
Revised version in Proceedings of the 1993 NZCS Conference, August, 1993, pp. 465-478. 

Integrated object-oriented software development in SPE 

John C. Grundy and John G. Hosking 
Department of Computer Science 
University of Auckland 
Private Bag 92019, Auckland 
jgru1@cs.auckland.ac.nz 
 
 
ABSTRACT 
SPE is a software development environment which supports multiple textual and graphical 
views of a program. Views are kept consistent with one another using a mechanism of update 
records. SPE is useful throughout all phases of the software development life-cycle. It 
provides support for conceptual level object-oriented analysis and design using diagrams, 
visual and textual programming, hypertext-based browsing, and visual debugging, together 
with a modification history. SPE is implemented as a specialisation of an object-oriented 
framework and provides an environment for Snart, an object-oriented programming language. 
 

1. Introduction 
CASE diagrams are useful in all phases of the software life-cycle. In object-oriented (OO) 
programming, for example, diagrams illustrating class inheritance, association and 
aggregation relationships are an invaluable aid in understanding program structure [Coad and 
Yourdon 1991; Wilson 1990]. A natural extension of using diagrams to explain programs is 
to use visual programming as a means of constructing systems. Example visual programming 
systems include Fabrik [Ingalls et al 1988], Prograph [Cox et al 1990], and Garden [Reiss 
1986]. OO structure diagrams are thus useful for analysing and designing systems 
[Henderson-Sellers and Edwards 1990; Wasserman et al 1990], visually building OO 
structures [Grundy and Hosking 1991 and 1992], browsing OO programs [Fischer 1987], 
visualising and debugging OO systems [Haarslev and Möller 1990; Ingalls et al 1988], and 
documenting and explaining systems at a high level of abstraction [Booch 1991; Wilson 
1990]. Textual programming is also useful for describing the detailed aspects of software, 
such as implementing program functionality and detailed software documentation. 
 
Much current research in software development environments centres on integrating these 
graphical and textual approaches to defining software [Ratcliffe et al 1992; Grundy and 
Hosking 1992]. This allows software developers to use the most appropriate representation of 
a program at during different development phases. Different representations must be kept 
consistent by the environment, however, so developers do not try and use or modify 
inconsistent views of software. A common to achieving this view integration is by using 
structure-oriented (or syntax-directed) editing for both kinds of program representations 
[Ratcliffe et al 1992; Reps and Teitelbaum 1984; Magnusson et al 1990]. Structure-oriented 
editing has not been widely accepted by programmers, however, as editing is quite restrictive 
[Welsh et al 1991; Arefi et al 1990; Minör 1990]. We adopt a less restrictive approach which 



uses interactively-editing graphical views and free-edited and parsed textual views of 
programs. Both representations are kept consistent using a novel update record mechanism 
which propagates changes between all views of a program sharing common information. 
 
In this paper we describe SPE (Snart Programming Environment) which supports multiple 
textual and graphical views of an OO program, integrated so that information in each view is 
consistent with that in other views. SPE provides a software development environment in 
which high-level OO program structures are analysed, designed, constructed and browsed 
using graphical class diagrams. These class diagrams show some of the classes that make up 
an OO program, features of these classes (i.e. attributes (data) and methods (procedures) of 
the class), and relationships between classes. Code-level class interfaces (defining a class’s 
generalisation classes and features) and method implementations (procedural code) are 
programmed with free-edited text. Full consistency management between different phases of 
development is provided with design changes automatically modifying class and method 
interfaces and vice-versa. SPE also includes support for static program visualisation and 
browsing, dynamic program visualisation for debugging, and change documentation 
including a persistent history of program modifications, all integrated within one 
environment. 
 
In the next section we describe the different types of program view available. This is followed 
by an example analysis, design and implementation of a simple drawing program using SPE. 
A description of view construction mechanisms, view navigation, and program complexity 
management and browsing is presented. Section 6 describes SPE’s novel consistency 
management system and its uses. Brief descriptions of run-time support facilities and the 
architecture underlying SPE are followed by conclusions and discussion of current and future 
research. 

