives to create applications of the function. An
important feature is that sensible icons for user defined
functions are constructed automatically using the same
approach as is used by viewers. In constrast, other visual
programming languages either have similar looking icons,
distinguished by textual annotation (eg Prograph [4]) or
require programmers to hand-craft icons (eg Fabrik [8]).

text

attr1

attr1

Fig. 3 Example Skin function

The Skin approach allows interface programmers to ignore
details such as absolute co-ordinates for the resulting icon
and its subcomponents as they are instantiated by Skin as
the icon is drawn. In contrast, most interface builders, such
as Fabrik and FormsVBT, need component positions to be
specified by absolute or relative co-ordinate values or by
direct manipulation. Text field length based on actual
attribute values, white space adjusted accordingly and
alignment operators applied for actual text field lengths and
white space size allows very adaptive icons to be specified.
When application attribute values change, Skin adaptively
changes the icon layout and redisplays it.

Fig. 2 Skin programming environment

yourname 50 myname 30

attr1 attr1

yourname
myname

Fig. 4 Application of the function of Fig. 3

attr1

map

[[yourname, 50], [myname, 30]]

yourname
myname

Fig. 5 Use of map higher order function

Function application
Fig. 4 shows 2 applications of the function defined in Fig.
3. The actual arguments to the function applications are, in
this case, constant primitives. The results are combined
using a vertical list constructor and displayed using a
viewer. The alignment primitive included in the function

acts to line up the left hand edges of the bar components of
the horizontal lists by padding out the previous
subcomponent, if necessary, with white space.

Higher order functions
Fig. 5 shows the same result as Fig. 4 achieved using the
map higher order function. Map takes a function as its first
argument and applies it to each element of the second, list,
argument. The result is then formed into a vertical list using
a vertical list constructor. Higher order functions may also
be defined by the user.

Multi-clause functions and pattern matching
Multi-clause functions allow different Skin expressions to
be constructed depending on the form of the parameters.
Pattern matching on actual arguments is used to select
between clauses. Fig. 6, for example, shows a function with
two clauses, one matching tuples representing integer
attributes and the other matching reference attributes. Each
clause takes a single input, which is matched against a
pattern. The pattern for the left hand clause is the tuple
item(N,int,Val). For this clause to be used, the actual
argument must be a 3-tuple with functor item, and second
element int. The first and third elements can match
anything1. The pattern for the second clause is also an item
triple, but with second element the value ref. Patterns can
also be used to decompose complex arguments. They have
multiple outputs, one for each element of the pattern.

The result icon, like the list constructors, has an expandable
number of input pins. Each "input" corresponds to the
"result" of a clause for that function. When the function is
applied, clauses are attempted from left pin to right pin until

1A Prolog-like syntax is used for patterns.
Patterns may in fact be quite complex predicates
acting as guards for the clause. The form of a
pattern is specified via dialogue on cloning from
the pattern palette icon.

a pattern match succeeds, in which case the function body
is evaluated.

item('N', int, 'Val')

text text

item('N', ref, 'Ref')

text

an_integer10

aref

an_integer 10

aref

Fig. 6 Multi-clause function with pattern matching

Icon and viewer construction for multi-clause functions is
quite straightforward. The default inputs for each case are
gathered up into a list (in clause order) which is mapped by
the multi-clause function with the result being formed into a
vertical list. This is illustrated by the viewer and palette
icons of Fig. 6, where the separate prototype cases for each
clause are clearly visible.

Specification of connectors
The second clause of the function in Fig. 6 shows the
specification of inter-component connectors using

connector regions ()and anchors (). Connector
regions have three arguments: a region name, a reference
(possibly nil) to a program object, and a Skin expression.
Connector regions serve two purposes. Firstly, if a
component associated with the object referenced by the
second argument is visible, a connector line is drawn
between the two components. A variety of line styles (plain
or greyed, arrowed ends or not) are available. Secondly,
connector regions specify the location of the start and end
points of connectors. These are specified via anchor regions
contained within the picture associated with the third
argument to the connector region. Multiple anchors may be
specified for a connector region. When a connector is made,
the two closest anchor regions are chosen and a line is
drawn between the midpoints of each.

