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Abstract. It is very challenging to verify the integrity of Operating System 
(OS) kernel data because of its complex layout. In this paper, we address the 
problem of systematically generating an accurate kernel data definition for 
OSes without any prior knowledge of the OS kernel data. This definition accu-
rately reflects the kernel data layout by resolving the pointer-based relations 
ambiguities between kernel data, in order to support systemic kernel data integ-
rity checking. We generate this definition by performing static points-to analy-
sis on the kernel’s source code. We have designed a new points-to analysis al-
gorithm and have implemented a prototype of our system. We have performed 
several experiments with real-world applications and OSes to prove the scala-
bility and effectiveness of our approach for OS security applications. 
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1 Introduction 

Kernel data rootkits have the ability to alter the overall behavior of Operating Sys-
tems (OSes) – without injecting any malicious code into the kernel address space – by 
manipulating the pointer-based relations between kernel data structures. It is challeng-
ing to verify the integrity of kernel data, where an OS kernel contains thousands of 
data structures that have direct and indirect relations between each other with no ex-
plicit integrity constraints. In Windows and Linux OSes, from our analysis, nearly 
40% of the inter-data structure relations are pointer-based relations (indirect rela-
tions), and 35% of these pointer-based relations are generic pointers (e.g. null pointers 
that do not have values, and void pointers that do not have associated type declara-
tions in the source code). Such generic pointers get their values or type definitions 
only at runtime according to the different calling contexts. This makes kernel data a 
rich target for potent rootkits that exploit the points-to relations between data struc-
tures instances to hide/modify system runtime objects e.g. processes and threads. 

Checking the integrity of OS’s kernel data has been a major concern in many OS 
kernel security researches. However, current research efforts and practices [1-3] are 
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severely limited as they depend on their prior knowledge of kernel data layout to 
manually resolve the ambiguous pointer-based relations, and thus they only cover 
28% of kernel data structures (as discussed by Carbone et al. [4]) that relate to well-
known objects. Current approaches also do not consider the generic pointer relations 
between structures, making their approach imprecise and vulnerable to wide range of 
attacks that can exploit these pointers. This results in security holes, limited protection 
and an inability to detect zero-day threats. It also raises the need to obtain an accurate 
kernel data definition that resolves pointer-based relation ambiguities. Such a defini-
tion is an important step in implementing different systematic OS security applica-
tions e.g. memory forensics tools, virtual machine introspection (VMI), dynamic ob-
ject uncovering and kernel integrity checking tools. 

In this paper, we address the problem of systematically building an accurate kernel 
data definition that precisely models data structures, reflects both direct and indirect 
relations, and generates constraint sets between structures. We extend KDD (Kernel 
Data Disambiguator), a tool that can generate a sound kernel data definition for any 
C-based OS (e.g. Windows, Linux, UNIX) without any prior knowledge of the OS 
kernel data layout [19]. KDD disambiguates pointer-based relations including generic 
pointers – to infer their candidate types/values – by performing static points-to analy-
sis on the kernel’s source code. Points-to analysis is the problem of determining stati-
cally a set of locations to which a given variable may point to at runtime. Points-to 
analysis for C programs has been widely used in compiler optimization, memory error 
detection and program understanding [5,6]. However, none of these approaches meet 
our requirements in analyzing the kernel as they do not scale to the enormous size and 
complexity typical of an OS kernel. They also typically sacrifice precision for per-
formance. In KDD, precision is an important factor. We want the most precise points-
to sets to be computed. To meet our requirements, we implemented a new points-to 
analysis algorithm that has the ability to provide inter-procedural, context-sensitive, 
field-sensitive and inclusion-based points-to analysis for large programs that contain 
millions lines of code e.g. OS kernel. We have implemented a prototype system of 
KDD, and performed several experiments on KDD using large-scale real-world appli-
cations including OSes to prove its effectiveness and scalability.  

Section 2 presents the motivation for our work and key related work. Section 3 
presents KDD’s approach. We discuss implementation and evaluation details in Sec-
tion 4. Finally we discuss results and draw key conclusions. 

