
In Proceedings of NZCSRSC 1992, Waikato University, 1992

The MViews framework for
constructing multi-view editing
environments
John C. Grundy and John G. Hosking
Department of Computer Science, University of Auckland, Auckland

ABSTRACT
MViews provides a framework for constructing interactive programming environments that
provide multiple textual and graphical views. It supports multiple views of a base document,
maintaining consistency between each of the views. MViews has been used to construct a visual
programming environment for an object-oriented language featuring both graphical and textual
views of the program. Other applications of MViews under development include entity-
relationship and dataflow diagrammers, a visual debugger, and a dialog box painter.

1. Introduction
Diagrams are useful in all phases of the software lifecycle to help explain and
understand concepts that are difficult to describe in text. In object-oriented
programming, for example, diagrams illustrating inheritance relationships are an
invaluable aid in understanding program structure.

A natural extension of using diagrams to explain programs is to use diagram
construction as a means of programming systems. This visual programming
approach to program construction is becoming increasingly popular. Example
visual programming systems include Fabrik [1], Prograph [2], and Garden [3].
Useful reviews of visual programming can be found in [4, 5].

In previous work we have developed Ispel, a visual programming environment for
object-oriented programming [6]. Ispel allows users to program either textually or
graphically. In the latter, class structure diagrams can be constructed to define
inheritance relationships and client-server relationships. An important feature of
Ispel is its support of multiple views of a program. Multiple diagrams can be
constructed with overlapping information in each view. Modifications can be
made to any of the views and the other views are automatically updated to be
consistent.

In this paper we describe MViews, an abstraction from our earlier work on Ispel.
MViews provides a framework to support the development of visual
programming environments which include the multiple view with consistency
model and free interchange between textual and graphical modes of

programming. Visual programming environments for particular tasks, such as
object-oriented programming or dataflow programming, are constructed by
appropriately specialising MViews.

This paper begins with a description of an object-oriented Prolog and its
programming environment. This environment is a specialisation of IspelM, an
MViews-based visual programming environment for object-oriented languages.
This is followed by an introduction to the MViews architecture and an over-view
of the implementation of MViews and IspelM. The paper concludes with a
discussion of current and future work.

2. Snart
Snart is an object-oriented extension to Prolog developed by the authors. We had
previously used Prolog to good advantage in the development of Ispel [6], but
found the lack of structuring beyond the predicate level a disadvantage. Snart
aims to retain the advantages of Prolog programming, but embedded within an
object-oriented framework similar to that of Prolog++ [7]. Fig. 1 shows an
example of Snart code.

class(rectangle,
 parents([closed_figure([
 rename(create,fig_create),
 rename(info,closed_info)])
]),
 attributes([
 height(int),
 width(int)]),
 methods([
 create, area,
 resize, draw,
 perimeter, info])).

% Create a rectangle
rectangle::create(Rect,Window,
 Location,Width,Height) :-
 Rect@width:=Width,
 Rect@height:=Height,

Rect@fig_create(Window,Location).

% Area for a rectangle
rectangle::area(Rect,Area) :-
 Area is Rect@width *
Rect@height.

% Resize a rectangle
rectangle::resize(Rect,NewX,NewY)
:-
 Rect@width:=NewX,

 Rect@height:=NewY,
 Rect@draw.

% Draw a rectangle
rectangle::draw(Rect) :-
 Rect@window(Window),
 Rect@location((X,Y)),
 Rect@width(W),
 Rect@height(H),
 (Rect@visible(true) ->
 Window@chg_pic(Rect,
 box(Y,X,H,W))
 ; Window@add_pic(Rect,
 box(Y,X,H,W))
),
 Rect@visible:=true,
 Rect@frame:=box(Y,X,H,W).

% Perimeter for a rectangle
rectangle::perimeter(Rect,Perim)
:-
 Perim is
 2 * (Rect@width +
Rect@height).

% Info for rectangle
rectangle::info(Rect) :-
 writenl('Info for rectangle:'),
 Rect@closed_info.

Fig. 1. An Example Snart class defining Rectangles

Snart provides class definitions which include attribute and method specifications.
Multiple, repeated inheritance is supported, together with redefining and
renaming of features to avoid name clashes. Method predicates are defined
separately in a C++ style, and may have multiple clauses. Attributes can be

assigned to and are therefore impure Prolog. They provide a structured alternative
to using the standard Prolog assertion and retraction facilities. Programmers can
freely mix Snart code and standard Prolog code. The implementation of Snart has
aimed for efficiency of execution with object creation, storage, method despatch
and attribute access optimised.

3. The Snart Programming Environment
The first application of MViews has been in the development of a visual
programming environment for Snart itself. This involved a two step specialisation
of MViews. The first step was to generate an Ispel-like object-oriented
programming environment in MViews (IspelM). Further specialisation tailored
IspelM for programming in Snart producing the Snart programming environment
(SPE).

