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Abstract. As dynamic kernel runtime objects are a significant source of securi-
ty and reliability problems in Operating Systems (OSes), having a complete and 
accurate understanding of kernel dynamic data layout in memory becomes cru-
cial. In this paper, we address the problem of systemically uncovering all OS 
dynamic kernel runtime objects, without any prior knowledge of the OS kernel 
data layout in memory. We present a new hybrid approach to uncover kernel 
runtime objects with nearly complete coverage, high accuracy and robust results 
against generic pointer exploits. We have implemented a prototype of our ap-
proach and conducted an evaluation of its efficiency and effectiveness. To 
demonstrate our approach’s potential, we have also developed three different 
proof-of-concept OS security tools using it. 
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1 Introduction 

An OS kernel has thousands of heterogeneous data structures that have direct and 
indirect relations between each other with no explicit integrity constraints, providing a 
large attack surface to hackers. In Windows and Linux Operating Systems (OSes), 
from our analysis nearly 40% of the inter-data structure relations are pointer-based 
relations (indirect relations), and 35% of these pointer-based relations are generic 
pointers (e.g. null pointers that do not have values, and void pointers that do not have 
associated type declarations in the source code). Such generic pointers get their values 
or type definitions only at runtime according to the different calling contexts in which 
they are used [1]. In such a complex data layout, the runtime memory layout of the 
data structures cannot be predicted during compilation time. This makes the kernel 
data a rich target for rootkits that exploit the points-to relations between data structure 
instances in order to hide or modify system runtime objects. Hence, accurately identi-
fying the running instances of the OS kernel data structures and objects is an im-
portant task in many OS security solutions such as kernel data integrity checking [2], 
memory forensics [3], brute-force scanning [4], virtualization-aware security solu-
tions [5], and anti-malware tools [6]. Although discovering runtime objects has been 
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an aim of many OS security research efforts, these still have many limitations. Most 
fall into two main categories: Memory Mapping Techniques and Value Invariants 
Approaches. 

Memory mapping techniques identify kernel runtime objects by recursively trav-
ersing the kernel address space starting from the global variables and then follow 
pointer dereferencing until reaching running object instances, according to a prede-
fined kernel data definition – for each kernel version – that reflects the kernel data 
layout in the memory [5,7,8]. However, such techniques are limited and not very ac-
curate. They are vulnerable to a wide range of kernel rootkits that exploit the points-to 
relations between data structures instances to hide the runtime objects or point to 
somewhere else in the kernel address space. They require a predefined definition of 
the kernel data layout that accurately disambiguates indirect points-to relations be-
tween data structures, in order to enable accurate mapping of memory. However – to 
the best of our knowledge – all of the current efforts (with the exception of KOP [7] 
and SigGraph [4]) depend on security expert knowledge of the kernel data layout to 
manually resolve ambiguous points-to relations. Thus, these approaches only cover 
28% of kernel data structures (as discussed by Carbone et al. [7]) that relate to well-
known objects. They are also not effective when memory mapping and object reacha-
bility information is not available. Sometimes security experts need to make a high-
level interpretation of a set of memory pages where the mapping information is not 
available e.g. system crash dumps. Incomplete subsets of memory pages cannot be 
traversed, and data that resides in the absent pages cannot be recovered. They have a 
high performance overhead because of poor spatial locality, as the problem with gen-
eral-purpose OS allocators is that objects of the same type could scatter around in the 
memory address space. Thus traversal of the physical memory requires accessing 
several memory pages. Finally, they cannot follow generic pointer dereferencing as 
they leverage type definitions, thus can not know the target types of untyped pointers. 

Value-invariants approaches such as DeepScanner [9], DIMSUM [10] and Sig-
Graph [4], use the value invariants of certain fields or of a whole data structure as a 
signature to scan the memory for matching running instances. However, such a signa-
ture may not always exist for a data structure [4]. Moreover, many kernel data struc-
tures cannot be covered by such value-invariant schemes. For example, it is difficult 
to generate value-invariants for data structures that are part of linked lists (single, 
doubly and triply), because the actual running contents of these structures depend on 
the calling contexts at runtime. In addition, such approaches do not fully exploit the 
rich generic pointers of data structures’ fields, and are not able to uncover the points-
to relations between the different data structures. The performance overhead of these 
approaches is extremely high, as they must scan the whole kernel address space with 
large signatures and they typically include most data structure fields in the signature. 