2. Views in SPE 
SPE allows a programmer to construct multiple textual and graphical views of a program. 
Fig. 1. is a screen dump showing two graphical and three textual views of a program 
implementing a simple drawing package. Each view renders a subset of the total program 
information. The window-root class view shows some of the inheritance and aggregation 
relationships between various classes of the drawing program. Information in a view may 
overlap with information in other views. For example, the figure and drawing window classes 
appear in both graphical views. An underlying base view integrates all the information from 
each view, defining the program as a whole. If shared information is modified in one of the 
views, the effects of the modification are propagated, via the base view, to all other interested 
views to maintain consistency. This consistency mechanism is described in Section 6. 
 
Fig. 1. also illustrates some of the components that can make up a graphical view. Icons 
represent classes with abstract classes (e.g. figure) being distinguished from concrete classes 
(e.g. window) by a grey icon border. Class icons can contain names of methods and attributes 
(features) of the class, including those defined by the class or those inherited. Generalisation 
relationships are represented by bold arrows (e.g. between drawing_window and window). A 
variety of client-supplier relationships can be represented. These include aggregates (for 
example, the figures feature of drawing_window holds a list of figures); feature calls 
between classes (i.e. one class calling a method or fetching an attribute belonging to another 



class) (for example, the draw method of drawing_window calls the add_pic method of 
drawing_window); and abstract class associations (drawing_window makes use of button) 
that can be used to represent arbitrary class relationships. 
 
Also shown in Fig. 1 are a class definition, a method implementation, and a documentation 
textual view, the latter being arbitrary text associated with a program component. The class 
interface textual view defines class generalisation classes (parents) and class attributes and 
methods. The method implementation view defines the procedural code implementing a class 
method. The documentation view supplies arbitrary text which describes the purpose of 
classes and/or class features. The text view syntax used is that of Snart, an object-oriented 
extension to Prolog with a C++ like syntax [Grundy and Hosking 1992]. These different 
textual forms1 can be mixed in one view or, as in Fig. 1., placed individually in separate 
views. 
 

 
 

Fig. 1. An example SPE graphical and textual program views. 
 

                                                
1A text form is some text describing one aspect of a program component. A class can have documentation and 
code text forms, a method can have code and documentation forms and other elements can have only 
documentation forms. 



3. Integrated Analysis, Design, Implementation and Maintenance in SPE 
The ability to generate an arbitrary number of views combined with the wide range of 
representations for viewing program components makes SPE useful throughout the program 
development cycle. Graphical views, such as the window-root class view, can be used during 
problem analysis to map out classes and their high level relationships, with documentation 
views providing more analysis detail. During design the analysis diagrams can be refined, 
either in the existing views, or in new design-oriented views such as the figure-draw view. 
Class definition and method implementation views allow detailed code to be added during 
late design and implementation. 
 

 
 

Fig. 2. Examples of the drawing program class hierarchy and extended analysis views. 
 
For example, the first step in an analysis of the drawing program is to determine the class 
hierarchies required. A special drawing_window class is derived from the window class, and 
the figure and button hierarchies are defined. Figures can be specialised to open_figure 
and closed_figure figures, and buttons to drawing_button. Fig. 2. shows this class 
hierarchy with the figures and buttons attributes of drawing_window. The next step is to 
extend this hierarchy (possibly using extra views) to include the major relationships between 
classes and important class attributes and methods. At the analysis stage documentation about 
the purpose of classes and relationships can be added using textual views for a particular 
class, as shown in fig. 2. 
 