2 Background 

Ensuring reliability of large systems e.g. OSes is a difficult problem, especially C-
based ones. C-based OSes use C structures heavily to model objects. They also use 
pointers extensively to simulate call-by-reference semantics, emulate object-oriented 
dispatch via function pointers, avoid expensive copying of large objects, implement 
lists, trees and other complex data structures, and also as references to objects allocat-
ed dynamically on the heap [7]. Moreover, objects can be cast to multiple types dur-
ing their lifetime, and a pointer deposited in a field under one object may be read from 
a field under another object. This makes the analysis of kernel’s data structures a non-



 

 

trivial task, further complicated by the fact that data structures are implementation-
dependent. Hence, imprecise points-to analysis will therefore result in improper as-
sumptions about the indirect relations between structures. As C allows casting, values 
can be copied from a pointer to a non-pointer and vice versa, points-to sets should be 
computed to all program variables, not just declared pointers. 

To get a concrete idea of the pointers problem in OSes, we discuss three problems 
of generic pointers we need to address. First, use of void pointers; void pointers sup-
port a form of polymorphism. At runtime, if a pointer is not void, its target object 
should have the type of a pointer. However, the problem with use of ‘void’ type is 
that the target object type(s) can only be identified at runtime. The wide use of such 
void pointers hinders performing systematic integrity checks on kernel data, where 
there are no type constraints for void *. This assists hackers in exploiting these point-
ers to point to somewhere else in memory. Second, use of null pointers; these are 
used for example to implement linked lists (e.g. single, doubly or triply) which are 
heavily used in OSes to maintain running objects. The C definition makes a linked list 
points to a linked list, but actually during runtime it points to a specific object type 
according to the calling contexts. The problem is that the objects structured in a list 
can be recognized only during runtime (e.g. object type, number of running instances 
and locations). Thus, null pointers manipulation helps hackers to hide or change 
runtime objects. Identifying the object type that a list may hold at the offline analysis 
phase helps significantly in identifying a set of constraints on the runtime objects to 
detect invalid pointer manipulations. Third, use of casting; C data types can be sub-
verted by casting. A pointer of a given type can be cast to point to any other C type. A 
major problem with casts is that they induce relationships between objects that appear 
to be unrelated, enabling hackers to exploit data structure layout in physical memory.  

Kernel data integrity checking has been studied intensively [8,9,2,1]. However, 
these research efforts are limited to the OS expert knowledge to resolve the ambigu-
ous pointer relations. OSck [8] and SigGraph [10] follow a systematic approach to 
resolve the pointer-based relation, however they do not solve the generic pointers 
(indirect relations) problem. To the best of our knowledge, KOP [4] (a Microsoft 
internal tool) , is the first and only tool that employed points-to analysis in order to 
analyze an OS kernel to solve generic pointers ambiguities. However, KOP is limited. 
It uses a medium-level intermediate representation (MIR) that complicates the analy-
sis and results in improper points-to sets. MIR is extremely big in size, omits very 
important information such as declarations, data types and type casting, and creates a 
lot of temporary variables that are allocated identically to source code variables and 
thus are not easily distinguishable from source code variables [11]. Also in KOP, the 
points-to sets of the void * objects are not precise and thus they use a set of constraint 
criteria (OS-specific) at runtime to find out the appropriate candidate for the object.  

Many state-of-the-art tools have been developed for points-to analysis of C pro-
grams [5,6,12]. Their use has predominantly been for compiler optimizations and 
program understanding, and their main goal has thus been performance. They differ 
mainly in how they group alias information. There are two main algorithms used to 
group alias information: Andersen’s [13] and Steensgaard’s [14]. Fig. 1 shows a C 
code fragment and the points-to sets computed by those algorithms. Andersen’s is the 



slowest but the most precise while Steensgaard’s is the fastest but is imprecise. An-
derson’s approach creates a node for each variable and the node may have different 
edges. Steensgaard’s algorithm groups alias sets in one node and each node has one 
edge. Based on these approaches there are different types of analysis that trade-off 
performance and precision: (i) Field-Sensitivity; distinguishing the different fields 
inside structures and unions i.e. each field has a distinct points-to set. (ii) Context-
Sensitivity; distinguishing objects created through different call sites. Context-
sensitive algorithms are more precise, but are much slower in performance and com-
plicated to implement. (iii) Flow-Sensitivity; considers the effects of pointer assign-
ments with respect to the call-graph. (iv) Inclusion-Based; considers dependency rela-
tions between structures to represent the inclusion constraints. 

i=&p; i=&y; j=&r; i=j; 
p=&a; q=&b; z=&c;

i j

p q r

a b c

i j

p,q,r

p,q,r
 

Fig. 1. Alias information grouping by Steensgaard’s and Andersen’s approaches. 

