
Practitioners’ Perceptions of the Goals and Visual
Explanations of Defect Prediction Models

Jirayus Jiarpakdee, Chakkrit (Kla) Tantithamthavorn, John Grundy
Monash University, Melbourne, Australia.

Abstract—Software defect prediction models are classifiers that
are constructed from historical software data. Such software
defect prediction models have been proposed to help developers
optimize the limited Software Quality Assurance (SQA) resources
and help managers develop SQA plans. Prior studies have
different goals for their defect prediction models and use different
techniques for generating visual explanations of their models. Yet,
it is unclear what are the practitioners’ perceptions of (1) these
defect prediction model goals, and (2) the model-agnostic tech-
niques used to visualize these models. We conducted a qualitative
survey to investigate practitioners’ perceptions of the goals of
defect prediction models and the model-agnostic techniques used
to generate visual explanations of defect prediction models. We
found that (1) 82%-84% of the respondents perceived that the
three goals of defect prediction models are useful; (2) LIME
is the most preferred technique for understanding the most
important characteristics that contributed to a prediction of a file,
while ANOVA/VarImp is the second most preferred technique
for understanding the characteristics that are associated with
software defects in the past. Our findings highlight the signifi-
cance of investigating how to improve the understanding of defect
prediction models and their predictions. Hence, model-agnostic
techniques from explainable AI domain may help practitioners
to understand defect prediction models and their predictions.

Index Terms—Software Quality Assurance, Defect Prediction,
Explainable AI, Software Analytics.

I. INTRODUCTION

Software defects are prevalent, but hard to predict [24]
and to prevent [26, 27]. Thus, prior studies developed de-
fect prediction models from historical software data using
a statistical or machine learning model for various purposes
(e.g., prediction and explanations), which addresses various
goals. First is to predict the likelihood of a file [10, 24] or
a commit [17, 31, 50] being defective in the future. Second
is to understand the characteristics that are associated with
software defects in the past [26, 27]. Third is to explain
their prediction about why a particular file is predicted as
defective [14, 29, 30].

Prior studies hypothesized that the predictions could help
practitioners prioritize the limited inspection effort on the most
risky files [11, 24, 49, 50, 53], while the insights derived
from defect prediction models could help managers chart
appropriate quality improvement plans [26, 27, 36]. Recently,
Wan et al. [47] conducted a survey study with practitioners
to investigate their perceptions of defect prediction models.
However, Wan et al. [47] only focused on the prediction
goal, while the other two goals (i.e., understanding models
and explaining the predictions) have not been investigated. A
better understanding of the practitioners’ perceptions will help

the research community to better understand practitioners’
needs, allowing researchers to orient appropriate efforts for the
design and the development of the next-generation of defect
prediction models.

Prior studies used various model-agnostic techniques from
Explainable AI [9, 14, 30, 31, 41, 49]—i.e., techniques for
generating explanations of defect prediction models and their
predictions to help practitioners understand defect prediction
models and their predictions [3, 14, 26, 45, 46]. In fact,
different model-agnostic techniques generate different key in-
formation, e.g., importance scores and relationship. However,
none of the prior studies investigates which model-agnostic
techniques are considered as the most preferred by practition-
ers to generate visual explanations. A better understanding of
practitioners’ perceptions of the visual explanations of defect
prediction models is needed to guide researchers to devise
novel visualization techniques that suit practitioners’ needs.

In this paper, we conducted a qualitative survey to un-
derstand the practitioners’ perceptions of the goals of defect
prediction models and the model-agnostic techniques for gen-
erating visual explanations of defect prediction models. The
analysis of related work led us to focus on three goals of
defect prediction models: (1) prioritizing the limited SQA
resources on the most risky files; (2) understanding the char-
acteristics that are associated with software defects in the past;
and (3) understanding the most important characteristics that
contributed to a prediction of a file. We asked respondents to
assess the perceived usefulness and their willingness to adopt
defect prediction models. Then, we asked the respondents
to describe the positive and negative impacts if these defect
prediction models were adopted.

Guided by the analysis of related work, we focused on 8
model-agnostic techniques used for generating visual expla-
nations – ANOVA, Variable Importance, Partial Dependence
Plots, Decision Tree, LIME [34], BreakDown [8], SHAP [23],
and Anchor [35]. We asked our survey respondents to assess
each visual explanation generated by these techniques along
three dimensions, i.e., information usefulness, information
insightfulness, and information quality. We then asked the
respondents to describe the positive and negative feedback of
each visual explanation of defect prediction models. Through a
qualitative analysis of open-ended and closed-ended questions
of 50 software practitioners we found that:

• 82%-84% of the respondents perceived that the three
goals of defect prediction models are useful and 74%-
78% of them are willing to adopt them. This was

John Grundy
Mining Software Repositories (MSR) 2021, Mon 17 - Wed 19 May 2021, online -

especially true for respondents who use Java, have little
years of experience, and work in a large team size (more
than 100 people). This finding highlights that not only
defect predictions but also the other two goals (i.e., under-
standing defect prediction models and their predictions)
receive similar perceptions of usefulness and willingness
to adopt with no statistically significant difference.

• LIME is the most preferred technique for under-
standing the most important characteristics that con-
tributed to a prediction of a file with an agree-
ment percentage of 66%-78% along three dimensions.
ANOVA/VarImp is the second most preferred technique
for understanding the characteristics that are associated
with software defects in the past with an agreement
percentage of 58%-70% along three dimensions.

Based on these findings, future research (1) should put more
effort on investigating how to improve the understanding of
defect prediction models and their predictions; and (2) can use
ANOVA/VarImp and LIME model-agnostic techniques from
explainable AI domain to understand defect prediction models
and their predictions. We also discuss key lessons learned and
open questions for developing the next-generation of defect
prediction models, e.g., how to develop the highly-scalable
human-in-the-loop defect prediction models at the lowest
implementation cost, while maintaining its explainability.

The main contributions of this paper are as follows:
• We conducted a qualitative survey on practitioners’ per-

ceptions of the goals of defect prediction models and the
model-agnostic techniques for generating visual expla-
nations of defect prediction models. We also provided a
detailed replication package and a tutorial in Zenodo [15].

• We investigated the key factors that impact practitioners’
perceptions of the goals of defect prediction models
and the model-agnostic techniques for generating visual
explanations of defect prediction models.

• We identified a key set of implications for researchers
including open questions for future research on designing
and developing the next-generation defect models.