Motivated by the limitations of these current approaches and the need to accurately 
identify runtime kernel objects from a robust view that cannot be tampered with, we 
have developed a new approach called DIGGER. DIGGER is capable of systematical-
ly uncovering all system runtime objects without any prior knowledge of the operat-
ing system kernel data layout in memory. Unlike previous approaches, DIGGER is 
designed to address the challenges of indirect points-to relations between kernel data 



structures. DIGGER employs a hybrid approach that combines new value-invariant 
and memory mapping approaches, in order to get accurate results with nearly com-
plete coverage. The value-invariant approach is used to discover the kernel objects 
with no need of memory mapping information, while the memory mapping approach 
is used to retrieve the object’s details in depth including points-to relations (direct and 
indirect) with the other running data structures without any prior knowledge of the 
kernel data layout in memory. DIGGER first performs offline static points-to analysis 
on the kernel’s source code to construct a type-graph that summarizes the different 
data types located in the kernel along with their connectivity patterns, and the candi-
date target types and values of generic pointers. This type-graph is used to enable 
systematic memory traversal of the object details not to discover running object in-
stances. Second, DIGGER uses the four byte pool memory tagging schema as a new 
value-invariant signature – that is not related the data structure layout – to uncover 
kernel runtime objects from the kernel address space. 

DIGGER’s approach has accurate results, low performance overhead, fast and 
nearly complete coverage, and zero rate of false alarms. We have implemented a pro-
totype system of DIGGER and evaluated it on the Windows OS to prove its efficiency 
in discovering: (i) kernel runtime objects; (ii) terminated objects that still persist in the 
physical memory; and (iii) semantic data of interest in dead memory pages. To 
demonstrate the power of DIGGER, we also have developed and evaluated three OS 
security prototype tools based on it, namely, B-Force, CloudSec+ and D-Hide. B-
Force is a brute force scanning tool.  D-Hide is a tool that can systematically detect 
any hidden kernel object type not just limited to the well-known objects. CloudSec+, 
a virtual machine (VM) monitoring tool, is used in virtualization-aware security solu-
tions to externally monitor and protect VM’s kernel data. 

Section 2 gives an overview on the kernel data problem and review of key related 
work. Section 3 presents our DIGGER approach and section 4 explores its implemen-
tation and evaluation. Finally we discuss results and draw key conclusions. 

2 Background 

In OSes we usually refer to a running instance of a data structure (or a data type) as 
an object. Locating dynamic kernel objects in memory is the most difficult step to-
wards enabling implementing different OS security solutions, as discussed above. 
Efficient security solutions should not rely on the OS kernel memory or APIs to ex-
tract runtime objects, as they may be compromised and thus gives false information. 
On the other hand, the complex data layout of an OS’s kernel makes it challenging to 
uncover all system objects. Previous solutions limit themselves to the kernel static 
data e.g. system call and descriptor tables [11], or can reach only a fraction of the 
dynamic kernel data [2,12], resulting in security holes and limited protection. 

It is challenging to check the integrity of kernel dynamic data due to its volatile na-
ture. Dynamic data structures change during system runtime in location, values and 
number of running instances. Moreover, modifications to kernel dynamic data violate 
integrity constraints that in most cases cannot be extracted from OS source code. This 



is because the data structure syntax is controlled by the OS code while their semantic 
meaning is controlled by runtime calling contexts. Thus, exploiting dynamic data 
structures will not make the OS treat the exploited structure as an invalid instance of a 
given type, or even detect hidden or malicious objects. For example, Windows and 
Linux keep track of runtime objects with the help of linked lists. A major problem 
with these lists is use of C null pointers. Modifications to null pointers violate intend-
ed integrity constraints that cannot be extracted from source code as they depend on 
calling contexts at runtime. This makes it easy to unlink an active object by manipu-
lating pointers and thus the object becomes invisible for the kernel and for monitoring 
tools that depend on kernel APIs e.g. HookFinder [6] or memory traversal such as 
KOP [7], CloudSec [5], and OSck [8] – in addition to the limitations discussed above. 