After performing an analysis of the drawing program we can proceed to specify a design for 
its implementation. Extra detail is added to the various associations between classes, for 
example, the names to refer to them by and how they are to be implemented (as attributes, 
local or argument references, or by a feature call). Extra features and relationships between 
classes are introduced to implement various tasks. The analysis-level diagrams and 
documentation can be retained or new views created by copying information and extending it. 
The documentation added at the analysis phase can also be extended to describe more 
detailed program structure. Fig. 3. shows extended design-level views, some constructed by 



copying the analysis-level diagrams. The window-Design Relationships view has 
extended the features of the window, figure and button classes to incorporate design-level 
functionality (such as picture manipulation in windows) and data (references from figures and 
buttons to their owning window). The figure-Drawing view describes feature class between 
classes to illustrate the functionality of some drawing program classes graphically. 
 

 
 

Fig. 3. Examples of design-level diagrams. 
 
To implement a design in Snart the design diagrams can be extended to describe the actual 
types of client-supplier connections between classes. Class definition textual views are added 
to describe the complete class interface. Textual views are created in a similar manner to 
graphical views and consist of one or more text forms for different program components. Fig. 
4. shows a class definition and methods implemented for the drawing program. Note that the 
figure::hide-Method view also shows the window::del_pic method which figure::hide 
calls. Textual views allow programmers to represent code in more than one view to facilitate 
viewing and understanding of programs. 
 
When maintaining Snart programs in SPE, changes can be made at the analysis, design or 
implementation levels. SPE propagates analysis-level changes to the design, design changes 
to implementation views and implementation changes to design views. SPE also records 
changes against program components and provides browsing facilities for reviewing the 
modification history of a program. Section 6 discusses this consistency management system 
and program history in more detail. 



 

 
 

Fig. 4. Class definition and method implementation views for the drawing program. 
 
Construction of specialised graphical or textual views focusing on particular aspects of the 
program can assist programmers in understanding the program and repairing faults. The close 
integration of textual and graphical forms allows programmers to work in whichever 
representation they feel most comfortable, for example designing using text, with graphical 
views for documentation, or vice-versa. The usefulness of this approach is dependent on the 
ease in which views can be constructed and accessed, and their information integrated in a 
consistent manner with that of other views. These capabilities are described in the following 
sections. 

4. View Construction and Visual Programming 
The user of SPE may construct any number of views of a program. SPE programs are 
incrementally saved to and loaded from database storage. Thus only a subset of a total 
program and its views need be in memory at any one time. Each view may be hidden or 
displayed using the navigation tools described in the next section. Elements may be added to 
a view using a variety of tools, with a full undo-redo facility allowing any modification to be 



undone. SPE supports two types of view-element addition: the extension of a view to 
incorporate program elements already defined in another view (i.e. browser construction and 
program visualisation); and the addition of new program elements (i.e. visual programming). 
 
Each graphical view has a palette of "drawing" tools which are primarily used for the addition 
of new program elements. Classes and generalisation relationships are added to views 
interactively and classes can be selected and dragged in a similar manner to figures in a 
drawing package. Client-supplier relationships are added between classes interactively. A 
dialogue is used to specify information about the relationship including its name (if any), its 
arity (the number of classes participating in the relationship), whether it is inherited from an 
ancestor class, and the type (call, aggregate, abstract). Feature names may be added to class 
icons and can include features the class inherits (i.e. from its entire interface). Tools are also 
provided for creation of new views and removing elements from a view or completely from 
the program. 
 
Class icons have a click region at their base (discussed in the following section) which may 
be used in conjunction with the selection tool to add to a view information related to that class 
which has been defined in other views. This includes feature names, generalisations, 
specialisations, and the various forms of client server relationships. Thus specialised views of 
an existing or partially developed program can be rapidly constructed focusing on one or 
more aspects of that program. The view may then be used to extend or modify the program 
using the visual programming tools. The figure-draw view in Fig. 1., for example, is a 
specialised view showing the interaction of methods in each of the figure and 
drawing_window classes. Programmers lay out views themselves to obtain the most useful 
visualisation of programs and SPE automatically lays out expanded information (with 
programmers able to move these expanded objects to suit). 
 
