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ABSTRACT 
 
A visual functional language for constructing user interface 
components is described. The language, Skin, assumes a 
simple object-oriented interface to the underlying 
application and components may flexibly adapt to changes 
in the application. The language avoids the need for absolute 
or relative coordinate specification for subcomponents. An 
interesting feature of the language is that meaningful icons 
for user-defined functions are able to be automatically 
constructed using prototype applications of the function.  

INTRODUCTION 
 
The definition of user interface components can often be a 
tedious process, involving trial and error construction of the 
layout of components using a textual definition language 
[10]. More rapid layout definition is provided by using 
direct manipulation user construction tools [10,3], which 
provide immediate feedback on the appearance of 
components. However, these often lead to somewhat 
inflexible components due to the poor expressive power of 
the tools and notations used. 
 
In our work, we have been particularly interested in flexible 
user interface components, i.e. those which can visualise a 
variety of underlying program elements and can adapt to 
changes in those elements (often resulting in large changes 
to the interface components). Fig. 1 shows some examples 
of such user interface components.  
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Fig. 1 Examples of flexible user interface components 
 

Figs 1(a) and 1(b), constructed by the Cerno program 
debugger/visualiser [6], show components visualising the 
execution state of objects (or abstractions of objects). In Fig 
1(a) the states of three objects are shown, with information 
on object attributes (highlighting indicates values 
incompatible with declared types) active methods, 
references to other objects (boxes plus dark arrows), and 
method calls (grey arrows). Fig 1(b) shows another Cerno 
component providing two abstract views of a linked list of 
objects - as a list of element number, node type and value 
triples, and as a bar graph. As objects change state, these 
user interface components must update themselves to reflect 
the new state. Also, regions of the components must be 
sensitive to user interaction. Eg clicking in the square box of 
an object reference attribute causes that reference to be 
expanded as a new interface component. 
 
A challenge is to be able to create succinct, generic 
component specifications that can be applied to visualise 
different underlying program entities. For example, a single 
specification should suffice to generate each of the three 
components shown in Fig 1(a), and this specification should 
cope with changes to the component (eg addition of extra 
attributes in the list) as the program executes. The aim of the 
work described in this paper is to develop a visual user 
interface construction language. This combines the 
immediate feedback of direct manipulation "constructor 
kits" with enough expressive power to permit definition of 
genuinely flexible interface components, ie ones that adapt 
their composition and layout automatically as the needs of 
the underlying application change, as well as more 
conventional dialog box, menu, and window components. 
 
Many user interface toolkits, such as Fabrik [8] and 
Interviews [9], provide good support for direct manipulation 
construction of traditional "dialogue box" style interface 
components. These are generally focused on the widget 
(icon composition) level, however, and  construction of the 
sorts of flexible iconic components shown in Fig. 1 is 
beyond the means of most UI toolkits. Such complex icons, 
and editors to manipulate them, can be defined using 
programming techniques. However, these use textual, 
procedural languages, and the resulting icon definitions are 
often inflexible, and difficult to maintain and understand due 
to their low-level, complex details [7]. 
 
In the next section, we review existing work in this area. 
Thefollowing section provides a brief overview of Skin, our 



 

user interface component description language, with the 
Skin environment described next. A more detailed 
description of Skin is then given. A brief description of 
implementation issues is followed by conclusions and future 
work. 

RELATED WORK 
 
Traditional UI construction can be done via toolkits,  
frameworks and UIMSs [9]. Interviews [9] provides a 
framework of object-oriented classes which are specialised 
to define user interface components such as edit boxes, text 
captions and buttons. Such systems rely on textual 
programming of interface components. Their programs must 
be  run to test the interface appearance and functionality. 
Interface builders, like Peridot [11] or FormsVBT [2], allow 
specification of interface components by direct 
manipulation. Interface semantics are programmed textually. 
FormsVBT keeps the graphical appearance of the interface 
consistent with a textual description, allowing specification 
in whichever form is most convenient. A problem with this 
approach is the cluttering of the direct manipulation view for 
complex interfaces [7]. FormsVBT also provides a view 
showing the resultant user interface [3]. This can be 
interacted with to test the interface. 
 
