
Revised version in the New Zealand Journal of Computing, Vol. 4, No. 2, 1993, pp. 31-40.

The MViews framework for constructing
multi-view editing environments

JOHN C. GRUNDY and JOHN G. HOSKING
Department of Computer Science, University of Auckland

ABSTRACT
MViews attempts to abstract out the common features of multi-view editing environments that
support integrated textual and graphical programming with consistency management. It provides a
conceptual model and reusable object-oriented framework for constructing interactive
programming environments that provide multiple textual and graphical views. It supports multiple
views of a base document, maintaining consistency between each of the views using an update
record mechanism. MViews has been used to construct a visual programming environment for an
object-oriented language featuring both graphical and textual views of the program. Other
applications of MViews under development include entity-relationship and dataflow diagrammers,
a visual debugger and a dialog box painter.

1. Introduction
Diagrams are useful in all phases of the software lifecycle to help explain and
understand concepts that are difficult to describe in text (Davis, 1988). In object-
oriented programming, for example, diagrams illustrating inheritance
relationships are an invaluable aid in understanding program structure.

A natural extension of using diagrams to explain programs is to use diagram
construction as a means of programming systems. This visual programming
approach to program construction is becoming increasingly popular. Example
visual programming systems include Fabrik (Ingalls et al, 1988), Prograph (Cox et
al, 1990) and Garden (Reiss, 1986). Useful reviews of visual programming can be
found in (Ambler and Burnett, 1989; Myers, 1990).

In previous work we have developed Ispel, a visual programming environment for
object-oriented programming (Grundy et al, 1991). Ispel allows users to program
either textually or graphically. In the latter mode, class structure diagrams can be
constructed to define inheritance relationships and client-server relationships. An
important feature of Ispel is its support of multiple views of a program. Multiple
diagrams can be constructed with information shared between views.
Modifications can be made to any of the views and the other views are
automatically updated to be consistent.

In this paper we describe MViews, an abstraction from our earlier work on Ispel.
MViews provides a framework to support the development of visual
programming environments which include the multiple view with consistency
model and free interchange between textual and graphical modes of programming.
Visual programming environments for particular tasks, such as object-oriented
programming or dataflow programming, are constructed by appropriately
specialising MViews.

This paper begins with a description of the MViews conceptual model and
architecture. This is followed by discussion of an object-oriented Prolog and its
programming environment. This environment is a specialisation of IspelM, an
MViews-based visual programming environment for object-oriented languages.
An over-view of the implementation of MViews and IspelM is presented and the
paper concludes with a discussion of current and future work.

2. MViews and IspelM Architectures

Components of an MViews Environment
The central part of MViews is the program representation database which holds
all information relating to program structure and different views of a program.
Tools communicate via this central data repository which can also provide tool-
specific data storage. Tools for a specific environment, such as text or graphic
editors, are either tailor-made for the application or specialised from generic tools
included in the MViews framework.

Graphical editors are structure-oriented, providing tools for manipulating specific
aspects of a program, and utilise direct manipulation of graphical structures.
Textual editors consist of an editor, an unparser and a parser. Unparsers convert a
shared program representation into a textual form and parsers convert an edited
piece of code into changes to this program representation. Existing language
compilers and run-time systems can be used or new ones built using the MViews
framework.

Multiple View Support
The main characteristic of MViews is its central support of multiple views. The
term “multiple views” is used to describe related, yet distinct, ideas by different
researchers. In MViews we define three types of view:

• Base view: This is a canonical representation of a complete program
constructed as a synthesis of all other views. There is one base view per
program.

• Subset views: These describe subsets of a base view and may overlap so
the same information can be accessed and manipulated via different
subset views. Examples of systems incorporating a similar notion to
subset views include:

• Ispel (Grundy et al, 1991), where multiple views describe
overlapping subsets of a base view of an object-oriented
program.

• The dynamic and static views of MELD (Garlan, 1987) which
partition programs into respectively overlapping and non-
overlapping subsets.

• Database views which filter out unwanted information.
Database views are usually non-updatable, limiting the
consistency management problems (although see (Langerak,
1990; Horwitz and Teitelbaum, 1986)).

• Display views: These describe how some part of the program is to be
rendered on the screen and interacted with. The same program fragment
can be rendered in a variety of notations, textual and graphical, using
different display views. Many visual programming systems utilise some
form of multiple display views. Examples include PICT (Glinert and
Tanimoto, 1985), PECAN (Reiss, 1985), Garden (Reiss, 1986), and
Ispel. Users interact with display views to modify either graphical

figures and connectors or textual characters which are translated into
subset and base view modifications.