Textual views are created in a similar manner to graphical views, but consist of one or more 
text forms, rather than icons and "glue". Textual views are manipulated by typing text in a 
normal manner, i.e. a "free-edit" mode of operation in contrast to the "structure-edit" 
approach of the graphical tools2 and then parsed to update base program information. This 
contrasts to most other environments, such as Dora [Ratcliffe et al 1992], Mjølner 
[Magnusson et al 1990], and PECAN [Reiss 1985] which use structure-editors for both 
graphics and text. Methods are implemented in the same way as class definitions and can be 
added to the same textual view as a class definition or have their own view (and window). 
Class definition and method textual views may be typed in from scratch or may be generated 
automatically from information about the class entered in other views and then extended in a 
free-edit fashion. 

5. View Navigation and Browsing 
As SPE allows an arbitrary number of views to be created for any class or feature, programs 
can become complex. Programmers must be able to locate information easily and be able to 
gain a high-level overview of different program aspects. SPE's approach is to use the program 
views themselves in a hypertext-like fashion as the basis for browsing. 

                                                
2They also have an alternative, high-level structure-oriented style of editing using menus for manipulating 
individual text forms.  



 
Class icons in graphical views have “click-points” which cause some pre-determined action 
carried out when clicked on (similar to Prograph’s dataflow entities [Cox et al 1990]). Fig. 5. 
shows the different click-points for a representative class icon.  

figure

window
draw
hide
pt_in_figure

{ }

Class views Class text

Feature textFeature views

Class features All class features

 
 

Fig. 5. Click-points on a class icon to aid navigation. 
 

Clicking on a class views point provides a list of views this class is a member of. Similarly, a 
feature views point provides a list of views a feature occurs in. A view can be selected from a 
views list dialogue and it will then become the new current view with its window brought to 
the front. Class text points select a default textual view a class occurs in to become the current 
view. If the class does not yet have any text view, one will be created and will become both 
the current view and the default text view for the class. Similarly, feature text points select or 
create the default text view for a feature. Clicking on a class features point provides a list of 
all features defined for a class. Clicking on an all class features point provides a list of all 
features for the class, including inherited features, in alphabetical order. Any feature may be 
selected from these lists and its views or default text view made the current view. Features 
and other class information can also be expanded into a view using these dialogs (either as 
part of a class icon or with extra class icons and glue added). 
 
SPE provides menus for textual views that perform similar facilities to click points. Any 
elements the text of which has been selected with the mouse can provide dialogs with feature 
lists or be manipulated like graphical icons (e.g. be hidden or their base data removed from 
the program). 
 
Programmers can construct additional views for the sole purpose of program browsing, based 
on information selected from other views. This provides a very flexible static program 
visualisation mechanism with view composition and layout under the complete control of a 
programmer. Textual views of a class can also be constructed showing a subset of a class’s 
entire interface. 

6. View Consistency and Update Records 
Object-oriented software development tends to be an evolutionary process [Henderson-Sellers 
and Edwards 1990; Coad and Yourdon 1991]. Hence program design and implementation 
may require change for a variety of reasons: 



 • The analysis of a program is changed affecting design and implementation. 
• A design may be incomplete and requires modification impacting on its 

implementation. 
• Errors are discovered on execution, correction of which may result in design 

changes. 
 
“Changes” may even be transient in that they inform programmers of tasks to perform or 
errors requiring correction. Many CASE tools and programming environments provide 
facilities for generating code based on a design [Coad and Yourdon 1991; Wasserman and 
Pircher 1987] but few provide consistency management when code or design are changed. 

6.1. Update Records 
A change in SPE may impact on more than one area of a program and may affect more than 
one view. Thus a mechanism is needed for managing changes, maintaining consistency 
between views after a change, and recording the fact that change has taken place. SPE uses 
update records for these purposes. When a change takes place (for example, a feature is 
renamed or its type changed, or a generalisation relationship is added to or removed from a 
class) this modification is recorded as an update record against the class and possibly some of 
its sub-components. 