Prograph [4] includes a graphical interface builder and 
allows the interface semantics to be programmed visually. 
Fabrik [8] uses a similar dataflow metaphor but its data 
entities directly correspond to user interface components. 
Fabrik diagrams are live (even when incomplete), similar to 
FormsVBT. The interface can thus be incrementally tested 
during construction. A disadvantage is the use of absolute 
co-ordinates for positioning interface components, making 
the system less adaptive to application change. 
 
EDGE [12] supports generation of graphical editors for 
graph-based structures from a textual specification of the 
graph. Graph node and edge icons must, however, be 
programmed to achieve complex icons. Trip 3 [10] allows 
graphical editors for graph structures to be specified via 
visual examples of application data linked by a declarative 
mapping. Complex graph nodes and their arcs, however, are 
difficult to specify abstractly in this approach. 
 
All of these systems focus on the widget level of user 
interfaces i.e. edit boxes, text captions, buttons and sliders. 
New iconic (widget) forms must typically be programmed 
using the underlying implementation language, or can not be 
supported at all. Thus these systems are inappropriate for 
more general editing interfaces, such as the graphs used in 
CernoII, and geometric drawing applications. Systems like 
Unidraw [14] and EDGE which support the definition of 
such editors are usually based on textual, specialisable 
frameworks, making it hard to visualise the resulting user 
interface while refining its definition. 
 
Haarslev and Möller’s TEX-like layout language provides 
an abstract way of specifying icon and glue structure [7], 

plus a mechanism for mapping application data to icon data. 
It is, however, text-based, making visualisation difficult 
during construction. Iconographer [5] takes data from files 
and converts it into application objects by a user-specified 
filter. Icon attributes are linked to application data attributes 
using a graphical switchboard metaphor. There is no tool for 
easily defining new icons or specifying their attributes, 
which limits its usefulness.  
 
DSL [6] provides a text-based specification language for 
defining icon structure based on application object 
attributes. Attribute values are obtained from application 
objects via hierarchical abstractors, allowing very complex 
visualisations of complex application structures to be built. 
DSL includes constructs for composing attribute values into 
lists, vertical and horizontal alignment of lists, padding glue, 
edit boxes, buttons, anchor points for glue connections, and 
dialogue, menu and window components. This textual 
notation is abstract, flexible and adaptive to application 
object changes. Like Haarslev and Möller’s language, 
however, it is difficult to build complex icons interactively 
due to a lack of visual feedback during construction. We 
have designed the Skin notation based on the components of 
DSL, and developed a visual programming environment for 
Skin to address this fundamental problem of interface 
construction. 

SKIN OVERVIEW 
 
Skin is a visual functional language, using an icon and 
connector model for program construction. Skin functions 
define the layout of a user interaction component. A simple 
interface to the underlying system is assumed. 
 
Absolute and relative coordinates are avoided by the use of 
fill and alignment primitives, and subcomponent sizes (eg 
text box lengths) adapt to the actual size of run-time data 
values they visualize. Skin functions can have multiple 
clauses selected by pattern matching on parameters. This, 
together with list processing capabilities, allows flexible 
component construction based on actual parameter values. 
Higher order functions may be defined and used. 
 
All skin functions have (editable) default values for their 
parameters. These are used to generate prototype examples 
of interface components to provide immediate feedback to 
the programmer and to automatically construct meaningful 
icons for user defined Skin functions. 
 
The visual language maps in a straightforward manner to 
DSL, allowing programming in either visual or textual 
modes. User interaction is handled via primitives which 
sensitise regions to interactive events. 

SKIN ENVIRONMENT 
 
Fig. 2 shows a screen dump of the Skin programming 
environment in use. Two windows are shown. The larger is 
a visual programming window, in which a function is being 



 

specified (centre) using a palette of functions (top). 
Functions have input parameters at the top (solid line with 
pin underneath) and result at the bottom (solid line with two 
pins above and one below). The smaller window is a textual 
view of the same function.   
 