An Overview of SPE
SPE supports multiple textual and graphical views of a Snart program sharing
common information. Multiple views allow the construction of many diagrams
focussing on a particular aspect of the program, thus reducing the cognitive
complexity in understanding those aspects of the program. Consistency
management is employed to maintain data integrity between all textual and
graphical views that share information.

Each view supports the most appropriate method of manipulation. Graphical
views are structure-edited using a palette of supplied tools and menus while
textual views are free-edited and parsed. This differs from comparable approaches
that only employ restrictive structure-oriented editing [8,9].

Fig. 2. shows SPE editing a simple drawing program implemented in Snart. One
graphical view shows the button and figure inheritance hierarchies. The other
shows client-server relationships between the drawing_window and figure classes
in the context of adding and rendering pictures in a window. A textual view
shows the class definition for drawing_window, and the other the hide method
predicate for figure.

Fig. 2. The Snart Programming Environment.

Update Handling
A key feature of SPE (and MViews) is the method of handling updates to views
that result from changes to another view. In some cases, such as a change to a
feature name, updates can be made directly. In other cases, such as adding a
client-server connection, it is not possible to automatically infer the correct
modification and user assistance is needed. For this reason, updates to views are
not always immediately performed. Rather, an indication of the impending update
is given to the user who can then either accept, provide an implementation for, or
reject the update.

As an example, a modification to a graphical view such as renaming the
"gfigures" feature of drawing_window to "figures", is reflected in a corresponding
textual view by an “update record” as shown in Fig. 2. This record informs the
programmer of the change to the base data, and allows her/him to either make the
change or to select the update record and have SPE make the change to the text
(in this case, changing gfigures(list(figure))to figures(list(figure))).

Another update record is shown in the figure Class view. Here, a client-server link
has been added between drawing_window and figure indicating that the del_pic
feature of the drawing_window is used by the hide feature of figure. In this case,
automatic update of the textual view is not possible as SPE cannot infer the

appropriate modification to the hide method and the user must implement the
update.

Going from textual to graphical views is handled in a similar manner. After
parsing a textual view, updates to the base are determined by changes to the
corresponding parse tree. Any updates are reflected in graphical views by
applying the change (for example, if a feature is renamed), or displaying the
changed data in a different colour (for example, red for a deleted feature).
Updates are propagated to any combination of multiple graphical and textual
views sharing changed information.

View Navigation and Using SPE
SPE provides various view navigation facilities. These include iconic buttons for
quick view selection, view dialogs, and keyword searches for views by name and
focus type. Textual views using the MViews editor provide hyper-text links and
menus to access documentation and other views. Not all views need be cached in
memory at once and updates can be propagated to views when they are selected
and reloaded. Textual views may contain more than one class definition or
method predicate at a programmer’s discretion.

Programmers typically use graphical views to design their programs in SPE and to
visually document a program to enhance readability and browsing. Textual views
are used to implement method predicates, to add Prolog predicates, and to specify
additional class definition details such as renaming of inherited features. Any
changes to the program can be made at either the graphical or textual levels and
full consistency between all representations is ensured. After parsing textual
views the existing Snart compiler is used to generate Snart code and programs can
be run and debugged using the Prolog run-time system.

4. MViews and IspelM

Components of an MViews Environment
The central part of MViews is the program representation database which holds
all information relating to program structure and different views of a program.
Tools communicate via this central data repository which can also provide tool-
specific data storage. Tools for a specific environment, such as text or graphic
editors, are either tailor-made for the application or specialised from generic tools
included in the MViews framework. Graphical editors are structure-oriented,
providing tools for manipulating specific aspects of a program, and utilise direct
manipulation of graphical structures. Textual editors consist of an editor, an
unparser, and a parser. Unparsers convert a shared program representation into a
textual form and parsers convert an edited piece of code into changes to this
program representation. Existing language compilers and run-time systems can be
used, or new ones built using the MViews framework.

Multiple View Support
The main characteristic of MViews is its central support of multiple views unlike
most other systems which tend to treat views as an additional component of the

programming environment. The term “multiple views” is used to describe related,
yet distinct, ideas by different researchers. In MViews we define three types of
view:

° base view: This is a canonical representation of a complete program
constructed as a synthesis of all other views with one base view per
program.

° subset views: These describe subsets of a base view and may overlap so
the same information can be accessed and manipulated via different
subset views. Examples of systems incorporating a similar notion to
subset views include:

° Ispel [6], where multiple views describe overlapping subsets of
a base view of an object-oriented program.

° The dynamic and static views of MELD [10] which partition
programs into respectively overlapping and non-overlapping
subsets.

° Database views which filter out unwanted information.
Database views are usually non-updatable, limiting the
consistency management problems (although see [11, 12]).