DeepScanner [9], DIMSUM [10], Gilbraltar et al. [2], and Petroni et al. [12] – as 
value-invariant approaches – are limited in that their authors depend on their 
knowledge with the kernel data layout, making their approach limited to a few struc-
tures. Also these tools do not consider the generic pointer relations between struc-
tures, making their approach imprecise and vulnerable a wide range of attacks that 
can exploit the generic pointers, in addition to high performance overhead due to 
large signatures.  

To the best of our knowledge all existing approaches, whether value-invariant or 
memory traversal – with the exception of KOP [7], and SigGraph [4] – depend on the 
OS expert knowledge to provide kernel data layout definition that resolves the points-
to relations between structures. SigGraph follows a systematic approach to define the 
kernel data layout, in order to perform brute force scanning using the value-invariant 
approach. However, it only resolves the direct points-to relations between data struc-
tures without the ability to solve generic pointers ambiguities, making their approach 
unable to generate complete and robust signatures for the kernel. KOP is the first and 
only tool that employs a systematic approach to solve the indirect points-to relations 
of the kernel data. However, KOP is limited in that: the points-to sets of the void * 
objects are not precise and thus they use a set of OS specific constraint at runtime to 
find out the appropriate candidate for the objects. KOP assumes the ability to detect 
hidden objects based on the traditional memory traversal techniques which are vul-
nerable to object hiding. Moreover, both KOP and SigGraph have very high perfor-
mance overhead to uncover kernel runtime objects in a memory snapshot. 

Rhee et al. [13] propose an interesting approach to detect runtime objects by ana-
lysing object allocation and reallocation instructions executed. However their ap-
proach has quite high performance overhead and thus cannot be used in traditional OS 
security tools – only for advanced debugging tools. Also, despite the feature of detect-
ing allocations and deallocations in near real time, they cannot identify the object 
type. They need to analyse executed instructions offline for object type and details. 

3 DIGGER Architecture 

DIGGER’s goal is to systematically uncover all kernel running objects in a 
memory snapshot or from a running VM without any prior knowledge of the kernel 
data layout. The high-level process of DIGGER is shown in Fig. 1. DIGGER has 



three main components: Static Analysis Component, Signature Extraction Component 
and Dynamic Memory Analysis Component, discussed below in detail. 

Static&Analysis&Component Signatures&Extraction&
Component

Precise&Kernel&Data&Definition

Pool&Tags

Dynamic&Memory&
Analysis&Component

Objects&list

 
Fig. 1. The high-level process of DIGGER approach. 

3.1 Static Analysis Component  

Performing static analysis on the kernel source code is the key to automate the pro-
cess of extracting kernel objects’ details without any prior knowledge of the kernel 
data layout. DIGGER first performs static points-to analysis on the kernel’s source 
code to systematically solve the ambiguous points-to relations between kernel data 
structures by inferring the candidate target types and values for generic pointers. The 
result of the points-to analysis step is a kernel data definition represented as a type-
graph. This type-graph precisely models data structures and reflects accurately both 
direct and indirect relations that reflect the memory layout of the data structures. The 
type-graph is not used to uncover kernel objects - it is used to retrieve running ob-
jects’ detailed type structure. The level of details is selected by tool users based on the 
required hierarchy depth. This controls the trade-off between details and performance 
overhead, as some object types have hundreds of hierarchically-organised fields. 

We build this type-graph using our tool KDD [14,15]. KDD performs interproce-
dural, context-sensitive, field-sensitive and inclusion-based points-to analysis on the 
kernel source code. KDD is able to perform highly precise and scalable points-to 
analysis for large C programs that contain millions lines of code e.g. OS kernel, with-
out any prior knowledge of the OS structure.  

3.2 Signature Extraction Component 

It is difficult to obtain robust signatures for kernel data structures for the following 
reasons: First, data structure sizes are not small. From our analysis for Windows and 
Linux, we found that a single data structure could be several hundreds of bytes. Such 
big signatures increase the discovery cost and the performance overhead. Second, it is 
difficult to identify which fields of a target data structure can be used as scanning 
signatures to effectively detect stealthy malware and be difficult to be evaded. Third, 
the OS kernel contains thousands of data structures, making the process of generating 
“unique” signatures for this huge number of structures very challenging. 