 
 

Fig. 6. (a) Updates expanded in a textual view, (b) first update applied. 
 

6.2. Propagation of Update Records 
Update records are propagated from the view which is the source of a modification to the 
base view and, from there, to all other views affected by the modification. SPE, however, 
does not necessarily modify these other views automatically. For example, when a textual 
view is selected, any updates on elements in the view are expanded in a human-readable 
form, giving the programmer an opportunity to review the effects of changes made to other 
views. The programmer can have SPE apply the update to the view, can manually implement 
the update, or can reject the update. In the latter case, reparsing the view will effectively undo 



the change with the effects being propagated to other affected views. Changes are expanded 
into any textual view, including documentation views. 
 
Fig. 6 (a) shows a textual view with two update records expanded after corresponding 
changes in graphical views. The updates_start comment associated with all text forms is 
used as the position to expand the update records. The first update is a change of the name of 
the figures feature to gfigures. The second is the addition of a client-supplier relationship 
indicating that method clicked calls method pt_in_figure of class figure. Fig. 6 (b) shows the 
result after the programmer requests the first update to be applied to the view; the update 
record has been removed from the view and the feature's name has been changed 
appropriately. 
 
Some changes can not be directly applied by SPE to a textual view. SPE can not 
automatically make a change for adding or removing a client-supplier connection such as the 
second update record in Fig. 6 (b). This is because such a connection in a textual view is 
implemented as a feature call whose arguments and position in the Prolog code can not be 
determined. The update is expanded, but the programmer is expected to make an appropriate 
change to the Snart code and remove the update record. 
 
Update records are also used for processing of errors. For example, during compilation of 
class data, any semantic errors are expanded into textual views using update records. Fig. 6 
(b) also shows such an example, where two features of the same name have been defined in a 
class. 
 
For graphical views, updates from textual manipulation and parsing or other graphical views 
are reflected by making the change directly to the icons in the view. If an aspect of a program 
has been deleted (for example, a feature moved to a sub-class), any inconsistent feature 
connection is drawn shaded or coloured to indicate the deletion. 

6.3 Update histories 
Update records provide more than a consistency mechanism. Update records for a program 
component may be viewed via a menu option, providing a persistent history of program 
modification. User-defined updates may also be added to document change at a high level of 
abstraction. Programmers may add extra textual documentation against individual updates to 
explain why the change was made and possibly who made it and when. Fig. 7. shows the 
dialogs used to view updates and add user defined updates. 

6.4 Integrated Design Using Update Records 
Modifications to a program can be made at any level (analysis, design or implementation) and 
to any view. Update records will record the change and propagate it to any other affected 
views. This produces a very integrated environment with little distinction being made 
between graphical or textual program manipulation. In fact, little explicit distinction is made 
between the different phases of software development, unlike other systems with different 
tools being employed for different phases of development [Wasserman and Pircher 1987]. For 
example, if the drawing program requirements are extended so that wedge-shaped figures and 
arbitrary polygon figures are supported, these changes are made incrementally at each stage. 
Analysis views are extended to incorporate new figure and button classes, and new features 
are added to classes. Design-level views are extended to support the requirements of each 



new type of figure and implementation-level views are added or modified to implement these 
changes. 
 
Update records and the update history could also form the basis of a very flexible version 
control system. This would allow arbitrary undo/redo of updates (and groups of updates). 
Update records could also moderate concurrent access and modification of shared program 
views being developed by multiple users. We are extending SPE to utilise update records for 
these and other large-scale software development purposes. 

 
 

Fig. 7. User defined updates and update viewing. 

7. Run-time Support 
After update, textual views are parsed and the base program information updated to reflect 
any changes. Semantic values such as the entire interface for a class are recomputed when 
required. SPE uses the existing compiler and run-time system for a language to generate 
executable code and run a program. For example, after recompiling a textual view, SPE calls 
the Snart compiler with the textual view contents to regenerate its method dispatch tables and 
method code. 
 