Skin functions are visually constructed by direct 
manipulation. Dragging from the result (lower) pin of an 
existing (non-palette) icon to an empty location clones the 
currently selected palette icon and wires the output pin of 
the existing icon to an input pin of the new icon. Clicking 
elsewhere in the drawing window clones the current palette 
icon. Pins of existing icons may also be wired together.  
 
Textual views may be edited using free-form editing. 
Multiple visual views can be created to edit the same or 
different functions with views being kept consistent with 
one another. This allows programmers to edit any type of 
view and have changes propagate to all other affected views. 
Changes may also be made to the graphical view which 
cannot be directly translated to changes in the textual view 
and vice versa, overcoming a disadvantage of the formsVBT 
approach [7]. In the next section examples are used to 
illustrate the major features of the language. 

SKIN BY EXAMPLE 

A simple function 
Fig. 3 shows a Skin function. This takes two arguments and 
constructs a horizontal list containing a textually formatted 
version of the first argument, a block of white space, an 
alignment marker (see below) and a horizontal bar, with 
length specified by the second argument's value. The text 
formatter ( text ) takes any value and constructs a printable 
formatted version.  The bar constructor ( ) takes an 
integer argument and constructs a bar of size proportional to 
the argument. The white space constant ( )uses a variant of 
the palette icon cloning mechanism to construct a version of 
the white space primitive with input argument (size) set, via 
dialogue, to a constant value. The alignment primitive 
( )is used to line up icon components across multi 
dimensional lists (see Section 5.2). A horizontal list 
constructor ( )is used to gather the above elements 
together horizontally in sequence. List constructors have a 
variable number of input pins. As wires are attached to 
existing pins of such an icon, additional pins are created.   
 
Attached to the function result pin is a viewer icon ( attr1 ). 
Viewers render a prototype version of the Skin fragment 

they are attached to. In this case, the result of a prototype 
application of the function is displayed. To allow 
construction of such prototypes, each function input 
(including primitives) has associated (editable) default 
values. If nothing is attached to a function input, the default 
is used whenever the function result is needed. The function 
parameters in Fig. 3 have defaults of attr1 and 30 (defined 
by dialog) resulting in the prototype icon shown.  
 
The palette of functions may be extended by the user. To the 
bottom right of Fig. 3 is a new palette icon constructed from 
the function definition. This may be cloned in the same way 
as primitives to create applications of the function. An 
important feature is that sensible icons for user defined 
functions are constructed automatically using the same 
approach as is used by viewers. In constrast, other visual 
programming languages either have similar looking icons, 
distinguished by textual annotation (eg Prograph [4]) or 
require programmers to hand-craft icons (eg Fabrik [8]). 
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Fig. 3 Example Skin function 

 
The Skin approach allows interface programmers to ignore 
details such as absolute co-ordinates for the resulting icon 
and its subcomponents as they are instantiated by Skin as 
the icon is drawn. In contrast, most interface builders, such 
as Fabrik and FormsVBT, need component positions to be 
specified by absolute or relative co-ordinate values or by 
direct manipulation. Text field length based on actual 
attribute values, white space adjusted accordingly and 
alignment operators applied for actual text field lengths and 
white space size allows very adaptive icons to be specified. 
When application attribute values change, Skin adaptively 
changes the icon layout and redisplays it. 



 

 
Fig. 2 Skin programming environment 

 
yourname 50 myname 30

attr1 attr1

yourname
myname

 
Fig. 4 Application of the function of Fig. 3 
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Fig. 5 Use of map higher order function 

Function application 
Fig. 4 shows 2 applications of the function defined in Fig. 
3. The actual arguments to the function applications are, in 
this case, constant primitives. The results are combined 
using a vertical list constructor and displayed using a 
viewer. The alignment primitive included in the function 

acts to line up the left hand edges of the bar components of 
the horizontal lists by padding out the previous 
subcomponent, if necessary, with white space.  