° display views: These describe how some part of the program is to be
rendered on the screen. The same program fragment can be rendered in
a variety of notations, textual and graphical, using different display
views. Many visual programming systems utilise some form of multiple
display views. Examples include PICT [13], PECAN [14], Garden [3],
and Ispel. Users interact with display views to modify either graphical
figures and connectors or textual characters which are translated into
subset and base view modifications.

Propagation of change is an essential aspect of MViews’ multiple views. If shared
information is modified in one view, a consistency manager propagates the
modifications to other views. For example, modification of a display view may
alter the base program state. Other views affected by this change must then be
updated and redisplayed to provide a consistent presentation of the program
across the environment.

Conceptual Foundations
MViews represents programs and views as collections of directed graphs. Thus
program structure in MViews is specified in terms of program elements (graph
nodes) and relationships between elements (labelled graph edges). Language
semantic information for a particular program can be stored in the environment in
an analogous manner. This program representation is similar to that employed by
deterministic graph transformation systems [15].

Graph operations are employed to modify a program graph. The semantics of
these operations could be described as the editing semantics of the programming
environment, i.e. the effect on the program state of applying an operation. Fig. 3
shows typical operations affecting different view types and inter-view
relationships.

Development of the MViews architecture commenced with a denotational
semantics specification of the graph representation of program state and the
operations performed on that state (including a formal treatment of undo/redo
operations). From this specification an object-oriented design and implementation
followed.

Base Views Subset Views

Display Views

Add Element
Delete Element

Establish Relationship
Disolve Relationship

Modify
Attribute

Expand
Subgraph

Cut/Copy/Paste
Subgraph

Add/ Delete
Subset View

Add/ Delete
Display View

class(A,
parents([e]),
attributes([a,b])
methods([c,d])).

Unparse/
Parse View

Add/Delete/
Modify Icons

& Glue

Fig. 3. Some basic operations on MViews programs.

5. Design and Implementation
To produce a reusable MViews system, either a programming environment (PE)
generator with its own specification language similar to that of the Synthesizer
Generator [16] could be constructed, or a specialisable framework implemented
as used in Unidraw [17]. Many aspects of a good, interactive PE, such as the
editor functionality and tool interfacing systems, require specialisation and fine-
tuning on a scale difficult to provide with a specialised PE generator. Generated
PEs are also well known for their poor user interfaces and performance [9]. For
these reasons the second approach was chosen.

Object-oriented languages foster reuse in various ways [18] and a specialisable
MViews framework lends itself to an object-oriented representation and
implementation. Generalisations can be used to relate parts of the environment
and specialisation and genericity allow reuse of these abstractions. Type
aggregation and the client-server relationship allow attributes and operations to be
attached to appropriate classes and accessed and inherited via well-defined
mechanisms.

In designing MViews class hierarchies were derived from the formal specification
and used to structure the framework. Class responsibilities and services were then
determined. MViews provides a collection of abstract classes that implement or
provide a framework for:

° Storage of base program data describing program components. For
example, classes, features, generalisations, and client-server
relationships as in IspelM.

° Textual and graphical subset views of base data which are partial copies
of the base and can be modified by editors or changes to the base data.

° Change propagation to maintain consistency between the base view,
graphical, and textual subset views. This includes demand and data-
driven view update algorithms and visual notification of updates.

° Textual and graphical display views that render subsets in either a
graphical or textual representation. Both types of views may be edited
by users to effect changes at the subset and consequently the base levels.

° Graphical structure-editing and text editor facilities. Graphical editors
include tools that act upon icons and connector glue to effect changes to
subset views. The built-in MViews text editor is used to manipulate
textual views but a standard text editor could also be used. The former
provides hyper-text links and menus to support view navigation and
structured access to subset views.

° Operation recording and histories for subset views that implement
undo/redo facilities. These are completely generic requiring little or no
code be added to specialisations of MViews (such as IspelM) to
implement undo/redo.

° Generic routines that save and reload MViews data to and from
persistent storage. These include incremental saving and loading of both
base and subset view data providing a persistent database storage
facility.

° Support for application-specific language semantics and constraint
processing.

° Unparsing and parsing support for textual views including parse-tree
storage and determination of base view updates via parse-tree changes.

IspelM is a specialisation of MViews and itself provides a framework for
implementing programming environments for object-oriented languages. To
specialise IspelM to produce the SPE we needed to write language-specific
parsers and unparsers for textual subset views. The graphical views and base
information require little change to support a different language as common O.O.
concepts are captured well at the IspelM level. An interface to the language
compiler and run-time system is also necessary for different languages. MViews
and SPE are currently implemented in Snart and run under LPA Prolog on the
Macintosh.