SPE provides dynamic visualisation views that display the state of run-time objects. The 
existing Prolog debugger is used to trace control flow between methods and object views to 
browse the state of objects. Fig. 8. shows SPE being used to debug the drawing program. We 
are working on extending SPE’s object visualisation capabilities to include graphical object 



diagrams [Fenwick and Hosking 1993] and provide data structure and control flow 
visualisation, similar to [Haarslev and Möller 1990]. 

 
 

Fig. 8. Debugging the drawing program in SPE. 

8. The MViews Framework 
SPE is implemented as a specialisation of MViews, a generic framework for developing 
multiple-view based programming environments [Grundy and Hosking 1992 and 1993]. 
MViews provides base support for: multiple textual and graphical views; consistency 
management via the update record mechanism; undo and redo facilities using update records; 
and persistence. 
 
To produce a reusable architecture for MViews, a programming environment (PE) generator 
with its own specification language could have been constructed, similar to that of the 
Synthesizer Generator [Reps 1984], or a specialisable framework implemented, as used in 
Unidraw [Vlissides 1990]. However, many aspects of a good, interactive PE, such as the 
editor functionality and tool interfacing systems, require specialisation and fine-tuning on a 
scale difficult to provide with a specialised PE generator. We also wanted to experiment with 
various aspects of MViews and SPE which is difficult to do with a specialised generator 
language assuming an unchanging formal basis. For these reasons, the second approach was 
chosen and MViews was implemented as an extensible object-oriented framework (using 
Snart as the implementation language). The object-oriented approach taken to the design of 
MViews simplified considerably the implementation of facilities such as undo-redo, and 
update record propagation. 
 
Specialisation of MViews to SPE is in two steps. IspelM is a generic specialisation of 
MViews for object-oriented programming. It provides most of the graphical tool support used 



by SPE, together with other language-independent facilities. SPE specialises IspelM further 
for programming in Snart, through provision of Snart-specific facilities, such as parsers and 
unparsers. Specialisation of IspelM to support other object-oriented languages is possible, as 
is the tailoring of SPE or IspelM to support alternative notations for program elements 
compatible with the programmer's preferred OO Analysis/Design methodology. 

9. Conclusions and Future Research 
We have described SPE, an environment for object-oriented programming. Multiple textual 
and graphical views combined with a consistency management system based on update 
records provides integrated support throughout the program development life-cycle. High-
level conceptual views of a program can be rapidly constructed using the graphical tools, 
either as a means of constructing the program (visual programming) or to understand, 
document, or browse the program. More detailed information, including detailed 
documentation, can be added using the various types of textual view. Modifications are 
propagated between views using the record update mechanism, which also acts as a 
modification history. View support extends to program execution through the object viewer 
facility and the, as yet rudimentary, program visualisation views. 
 
Current work is aimed at providing multi-user program construction support (including 
concurrent programming moderated by update records), version control and macro editing 
operations using update records, and improving execution time support facilities, based on 
preliminary work by [Fenwick and Hosking 1993]. 
 
The MViews framework underlying SPE has application beyond the realm of OO 
programming environments. Current projects using MViews as a base include a multiple-
view entity-relationship diagrammer, dataflow language methods for SPE, and a tool for 
providing multiple views of a building model for use in computer integrated building 
construction [Amor and Hosking 1993]. 

Acknowledgments 
We gratefully acknowledge the helpful comments of our colleagues Rick Mugridge and 
Robert Amor and the financial support of the University of Auckland Research Committee. 
John Grundy has been supported by an IBM Postgraduate Scholarship, a William Georgetti 
Scholarship and a New Zealand Universities Postgraduate Scholarship while pursuing this 
research. 

References 
Amor, R.A., Hosking, J.G., 1993: Multi-disciplinary views for integrated and concurrent 

design, submitted to Management of Information Technology for Construction, First 
International Conference, Singapore, August 1993. 