A number of research efforts have attempted performing field and context sensitiv-
ity analysis on large programs [15,6,16,17]. However none have been shown to scale 
to large programs e.g. OS’s kernel code with a high rate of precision. Also, these al-
gorithms are used during program compilation time to name objects by allocation site, 
not by access path. Thus, they do not allow us to disambiguate null pointers.  

3 Our Approach 

KDD takes the source code of an OS kernel as input and outputs an accurate di-
rected type-graph that represents the kernel data definition. This type-graph summa-
rizes the different data types located in the kernel along with their connectivity pat-
terns and reflects the inclusion-based relations between kernel data structures for both 
direct and indirect relations. A high-level representation of this analysis process is 
shown in Fig. 2. To facilitate the analysis, we use Abstract Syntax Tree (AST) as a 
high-level intermediate representation for the source code. The AST captures the 
essential structure of the code that reflects its semantic structure while omitting un-
necessary syntactic details. Since it has been established that flow-sensitivity does not 
add significant precision over a flow-insensitive when we ignore the control-flow of 
programs [18], we consider flow-insensitive points-to analysis in KDD. 

Two main phases of the analysis are used to build the type-graph. The first analysis 
step is straightforward, and its goal is computing the direct relations between kernel 
data structures that have clear type definitions. This is done by performing a compil-
er-pass approach on the AST files to extract the data structure type definitions by 
looking for typedef aliases, and extract their fields with the corresponding type defini-
tion. Nodes are data structures and edges are data members of the structures. The 
second step is the most important step and its goal is computing the indirect relations 
between structures. Indirect relations (generic pointer dereferencing) cannot be com-



 

 

puted from the AST directly. To solve this problem, we have developed a new points-
to analysis algorithm to statically analyze the kernel’s source code to get an approxi-
mation for every generic pointer dereferencing based on Anderson’s approach. We 
consider all forms of assignments and function calls. Data structures are flattened to a 
scalar field. Type casting is handled by inferring locations accessed by the pointer 
being cast. Kernel objects are represented by their allocation site according to the 
calling contexts. The target of this step is a graph G (N, E), where N is the set of 
nodes representing global and local variables, fields, array elements, procedure argu-
ments\parameters and function returns. E is a set of directed edges across nodes repre-
senting, assignments and function calls. The graph has different types of nodes and 
edges (details omitted for brevity - for more details please see [19]). The type-graph 
of this step is created and refined by our points-to analysis algorithm in three steps, 
discussed below. 
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Analysis
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Fig. 2. High-level view of KDD operation. 

3.1 Intraprocedural Analysis 

The goal of this analysis step is to compute a local type-graph but without infor-
mation about caller or callees. Algorithm 1 summarizes our intraprocedural analysis 
algorithm. KDD takes the AST file as input and outputs an initial graph that contains 
nodes, as follows: (i) Variables; create node for each variable declaration and check 
the function scope to find out if it is a local or global variable. (ii) Procedure defini-
tion; create node for each formal-in parameter. (iii) Procedure call; create nodes for 
each formal-in argument, in addition to a dummy node for each formal-in argument 
represented by its relative position (index) in the procedure. These dummy nodes will 
be used later to create an implicit assignment relation between the formal-in argu-
ments and formal-in parameters. For example, given G(x, y), we create two nodes for 
x and y and other two dummy nodes G:1 and G:2. (iv) Assignments; create nodes for 
the left and right hand sides. (v) Function return; create one node for the return state-
ment itself and one for the returned value. Meanwhile, KDD builds the initial edges 
by computing the transfer function (TF) as described in table 1. TF is a formal de-
scription for the relation between the nodes created for each of the previous entities. 