Conceptual Foundations
MViews represents programs and views as collections of directed graphs. Thus
program structure in MViews is specified in terms of program elements (graph
nodes) and relationships between elements (labelled graph edges). Language
semantic information for a particular program can be stored in the environment in
an analogous manner. This program representation is similar to that employed by
deterministic graph transformation systems (Arefi et al, 1990). Subset views of
this program are constructed which themselves are directed graphs representing a
subset of the base program graphs (with the components of these view graphs
being a subset of base program components). Each subset is rendered (displayed)
either graphically or textually. Hence a “view” of the base program is a
subset/display pair which render several base program components.

...

Base View Display Views
(Subset Data)

Subset Elements Display Views (Windows)

Add/Delete
Element

Est/Disolve
Relationship

Update
Attribute

Add/Remove
Base

Add/Remove
Subset

Cut/Copy/Paste
Graph Add/Delete

View

Parse

Add/Delete/
Modify Icon

Type

Figure 1. Some basic operations on MViews program graphs.

Graph operations are employed to modify a program graph. The semantics of
these operations could be described as the editing semantics of the programming
environment, i.e. the effect on the program state of applying an operation. Figure
1 shows typical operations affecting different view types and inter-view
relationships.

Base view components store information about the total program graph. Display
components store a subset of their base component data and render it in a textual
or graphical form. Subset components relate base components to their display
components. Subset components translate base updates into display updates and
vice-versa. A base component need have no knowledge about its displays, and
similarly a display no direct knowledge about its base, as subsets moderate all
base/display updates. A display view may contain one or more disjoint graphs and
display components need not be connected (mapped) to a base component.

A subset component may have several display components in the same or
different display views and may have more than one base component. A base
component may have several subsets (typically one for each “kind” of display)
and a display can have several subsets. Thus MViews supports a very flexible
base to display mapping with one display possibly rendering a subset of several
base elements. Figure 1 also shows some typical base/subset/display components
and their relationships.

Propagation and Recording of Change
Propagation of change is an essential aspect of MViews’ multiple views. If shared
information is modified in one view, a consistency management algorithm
propagates the modifications to other views.

A change is typically made at the display level: text is modified and then parsed
or graphical elements are added and updated. The display operations are then
translated into base operations by subset elements. The base propagates this
change to all its subsets which in turn update their displays.

MViews uses a concept of update records to propagate graph modifications and
document program change. When a component is modified by an operation it
“records” the change as an update record against itself. Base components store an
update record to document changes they have undergone. Display components
send their updates to their enclosing view which uses them to implement an
undo/redo facility and partial “history” of their changes. As changes are made via
display views, undoing a change is accomplished by sending its update record to
the modified element for reversal (or re-execution for redo).

Every component has zero or more related components that may be affected by a
change to itself (called dependent components). In addition to recording changes,
components send their update records to these dependent components.
Dependents interpret the update and modify themselves (if necessary), possibly
generating further update records. This provides a mechanism for implementing
inter-element constraints, data-driven programming and view updating. A base
components’s dependents includes all of its subsets, a subset includes its base(s)
and displays, and a display includes its subsets.

As change is sequential, update records can be applied by dependents
immediately (data-driven), when the dependent requires a changed value
(demand-driven), or a combination of both. This allows increased efficiency and
provides a change propagation and view updating mechanism with flexibility
similar to Hudson’s algorithm for attribute grammars (Hudson, 1991). As
dependents are passed a complete update record, they do not have to reconcile
themselves to their parent as views do in the Model-View approach of Smalltalk
(Goldberg and Robson, 1984) and Subject-View of Unidraw (Vlissides, 1990).
This also allows more flexible and efficient re-computation after change than
Hudson’s approach (which only indicates that a parent attribute has changed and
not how it has changed). Our program graph approach provides a similar level of
abstraction to the list representation of (Dannenburg, 1990) but allows a more
natural description program structure and comparable abstract update, undo and
incremental redisplay capabilities using update records.

IspelM Architecture
IspelM is an Ispel-like object-oriented programming environment which supports
multiple textual and graphical views of an object-oriented program. An object-

oriented program can be represented as an MViews graph with class and feature
elements and generalisation and client-server relationships. A class diagram view
of this program contains class icons (possibly including feature names) and
generalisation and client-server icon connections. Textual views of a class include
the class interface, its method implementations and documentation of class
components.