II. RELATED WORK & RESEARCH QUESTIONS

We first summarize key related work to identify (i) the
key goals of developing defect prediction models, and (ii)
the model-agnostic techniques that are used to generate visual
explanations. We then motivate our research questions based
on the analysis of related work.

A. Related Work

We collected the titles of full research track publications
that were published in the top SE venues (i.e., TSE, ICSE,
EMSE, FSE, and MSR) during 2015-2020 from IEEE Xplore,
Springer, and ACM Digital Library (as of 11 January 2021).
These venues are premier publication venues in the soft-
ware engineering research community. We used the “defect”,
“fault”, “bug”, “predict”, and “quality” keywords to search
for papers about defect prediction models. This led us to a
collection of 2,890 studies. Since studies may use several

keywords that match with our search queries and appear
consistently across the search results, we first identified and
excluded duplicate studies. We found that 1,485 studies are
duplicated and thus are excluded (1,405 unique studies). Then,
we manually read the titles and abstracts of these papers to
identify whether they are related to defect prediction models.
For each paper, we manually downloaded each paper as a pdf
file from IEEE Xplore, Springer, and ACM Digital Library.
We identified 131 studies that are relevant to software defects
prediction. Of the 131 studies, we excluded 7 studies that
are not primary studies of defect prediction models (e.g.,
secondary studies [13, 54]). Then, we excluded 28 studies that
are not full-paper and peer-reviewed defect prediction studies
(i.e., short, journal first, extended abstract papers). Finally, we
selected a total of 96 primary full-paper and peer-reviewed
defect prediction studies.

We read each of them to identify their goals of developing
defect prediction models and identify the model-agnostic tech-
niques that are used to generate visual explanations. We then
further group the goals of developing defect prediction models
using the Open Card Sorting approach. First, we list all the
goals of developing defect prediction models and categorize
these goals based on how such models are used in each study.
Then, we discuss the inconsistency among the authors to reach
the final set of categories. Based on the selected 96 studies,
we identify the 3 goals of developing defect prediction models
and 8 model-agnostic techniques used to generate visual
explanations. Guided by the Guidotti et al.’s Taxonomy [9],
we classify each technique according to types of model-
agnostic techniques (i.e., interpretable models vs. post-hoc
explanations) and the granularity levels of explanations (i.e.,
model explanation and outcome explanation [14]).

Goal 1—Prioritizing the limited SQA resources on the
most risky files: Software defects are prevalent in many large-
scale software systems (e.g., 47K+ for Eclipse, and 168K+ for
Mozilla) [20]. Developers have to exhaustively review and test
each file in order to identify and localize software defects.
However, given thousands of files in a software system,
exhaustively performing SQA activities are likely infeasible
due to limited SQA resources (e.g., in a rapid release setting).
Thus, prior studies use defect prediction models to predict
the likelihood of a file being defective in the future. Such
predictions can be used to produce a ranking of the most risky
files that require SQA activities. Prior studies leveraged several
Machine Learning approaches to develop defect prediction
models to predict which files [24, 53], methods [11], lines [49]
are likely to be defective in the future. For example, regression
models [3, 26, 45, 46, 53], random forests [42], and deep
learning [48].

Goal 2—Understanding the characteristics that are asso-
ciated with software defects in the past: Numerous charac-
teristics are associated with software quality. For example, the
static and dynamic characteristics of source code [10, 53],
software development practices (e.g., the amount of added
lines) [17, 25], organizational structures (e.g., social net-
works) [26], and human factors (e.g., the number of software

TABLE I: A summary of type, granularity, and key information of the model-agnostics techniques that are used in defect
prediction studies [9, 14], and an example of positive and negative feedback from practitioners (RQ2).

Goal Technique Types/Granularity Information Positive feedback Negative feedback

(Goal 2)
Understanding the
characteristics that
are associated with
software defects
in the past

Anova/
VarImp A Post-hoc Ex-

plainer for Model
Explanation

(1) The importance scores
of each feature

R50 (“Explains risk values of
several factors.”)

R34 (“It is a very basic plot
which could even have been a

table.”)

Partial
Dependence
Plot (PDP)

A Post-hoc Ex-
plainer for Model
Explanation

(1) The relationship of
each feature on the out-
come

R5 (“I like that I can see a
trending pattern to read with

ease.”)

R27 (“Easy to visualize but hard
to process the info.”)

Decision
Tree An Interpretable

Model for Model
Explanation

(1) The decision rule of
each feature

R47 (“Very analytical, strong
with engineers, flow chart.”)

R34 (“Very difficult to read
especially when there are

multiple parameters and the tree
gets un-manageable.”)

(Goal 3)
Understanding the
most important
characteristics that
contributed to a
prediction of a file

LIME

A Post-hoc
Explainer for
Outcome
Explanation

(1) The prediction of the
local models R1 (“Risk scores are visually

oriented and users will
understand it faster.”)
R50 (“Easy to understand, we
just want to know what’s
already ok and what’s need to
improve.”)

R9 (“... But it also could be time
consuming to review depending
on if there are many different
files to review.”)
R50 (“... too large and too tired
to read 10 charts for 10 files.”)

(2) The decision point of
each feature
(3) The supporting scores
of each feature
(4) The contradicting
scores of each feature
(5) The actual feature value
of that instance

SHAP

A Post-hoc
Explainer for
Outcome
Explanation

(1) The prediction of the
local models R5 (“... It does highlight in the

explanation of what everything
is, which is nice. It gives
insightful data on what to look
out for.”)
R14 (“It describes the
involvement of each attribute
more clearly.”)

R9 (“This has a lot of information
which can be quite useful but lacks
a clean readability. It can be quite
time-consuming to read this graph.”)
R27 (“Takes a bit to figure out
what is going on.”)

(2) % of contribution for
each feature to the final
probability
(3) The actual feature value
of that instance

BreakDown

A Post-hoc
Explainer for
Outcome
Explanation

(1) The prediction of the
local models
(2) % of contribution for
each feature to the final
probability
(3) The actual feature value
of that instance

Anchor

A Post-hoc
Explainer for
Outcome
Explanation

(1) The decision rule of
each feature

R50 (“Exactly what I need, just
small and short information on

what to improve.”)