Algorithm 1 Intraprocedural Analysis Algorithm 
1: Procedure IntraproceduralAnalysis (ASTFile F) 
2:  ∀ ASTLine L ∈ F 
3:  if L ∋ variable V declaration statement then check function scope; 
4:   if (scope == null) then V ⊆ global variable 
5:   elseif L ∋ function parameters then V ⊆ Local function parameter 
6:   else V ⊆ Local variable 
7:   Create node(); 
8:  endif 
9:  if L ∋ assignment | function call | return statement then Compute transfer function (); 

10: end  

Table 1. Transfer function description; local points-to sets pts(), constraints between nodes, and 
edges (→ a directed inlist edge between two nodes, ← a directed outlist edge). 

 Code Local pts() Constraints Edges 

Pr
oc

 Description; relation between formal-in parameters and the dummy nodes that hold the indexes of 
the parameters. Edges; inlist edge between each formal-in parameter node and its relevant dummy 
node, and outlist edge from the dummy node to its relevant formal-in parameter node. 

proc(p) pts (proc:1) ⊇ pts(p) proc:1 ⊇ p proc:1 → p, proc:1 ← p 

A
ss

ig
nm

en
t 

Description; relation between left and right hand sides (HSs) of the assignment statement. Edges; 
inlist edge from left HS to right HS, and outlist edge from the right HS to left HS. 

p=&q loc (q) ∈ pts(p) p ⊇ [q] p → q, p ← q 
p=q pts (p) ⊇ pts(q) p ⊇ q p → q, p ← q 

p=*q ∀ v ∈  pts(q) : pts (p) ⊇ pts(v) p ⊇ *q p → *q → v, p ← *q ← v 

*p=q ∀ v ∈  pts(p) : pts (v) ⊇ pts(q) *p ⊇ q v → *p → q, v ← *p ←  
q 

C
al

l Description; relation between the formal-in arguments nodes and dummy nodes. Edges; inlist edge 
between each argument node and its relevant dummy node. 

proc(q); pts(q) ⊇ pts (proc:1) q ⊇ proc:1 q → proc:1 

R
et

ur
n Description; relation among left hand side, the procedure return node and the returned value node. 

Edges; inlist edge between the left hand side and the return node, inlist edge between the return node 
and retuned value node and outlist edge between the return node and the left hand side. 

p = fn() return q; pts (p) ⊇ pts(q) p ⊇ q p → q 

Consider a call to a procedure called “Updatelinks”, where the formal-in parame-
ters are (src, tgt), and the actual passed arguments are (&ActiveProcessLinks, 
&ActiveProcessHead), and consider these explicit assignment statements (srcFlink 
= tgtFlink; tgtBlink = srcBlink). KDD computes the TF for those statements as 
shown in Fig. 3(a) and Fig. 3(b), respectively. For the return, given this fragment of 
code UniqueThreadId = ExHandler(), the computed  TF is shown in Fig. 3(c). 

ActiveProcessLinks

Updatelinks :41

src

ActiveProcessHead

Updatelinks :42

tgt

Src! Flink tgt! Flink

Points;To4Edge

OutList4Edge

UniqueProcessId

ExHandler:;1

handle

                               (a)                                                         (b)                                    (c) 

Fig. 3. Intraprocedural analysis graph. 



 

 

3.2 Interprocedural Analysis.  

In this phase we perform an interprocedural analysis that enables performing 
points-to analysis across different files to perform whole-program analysis. The result 
of this phase of analysis is a graph that computes the calling effects (returns, argu-
ments and parameters), but without any calling context information yet. This is done 
by propagating the local points-to sets computed at the intraprocedural step to their 
use sites consistently with argument index in the call site. Thus we can map between 
the procedure arguments and parameters. Fig. 4 shows the analysis results of this step 
for the examples discussed in the intraprocedural analysis step. Algorithm 2 summa-
rizes this interprocedural analysis step.  

UniqueThreadId

ExHandler:21

handle

ActiveProcessLinks

Updatelinks :>1

src

ActiveProcessHead

Updatelinks :>2

tgt

XX X
                                                  

                                                 (a)                                                                                    (b) 
Fig. 4.  Interprocedural analysis result. 