In Fig. 6, the connector region consists of a single anchor
region which covers a small square box. If either display
associated with a connection is moved or changes shape,
the connection is redrawn, possibly using different anchor
regions. Fig 1(a) shows examples of inter-component
connectors used to visualize object references and method
calls in Cerno. These components include anchors at both
sides of each attribute subcomponent.

System interface
Skin functions assume a very simple object oriented
interface with the underlying systems they are allowing the
user to interact with. User interface components are
constructed by first constructing a display object. This

object executes a Skin function to construct the visible
interface component. The display object must be able to
provide a list of item(Name,Type,Value) triples to the
executing Skin function, which the function can make use
of to construct the component. Any changes to elements in
the list trigger reconstruction of part or all of the interface
component. User interaction events, such as button presses,
are signalled to the display object by method calls. The
interface between diaply objects and the underlying system
is application dependent. The approach used in one
application is described in the following section.

The Skin system interface primitive ()accesses and
selects required values from the diplay object's item list.
Fig. 7 shows an example of the use of this primitive in the
construction of a nullary function. This function displays all
elements of the item list which are of integer or ref type
using the function of Fig. 6, arranging the result as a
vertical list.

User interaction
User interaction with Skin functions is achieved by
applying a side effect function that specifies a region to be
sensitive to user input.

The button primitive takes two arguments: a name to give
the button, and a picture for the button. The left hand
function of Fig. 8 is a nullary function to create an Ok
button, with name 'ok' and button picture a box containing
the text " Ok ". When incorporated into an interface
component, clicking in the button's picture results in a call
to the button method of the underlying display object with
parameter ok. It is up to the underlying application to
interpret the button press in an appropriate way.

Edit boxes take a name and an initial value, and construct a
textually editable region filled with the initial value. When
edited, a call is made to the edit method of the underlying
program object with two parameters: the name of the edit
region, and the newly entered value. Again, it is up to the
application to interpret the method call in an appropriate
way. The function on the right hand side of Fig. 8
incorporates an edit box and an Ok button to construct a
dialogue box for editing a feature value. The parameters are
a name for the feature and the initial value of the feature.
The fill primitive is used to position the Ok button at the
right of the dialogue box. The viewer (bottom) shows a
prototype of the resulting dialogue box.

 The style of interaction with Skin user interface
components (ie buttons requiring a mouse down event) is
thus hard coded in the side effecting primitives. This is a
current weakness of our approach, as it limits the level of
interaction with which the interface designer can work with
in constructing interface components.

type(int) or type(ref)

map

Fig. 7 System interface example

Ok

ok

button

Ok

Ok

Enter value for text

edit

Ok

Enter value for attr1
initial value

Ok

Fig. 8 Button and edit boxes

IMPLEMENTATION

DSL, the textual analogue to Skin, was developed as part of
the Cerno program visualization system [6] where it is used
to construct user interface components depicting the state of
objects or abstractions of collections of objects such as the
ones in Figs 1(a) and (b). Cerno uses a multi-layered
architecture. Abstractor objects gather information from
traced application objects and pass that information to
display objects. Cerno's display objects take the resulting
list of values and execute an embedded DSL function to
construct interface components (such as those of Fig 1(a)).
Aabstractors may also pass information to one or more
other levels of abstractor before passing information on to a
display object to construct more abstract views, such as the
list views of Fig 1(b)).

The Skin programming environment was constructed by
specialising Cerno. Skin programs are represented in the
environment as a graph of objects, one object per visible
icon. Each object includes an attribute defining its DSL
function, a method for cloning the icon (for palette icons),
and a method for constructing an instantiation of the
function from its actual arguments. Abstractors for various
types of icon (standard, expandable pin, viewer) were
constructed, together with a standard display component

capable of rendering any type of icon using Skin itself. The
only additions to DSL required were icons for input and
output pins.