R36 (“... doesn’t provide a
visual aid to put the numbers

into perspective.”)

developers, code ownership) [3, 45, 46]. Yet, different systems
often have different quality-impacting characteristics. Thus,
prior studies used defect prediction models to better under-
stand such characteristics that are associated with software de-
fects in the past. This understanding could help managers chart
appropriate quality improvement plans. Below, we summarize
the four model-agnostic techniques that are used in prior
studies to understand the characteristics that are associated
with software defects in the past.

Analysis of Variance (ANOVA) is a model-agnostic tech-
nique for regression analysis to generate the importance scores
of factors that are associated with software defects. ANOVA
measures the importance of features by calculating the im-
provement of the Residual Sum of Squares (RSS) made when
sequentially adding a feature to the model. Variable Impor-
tance (VarImp) is a model-agnostic technique for random
forests classification techniques to generate the importance
scores of factors that are associated with software defects.
The VarImp technique measures the importance of features
by measuring the errors made when the values of such
features are randomly permuted (i.e., permutation importance).
Random forests also provides other variants of importance

score calculations (e.g., Gini importance). In this paper, we
choose the permutation importance technique to generate an
example of VarImp visual explanation since we find that
permutation importance is more robust to the collinearity
issues [16]. We note that the ANOVA and VarImp plots only
indicate the importance of each feature, not the directions of
the relationship of each feature i.e., positive or negative.

Partial Dependence Plot (PDP) [7] is a model-agnostic
technique to generate model explanations for any classification
models. Unlike visual explanations generated by ANOVA and
VarImp that show only the importance of all features, visual
explanations generated by PDP illustrate the marginal effect
that one or two features have on the predicted outcome of a
classification model.

Decision Tree or Decision Rule is a technique to generate
tree-based model explanations. A decision tree is constructed
in a top-down direction from a root node. Then, a decision tree
partitions the data into subsets of similar instances (homoge-
neous). Typically, an entropy or an information gain score are
used to calculate the homogeneity of among instances. Finally,
the constructed decision tree can be converted into a set of if-
then-else decision rules.

Goal 3—Understanding the most important characteris-
tics that contributed to a prediction of a file: Recently,
Jiarpakdee et al. [14] argued that a lack of explainability
of defect prediction models could hinder the adoption of
defect prediction models in practice (i.e., developers do not
understand why a file is predicted as defective). To address this
challenge, Jiarpakdee et al. proposed to use model-agnostic
techniques to generate explanations of the predictions of
defect prediction models (i.e., what are the most important
characteristics that contributed to a prediction of a file?).
Below, we summarize the four state-of-the-art model-agnostic
techniques that were used in prior studies to understand the
most important characteristics that contributed to a prediction
of a file (i.e., LIME, BreakDown, SHAP, and Anchor).

Local Interpretability Model-agnostic Explanations
(LIME) [34] is a model-agnostic technique to generate
the importance score of the decision rule of each factor
for any classification models. The decision rule of each
factor is discretized based on a decision tree. LIME aims to
generate supporting and contradicting scores which indicate
the positive and negative importance of each feature for an
instance. For example, a LIME explanation for the LOC
feature with an importance score of 40% and a decision
rule LOC > 100 => BUG indicates that the condition of
the file size that is larger than 100 LOCs would have 40%
contribution to the prediction that a file is defective.

BreakDown [8] is a model-agnostic technique for generating
probability-based explanations for each model prediction [38].
BreakDown uses the greedy strategy to sequentially measure
the contributions of each feature towards the expected predic-
tions. For example, a BreakDown explanation for the LOC
feature with an importance score of 40% indicates that the
actual feature value of 200 LOCs of the file would have 40%
contributions to the final prediction of this particular file as
being defective.

SHapley Additive exPlanations (SHAP) [23] is a model-
agnostic technique for generating probability-based explana-
tions for each model prediction based on a game theory
approach. SHAP uses game theory to calculate the Shapley
values (contributions) of each feature based on the decision-
making process of prediction models.

Anchor [35] is an extension of LIME [34] that uses decision
rules to generate rule-based explanations for each model
prediction. The key idea of Anchor is to select if-then rules
– so-called anchors – that have high confidence, in a way
that features that are not included in the rules do not affect
the prediction outcome if their feature values are changed.
In particular, Anchor selects only rules with a minimum
confidence of 95%, and then selects the rule with the highest
coverage if multiple rules have the same confidence value.

B. Research Questions

As shown in Figure 1, we found that most recent defect
prediction studies focus on prioritizing the limited SQA re-
sources. This led us to hypothesize that the prediction goal
is perceived as more useful than the other two goals, i.e.,

91%

41%

4%
0

25

50

75

100

Goal 1
(Predict)

Goal 2
(Understand)

Goal 3
(Explain)

of

 s
tu

di
es

 (
%

)

Goals of developing
defect prediction models

18%

15%

5%

3%
2%

1%

0

5

10

15

20

ANOVA VarImp PDP Decision
Tree

LIME BreakDown

of

 s
tu

di
es

 (
%

)

Techniques used in studies

0

5

10

15

20

25

2015 2016 2017 2018 2019 2020

of

 s
tu

di
es

 (
%

)

Goal 1
(Predict)

Goal 2
(Understand)

Goal 3
(Explain)

Goals of developing defect prediction models over time

Fig. 1: The proportion of the goals of developing defect
prediction models and the proportion of the model-agnostic
techniques used in prior studies. We note that the summation
of these percentage values does not add up to 100% since a
study may have multiple goals and may use multiple model-
agnostic techniques.

ANOVA

A prediction
score of

90%
Unseen

Data

Defect Prediction 
Models

Regression Models

Variable
Importance

Random  
Forests

Partial Dep. 
Plot (PDP)

Decision
Rule/Tree

Decision
Rule/Tree

Mo
de

l
Ex

pla
na

tio
n

Generate  
Predictions

Most  
Risky

Least  
Risky

Goal 2:
Understanding the
characteristics that are
associated with software
defects in the past

Goal 1:
Prioritizing the
limited SQA
resources on the
most risky files

lines-of-code

#reviewers
#juniors
TestCov

Scores

loc=1,000
#reviewers=5

#junior=0
TestCov=40%

Goal 3:
Understanding the most
important characteristics
that contributed to a
prediction of a file

LIME BreakDown SHAP Anchor

Ins
tan

ce
  

Ex
pla

na
tio

ns

If {LOC>100} 
then {BUG}

Fig. 2: An illustrative overview of the goals of defect predic-
tion models and the model-agnostic techniques for generating
visual explanations of defect prediction models.

understanding defect prediction models and their predictions.
However, it remains unclear how do practitioners perceive the
three goals of defect prediction models. Thus, we formulate
the following research question:

(RQ1) Which goals of defect prediction models that
practitioners considered the most useful?