DIGGER makes use of the pool memory tagging schema of the kernel object man-
ager to overcome the first two problems, and is motivated by the below paragraph 
from Windows internals book [16] (we call it WI-note) to overcome the third problem 
– details discussed below: “Not all data structures in the OS are objects. Only data 



that needs to be shared or made visible to user is placed in objects. Structures used by 
one component of the OS to implement internal functions are not objects”.  

Windows kernels use pool memory to allocate the kernel objects. The pool 
memory can be thought of as a kernel-mode equivalent of the user-mode heap 
memory. When the object manager allocates a memory pool block, it associates the 
allocation with a pool tag – a pool tag is a unique four byte tag for each object type. 
We use this tag as a value-invariant signature to uncover the kernel objects running 
instances. The pool tag list for the Windows OS can be extracted from the symbol 
information e.g. Microsoft Symbols. However, the pool tag is not enough to be an 
object signature. For instance, if we have a pool tag “Proc” and we scan the memory 
using the ASCII code of this pool tag, any word that has the same ASCII string will 
be detected as an object instance from that object type. Thus we need to add another 
checking signature that guarantees accurate results. We make use of the object dis-
patcher header (each allocated object starts with a dispatcher header that is used by 
the OS to provide synchronization access to resources). The first three bytes of the 
dispatcher header is unique for each object type, as they describe an object’s type and 
size. These three bytes can be calculated from the generated type-graph (from our 
static analysis component). From our experiments, we found that those three bytes are 
static and cannot be changed during object runtime. Key features of using pool tags as 
signatures are: (i) not being tied to data structure layout and thus effective in different 
OS kernel versions where data structure layout change may occur; and (ii) the very 
small size of the signature decreases performance overhead significantly. 

To the best of our knowledge, all current OS security research for Windows and 
Linux treat all data structures as objects and do not consider the WI-note. This WI-
note enables filtering of the list of data structures extracted at the static analysis step 
to obtain a list of actual objects. Each data structure that has a pool tag used by the 
Windows allocators is considered as an object and the other data structures are not. 
This massively reduces the number of object types from thousands to dozens. This 
solves the problem of generating unique signatures for such a huge kernel data struc-
tures size (the third obstacle), and also frees resources for analysis of the most im-
portant data structures. For the other data structures (non-objects that are less im-
portant than objects), we use the type-graph to uncover these data structures using the 
points-to relations of these data structures with the uncovered objects.  

3.3 Dynamic Memory Analysis Component 

The output of the memory analysis component is an object-graph whose nodes are 
instances of data structures and objects – in the memory snapshot – and edges are the 
relations between these objects. Using the pool tags and the additional checking sig-
nature, the dynamic memory component scans the kernel address space with eight 
byte granularity (default size of the pool header) to extract the runtime instances of 
the different kernel object types. However, until this step we can just identify that 
there is a running object instance of type T but we cannot know any details about the 
object itself or even the object name. When an object is being allocated by the object 



manager it is prefixed by an object header and the whole object (including the object 
header) is prefixed with a pool header data structure, as shown in Fig. 2.  

typedef struct _POOL_HEADER4{

union {

struct {

USHORT4PreviousSize :49;

USHORT4PoolIndex4:47;

USHORT4BlockSize :49;

USHORT4PoolType4:47;

}

…….

}4POOL_HEADER,4*PPOOL_HEADER;

Pool4Header

Object4Header

Object

typedef struct _OBJECT_HEADER4{

LONG_PTR4PointerCount;

union {

LONG_PTR4HandleCount;

PVOID4NextToFree;

};

POBJECT_TYPE4Type;

…….

}4OBJECT_HEADER,4*POBJECT_HEADER;

 
Fig. 2. The memory layout of allocated objects in the pool memory. 

The pool header is a data structure used by the Windows object manager to keep 
track of memory allocations. The most important fields in the pool header are the pool 
tag and the block size. These fields help in our algorithm to extract the object details 
as follows: First, Pool Tag; by subtracting the offset f of the pool tag field from the 
address x where an object has been detected (using the pool tag and the additional 
checking signature), we can get the pool block start memory address y. By adding the 
size of the pool header and the object header to y, we can calculate the object’s start 
address. Then we retrieve the object’s details based to our generated kernel type-
graph – from the static component – by traversing the kernel memory. The size of the 
pool and object headers are calculated from the kernel type-graph. Second, Block 
Size; the block size field indicates the pool block size s that has been allocated for an 
object O. This field helps to speed up the scan process, by skipping s bytes of memory 
starting from the y address to reach the start address of next pool block or a kernel 
memory address. 