Algorithm 2 Intraprocedural Analysis Algorithm 
1: Procedure Interprocedural Analysis (Graph G) 
2:  ∀ Node N ∈ G 
3:   if ∃ N has the form N(Procedure Name : index) then 
4:    Create inlist edge (N.outlist, N.inlist); Create outlist edge (N.intlist, N.outlist); 
6:    Delete dummy nodes (); 
7:   end if 
8: end 

3.3 Context-Sensitive Points-To Analysis.  

The key in achieving context-sensitivity is to obtain the return of procedures ac-
cording to the given arguments combined with the call site. Algorithm 3 summarizes 
our context-sensitive analysis of this step, performed in three sub-steps, as follows: 

Points-to Analysis. A well-known complication in this analysis is the order of 
which nodes will be analyzed first, where this can greatly affect performance. A good 
choice is to analyze nodes in a topological order [12], by building a Procedure De-
pendency Graph (PDG). Our PDG consists of nodes representing the statements of the 
data dependency in the program. Data dependency between two statement nodes ex-
ists if a variable at one statement might reach the usage of the other variable at anoth-
er statement. We start with the top node (according to the computed PDG) that does 
not have any dependencies, and thus we guarantee that each node has its inlist nodes 
already analyzed before proceeding with the node itself. We expand the local derefer-
encing of the pointers to get the points-to relations between the caller and callee. Then 
we propagate the points-to set of each node into its successors accumulating to the 
bottom node. For the acyclic points-to relations, pointers are analyzed iteratively until 
their points-to sets are fully traversed. For recursions, we analyze pointers in each 



recursion cycle individually to make the analysis algorithm accommodates to modifi-
cation and read effects introduced by the calls. 
Algorithm 3 Points-to Analysis 

1: Procedure PointsToAnalysis (PDG PDG, Graph G, TransferFunction TF)    
2:  ∀ Node N ∈ G 
3:   ∀ InListNode in ∈ N.InList 
4:    Compute points-to set (in);   N. PointstoSet. Add (in. PointstoSet); 
5:   N. PointstoSet. Add (in); 
6:   ∀ PointedToNode toN ∈ N. PointstoSet 
7:    ∀ Child ch ∈ N. Children  
8:     CopyNode (ch);   Connect edges (); 
9:   UpdateNodePointsTo (N, toN); Write the Graph(); 

10: end procedure  
11: Procedure UpdateNodePointsTo (Node N, PointedToNode toN) 
12:  if N.fnScope != toN.fnscope) then ∀ SubPointedToNode StoN ∈ toN. PointstoSet 
13:   if StoN.fnScope == N.fnScope then N. PointstoSet. Add(StoN); 
14:  else UpdateNodePointsTo (N, toN); 
15: end procedure 

Graph Unification. This step targets to compute a consistent graph.  Consider the 
following procedure and procedure call: void updatelinks(PList_Entry src, 
PList_Entry tgt) and Updatelinks(&ptr->ActiveProcessLinks, 
&ActiveProcessHead). We pass an object type to the procedure; however Update-
links manipulates the fields of passed object Flink and Blink. As the definition of the 
_PList_Entry data type is: typedef struct _LIST_ENTRY { struct _List_Entry *Flink; struct 
_List_Entry *Blink;} List_Entry, *PList_Entry; 

To solve this problem, we apply a unification algorithm to the type-graph, as fol-
lows: given node A with points-to set S and T ∈ S, if T has child-relation edge with f; 
we create a points-to edge between f and A. Fig. 5(a) shows the analysis result of this 
step of this example piece of code. 

ActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

ActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

 
(a)                                                             (b) 

Fig. 5.  Context-Sensitive Analysis. 

Context-Sensitivity. Without context-sensitivity, the analysis of functions that 
have different calling context would result in very general points-to sets for their ar-
guments. To achieve context-sensitivity, we used the transfer function for each proce-
dure call and apply its calling contexts, to bind the output of the procedure call ac-
cording to the calling site. The points-to edge here is a tuple ⟨n, v, c⟩ represents a 
pointer n points to variable v at context c, where the context is defined by a sequence 
of functions and their call-sites to find out valid call paths between nodes.(Performing 
context-sensitive analysis solves two problems: the calling context and the indirect 
(implicit) relations between nodes. These indirect relations are calculated for each two 
nodes that are in the same function scope but not included in one points-to set. Such 
that, ∀ two nodes v and n where v ∈ pts(n) and v and n has different function scope, 



 

 

check the function scope of n and x where x ∈ pts(v), if the function scope is the same 
then create a points-to edge between n and x. Fig. 5(b) shows the final context-
sensitive analysis for the Updatelinks example. We discovered that there is an indirect 
points-to relation from ActiveProcessHead to ActiveProcessLinks. 