According to our analysis of related work, prior defect
prediction studies also used model-agnostic techniques to
generate visual explanations to help practitioners understand
(1) the most important characteristics that are associated with
software defects in the past; and (2) the most important charac-
teristics that contributed to a prediction of a file. Surprisingly,

there exist numerous model-agnostic techniques to generate
visual explanations (e.g., ANOVA and LIME) that have been
used in the literature. Particularly, we found that 18% used
ANOVA, 15% used Variable Importance, 5% used Partial
Dependence Plot, 3% used Decision Tree, 2% used LIME,
and 1% used BreakDown to generate visual explanations.
Recently, Esteves et al. [6] also used SHAP [23] to understand
the predictions of defect prediction models. Anchor [35] (an
extension of LIME [34]) was proposed to present the visual
explanations in the form of decision trees/rules.

Based on our analysis of the eight selected model-agnostic
techniques (see Table I) that were used in prior studies, we
found that visual explanations generated by these techniques
produce different key information (e.g., important scores and
relationship). It remains unclear about which model-agnostic
techniques are considered as the most preferred by practition-
ers to understand defect prediction models and their predic-
tions. Thus, we formulate the following research question:

(RQ2) Which model-agnostic techniques are the
most preferred by practitioners to understand de-
fect prediction models and their predictions?

III. SURVEY METHODOLOGY

The goal of this work is to assess practitioners’ perceptions
of the goals of defect prediction models and the model-
agnostic techniques for generating visual explanations of de-
fect prediction models. To address our two research questions,
we conducted a qualitative survey study to investigate the
practitioners’ perceptions of the goals of defect prediction
models and the model-agnostic techniques for generating
visual explanations of defect prediction models. We used
a survey approach, rather than other qualitative approaches
(e.g., interview), since we aim to assess their perceptions of
the goals along 2 dimensions (i.e., perceived usefulness and
willingness to adopt) and the model-agnostic techniques along
3 dimensions (i.e., overall preference, information usefulness,
information insightfulness, and information quality). Unlike
an interview approach that is more unstructured, the closed-
ended responses of the survey approach can be structured and
quantified on a Likert scale which can be further analyzed
to produce empirical evidence. The open-ended responses of
the survey approach also provide in-depth insights to synthe-
size and generate discussions. As suggested by Kitchenham
and Pfleeger [18], we considered the following steps when
conducting our study: (1) Survey Design (designing a survey
and developing a survey instrument), (2) An Evaluation of
the Survey Instrument (evaluating the survey instrument), (3)
Participant Recruitment and Selection (obtaining valid data),
(4) Data Verification (verifying the data), and (5) Statistical
Analysis (analysing the data). We describe each step below.

A. Survey Design

Our survey design is a cross-sectional study where par-
ticipants provide their responses at one fixed point in time.

The survey consists of 9 closed-ended questions, 11 open-
ended questions, and 1 one-ended question for feedback on
our survey. The survey takes approximately 20 minutes to
complete and is anonymous. Our survey can be found in the
online supplementary materials [15].

To fulfil the objectives of our study, we created three sets
of closed-ended and open-ended questions with respect to the
demographic information, and the two research questions. For
closed-ended questions, we used agreement and evaluation
ordinal scales. To mitigate the inconsistency of the interpre-
tation of numeric ordinal scales, we labeled each level of
ordinal scales with words as suggested by Krosnick [19]. The
format of our survey instrument is an online questionnaire. We
used Google Forms to implement this online survey. When
accessing the survey, each participant was provided with an
explanatory statement which describes the purpose of the
study, why the participant is chosen for this study, possible
benefits and risks, and confidentiality. Below, we present the
rationale for the information that we captured:

Part 1–Demographics: We captured the following informa-
tion, i.e., Role: engineers, managers, and researchers; Experi-
ence in years (decimal value); Current country of residence;
Primary programming language; Team Size: 1-10, 11-20, 21-
50, 51-100, 100+; Usage of static analysis tools: Yes / No.

The collection of demographic information (i.e., roles, ex-
perience, country) about the respondents allows us to (1)
filter respondents who may not understand our survey (i.e.,
respondents with less relevant job roles), (2) breakdown the
results by groups (e.g., developers, managers, etc), and (3)
understand the impact of the demographics on the results of
our study.

Team size may have an impact on SQA practices. For
example, small teams might use a light-weight SQA practice
(e.g., static analysis), while large teams might use a rigorous
SQA practice (e.g., CI/CD and automated software testing).

Primary programming languages may impact SQA prac-
tices. For example, some high-level programming languages
might be easier to conduct SQA practices (e.g., Python and
Ruby languages) than some low-level programming languages
(e.g., C language).

The usage of static analysis tools may impact the practition-
ers’ perceptions of the goals of defect prediction models and
the model-agnostic techniques for generating visual explana-
tions of defect prediction models. For example, practitioners
who use static analysis may not perceive the benefits of the
prioritization goal of defect prediction models [47]. However,
the ranking of the most risky files is not the only goal of defect
prediction models.

Part 2–Practitioners’ perceptions of the goals of defect
prediction models: To understand how practitioners perceive
the goals of defect prediction models, we first illustrated the
concept of defect prediction models then provided partici-
pants with the brief definition of each goal (as outlined in
Section II). For each goal of defect prediction models, we
assessed the practitioner’s perceptions along two dimensions,
i.e., perceived usefulness and willingness to adopt. Perceived

usefulness refers to the degree to which a person believes
that using a particular system would enhance his or her job
performance [21] Willingness to adopt refers to the degree to
which a person is willing to adopt a particular system [47].
Thus, we asked the participants to rate the perceived usefulness
and the willingness to adopt using the following evaluation
ordinal scales:

• Perceived Usefulness: Not at all useful, Not useful, Neu-
tral, Useful, and Extremely useful

• Willingness to adopt: Not at all considered, Not consid-
ered, Neutral, Considered, and Extremely considered

We then asked participants to describe the positive points
and points for improvement about these goals of defect pre-
diction models, and how the use of defect prediction models
might impact their organizations when deploying in practice.