3. The Snart Programming Environment
The first application of MViews has been in the development of a visual
programming environment for an object-oriented Prolog called Snart. This
involved a two step specialisation of MViews. The first step was to generate
IspelM and further specialisation tailored IspelM for programming in Snart
producing the Snart Programming Environment (SPE).

% Definition of the rectangle class
class(rectangle,
 parents([closed_figure([
 rename(create,fig_create),
 rename(info,closed_info)])
]),
 features([
 height:int,
 width:int,
 create, area,
 resize, draw,
 perimeter, info])).

% Create a rectangle
rectangle::create(Rect,Window,
 Location,Width,Height) :-
 Rect@width:=Width,
 Rect@height:=Height,
 Rect@fig_create(Window,Location).

% Area for a rectangle
rectangle::area(Rect,Area) :-
 Area is Rect@width * Rect@height.

% Resize a rectangle
rectangle::resize(Rect,NewX,NewY) :-
 Rect@width:=NewX,
 Rect@height:=NewY,
 Rect@draw.

% Draw a rectangle
rectangle::draw(Rect) :-
 Rect@window(Window),
 Rect@location((X,Y)),
 Rect@width(W),
 Rect@height(H),
 (Rect@visible(true) ->
 Window@chg_pic(Rect,
 box(Y,X,H,W))
 ; Window@add_pic(Rect,
 box(Y,X,H,W))
),
 Rect@visible:=true,
 Rect@frame:=box(Y,X,H,W).

% Perimeter for a rectangle
rectangle::perimeter(Rect,Perim) :-
 Perim is
 2 * (Rect@width + Rect@height).

% Info for rectangle
rectangle::info(Rect) :-
 writenl('Info for rectangle:'),
 Rect@closed_info.

Figure 2. An example Snart class defining rectangles.

Snart
Snart is an object-oriented extension to Prolog developed by the authors. We had
previously used Prolog to good advantage in the development of Ispel (Grundy et
al, 1991) but found the lack of structuring beyond the predicate level a
disadvantage. Snart retains the advantages of Prolog programming but embedded
within an object-oriented framework similar to that of Prolog++ (Pountain, 1990),
ObjVProlog (Malenfant et al, 1988), and ProTALK (Quintus, 1992). Figure 2
shows an example of Snart code.

Snart provides class definitions which include attribute and method specifications.
Multiple, repeated inheritance is supported together with redefining and renaming
of features to avoid name clashes. Method predicates are defined separately in a
C++ style and may have multiple clauses. Attributes can be assigned to and are
therefore impure Prolog. They provide a structured alternative to using the
standard Prolog assertion and retraction facilities. Programmers can freely mix
Snart code and standard Prolog code. The implementation of Snart has aimed for
efficiency of execution with object creation, storage, method dispatch and
attribute access optimized.

An Overview of SPE
SPE supports multiple textual and graphical views of a Snart program sharing
common information. Multiple views allow the construction of many diagrams
each focussing on a particular aspect of the program thus reducing the cognitive
complexity in understanding those aspects of the program. Consistency
management is employed to maintain data integrity between all views, textual or
graphical, that share information.

Each view supports the most appropriate method of manipulation. Graphical
views are structure-edited using a palette of supplied tools and menus while
textual views are free-edited and parsed. This differs from comparable approaches
that only employ restrictive structure-oriented editing (Minör, 1990; Ratcliff et al,
1992).

Figure 3 shows SPE editing a simple drawing program implemented in Snart. One
graphical view shows the button and figure inheritance hierarchies. The other
shows client-server relationships between the drawing_window and figure
classes in the context of adding and rendering pictures in a window. One textual
view shows the class definition for drawing_window and the other the hide
method predicate for figure.

Programmers typically use graphical views for analysis and design of their
programs and to visually document a program to enhance readability and
browsing. These views provide class icons with feature names (including
inherited features), abstract and concrete classes, generalisation, association and
client-server relationships, and classification. Tools and menus are used to
interactively add, update, and remove icons and connectors.

Textual views are typically used to implement method predicates, to add Prolog
predicates, and to specify additional class definition details such as renaming of
inherited features. Arbitrary documentation of parts of a program describing
design or implementation detail can be added using textual views. After parsing
textual views the existing Snart compiler is then used to generate Snart code.
Programs can be run and debugged using the Prolog run-time system and object
data is displayed using graphical object views.