Finally, we write the type-graph. We replace each variable node with its data type 
and for fields and array elements we add the declared parent type. Finally, we format 
the results of our analysis to the DOT language, as a simple visualization for the ker-
nel data layout to be used by the other OS security solutions that make use of KDD. 

4 Implementation and Evaluation 

We have implemented a prototype of KDD using C#. KDD uses pycparser [20] to 
generate AST files of the kernel’s source code. KDD then uses the AST files to apply-
ing our points-to analysis algorithm to generate the type-graph. We have used Mi-
crosoft’s Parallel Extensions to leverage multicore processors in an efficient and scal-
able manner to implement KDD. Threading has also been used to improve paralleliza-
tion of computations (.Net supports up to 32768 threads on a 64bit platform). In the 
intraprocedural analysis, KDD analyzes each AST file using a separate thread. For 
interprocedural analysis, KDD allocates a thread for each procedure to parses the AST 
files to map between the procedure parameters and arguments. However, for the con-
text-sensitive, the analysis is done on sequential-basis as each node depends on its 
predecessors. 

We performed three types of experiments with KDD to demonstrate its scalability 
and effectiveness. We measured the soundness and precision of KDD using different 
sets of benchmarks. We analyzed the Linux kernel v3.0.22 and WRK ((Windows 
Research Kernel) using KDD, and performed a comparison between the computed 
pointer relations using KDD, and the manual efforts to solve these relations in both 
kernels. We implemented a memory mapping tool that uses our type-graph to correct-
ly map the physical memory bytes from an introspected virtual machine to actual 
runtime objects, in order to prove KDD efficiency in defining the kernel data. Our 
implementation and evaluation platform is 2.5GHz core i5 processor with 12 GB 
RAM. 

4.1 Soundness and Precision 

The points-to analysis algorithm is sound if the points-to set for each variable con-
tains all its actual runtime targets, and is imprecise if the inferred set is larger than 
necessary. Imprecise results could be sound e.g. if pts(p) = {a,c,b} while the actual 
runtime targets are a and b, then the algorithm is sound but not precise and thus there 
exist false positives. If pts(p) = {a,c} and the actual runtime targets are a and b then 
the algorithm is not sound nor precise, and thus there exist false positives and nega-
tives. KDD is sound as it performs the points-to analysis on all program variables not 
just declared pointers, in order to cover all runtime targets whilst omitting unneces-
sary local variables. 



We used a selection of C programs from the SPEC2000 and SPEC2006 benchmark 
suites, and other open source C programs, to measure the soundness and precision of 
KDD. Table 2 shows the characteristics of these benchmark C programs, in addition 
to the precision of the KDD analysis of each. We also show indications of memory, 
time and processor usage of running KDD on these benchmark programs. We manu-
ally verified each program to get an accurate estimation of the points-to set. For pro-
grams that are less than 4 KLOC, we instrumented pointers manually. For larger pro-
grams we picked a random set of generic pointers based on our understanding of the 
program. However, we could not measure precision for some programs because of 
their size. We also ran each program and monitored allocations in physical memory to 
get the actual runtime targets (i.e. relevant points-to set). Then, we used the equation 
below to calculate precision. Our results show that for the benchmark C programs 
analyzed by KDD, we achieved a high level of precision and 100% of soundness. The 
results also show that for significantly sized C programs KDD is able to process the 
application code with very acceptable CPU time and memory usage. 
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Table 2. Soundness and Precision Results running KDD on a suite of benchmark C programs.  
LOC is lines of code. Pointer Inst is number of pointer instructions. Proc is number of Procedure defini-

tions. Struct is number of C struct type definitions. AST T is time consumed to generate the AST files, AST 
M is memory usage, and AST C is CPU usage. TG T is time consumed to build the type-graph, TG M is 

memory usage, TG C is CPU usage. 