Part 3–Practitioners’ perceptions of the model-agnostic
techniques for generating visual explanations of defect predic-
tion models: We provided participants with examples of visual
explanation that are generated from the 6 model-agnostic
techniques for defect prediction models (i.e., VarImp, Partial
Dependence Plots, Decision Tree, LIME, BreakDown, and
Anchor). We combined ANOVA and VarImp since both tech-
niques provide the same information. Similarly, we combined
SHAP and BreakDown since both techniques provide the
same information. As suggested by Lewis et al. [2, 21], we
use the PSSUQ (Post-Study System Usability Questionnaire)
framework to evaluate the practitioners’ perceptions of the
model-agnostic techniques for generating visual explanations
of defect prediction models. The PSSUQ framework focuses
on four dimensions, i.e., information usefulness, information
quality, information insightfulness, and the overall preference.
Information usefulness, information quality, and information
insightfulness refer to the degree to which a person satisfies
that using a particular visual explanation is useful, able to
comprehend, and insightful to understand the characteristics
that are associated with software defects and the characteristics
that contributed to a prediction of a file, respectively. For each
dimension, we use the following evaluation ordinal scales:

• Extremely low, low, moderate, high, and extremely high.
We then asked participants to describe the strengths and

weaknesses of each visual explanation. Finally, we asked
an open-question to describe the ideal preferences of visual
explanations for developing quality improvement plans.

To generate visual explanations for our survey, we used
the release 2.9.0 and 3.0.0 of the Apache Lucene software
system from Yatish et al. [51]’s corpus. The release 2.9.0 data
(1,368 instances, 65 software metrics, and a defective ratio of
20%) was used to construct defect prediction models, while
the release 3.0.0 data (1,337 instances, 65 software metrics,
and a defective ratio of 12%) was used to evaluate such
models to ensure that explanations are derived from accurate
models. We also used the release 3.0.0 data to generate visual
explanations of LIME, SHAP, BreakDown, and Anchor. To
simplify the visual explanation for readability, we selected
only five metrics, i.e., AddedLOC, CommentToCodeRatio,

LOC, nCommit, and nCoupledClass. We provided the
steps for generating visual explanations in Zenodo [15].

B. An Evaluation of the Survey Instrument

We carefully evaluated our draft survey by using a pilot
study for pre-testing [22], prior to recruiting participants. We
evaluated the survey with co-authors and PhD students who
have background knowledge in software engineering research
but may not restricted to the defect prediction domain. They
pointed out that the survey needs more context and details, es-
pecially for non-domain experts. Particularly, the draft survey
did not provide the definition of software defect prediction,
how they are handled in software companies, and how de-
fect prediction models are used to support decision-making.
Thus, in the beginning of Sections 3 and 4 of the revised
draft survey, we included overview figures and scenario-based
explanations to address the concern. We repeatedly refined the
survey instrument to identify and fix potential problems (e.g.,
missing, unnecessary, or ambiguous questions) until reaching
the consensus among the pre-testing participants. Finally, the
survey has been rigorously reviewed and approved by the
Human Research Ethics Committee of our university.

C. Participant Recruitment and Selection

The target population of our study is software practition-
ers. To reach our target population, we used the recruiting
service as provided by the Amazon Mechanical Turk. Unlike
StackOverflow or Linkedin, the Amazon Mechanical Turk
platform comes with built-in options to filter participants for
participant selection and customize a monetary incentive for
each participant. Particularly, we applied the participant filter
options of “Employment Industry - Software & IT Services”
and “Job Function - Information Technology” to ensure that we
reached the target population. We paid 6.4 USD as a monetary
incentive for each participant [5, 37]. In total, our survey has
9 closed questions (450 responses) + 11 open questions (550
responses) + 1 open question (50 responses) for feedback.

D. Data Verification

We manually read all of the open-question responses to
check the completeness of the responses i.e., whether all ques-
tions were appropriately answered. We excluded 68 responses
that are missing and are not related to the questions. In the end,
we had a set of 982 responses. We summarized and presented
the results of closed-ended responses in a Likert scale with
stacked bar plots, while we discussed and provided examples
of open-ended responses.

E. Statistical Analysis

For the closed-end questions with ordinal scales, we con-
verted the ratings into scores. For example, we converted not
at all useful, not useful, neutral, useful, and extremely useful to
1, 2, 3, 4 and 5 respectively. Then, we applied the ScottKnott
ESD test to clusters of distributions into statistically distinct
ranks. We used the implementation of the ScottKnott ESD test
as provided by the ScottKnottESD R package [39, 43, 44].

6%

10%

6%

84%

82%

82%

10%

8%

12%
(Goal 3) Understanding the most important

characteristics that contributed
to a prediction of a file

(Goal 2) Understanding the characteristics
that are associated with

software defects in the past

(Goal 1) Prioritizing the limited SQA
resources on the most risky files

100 50 0 50 100

Percentage

Response

Not at all useful Not useful

Neutral Useful

Extremely useful

(a) Perceived Usefulness

2%

10%

12%

78%

74%

74%

20%

16%

14%
(Goal 3) Understanding the most important

characteristics that contributed
to a prediction of a file

(Goal 2) Understanding the characteristics
that are associated with

software defects in the past

(Goal 1) Prioritizing the limited SQA
resources on the most risky files

100 50 0 50 100

Percentage

Response

Not at all considered Not considered

Neutral Considered

Extremely considered

(b) Willingness to adopt

Fig. 3: The likert scores of the perceived usefulness and the willingness to adopt from the respondents for each goal of defect
prediction models.

For ratings of statements, we calculated the percentage of
respondents who strongly agree or agree with each statement
(% strongly agree+% agree) and the percentage of respon-
dents who strongly disagree or disagree with each statement
(% strongly disagree+% disagree). As suggested by Wan et
al. [47], we also computed an agreement factor for each
statement. The agreement factor is a measure of agreement
between respondents, which is calculated for each statement
by the following equation: (% strongly agree + % agree)/(%
strongly disagree + % disagree). High values of agreement
factors indicate a high agreement of respondents to a state-
ment. The agreement factor of 1 indicates that the numbers
of respondents who agree and disagree with a statement are
equal. Finally, low values of agreement factors indicate that a
high disagreement of respondents to a statement.

IV. SURVEY RESULTS

We present the demographics of our survey, and then the
results of using survey data to answer our research questions.