Programmers determine the feature names displayed in a class icon and the
relationships shown in a graphical view. Textual views may contain several class
definitions or method predicates at a programmer’s discretion. Class definitions
may be canonical (representing a Snart class) or a class “view” with only some of
a class’s total features (including inherited features) being displayed.
Documentation and Snart code textual forms may be freely mixed within a view.
These facilities assist programmers in managing the complexity of their programs
by showing detail only of relevance to the view.

Figure 3. The Snart Programming Environment.

Programmers need to locate information easily from a large number of views and
be able to gain a high-level over-view of different program aspects. SPE's
approach is to use the program views themselves in a hypertext-like fashion as the
basis for browsing. Class icons in graphical views have a number of active
regions, or “click-points”, which cause pre-determined actions to be carried out
when clicked on, similar to Prograph’s dataflow entities (Cox et al 90). Click
points allow rapid navigation to any other views (textual or graphical) containing
the class or individual features of the class. SPE provides menus for textual views
that perform similar facilities to click points.

Programmers can construct additional views for the sole purpose of program
browsing, based on information selected from other views via dialogs. This
provides a very flexible static program visualisation mechanism with view
composition and layout under the complete control of a programmer. A caching
system means not all views and base data need be in memory at once; updates can
be propagated to views when they are selected and reloaded and base data can be
incrementally loaded and saved as required.

Managing Change in SPE
Object-oriented software development tends to be an evolutionary process
(Henderson-Sellers and Edwards, 1990; Coad and Yourdon, 1991). Hence
program design and implementation may require change for a variety of reasons.
A design may be incomplete and require modification which impacts on its
implementation. Errors in an implementation must be corrected which in turn may

highlight deficiencies in a design. Changes may even be transient in that they
inform programmers of tasks to perform or errors requiring correction. Many
CASE tools and programming environments provide facilities for generating code
based on a design (Coad and Yourdon, 1991; Wasserman and Pircher, 1987) but
few provide consistency management when code or design are changed.

A key feature of SPE (and MViews) is the method of recording changes and
handling updates to views that result from changes to another view. In some
cases, such as a change to a feature name, updates can be made directly. In other
cases, such as adding an abstract client-server connection, it is not possible to
automatically infer the correct modification to a view and user assistance is
needed. For this reason, updates to views are not always immediately performed.
Rather, an indication of the impending update is given to the user who can then
either accept, provide an implementation for, or reject the update.

As an example, a modification to a graphical view such as renaming the
gfigures feature of drawing_window to figures, is reflected in a corresponding
textual view by an update record as shown in Figure 3. This record informs the
programmer of the change to the base data and allows her/him to either make the
change or to select the update record and have SPE make the change to the text (in
this case, changing gfigures : list(figure) to figures : list(figure)).

/*updates_start(94).
update(5). % rename feature gfigures to figures
update(6). % *** Compilation Error: duplicate feature names for clicked
update(7). % User Update: Modify drawing_window so figures are stored in
figures only
updates_end. */

/*
 * Drawing Window class.
 *
 */

class(drawing_window,
 parents([
 window([rename(clicked,window_clicked)])
]),
 features([
 buttons:list(drawing_button),
 current_button:drawing_button,
 ...

Figure 4. Different types of updates for drawing_window.

Another update record is shown in the figure::hide view. A client-server link
has been added between drawing_window and figure indicating that the del_pic
feature of the drawing_window is used by the hide feature of figure. For this
change automatic update of the textual view is not possible as SPE cannot infer
the appropriate modification to the hide method and the user must implement the
update.

Going from textual to graphical (or other textual) views is handled in a similar
manner. After parsing a textual view, updates to the program are determined by
changes to the corresponding parse tree. Any updates are reflected in graphical
views by applying the change (for example, if a feature is renamed), or displaying
the changed data in a different colour (for example, red for a deleted feature).

Updates are propagated to all multiple graphical and textual views sharing
changed information.

Updates are also used to inform users of semantic or compilation errors (syntax
errors are flagged interactively) and to document changes. Programmers can add
arbitrary “user-defined” updates that describe various changes performed or to
perform on a program. A compilation error and user-defined update are shown in
the drawing_window class definition in Figure 4. The complete set of update
records for a program component can be viewed in a dialog and updates either
deleted or recorded as “history updates” (which document previous changes).