Higher order functions 
Fig. 5 shows the same result as Fig. 4 achieved using the 
map higher order function. Map takes a function as its first 
argument and applies it to each element of the second, list, 
argument. The result is then formed into a vertical list using 
a vertical list constructor. Higher order functions may also 
be defined by the user.  

Multi-clause functions and pattern matching 
Multi-clause functions allow different Skin expressions to 
be constructed depending on the form of the parameters. 
Pattern matching on actual arguments is used to select 
between clauses. Fig. 6, for example, shows a function with 
two clauses, one matching tuples representing integer 
attributes and the other matching reference attributes. Each 
clause takes a single input, which is matched against a 
pattern. The pattern for the left hand clause is the tuple 
item(N,int,Val). For this clause to be used, the actual 
argument must be a 3-tuple with functor item, and second 
element int. The first and third elements can match 
anything1. The pattern for the second clause is also an item 
triple, but with second element the value ref. Patterns can 
also be used to decompose complex arguments. They have 
multiple outputs, one for each element of the pattern. 
 
The result icon, like the list constructors, has an expandable 
number of input pins. Each "input" corresponds to the 
"result" of a clause for that function. When the function is 
applied, clauses are attempted from left pin to right pin until 

 
1A Prolog-like syntax is used for patterns. 
Patterns may in fact be quite complex predicates 
acting as guards for the clause. The form of a 
pattern is specified via dialogue on cloning from 
the pattern palette icon. 



 

a pattern match succeeds, in which case the function body 
is evaluated.   

item('N', int, 'Val')

text text

item('N', ref, 'Ref')

text

an_integer10

aref

an_integer 10

aref

 
Fig. 6 Multi-clause function with pattern matching 

 
Icon and viewer construction for multi-clause functions is 
quite straightforward. The default inputs for each case are 
gathered up into a list (in clause order) which is mapped by 
the multi-clause function with the result being formed into a 
vertical list. This is illustrated by the viewer and palette 
icons of Fig. 6, where the separate prototype cases for each 
clause are clearly visible. 
 
Specification of connectors 
The second clause of the function in Fig. 6 shows the 
specification of inter-component connectors using 

connector regions ( )and anchors ( ). Connector 
regions have three arguments: a region name, a reference 
(possibly nil) to a program object, and a Skin expression. 
Connector regions serve two purposes. Firstly, if a 
component associated with the object referenced by the 
second argument is visible, a connector line is drawn 
between the two components. A variety of line styles (plain 
or greyed, arrowed ends or not) are available. Secondly, 
connector regions specify the location of the start and end 
points of connectors. These are specified via anchor regions 
contained within the picture associated with the third 
argument to the connector region.  Multiple anchors may be 
specified for a connector region. When a connector is made, 
the two closest anchor regions are chosen and a line is 
drawn between the midpoints of each.  
 
In Fig. 6, the connector region consists of a single anchor 
region which covers a small square box. If either display 
associated with a connection is moved or changes shape, 
the connection is redrawn, possibly using different anchor 
regions. Fig 1(a) shows examples of inter-component 
connectors used to visualize object references and method 
calls in Cerno. These components include anchors at both 
sides of each attribute subcomponent. 

System interface 
Skin functions assume a very simple object oriented 
interface with the underlying systems they are allowing the 
user to interact with. User interface components are 
constructed by first constructing a display object. This 

object executes a Skin function to construct the visible 
interface component. The display object must be able to 
provide a list of item(Name,Type,Value) triples to the 
executing Skin function, which the function can make use 
of to construct the component. Any changes to elements in 
the list trigger reconstruction of part or all of the interface 
component. User interaction events, such as button presses, 
are signalled to the display object by method calls. The 
interface between diaply objects and the underlying system 
is application dependent. The approach used in one 
application is described in the following section. 
 
The Skin system interface primitive ( )accesses and 
selects required values from the diplay object's item list. 
Fig. 7 shows an example of the use of this primitive in the 
construction of a nullary function. This function displays all 
elements of the item list which are of integer or ref type 
using the function of Fig. 6, arranging the result as a 
vertical list. 
 