A. Demographics
The top two countries in which the respondents reside

are India (58%) and the United States (36%). Among the
respondents, they described their job roles as: Developers
(50%), Managers (42%), and others (8%). The number of
years of professional experience of the respondents varied
from less than 5 years (26%), 6–10 years (38%), 11–15 years
(22%), 16–20 years (12%), and more than 25 years (2%). They
described their team size as: less than 10 people (30%), 11–
20 people (30%), 21–50 people (26%), 51–100 people (2%),
and more than 100 people (12%). The respondents described
their experience in programming languages as: Java (44%),
Python (30%), C/C++/C# (28%), and JavaScript (12%). They
also answered whether they are using static analysis tools in
their organizations as follows: Yes (62%) and No (38%).

These demographics indicate that the responses are col-
lected from practitioners resided in various countries, roles,
years of experience, and programming languages, indicating
that our findings are likely not bound to specific characteristics
of practitioners.

B. Which goals of defect prediction models that practitioners
considered the most useful? (RQ1)

Figure 3 presents the Likert scores of the perceived useful-
ness and the willingness to adopt from the respondents for each
goal of defect prediction models. Table II presents a summary
of the ScottKnott ESD rank, the agreement percentage, the
disagreement percentage, and the agreement factor for the
three goals of defect prediction models.

82%-84% of the respondents perceived that the three
goals of defect prediction models are useful and nearly
80% of them are willing to adopt. Figure 3 shows that 82%-
84% and 72%-78% of respondents rate that the goals of defect
prediction models are perceived as useful and considered
willing to adopt, respectively. Table II also confirms that the
agreement factors are high across all goals with the values of
8.2-14 and 6-39 for perceived usefulness and willingness to
adopt, respectively. The high agreement factors of responses
provided by the respondents suggest that most respondents
provide positive responses (e.g., useful and extremely useful)
when comparing negative responses (e.g., not useful and not
at all useful). Respondents provided rationales that if defect
prediction models were adopted, they are likely to save devel-
opers’ effort, e.g., (R6: “... saves developers a huge amount
of effort on reviewing or testing non-defective files ...”), and
improve the efficiency of code inspection (R8: “Issues can
be caught early in development.”, (R24: “More time will be
focused on critical areas. Less time will be wasted on areas
without defects.”). The ScottKnott ESD test also ranks all of
the goals at the same rank, confirming that the scores among
the goals have negligible effect size difference. This finding
highlights that not only the defect prediction goal but also the
other two goals (i.e., understanding defect prediction models
and their predictions) receive similar perceptions of useful-
ness and willingness to adopt with no statistically significant
difference.

Below, we discuss further if the respondents’ demographics
have any impact on their perceptions.

The use of static analysis tools has no significant impact
(with a negligible to small effect size) on their willingness

TABLE II: (RQ1) A summary of the ScottKnott ESD rank, the agreement percentage, the disagreement percentage, and the
agreement factor for the three goals of defect prediction models.

Dimension Goal SK Rank % Agreement % Disagreement Agreement Factor

Perceived
Usefulness

Goal 1 – Prioritizing the limited SQA
resources on the most risky files

1 84% 6% 14.00

Goal 2 – Understanding the characteristics
that are associated with software defects
in the past

1 82% 10% 8.20

Goal 3 – Understanding the most
important characteristics that contributed
to a prediction of a file

1 82% 6% 13.67

Willingness
to Adopt

Goal 1 – Prioritizing the limited SQA
resources on the most risky files

1 74% 10% 7.40

Goal 2 – Understanding the characteristics
that are associated with software defects
in the past

1 78% 2% 39.00

Goal 3 – Understanding the most
important characteristics that contributed
to a prediction of a file

1 74% 12% 6.17

to adopt defect prediction models that are developed from
various goals. The emergence of static analysis and defect
prediction models is in parallel with different intellectual
thoughts: one is driven by algorithms and abstraction over
code, while defect prediction models are driven by statistical
methods over large defect datasets [47]. Wan et al. [47]
noted that static analysis shares some overlapping goals with
defect prediction models, i.e., improving inspection efficiency,
finding minimal, and potentially defective regions in source
code. Thus, practitioners who use static analysis may not be
willing to adopt defect prediction models. In contrast, we did
not observe any significant impact of the use of static analysis
tools on their willingness to adopt defect prediction models.
This finding is aligned with Rahman et al. [32] who found
that both static analysis and statistical defect prediction models
provide comparable benefits.

We found that Team Size has the largest influence on their
willingness to adopt. To investigate the impact of various
demographic factors on their willingness to adopt, we built a
linear regression model by using the ols function of the rms
R package. The independent variables are the years of ex-
perience, roles, team size, programming languages, and static
analysis, while the dependent variable is the willingness score.
After using the optimism-reduced bootstrap validation (i.e.,
a model validation technique that randomly draws training
samples with replacement then tests such models with original
samples and the samples used to construct these models),
the regression model achieves a goodness-of-fit (R2) of 0.35.
Then, we analyzed the Chi-square statistics of the ANOVA
Type-II analysis, then normalized these Chi-square statistics
into percentage to better illustrate the relative differences
among variables. The ANOVA analysis indicates that Team
Size has the largest influence on their willingness to adopt
(i.e., 52.80% for TeamSize, 20.98% for useJava, 13.05% for
usePython, 7.92% for Year, 5.01% for role). We found that the
respondents who use Java, with little years of experience and a
large team size (more than 100 people) tend to consider willing
to adopt defect prediction models. Nevertheless, we observe a

minimal impact of the roles (developers vs managers) on their
perceptions. We provided a detailed analysis of marginal effect
size of each demographic factor on the estimated willingness
to adopt defect prediction models in Zenodo [15].

C. Which model-agnostic techniques are the most preferred
by practitioners to understand defect prediction models and
their predictions? (RQ2)

LIME is the most preferred model-agnostic technique
to understand the most important characteristics that
contributed to a prediction of a file with an agreement
percentage of 66%-78% along three dimensions. As shown
in Table III, LIME consistently appears at the top-1 ScottKnott
ESD rank for all three dimensions with an agreement percent-
age of 76% for information usefulness, an agreement percent-
age of 68% for information insightfulness, and an agreement
percentage of 66% for information quality. Respondents found
that LIME is very easy to understand, e.g., R1 (“Risk scores
are visually oriented and users will understand it faster.”)
and R50 (“Easy to understand, we just want to know what’s
already ok and what’s need to improve.”). However, some
respondents raised concerns that LIME generates too much
information (i.e., too many characteristics for many defective
files), e.g., R9 (“... But it also could be time consuming
to review depending on if there are many different files to
review.”) and R50 (“... too large and too tired to read 10
charts for 10 files.”).