4. Design and Implementation
To produce a reusable MViews system either a programming environment (PE)
generator with its own specification language similar to that of the Synthesizer
Generator (Reps and Teitelbaum, 1984) could be constructed, or a specialisable
framework implemented as in Unidraw (Vlissides, 1990). Many aspects of a
good, interactive PE, such as the editor functionality and tool interfacing systems,
require specialisation and fine-tuning on a scale difficult to provide with a
specialised PE generator. Generated PEs are also well known for their poor user
interfaces and performance (Minör, 1990). For these reasons the second approach
was chosen.

Object-oriented languages foster reuse in various ways (Meyer, 1988) and a
specialisable MViews framework lends itself to an object-oriented representation
and implementation. Generalisations can be used to relate parts of the
environment and specialisation and genericity allow reuse of these abstractions.
Type aggregation and client-server relationships allow attributes and operations to
be attached to appropriate classes and accessed and inherited via well-defined
mechanisms.

The MViews Framework
Development of the MViews architecture commenced with a denotational
semantics specification of the graph representation of program state and the
operations performed on that state (including a formal treatment of undo/redo
operations). From this specification an object-oriented design and implementation
followed. MViews class hierarchies were derived from the formal specification
and used to structure the framework. Class responsibilities and services were then
determined and classes implemented. MViews provides a collection of abstract
classes that implement or provide a framework for MViews-based systems.

MViews components are defined as Snart classes, operations are implemented as
Snart method calls and attributes as Snart object attribute values. All MViews
components (views and view elements) support the basic operations of fetching
and updating attributes, manipulating list attributes (for efficiency), recording and
propagating updates, and component deletion.

Base program views hold all data about a program. Element classes hold attribute
and relationship information with attributes implemented as Snart attributes.
Relationships are modelled as elements, an element with a list of element
references, or an element reference or list of element references. Operations are
performed by a set of defined features (such as attribute update or element
deletion) and can be augmented with more complex operations by sub-classing.
As all operations are implemented as features, sub-classing can over-ride default

implementations to provide language semantics and constraints support. Updates
are recorded in an application-specific form against base elements.

Subset elements translate base updates to display updates and vice-versa. Subsets
translate element creation and deletion and attribute updates generically. Sub-
classing can extend this simple update propagation to provide arbitrary translation
mechanisms. Base changes are propagated to subset elements and are applied to
each of the subset’s displays in the current (front) view. If a display is not in the
current view, updates are cached against its view and the display element updated
either incrementally or when its view becomes the current view.

Textual and graphical display views render subsets in either a graphical or textual
form. They provide operations to manipulate display elements and views, and
record display update records for undo/redo. Display elements are partial copies
of base elements and provide features to perform standard operations, find a base
element to map to when added, and generate their view rendering. Undo of
display operations is completely generic for basic operations and is easily
extended by sub-classing. Updates are passed from subsets to displays to re-
render them (possibly incrementally, depending on the update) and displays send
operations to their subsets which modify their base (if necessary).

Graphical views provide editors which are structure-oriented. They include tools
and menus that act upon icons and connector glue to effect changes to display
elements. The built-in MViews text editor is used to manipulate textual views but
a standard text editor could also be used. The former provides menus to support
view navigation, structured access to subset information and multiple text forms.
Views are parsed to update MViews data and assert Prolog terms using either the
Prolog parser or a user-defined parsing algorithm.

MViews provides generic routines to store and reload element and view data in a
persistent form. This includes incremental saving and loading of both base and
view data and supports storage schema evolution during development. The current
facility uses Macintosh text resources and stores information as a collection of
Prolog terms. While this provides a very flexible storage scheme, we plan to use a
more versatile PCTE-like object database in future versions of MViews, similar to
that employed by Dora (Ratcliffe et al, 1992).

MViews does not currently support version control or multi-user updates to
shared programs. We are extending MViews so update records can be recorded in
groups and undone and redone in an arbitrary order to support very flexible
version control. We also plan to use update records to moderate con-current
access and modification of programs.

The IspelM Framework and SPE
IspelM is a specialisation of MViews and itself provides a framework for
implementing programming environments for object-oriented languages. IspelM
defines classes which are specialisations of MViews framework classes. These
implement:

• Program representation and storage including program, cluster, class and
feature elements, and generalisation, client-server and classifier
relationships.