6. Summary and current and future work
We have described MViews, a framework for developing visual programming
environments featuring multiple views with consistency management. MViews
has been applied in the development of IspelM, a generic environment for object-
oriented programming, and SPE, a specialisation of IspelM for visually
programming in Snart. SPE provides a multiple view programming environment
with both textual and graphical manipulation of Snart programs. Design-level and
implementation-level changes are kept consistent using the MViews change
propagation model.

Other applications of MViews are currently under development. A dataflow
programming tool, after the style of Prograph [2], will provide an object-oriented
dataflow diagraming tool. These dataflow programs can be integrated with Snart

code allowing a mixture of conventional and dataflow programming in SPE. A
visual debugger for Snart programs uses a similar approach to the SPE graphical
tools but displays the state of objects rather than classes. A dialog box "painter" is
a visual tool for laying out dialog boxes which can then be included within a Snart
program or with conventional Prolog programs. An entity-relationship diagraming
tool provides graphical entities and relationships which are translated into
relational schema that are viewed and manipulated in a textual view.

Future applications we envisage for MViews include specialisations of IspelM for
object-oriented languages other than Snart including Eiffel [18] and Kea [19].
Further specialisation of IspelM for object-oriented analysis [20, 21] would
provide facilities more abstract than the current design-implementation-
maintenance views of IspelM but should allow progressive refinement through to
a full implementation. Program visualisation tools will provide a more graphical
and dynamic view of program execution than that provided by the visual
debugger.

Acknowledgements
The financial assistance of the Building Research Association of New Zealand,
and the University of Auckland Research Committee is gratefully acknowledged.

References
[1] Ingalls D, Wallace S, Chow Y Y, Ludolph F, Doyle K, Fabrik: A Visual Programming

Environment, in:Proc OOPSLA ‘88, (1988) 176-189
[2] Cox P T, Giles F R, Pietrzykowski T, Prograph: a step towards liberating programming

from textual conditioning, in: Proceedings of 1990 IEEE Workshop on Visual Languages,
150-156

[3] Reiss S P, GARDEN Tools: Support for Graphical Programming, in: Lecture Notes in
Computer Science #244, Springer-Verlag, (1986) 59-72

[4] Ambler A, Burnett M, Influence of Visual Technology on the Evolution of Language
Environments, in:IEEE Computer, 22 (9) (1989) 9-22

[5] Myers B A, Taxonomies of Visual Programming and Program Visualization, in: Journ
Visual Languages and Computing, 1 (1) (1990) 97-123

[6] Grundy J C, Hosking J G, and Hamer J, A Visual Programming Environment for Object-
Oriented Languages, in: Proc TOOLS 5, Prentice-Hall, (1991) 129-138

[7] Pountain R, Adding objects to Prolog, in: Byte, August (1990), 64IS-15 - 64IS-20
[8] Ratcliffe M, Wang C, Gautier R J , and Whittle B R, Dora: a structure-oriented

environment generator, in: Software Engineering Journal, May (1992) 184-190
[9] Minör S, Structured Command Interaction Based on a Grammar Interpreting Synthesizer,

in: Proc of the Second IFIP Conference on Human-Computer Interaction, North-Holland
[10] Garlan D,Views for Tools in Integrated Environments, PhD Thesis, Carnegie-Mellon

University, CMU-CS-87-147 (1987)
[11] Horwitz S and Teitelbaum T, Generating Editing Environments Based on Relations and

Attributes, in:ACM TOPLAS, 8 (4) (1986) 577-608
[12] Langerak R, View Updates in Relational Databases with an Independent Scheme, in: ACM

Transactions on Database Systems, 15 (1) (1990) 40-66
[13] Glinert E P, and Tanimoto S L, PICT: An interactive, graphical programming environment,

in: IEEE Computer, 17 (11) (1985) 7-25
[14] Reiss S P, PECAN: Program Development Systems that Support Multiple Views, in: IEEE

Transactions on Software Engineering, 11 (3) (1985) 276-285
[15] Arefi F, Hughes C E, and Workman D A, Automatically Generating Visual Syntax-

Directed Editors, in:CACM, 33 (3) (1990) 349-360

[16] Reps T and Teitelbaum T, The Synthesizer Generator, in: Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, ACM, New York, (1984) 42-48

[17] Vlissides J M,Generalized Graphical Object Editing, PhD Thesis, Stanford University,
(1990) CSL-TR-90-427

[18] Meyer B, 1988: Object-Oriented Software Construction, Prentice-Hall (1988)
[19] Hosking J G, Hamer J, Mugridge W B, Integrating functional and object-oriented

programming, in: Proc TOOLS3, TOOLS Pacific, Sydney, (1990) 345-355
[20] Coad P, Yourdon E, Object-Oriented Analysis, Second Edition, Yourdon Press (1991)
[21] Booch G, Object-Oriented Design with Applications Menlo Park, CA,

Benjamin/Cummings (1991)