We have two strategies for uncovering running kernel objects. First, for memory 
images; the size of a complete memory image is quite big and the kernel address 
space ranges from 1GB to 2GB in 32bit OSs and up to 8TB in 64bit OSs according to 
the memory layout used by the hardware and the available hardware memory. Scan-
ning such a huge number of memory pages is too expensive. To solve this problem 
and get the fastest coverage for the kernel address space, we scan only the pool 
memory instead of the whole kernel address space. There are two distinct types of 
pool memory in Windows OS: paged pool and nonpaged pool. Both are used by the 
kernel address space to store the kernel and executive objects. The nonpaged pool 
consists of virtual memory addresses that are guaranteed to reside in physical memory 
as long as the corresponding kernel objects are allocated. The kernel uses the non-
paged pool memory to store the runtime objects that may be accessed when the sys-
tem cannot handle page faults e.g. processes, threads and tokens. The paged pool 
consists of virtual memory that can be paged in and out of the system. This means that 
scanning the nonpaged pool memory is a trusted source to get all the running objects 
instances that are potential target for hackers as it always resides in physical memory. 
On uniprocessor or multiprocessor systems there exists only one nonpaged pool and 



this number can be confirmed using the global variable 
nt!ExpNumberOfNonPagedPools. The OS maintains a number of global variables that 
define the start and end addresses of the paged and nonpaged pool memory: 
MmPagedPoolStart, MmPagedPoolEnd, MmNonPagedPoolStart and MmNon-
PagedPoolEnd. These pointers can be used to speed up the scanning by limiting the 
scanned area. From our observations, we found pool memory size is around 4.5% and 
8% from the kernel address space in 32-bit and 64-bit OS, respectively. Second, for 
un-mappable memory pages; in this case, the size of pages set is relatively small. We 
perform a scan on the whole set of the memory pages using the pool tag and the addi-
tional checking signature. However, as the memory mapping information may not be 
available in such un-mappable memory pages, not all of the details for the discovered 
objects can be retrieved as we depend on the memory traversal technique according to 
the generated type-graph. 

4 Implementation and Evaluation 

We have developed a prototype of DIGGER. The static analysis component was 
built using our previously developed tool, KDD [1,14]. The signatures and runtime 
components are standalone programs and all components are implemented in C#. The 
runtime component works: (i) offline on memory snapshot, raw dumps (e.g. dumps in 
the Memory Analysis Challenge and Windows crash dumps), and VMware suspended 
sessions. (ii) Online in a virtualized environment by scanning VMs’ physical memory 
from the hypervisor level. We have evaluated the basic functionality of DIGGER with 
respect to the identification of kernel runtime objects and the performance overhead 
of uncovering these objects. We performed different experiments and implemented 
different OS security prototype tools to demonstrate DIGGER’s efficiency. In section 
4.1 we evaluate the static and runtime components, and their performance overhead. 
In section 4.2, we explore the implemented OS prototype tools, and finally in section 
4.3 we discuss the main features and limitations of DIGGER. 

4.1 Uncovering Objects 

For the static analysis component, we applied KDD’s static analysis to the source 
code of the Windows Research Kernel (WRK1) (a total of 3.5 million lines of code), 
and found 4747 type definitions, 1858 global variables, 1691 void pointers, 2345 null 
pointers, 1316 doubly linked list and 64 single linked lists.  KDD took around 28 
hours to complete the static analysis on a 2.5 GHz core i5 processor with 12 GB 
RAM. As our analysis was performed offline and just once on each kernel version, 
the performance overhead of analyzing kernels is acceptable and does not present any 
problem for any security application using KDD. The performance overhead of KDD 
could be decreased by increasing the hardware processing capabilities, as such types 
of analysis usually run with at least 32 GB RAM. 