• Graphical display views for describing and manipulating class
relationships and displaying run-time object data.

• Textual display views and forms for implementing class definitions and
method predicates, documenting programs, and showing partial class
information.

IspelM uses MViews to implement program storage and view construction
facilities. IspelM defines specialised operations and renderings for graphical
views, parse-tree processing for textual views, and unparsing and translation
mechanisms for update records. MViews provides IspelM’s view navigation and
program persistency facilities, basic textual and graphical view manipulation
tools, and a framework for supporting update records.

SPE specialises IspelM to support development of Snart programs. SPE includes
Snart-specific parsers and unparsers for textual display views, and saving and
loading support for Prolog code. Graphical views and base information require
little change to support a different language as common object-oriented concepts
are captured well at the IspelM level. An interface from IspelM to the language
compiler and run-time system is necessary for different languages.

Experience with SPE
MViews and SPE are currently implemented in Snart and run under LPA
MacProlog on the Macintosh. The SPE environment performance is acceptable
for designing, implementing, and debugging Snart programs although both
graphical view interaction and program saving and loading can be improved. We
have developed several small programs in SPE to illustrate the capabilities of the
environment. SPE is also used as an object-oriented analysis and design tool in
addition to an environment for the construction of Snart software.

5. Summary and Current and Future Research
We have described MViews, a framework for developing visual programming
environments featuring multiple views with consistency management. MViews
has been applied in the development of IspelM, a generic environment for object-
oriented programming, and SPE, a specialisation of IspelM for visual
programming in Snart. SPE provides a multiple view programming environment
with both textual and graphical manipulation of Snart programs. Design-level and
implementation-level changes are recorded and both phases of development kept
consistent using a uniform model.

Other applications of MViews are currently under development. A dataflow
programming tool, after the style of Prograph (Cox et al, 1990), will provide an
object-oriented dataflow diagraming tool. These dataflow programs can be
integrated with Snart code allowing a mixture of conventional and dataflow
programming in SPE. A visual debugger for Snart programs uses a similar
approach to the SPE graphical tools but displays the state of objects rather than
classes. A dialog box "painter" is a visual tool for laying out dialog boxes which
can then be included within a Snart program or with conventional Prolog
programs. This may be extended to support more general user interface building
and programming-by-example. An entity-relationship diagraming tool provides
graphical entities and relationships which are translated into relational schema that
are viewed and manipulated in a textual view.

Future applications we envisage for MViews include specialisations of IspelM for
object-oriented languages other than Snart including Eiffel (Meyer, 1988) and
Kea (Hosking et al, 1990). Further specialisation of IspelM for object-oriented

analysis (Booch, 1991; Coad and Yourdon, 1991) would provide facilities more
abstract than the current design-implementation-maintenance views of IspelM but
should allow progressive refinement through to a full implementation. Change
propagation between analysis and design could be supported using the update
record model. Program visualisation tools will provide a more graphical and
dynamic view of program execution than that provided by the visual debugger.
Using MViews for both schema and instance browsing and manipulation in
program visualisation and future versions of ICATect (Amor et al, 1992) will
extend its program-based model. A multi-user environment with shared access to
program data and views is envisaged with support for versioning and concurrent
updates.

Acknowledgements
The helpful comments of the anonymous reviewers greatly assisted production of
this paper. The financial assistance of the Building Research Association of New
Zealand and the University of Auckland Research Committee is gratefully
acknowledged. John Grundy was supported by an IBM Postgraduate Scholarship,
a William Georgetti Postgraduate Scholarship and a New Zealand Universities
Postgraduate Scholarship while pursuing this research.

References
Ambler, A., Burnett, M. (1989): Influence of Visual Technology on the Evolution of Language

Environments, In IEEE Computer, 22 (9), 1989, 9-22
Amor, R.A., Hosking, J.G., Groves, L.J., Donn, M.R. (1992): Design tool integration: model

flexibility for the building profession, In Proceedings Building Systems Automation-
Integration 1992 Symposium: Computer Integration of the Building Industry, Dallas,
Texas, 1992.

Arefi, F., Hughes, C.E., and Workman, D.A. (1990): Automatically Generating Visual Syntax-
Directed Editors, InCACM, 33 (3), 1990, 349-360.

Booch, G. (1991): Object-Oriented Design with Applications Menlo Park, CA,
Benjamin/Cummings, 1991.