Benchmark LOC 
(K) 

Pointer 
Inst Proc Struct ASTt 

(sec) 
ASTm 
(MB) 

ASTc 
(%) 

TGt 
(sec) 

TGm 
(MB) 

TGc 
(%) 

P  
(%) 

art 1.2 286 43 19 22.7 21.5 19.9 73.3 12.3 17.6 100 
equake 1.5 485 40 15 27.5 25.4 20.4 87.5 14.1 21.1 98.6 

mcf 2.4 453 42 22 43.2 41 28.5 14 23 27 97.2 
gzip 8.6 991 90 340 154.2 144.6 70.5 503.3 81.4 68.3 95.1 

parser 11.3 3872 356 145 305.2 191.2 76.7 661.4 107.8 74.3 94.5 
vpr 17.7 4592 228 398 316.1 298.7 80.2 1031.5 163.2 79 NA 
gcc 222.1 98384 1829 2806 3960.5 3756.5 93.5 12962 2200 94 NA 

sendmail 113.2 9424 1005 901 2017.2 1915.1 91.6 6609 1075.0 91.5 NA 
bzip2 4.6 759 90 14 82.3 78.1 45.5 271.6 44.2 42.9 95.9 

4.2 Kernel Analysis 

To illustrate the scale of the problem presented by C-based OSes, we performed a 
simple statistical analysis on the WRK (~ 3.5 million LOC) and Linux kernel v3.0.22 
(~ 6 million LOC) to compute the amount of type definitions (data structures), global 
variables and generic * used in their source code. Table 3 summarizes this analysis.  

Table 3. Kernel source code analysis. 
1st column shows the number of type definitions, 2nd column is the number of global variables, DL co-

lumn shows the number of doubly linked lists and last column reflects the number of unsigned integers that 
represent casting problem. AST column shows AST files size in gigabyte. 

 TD GV Void* Null* DL Uint AST 
Linux 11249 24857 5424 6157 8327 4571 1.6 
WRK 4747 1858 1691 2345 1316 2587 0.9 



 

 

KDD scales to the very large size of such OSes. KDD needed around 28 hours to 
analyze the WRK and around 46 hours to analysis the Linux kernel. Comparing KDD 
to KOP, KOP has to be run on a machine with 32 GB RAM and needed around 48 
hours to analyze the Windows Vista kernel. The performance of KDD could be im-
proved by increasing RAM and processing capabilities. As our points-to analysis is 
performed offline and just once for each kernel version, the performance overhead of 
analyzing kernels is acceptable. It does not present a problem for any security applica-
tion that wants to make use of KDD’s generated type graph. Re-generation of the 
graph is only necessary for different versions of a kernel where data structure layout 
changes may have occurred. Security tools can use the KDD-generated type graph for 
the particular version of an OS to which they are applied. 

To evaluate the accuracy of KDD’s generated OS type graphs, we performed a 
comparison between the pointer relations inferred by KDD and the manual efforts of 
OS experts to solve these indirect relations in both kernels. We manually compared 
around 74 generic pointers from WRK and 65 from the Linux kernel. These compari-
sons show that KDD successfully deduced the candidate target type/value of these 
members with 100% soundness. Because of the huge size of the kernel, we could not 
measure its precision for nearly 60% of the members we used in our experiment, as 
there is no clear description for these members from any existing manual analysis. We 
were thus only able to measure precision for well-known objects that have been ana-
lyzed manually by security experts and whose purpose and function is well-known 
and documented. The resulting precision was around 96% in both kernel versions.  

4.3 Object-Graph for Security Monitoring 

We modified our earlier-developed kernel security monitoring tool, CloudSec [21], 
to use our KDD-generated type-graph to traverse the physical memory of a running 
OS from a hypervisor level, in order to construct a correct object-graph that identifies 
all the running instances of the data structures for a running Virtual Machine (VM). 
The objective of this experiment was to demonstrate the effectiveness of KDD in 
computing a precise kernel data definition, not to detect threats where we utilize a 
traditional memory traversal technique that is vulnerable to object hiding attacks. 
CloudSec is a security appliance that has the ability to monitor VMs’ memory from 
outside the VM itself, without installing any security code inside the VM. CloudSec 
uses memory traversal techniques to map the running objects based on manual pro-
files that describe the direct and indirect relations between structures [21]. In this 
experiment, we used our KDD-generated type-graph to locate dynamic objects by 
traversing kernel memory starting from the OS global variables and then following 
pointer dereferencing until we covered all memory objects. We used CloudSec to map 
the physical memory of a VM running Windows XP 64bit. The performance overhead 
of CloudSec to construct the object-graph for the entire kernel running objects was 
around 6.3 minutes for a memory image of 4GB on a 2.8 GHz CPU with 6GB RAM. 
To evaluate the mapping results, we considered the global variable PsActiveProcess-
Head then followed pointer dereferencing until we covered 43 different data struc-
tures with their running instances. We compared the results with the internal OS view 