                                                             
1  WRK is the only available source code for Windows. 



To enable efficient evaluation for the runtime component, we need a ground truth 
that specifies the exact object layout in kernel memory so that we can compare it with 
the results of DIGGER to measure false positive rates. We build the ground truth as 
follows: we extracted all data structure instances of the running Windows OS memory 
image via program instrumentation using the Windows Debugger (WD). We instru-
mented the kernel to log every pool allocation and deallocation, along with the ad-
dress using the WD. In particular, we modified the GFlags (Global Flags Editor) to 
enable advanced debugging and troubleshooting features of the pool memory. We 
then measured DIGGER efficiency by the fraction of the total allocated objects for 
which DIGGER was able to identify the correct object type.  We performed experi-
ments on 3 different versions of the Windows OS on a 2.8 GHz CPU with 2GB RAM. 
Each memory snapshot size was 4GB. Table 1 shows the results of DIGGER and WD 
in discovering the allocated instances for specific object types in two of the three 
Windows versions (not showing all objects, for brevity).  

Table 1. Experimental results of DIGGER and WD on Windows XP 32 bit and 64bit. 
Memory, paged and nonpaged columns reprsent the size in pages (0x1000 graunrality) of the kernel address 
space, paged pool and nonpaged pool, repectively. WD and DIG refer to WD’s and DIGGER results. FN, 
FP and FP* denote the false negative, reported false positive and the actual false poitive rates, repectively. 

Object 

Windows XP 32bit Windows XP 64bit 

Memory Paged Nonpaged Memory Paged Nonpaged 

915255 27493 11741 1830000 35093 17231 

WD DIG. FN % FP % FP*% WD DIG. FN % FP % FP*% 

Process 119 121 0.00 1.65 0.00 125 125 0.00 0.00 0.00 
Thread 2032 2041 0.00 0.44 0.00 2120 2121 0.00 0.04 0.00 
Driver 243 243 0.00 0.0 0.00 211 211 0.00 0.00 0.00 
Mutant 1582 1582 0.00 0.0 0.00 1609 1609 0.00 0.00 0.00 

Port 500 501 0.00 0.19 0.00 542 542 0.00 0.00 0.00 

From table 1 we can see that DIGGER achieves zero false negative rates, and a low 
false positive rate. However, from our manual analysis of the results, we found that 
this reported false positive rate is not an actual false positive. This difference repre-
sents deallocated objects that still persist in the physical memory after termination; we 
call these “dead memory pages objects – DMAO”. They are present because the Win-
dows OS does not clear the contents of memory pages to avoid the overhead of writ-
ing zeroes to the physical memory. However, we noticed from our analysis that the 
pointer and handle count of the DMAO is always zero. This enables differentiating 
the active objects from the DMAO, and thus our actual false positive rate becomes 
zero (FP*). We argue this finding thus: whenever the kernel has to allocate a new 
object it will return the pool block address from the pool free list head. For example, 
the EPROCESS structure of a newly created process will overwrite the object data of 
a process that has been terminated previously. This because when a block is freed 
using the free function call, the allocator just adds the block to the list of free blocks 
without overwriting memory. These DMAO can provide forensic information about 
an attacker’s activity. Imagine an attacker runs stealthy malware and then terminates 



it on a victim machine. After the termination there may still exist for a non-trivial 
period of time some forensic data of interest in the dead memory pages. To prove our 
assumption, we analyzed the dead memory pages in order to uncover semantic data of 
interest for the some terminated processes. However, our approach can work for any 
other object type. We used some benchmark programs to run in three memory images 
and then analyzed the dead memory pages to uncover some data of interest: user login 
information (GroupWise email client), chat sessions (Yahoo messenger), FTP ses-
sions (FileZilla). We created 9 processes (three of these are the benchmark programs) 
and performed some CPU-intensive operations using these processes. We terminated 
these processes after 5 hours, 2 hour and 15 minutes in three different memory images 
– identified L, M and S, respectively. Then we created 4 different (new) processes 5 
minutes after termination. The memory images were then scanned for runtime objects 
using DIGGER’s runtime component. We found that 3 from the terminated processes’ 
physical addresses were overwritten by EPROCESS structure for new processes, 
while another three processes (from the terminated ones) still persisted in memory (at 
the same address in the memory). We made the following observations. First, for the 
email client we were not able to identify the login information (user name and pass-
word) for all of the memory images. For the ftp client we were able to identify the 
server name, and the server and client connection ports for the S image only, without 
any ability to locate the login credentials in all of the three images. For the chat 
benchmark application, we were able to locate the username, the connection port and 
some recent chat sessions in the S image only. This data recovery approach is not 
effective if the program zeros its memory pages before termination. 
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Fig. 3. Object details extraction normalized time.  