Coad P., Yourdon, E. (1991): Object-Oriented Analysis , Second Edition, Yourdon Press, 1991.
Cox, P.T., Giles, F.R., Pietrzykowski T. (1990): Prograph: a step towards liberating programming

from textual conditioning, In Proceedings of 1990 IEEE Workshop on Visual Languages,
1990, 150-156.

Dannenberg, R.B. (1990): A Structure for Efficient Update, Incremental Redisplay and Undo in
Graphical Editors, In Software-Practice and Experience, 20 (2), 1990, 109-132.

Davis, A.M. (1988): A Comparison of Techniques for the Specification of External System
Behaviour’, InCACM , 31 (9), 1988, 1098-1115.

Garlan, D. (1987):Views for Tools in Integrated Environments, PhD Thesis, Carnegie-Mellon
University, CMU-CS-87-147, 1987.

Glinert, E.P., and Tanimoto, S.L. (1985): PICT: An interactive, graphical programming
environment, In IEEE Computer, 17 (11), 1985, 7-25.

Goldberg, A. and Robson, D. (1984): Smalltalk-80: The Language and its Implementation ,
Addison-Wesley, Reading MA., 1984.

Grundy, J.C., Hosking, J.G., and Hamer, J. (1991): A Visual Programming Environment for
Object-Oriented Languages, In Proc TOOLS 5, Prentice-Hall, 1991, 129-138.

Henderson-Sellers, B. and Edwards, J.M. (1990): The Object-Oriented Systems Life Cycle, In
CACM , 33 (9), 1990, 142-159.

Horwitz, S. and Teitelbaum, T. (1986): Generating Editing Environments Based on Relations and
Attributes, InACM TOPLAS, 8 (4), 1986, 577-608.

Hosking, J.G., Hamer, J., Mugridge, W.B. (1990): Integrating functional and object-oriented
programming, In Proceedings of TOOLS3, TOOLS Pacific, Sydney, 1990, 345-355.

Hudson, S.E. (1991): Incremental Attribute Evaluation: A Flexible Algorithm for Lazy Update, In
ACM TOPLAS 13 (3), 1991, 315-341.

Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., Doyle, K. (1988): Fabrik: A Visual
Programming Environment, In Proc OOPSLA ‘88 , 1988, 176-189.

Langerak, R. (1990): View Updates in Relational Databases with an Independent Scheme, In ACM
Transactions on Database Systems, 15 (1), 1990, 40-66.

Malenfant, J., Lapalme, G., and Vaucher, J. (1988): ObjVProlog: Metaclasses in Logic, In
Proceedings of ECOOP ‘89 Conference , Cambridge University Press, 1989, pp. 257-269.

Meyer, B. (1988): Object-Oriented Software Construction, Prentice-Hall, 1988.
Minör, S. (1990): On Structure-Oriented Editing , PhD Thesis, Department of Computer Science,

Lund University, Sweden, 1990.
Myers, B.A. (1990): Taxonomies of Visual Programming and Program Visualization, In Journal

Visual Languages and Computing, 1 (1), 1990, 97-123.
Pountain, R. (1990): Adding objects to Prolog, In Byte , August (1990), 1990, 64IS-15 - 64IS-20.
Quintus Corporation (1992): ProTALK 1.0 Reference Manual, Quintus Corporation, 2100 Geng

Road, Palo Alto, CA 94303, 1992.
Ratcliff, M., Wang, C., Gautier, R.J., Whittle, B.R. (1992): Dora - a structure oriented

environment generator, In Software Engineering Journal, 7 (3), 1992, 184-190.
Reiss, S.P. (1985): PECAN: Program Development Systems that Support Multiple Views, In IEEE

Transactions on Software Engineering , 11 (3), 1985, 276-285.
Reiss, S.P. (1986): GARDEN Tools: Support for Graphical Programming, In Lecture Notes in

Computer Science #244 , Springer-Verlag, 1986, 59-72.
Reps, T. and Teitelbaum, T. (1984): The Synthesizer Generator, In Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments , ACM, New York,1984, 42-48.

Vlissides, J.M. (1990): Generalized Graphical Object Editing, PhD Thesis, Stanford University,
CSL-TR-90-427, 1990.

Wasserman, A.I., Pircher, P.A. (1987): A Graphical, Extensible, Integrated Environment for
Software Development, In SIGPLAN Notices 22 (1), 1987, 131-142.