CONCLUSIONS AND FUTURE WORK

We have described Skin, a visual functional language for
defining flexible user interface components. The language
combines expressive power with the ability to view and
concrete instantiations of the components being defined.
The instantiations can, in turn, be used to construct
meaningful icons for user defined functions.

Skin addresses the problem of specifying layout of interface
components, including interactive components such as
buttons and edit boxes. Extensions planned include
associational primitives, that permit subcomponents to be
associated in a relational way (left, right, etc) to resizable
parent components (currently parent components sizes are
completely determined by the composition of the child
component sizes).

However, the semantics of interaction, ie what happens
following the edit or button method calls, is not specified in
Skin. We are working on a separate visual language for
specifying this using and extending the Lean Cuisine [1]
and LC+ [13] approaches (particularly the semantic
definition extensions of the latter). A visual specification of
Cerno abstractors is also being developed. This will allow a
connection between the Skin layer and application object
layer to be defined, similar to the approach of Iconographer
[5], but with hierarchical abstractor support. We are also
exploring extensions to Skin that allow new user interaction
components (eg buttons) to be defined from more basic
interaction operations (such as dragging and clicking).

ACKNOWLEDEGEMENTS

John Hosking acknowledges the support of the University
of Auckland Research Committee in performing this work.
This work was done while John Hosking was a visitor to
the Software Verification Research Centre at The
University of Queensland and he acknowledges the
assistance of that Centre in preparing this paper.

REFERENCES

[1] Apperley, M.D. & Spence, R. 1989: Lean Cuisine: A

Low-Fat Notation for Menus, Interact. with
Comput., 1 (1), 43-68.

[2] Avrahami, G., Brooks, K.P., Brown, M.H. 1989, A
Two-View Approach to Constructing User
Interfaces, In ACM Computer Graphics, 23 (3), July
1989, 137-146.

[3] Brown, M.H. 1991: Zeus: A System for Algorithm
Animation and Multi-View Editing, In 1991 IEEE
Symposium on Visual Languages, 4-9.

[4] Cox, P.T., Giles, F.R., Pietrzykowski, T. 1989:
Prograph: a step towards liberating programming

from textual conditioning, 1989 IEEE Workshop on
Visual Languages, 150-156.

[5] Draper, S.W., Waite, K.W., Gray, P.D., "Alternative
Bases for Comprehensibility and Competition for
Expression in an Icon Generation Tool", in Human-
Computer Interaction - INTERACT '90, D. Diaper,
D Gilmore, G Cockton, & B Shackel, eds., Elsevier
Science (North Holland), 473-477.

[6] Fenwick, S., Hosking, J., and Mugridge, W.:, 1994:
A visualization system for object-oriented programs,
Proc. TOOLS 15, Prentice Hall, Sydney, pp 93-103.

[7] Haarslev, V., Möller, R. 1992: Visualization and
Graphical Layout in Object-oriented Systems,
Journal of Visual Langages and Computing, 3 (1), 1-
23.

[8] Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F.,
Doyle, K., 1988: Fabrik: A Visual Programming
Environment, Proceedings of OOPSLA ‘88, 176-
189.

[9] Linton M.A., Vlissides J.M., Calder, P.R. 1989:
Composing user interfaces with Interviews,
COMPUTER, 22 (2), February 1989, 8-22.

[10] Mashita, K., Matsuoka, S., Takahashi, S. 1992:
Declarative Programming of Graphical Interfaces by
Visual Examples, Proceedings of USIT ‘92, 107-
116.

[11] Myers, B.A. 1987: Creating User Interfaces by
Demonstration, PhD Thesis, University of Toronto.

[12] Paulisch, F.N., Tichy, W.F., EDGE: An Extensible
Graph Editor, In Software - Practice and
Experience, 22 (S1), June 1990, pp. S1/63-S1/88.

[13] Phillips, C.H.E. 1993, The Development of an
Executable Graphical Notation for Describing Direct
Manipulation Interfaces, PhD Thesis, Massey
University.

[14] Vlissides, J.M. Generalized Graphical Object
Editing, PhD Thesis, Stanford University, CSL-TR-
90-427, 1990.