using Windows Debugger. CloudSec successfully mapped and correctly identified the 
running kernel objects, with a low rate of false positives (~1.5% in traversing bal-
anced trees). This demonstrates that, for these 43 data structures monitored, our gen-
erated type-graph is accurate enough for kernel data disambiguation to support securi-
ty monitoring.  

5 Discussion 

KDD is a static analysis tool that operates offline on an OS kernel’s source code to 
generate a robust type-graph for the kernel data that reflects both the direct and indi-
rect relations between structures, models data structures and generates constraint sets 
on the relations between them. Our experiments with KDD have shown that the gen-
erated type-graph is accurate, and solves the null and void pointer problems with a 
high percentage of soundness and precision. KDD is able to scale to the enormous 
size of kernel code, unlike many other points-to analysis tools. This scalability and 
high performance was achieved by using an AST as the basis for points-to analysis. 
The compact and syntax-free AST improves time and memory usage efficiency of the 
analysis. Instrumenting the AST is more efficient than instrumenting the machine 
code e.g. MIR because many intermediate computations are saved from hashing. 

Performing static analysis on kernel source code to extract robust type definitions 
for the kernel data structures has several advantages: (i) Systematic Security; enables 
the implementation of systematic security solutions. By this we mean that we have the 
ability to systematically protect kernel data without the need to understand deep de-
tails about kernel data layout in memory, as is done to date. (ii) Performance Over-
head; we minimize the performance overhead in security applications as a major part 
of the analysis process is done offline. If no static analysis were done, every pointer 
dereference would have to be instrumented, which increases performance overhead. 
(iii) Detecting Zero-Day Threats; we maximize the likelihood of detecting zero-day 
threats that target generic (via bad pointer dereferencing) or obscure kernel data struc-
tures. (iv) Generating Robust Data Structures Signatures; KDD generates robust data 
structure signatures that can be used by brute force scanning tools [10]. (v) Type-
Inference; declared types of C variables are unreliable indications of how the varia-
bles are likely to be used. Type inference determines the actual type of objects by 
analyzing the usage of those objects in the code base. (vi) Function Pointer Checking; 
enable checking the integrity of kernel code function pointers that reside in dynamic 
kernel objects, by inferring the target candidate type for each function pointer. This 
decreases the need to instrument every function pointer during runtime, as the ad-
dresses of objects that hold these pointers change during runtime. 

To the best of our knowledge, there is no similar research in the area of systemati-
cally defining the kernel data structure with the exception of KOP [4]. However in 
addition to the limitations discussed in the related work section, the points-to sets of 
KOP are not highly precise compared to KDD. This is because they depend on the 
Heintze points-to analysis algorithm [6], which is used in compilers for fast aliasing. 
In addition, KOP computes transitive closures in order to perform the points-to analy-



 

 

sis - this increases the performance overhead of the analysis. To the best of our 
knowledge, our points-to analysis algorithm is the first points-to analysis technique 
that depends on an AST to provide interprocedural, context and field sensitive analy-
sis. Buss et al. [22] has an initiative in performing points-to analysis based on the 
AST of the source code. However, their algorithm is field and context insensitive. 

6 Summary 

The wide existence of generic pointers in OS kernels makes kernel data layout am-
biguous and thus hinders current kernel data integrity research from providing the 
preemptive protection. In this paper, we described KDD, a new tool that generates a 
sound kernel data structure definition for any C-based OS, without prior knowledge of 
the OS kernel data layout. Our experiments with our prototype have shown that the 
generated type-graph is accurate and solves the generic pointer problem with a high 
rate of soundness and precision. Extension of our CloudSec security appliance for 
external VM data structure checking shows it can assist OS security applications. 
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