Arefi F., Hughes C.E., and Workman D.A. 1990: Automatically Generating Visual Syntax-
Directed Editors, In CACM 33 (3),  349-360. 

Booch, G. 1991: Object-Oriented Design with Applications, Menlo Park, CA, 
Benjamin/Cummings. 

Coad, P., Yourdon, E., 1991: Object-Oriented Analysis, Second Edition, Yourdon Press. 



Cox, P.T., Giles, F.R., Pietrzykowski, T. 1990: Prograph: a step towards liberating 
programming from textual conditioning, 1990 IEEE Workshop on Visual Languages, 
IEEE, 150-156. 

Fenwick, S.P., Hosking, J.G. 1993: Visual Debugging of Object-Oriented Systems, 
Departmental Report No. 65, Computer Science Department, University of Auckland. 

Fischer, G. 1987: Cognitive View of Reuse and Redesign. IEEE Software, July 1987, 60-72. 
Grundy, J.C., Hosking, J.G., and Hamer, J. 1991: A Visual Programming Environment for 

Object-Oriented Languages, Proc TOOLS US ‘91, Prentice-Hall, 129-138. 
Grundy, J.C., Hosking, J.G. 1992: MViews: A Framework for Developing Visual 

Programming Environments, Proc TOOLS Pacific ‘92, Prentice-Hall. 
Grundy, J.C., Hosking, J.G. 1993: The MViews Framework for Constructing Multi-view 

Editing Environments, to appear in New Zealand Journal of Computing. 
Haarslev, V., Möller, R. 1990: A Framework for Visualizing Object-Oriented Systems, Proc 

OOPSLA ‘90, 237-244.  
Henderson-Sellers, B. and Edwards, J.M. 1990: The Object-Oriented Systems Life Cycle. 

CACM, 33 (9), 142-159. 
Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., Doyle, K. 1988: Fabrik: A Visual 

Programming Environment, Proc OOPSLA ‘88, 176-189. 
Magnusson, B., Bengtsson, M., Dahlin, L., Fries, G., Gustavsson, A., Hedin, G., Minör, S., 

Oscarsson, D., Taube, M. 1990: An Overview of the Mjølner/ORM Environment: 
Incremental Language and Software Development, Proc TOOLS ‘90, Prentice-Hall. 

Minör, S. 1990: On Structure-Oriented Editing, PhD Thesis, Department of Computer 
Science, Lund University, Sweden. 

Ratcliff, M., Wang, C., Gautier, R.J., Whittle B.R. 1992: Dora - a structure oriented 
environment generator, In Software Engineering Journal, 7 (3), 184-190. 

Reiss, S.P., 1985: PECAN: Program Development Systems that Support Multiple Views, 
IEEE Transactions on Software Engineering, 11, 3, 276-285. 

Reiss, S.P., 1986: GARDEN Tools: Support for Graphical Programming, Lecture Notes in 
Computer Science #244, Springer-Verlag, 59-72. 

Reps, T. and Teitelbaum, T., 1984: The Synthesizer Generator. Proc of the ACM 
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software 
Development Environments, ACM, New York, 42-48. 

Vlissides, J.M., 1990: Generalized Graphical Object Editing, PhD Thesis, Stanford 
University, CSL-TR-90-427. 

Wasserman, A.I., Pircher, P.A. 1987: A Graphical, Extensible, Integrated Environment for 
Software Development, SigPlan Notices, 22 (1), 131-142. 

Wasserman, A.I., Pircher, P.A., Muller, R.J. 1990: The Object-oriented Structured Design 
Notation for Software Design Representation, IEEE Computer, March 1990, 50-63. 

Welsh, J., Broom, B., Kiong, D. 1991: A Design Rationale for a Language-based Editor, In 
Software - Practice and Experience 21 (9), 923-948. 

Wilson, D.A. 1990: Class Diagrams: A Tool for Design, Documentation and Teaching, 
JOOP, January/February 1990, 38-44. 