We have evaluated DIGGER’s runtime performance to demonstrate that it can per-
form its memory analysis in a reasonable amount of time. We measured DIGGER 
running time when analyzing the memory snapshots used in our experiments. The 
median running time was around 0.8 minutes to uncover 12 different object types 
from the nonpaged pool, and 1.6 minutes to uncover another 15 object type from the 
paged pool. This time included the time of loading the memory snapshot from the 
disk to the runtime analysis component. We consider this running time to be accepta-
ble for offline analysis and even for online analysis in virtualized environments. This 
is because DIGGER is able to detect the DMAO that could be created and terminated 
between the scan time intervals. However, we cannot argue that it would be 100% 
accurate. Comparing DIGGER with SigGraph [4], DIMSUM [10], KOP [7], 



CloudSec [5]: DIGGER is the fastest with highest coverage and lowest performance 
overhead. The performance overhead of extracting object details based on our gener-
ated type-graph differs according the required details-depth. Fig. 3 shows the time 
consumed (in seconds) to extract object details with different depths for all of the 
running instances from a specific object type. “I” denotes the number of the running 
objects from the object, and “D” denotes the depth of the extracted details. 

4.2 Security Applications 

We have also evaluated DIGGER by developing three prototype OS security tools 
to demonstrate its efficiency. We chose these applications because they address com-
mon important OS security tools. Our experiments with these tools have demonstrated 
DIGGER’s efficiency and the false alarms rate is similar to what discussed in table 1. 

Object Hiding Detection. Previous efforts have focused on detecting specific 
types of hidden objects by hardcoding OS expert knowledge of the kernel data layout 
[12]. Other approaches rely on value-invariants such as the matching of process list 
with the thread scheduler [17]. Other approaches are based on logging malware 
memory accesses [18,19] and provide temporal information. However they can only 
cover known attacks and cannot properly handle zero-day threats. All of these ap-
proaches are time-consuming, and require a human expert with deep knowledge of the 
system to create the rules and thus cannot cover all system objects. There are some 
approaches such as Antfarm [20] that track the value of the CR3 register. Although 
this approach is useful in a live environment, it cannot be used for memory forensics 
applications and the performance overhead of such an approach is very high. Given 
DIGGER’s ability to uncover kernel objects, we developed a tool called D-Hide that 
can systematically uncover all kinds of stealthy malware (not just limited to specific 
object type, as done to date), by detecting their presence in the physical memory. We 
used DIGGER’s approach to uncover the runtime kernel objects and then perform 
“external” cross-view comparisons with the information retrieved from mapping the 
physical memory using our generated type-graph. In other words, the first view is 
DIGGER’s view and the other view is the memory traversal view (we start from the 
OS global variables and then follow pointer dereferencing until we cover all memory 
objects). Discrepancies in this comparison reveal hidden kernel objects. We imple-
mented a memory traversal add-on for the runtime component that takes our generat-
ed type-graph and based on that graph, we traverse the kernel address space. We 
evaluated D-Hide ability to identify hidden objects with four real-world kernel root-
kits samples: FURootkit, FuToRootkit, AFX Rootkit and HideToolz. We used 
WinObj (windows internal tool) to compare the results with D-hide. D-hide correctly 
identified all hidden objects with zero false alarms. D-Hide has two key advantages: 
(i) No need for deep knowledge of the kernel data layout, as it depends on DIGGER 
static component to get an accurate kernel data layout. (ii) D-Hide can perform cross-
view comparison without the need for any internal tools e.g. task manager or WinObj 
that gets the internal view, as done in the current cross-view researches. This feature 
enables deploying D-hide in VMs hosted in the cloud platform where the cloud pro-
viders do not have any control over VMs, as discussed in [11]. (iii) D-Hide is unlike 



previous tools [21,17] that rely on authors’ knowledge of the kernel data and thus is 
not limited to specific objects. 