ANOVA/VarImp is the second most preferred technique
to understand the characteristics that are associated with
software defects in the past with an agreement percent-
age of 58%-70% along three dimensions. As shown in
Table III, ANOVA/VarImp consistently appears at the second
ScottKnott ESD Rank, except for information quality, with an
agreement percentage of 60% for information usefulness, an
agreement percentage of 58% for information insightfulness,
and an agreement percentage of 70% for information quality.
Similar to LIME, respondents found that the bar charts of
ANOVA/VarImp are very easy to understand, e.g., R50 (“Ex-
plains risk values of several factors.”). This finding indicates

TABLE III: (RQ2) A summary of the ScottKnott ESD rank, the agreement percentage, the disagreement percentage, and the
agreement factor for each model-agnostic technique for generating visual explanations of defect prediction models.

Dimension Techniques SK Rank %Agreement %Disagreement Agreement Factor

Usefulness

LIME 1 76% 6% 12.67
ANOVA/VarImp 2 60% 14% 4.29
PDP 2 60% 18% 3.33
BreakDown/SHAP 2 50% 18% 2.78
Decision Tree 2 54% 18% 3.00
Anchor/LORE 2 60% 28% 2.14

Insightfulness

LIME 1 68% 8% 8.50
Decision Tree 1 52% 10% 5.20
BreakDown/SHAP 2 58% 12% 4.83
PDP 2 54% 16% 3.38
ANOVA/VarImp 2 58% 18% 3.22
Anchor/LORE 3 46% 24% 1.92

Quality

LIME 1 66% 4% 16.50
ANOVA/VarImp 1 70% 8% 8.75
Decision Tree 1 70% 14% 5.00
PDP 2 56% 24% 2.33
BreakDown/SHAP 2 52% 26% 2.00
Anchor/LORE 2 56% 24% 2.33

that while both LIME and ANOVA/VarImp generate different
information, they are complementary to each other. This
suggests that while LIME should be used to understand the
most important characteristics that contributed to a prediction
of a particular file (Goal 3), ANOVA/VarImp is still needed
to understand the overview of the general characteristics that
are associated with software defects in the past (Goal 2).

V. THREATS TO VALIDITY

Construct validity: We studied a limited period of publi-
cations (i.e., 2015-2020). Thus, the results may be altered if
the studied period is changed. Future research should consider
expanding our study to a longer publication period.

Hilderbrand et al. [12] found that there are statistically gen-
der differences in the cognitive style of developers. Yet, gender
is not considered in our survey. Thus, our recommendation
may not be generalized to all genders. Future studies should
consider gender aspects when collecting the demographics of
respondents.

In this paper, we design the survey with the assumptions
of file-level defect prediction. However, Wan et al. [47] found
that commit level is the most preferred by practitioners. Thus,
our results may not be applicable to other granularity levels
of predictions (e.g., commits, methods).

Internal validity: One potential threat is related to the
bias in the responses due to the imbalanced nature of the
recruited participants. Also, practitioners’ perceptions may
biased and can change from one person to another or even
one organization to another [4]. However, the population
of the recruited participants is composed of practitioners of
different roles, years of experience, country of residence, and
programming languages. To mitigate issues of fatigue bias in
our survey study, we conducted a pilot study with co-authors
and PhD students to ensure that the survey can be completed
within 20 minutes.

External validity: We recruited a limited number of par-
ticipants. Thus, the results and findings may not generalise to
all practitioners. Nevertheless, we described the survey design
in details and provided sets of survey questions in the online
supplementary materials [15] for future replication.

VI. LESSONS LEARNED AND OPEN QUESTIONS

We discuss key lessons learned from the results of our qual-
itative survey and discuss some open questions for developing
the next-generation of defect prediction models. We hope that
such open questions can motivate important future work in the
area and foster the adoption of the defect prediction models
in practice.

(Open Question-1) How can we improve the efficiency
and effectiveness of SQA planning? Over the past decade,
there have been hundreds of studies focusing on improving the
prediction goal of defect prediction models [10]. However, as
we discussed in Section II, prediction is not the sole goal of
defect prediction models. Instead, defect prediction models can
also help practitioners understand key important characteristics
that are associated with software defects in the past to develop
SQA plans. As discussed in answering RQ1, practitioners
also perceived that understanding defect prediction models
and their predictions are equally useful with no statistically
significant difference. For example, R28 highlights the benefits
of data-informed knowledge sharing as follows: “Management
can provide suggestions (derived from defect prediction mod-
els) to improve the software quality (to developers) and to
improve the process and policy.” Thus, future studies should
start exploring a new research direction on “improving the
efficiency and effectiveness of SQA planning,” (e.g., [33]) in
addition to saving code inspection effort.

(Open Question-2) What is the most effective visual
explanation for developing SQA plans that address practi-
tioners’ needs? The results of answering RQ1 (see Table II)

confirm that our respondents perceived that understanding
defect prediction models and their predictions (i.e., Goal 2
and Goal 3) are both useful and considered willing to adopt
them. However, the results of answering RQ2 (see Table III)
show that 6%-28% of the respondents do not perceive that
visual explanations generated by model-agnostic techniques as
useful, insightful and comprehensive. In particular, while we
find that some respondents rated LIME as the most preferred
model-agnostic technique (i.e., Rank 1st) to understand the
most important characteristics that contributed to a prediction
of a file, some respondents rated LIME as the least preferred
visual explanation (i.e., Rank 6th) (e.g., R6: “Too confusing to
me.”). This finding suggests that none of the model-agnostic
techniques can satisfy all software practitioners and their
needs. This is because model-agnostic techniques are origi-
nated from the explainable AI domain and are not designed
for software engineering. Thus, future studies should start
exploring a new research direction on “inventing a domain-
specific and human-centric visual explanation for helping
practitioners to develop SQA plans.”

(Open Question-3) How can we improve the scalability of
defect prediction models at the lowest implementation cost,
while maintaining their explainability? Defect prediction
models have been proposed over several decades. However,
the deployment of such models is still limited to top software
organizations, e.g., Microsoft, Google, and Cisco. Respondents
raised concerns about the cost of the implementation and de-
ployment of defect prediction models (e.g., R28: “... However,
I think the implementation of defect prediction models can be
a challenging task and it is likely to be time-consuming and
expensive.”). It is widely known that the implementation of
defect prediction models requires a deep understanding of the
best practices for mining, analyzing and modelling software
defects [40]. Thus, future studies should focus on applying
this best practice in a larger-scale experiment, i.e. shifting the
research direction from analytics-in-the-small to analytics-in-
the-large. Based on our experience, few challenges are very
important to address when increasing the scalability of defect
prediction models, e.g., how to ensure that defect prediction
models are compatible across development environments e.g.,
programming languages and operating systems. This is similar
to one respondent who stated that (R34: “Ensure that it
is language independent and works on multiple operating
systems. Legacy systems will obviously pose a challenge.”).