User interaction 
User interaction with Skin functions is achieved by 
applying a side effect function that specifies a region to be 
sensitive to user input. 
 
The button primitive takes two arguments: a name to give 
the button, and a picture for the button. The left hand 
function of Fig. 8 is a nullary function to create an Ok 
button, with name 'ok' and button picture a box containing 
the text " Ok ". When incorporated into an interface 
component, clicking in the button's picture results in a call 
to the button method of the underlying display object with 
parameter ok. It is up to the underlying application to 
interpret the button press in an appropriate way. 
 
Edit boxes take a name and an initial value, and construct a 
textually editable region filled with the initial value. When 
edited, a call is made to the edit method of the underlying 
program object with two parameters: the name of the edit 
region, and the newly entered value. Again, it is up to the 
application to interpret the method call in an appropriate 
way. The function on the right hand side of Fig. 8 
incorporates an edit box and an Ok button to construct a 
dialogue box for editing a feature value. The parameters are 
a name for the feature and the initial value of the feature. 
The fill primitive is used to position the Ok button at the 
right of the dialogue box. The viewer (bottom) shows a 
prototype of the resulting dialogue box. 
 
 The style of interaction with Skin user interface 
components (ie buttons requiring a mouse down event) is 
thus hard coded in the side effecting primitives. This is a 
current weakness of our approach, as it limits the level of 
interaction with which the interface designer can work with 
in constructing interface components. 
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Fig. 7 System interface example 
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Fig. 8 Button and edit boxes 

 

IMPLEMENTATION 
 
DSL, the textual analogue to Skin, was developed as part of 
the Cerno program visualization system [6] where it is used 
to construct user interface components depicting the state of 
objects or abstractions of collections of objects such as the 
ones in Figs 1(a) and (b). Cerno uses a multi-layered 
architecture. Abstractor objects gather information from 
traced application objects and pass that information to 
display objects. Cerno's display objects take the resulting 
list of values and execute an embedded DSL function to 
construct interface components (such as those of Fig 1(a)). 
Aabstractors may also pass information to one or more 
other levels of abstractor before passing information on to a 
display object to construct more abstract views, such as the 
list views of Fig 1(b)). 
 
The Skin programming environment was constructed by 
specialising Cerno. Skin programs are represented in the 
environment as a graph of objects, one object per visible 
icon. Each object includes an attribute defining its DSL 
function, a method for cloning the icon (for palette icons), 
and a method for constructing an instantiation of the 
function from its actual arguments. Abstractors for various 
types of icon (standard, expandable pin, viewer) were 
constructed, together with a standard display component 

capable of rendering any type of icon using Skin itself. The 
only additions to DSL required were icons for input and 
output pins.  

CONCLUSIONS AND FUTURE WORK 
 
We have described Skin, a visual functional language for 
defining flexible user interface components. The language 
combines expressive power with the ability to view and 
concrete instantiations of the components being defined. 
The instantiations can, in turn, be used to construct 
meaningful icons for user defined functions. 
 
Skin addresses the problem of specifying layout of interface 
components, including interactive components such as 
buttons and edit boxes. Extensions planned include 
associational primitives, that permit subcomponents to be 
associated in a relational way (left, right, etc) to resizable 
parent components (currently parent components sizes are 
completely determined by the composition of the child 
component sizes).  
 
However, the semantics of interaction, ie what happens 
following the edit or button method calls, is not specified in 
Skin. We are working on a separate visual language for 
specifying this using and extending the Lean Cuisine [1] 
and LC+ [13] approaches (particularly the semantic 
definition extensions of the latter). A visual specification of 
Cerno abstractors is also being developed. This will allow a 
connection between the Skin layer and application object 
layer to be defined, similar to the approach of Iconographer 
[5], but with hierarchical  abstractor support. We are also 
exploring extensions to Skin that allow new user interaction 
components (eg buttons) to be defined from more basic 
interaction operations (such as dragging and clicking). 
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