Brute Force Scanning Tool. Given a range of memory addresses and a signature 
for a data structure or object, brute force scanning tools can decide if an instance of 
the corresponding data structure exists in the memory range or not [4]. Brute force 
scanning of kernel memory images is an important function in many operating system 
security and forensics applications, used to uncover semantic information of interest 
e.g. passwords, hidden processes and browsing history from raw memory. Given 
DIGGER’s ability to uncover kernel objects, we developed B-Force – a brute force 
tool.  From our experiments with five different small crash dumps of small sizes rang-
ing from 12MB to 800MB, we found out that this method is highly effective with zero 
rates of alarms.  However, this method could reveal false positives if the memory 
page set does not contain the pool header (that contains the pool tag) of the pool block 
along with the first three bytes of the object itself (to perform the additional signature 
checking). However, from our point of view this is unlikely, as the single memory 
page size is big enough to contain tens of pool blocks. 

Virtual Machines Monitoring. We modified our earlier-developed VM monitor-
ing tool, CloudSec [5], to use DIGGER to online analyze a Virtual Machine’s (VM) 
memory of a running OS and extract all kernel running objects. CloudSec is a security 
appliance that monitors a VMs memory from outside the VM itself, without installing 
any security code inside the VM. CloudSec successfully uncovered and correctly 
identified the running kernel objects, with zero rate false alarms. The performance 
overhead of CloudSec to uncover the entire kernel running objects was around 1.1, 
1.9 and 2.8 minutes with 0-level, 1-level and 2-level depths, respectively for a VM 
with a 2.8 GHz CPU and 4GB RAM. VM was executed under normal workload (50 
processes, 912 threads, etc.). We can see that the performance overhead of scanning a 
VM’s memory online is less that scanning a memory image, as access to VM’s 
memory via hypervisors is faster than uploading a memory image to the analysis tool. 
As CloudSec runs in its own separate VM and potentially on a separate host machine, 
it can do this analysis concurrently with the target VM continuing to run normally. 

4.3 Discussion 

DIGGER’s approach provides a robust view of OS kernel objects not affected by 
the manipulation of actual kernel memory content. This enables development of dif-
ferent OS security applications as discussed in section 4.3, in addition to enabling 
systematic kernel data integrity checks based on the resultant object-graph. The key 
features of DIGGER include: first, the systematic approach it follows to extract OS 
kernel data layout and to disambiguate the points-to relations between data structures, 
all without any prior knowledge of the OS kernel data layout. Second, the robust and 
quite small signature size to uncover runtime objects, enhancing performance. 

As the pool memory concept is related to Windows OSes, the current approach 
used in DIGGER’s runtime component can only be used to analyze Windows OSes. 
DIGGER’s runtime component is not related to a specific version of the Windows OS 
kernel and can work on either 32bit or 64 bit layout – SigGraph, DIMSUM and KOP 



are also limited to a specific OS. However, the same approach can be used in Linux 
using the slab allocation concept. Slab allocation can be thought of as a pool memory 
equivalent of the Windows OS. Slab allocation is a memory management mechanism 
for Linux and UNIX OSes for allocating kernel runtime objects efficiently. The basic 
idea behind the slab allocator is having caches (similar to the pool blocks in Windows 
OS) of commonly used objects kept in an initialized state. The slab allocator caches 
the freed object so that the basic structure is preserved between uses to be used by a 
newly allocated object of the same type. The slab allocator consists of caches that are 
linked together on a doubly linked list called a cache chain that is similar to the list 
head of the pool memory used in Windows kernel. The static analysis component of 
DIGGER (KDD) can be applied on any C-based OS e.g. Linux, BSD and UNIX to 
perform highly detailed and accurate points-to analysis for the kernel data layout. 

5 Summary 

Current state-of-the-art tools are limited in accurately uncovering the running in-
stances of kernel objects. We presented DIGGER, a new approach that enables un-
covering dynamic kernel objects with nearly complete coverage and accurate results 
by leveraging a set of new techniques in both static and runtime components. Our 
evaluation of DIGGER has shown its effectiveness in uncovering system objects and 
in supporting the development of several OS security solutions. 
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