In addition, when developing defect prediction models in-
the-large (i.e., learning from multiple projects), the same set
of metrics are still required. However, in reality, different soft-
ware projects use different software development tools, e.g.,
Jira, Git, Gerrit, Travis. Prior studies had attempted to build
a universal defect model [52] and deal with heterogeneous
data [28]. However, there are other challenges when dealing
with heterogeneous data across software development tools
and ultra-large-scale modelling approaches. Future studies
should explore the development of a highly-accurate and
scalable (pre-trained) defect analytics model at the lowest
implementation cost while maintaining explainability.

(Open Question-4) How can we assure developers’
privacy and fairness when deploying defect prediction
models in practice? One of the respondents (R3) raised
important concerns about a lack of “privacy” when using
defect prediction models. For example, Facebook currently
has an Ownesty system that aims to identify who is the most
suitable owner of a given asset changes over time, i.e. code
ownership [1]. Prior studies show that code ownership metrics
share a strong relationship with defect-proneness [3]. Thus,
many practitioners are afraid of a lack of privacy and fairness
of defect prediction models. In particular, would developers
be laid-off due to the use of defect prediction models for
identifying who introduce software defects? Thus, managers
should carefully handle expectations with developers about the
usage policy and the code of conduct when adopting defect
prediction models in practice.

(Open Question-5) How can we best enable human-in-
the-loop when using defect prediction models? Researchers
have proposed lots of automated tools in software engineering
in order to greatly improve the developers’ productivity and
software quality. However, one respondent mentioned that
such automated tools may have a negative impact on the
development behaviors of developers (R6: “Laziness and do
not care with catching errors and dumping all the work on
explainable defect (prediction) models.”). Importantly, this
concern indicates that the adoption of automated tools may
lead to a lax software development process e.g. solely relying
on the tools rather than developers’ skills. Thus, it is important
to manage practitioners’ expectations that such automated
tools should be used as guidance to support decision-making
and policy-making, not replacing developers’ jobs. Therefore,
the next-generation defect prediction models should focus on
how to enable human-in-the-loop into the defect prediction
models, combining the best of human intelligence with the
best of machine intelligence.

VII. CONCLUSIONS

In this paper, we presented the findings of the qualitative
survey of 50 practitioners on their perceptions of the goals of
defect prediction models and the model-agnostic techniques
for generating visual explanations for defect prediction mod-
els. We conclude that: (1) Researchers should put more effort
on investigating how to improve the understanding of defect
prediction models and their predictions, since our analysis of
related work found that these two goals are still under research
despite receiving similar perceptions of usefulness and will-
ingness to adopt with no statistically significant difference; and
(2) Practitioners can use LIME and ANOVA/VarImp to better
understand defect prediction models and their predictions.
Finally, we discuss many open questions that are significant,
yet remain large unexplored (e.g., developers’ privacy and
fairness when deploying defect prediction models in practice,
and human-in-the-loop defect prediction models).

Acknowledgement. CT was supported by ARC DECRA
Fellowship (DE200100941). JG was supported by ARC Lau-
reate Fellowship (FL190100035).

REFERENCES

[1] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte,
I. Dvortsova, J. George, N. Gucevska, M. Harman,
S. He, R. Lämmel et al., “Ownership at Large–Open
Problems and Challenges in Ownership Management,”
arXiv preprint arXiv:2004.07352, 2020.

[2] A. Assila, H. Ezzedine et al., “Standardized Usability
Questionnaires: Features and Quality Focus,” Electronic
Journal of Computer Science and Information Technol-
ogy: eJCIST, vol. 6, no. 1, 2016.

[3] C. Bird, B. Murphy, and H. Gall, “Don’t Touch My
Code ! Examining the Effects of Ownership on Software
Quality,” in Proceedings of the European Conference on
Foundations of Software Engineering (ESEC/FSE), 2011,
pp. 4–14.

[4] P. Devanbu, T. Zimmermann, and C. Bird, “Belief &
Evidence in Empirical Software Engineering,” in Pro-
ceedings of the International Conference on Software
Engineering (ICSE), 2016, pp. 108–119.

[5] P. Edwards, I. Roberts, M. Clarke, C. DiGuiseppi,
S. Pratap, R. Wentz, and I. Kwan, “”increasing response
rates to postal questionnaires: Systematic review”,” Bmj,
vol. 324, no. 7347, p. 1183, 2002.

[6] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato, and
N. Ziviani, “Understanding Machine Learning Software
Defect Predictions,” Automated Software Engineering,
2020.

[7] J. H. Friedman, “Greedy Function Approximation: A
Gradient Boosting Machine,” Annals of statistics, pp.
1189–1232, 2001.

[8] A. Gosiewska and P. Biecek, “iBreakDown: Uncertainty
of Model Explanations for Non-additive Predictive Mod-
els,” arXiv preprint arXiv:1903.11420, 2019.

[9] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Gi-
annotti, and D. Pedreschi, “A survey of methods for
explaining black box models,” ACM computing surveys
(CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,
“A Systematic Literature Review on Fault Prediction
Performance in Software Engineering,” Transactions on
Software Engineering (TSE), vol. 38, no. 6, pp. 1276–
1304, 2012.

[11] H. Hata, O. Mizuno, and T. Kikuno, “Bug Prediction
based on Fine-grained Module Histories,” in Proceedings
of the International Conference on Software Engineering
(ICSE), 2012, pp. 200–210.

[12] C. Hilderbrand, C. Perdriau, L. Letaw, J. Emard,
Z. Steine-Hanson, M. Burnett, and A. Sarma, “Engi-
neering gender-inclusivity into software: ten teams’ tales
from the trenches,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2020, pp.
433–444.

[13] S. Hosseini, B. Turhan, and D. Gunarathna, “A Sys-
tematic Literature Review and Meta-analysis on Cross
Project Defect Prediction,” Transactions on Software

Engineering (TSE), vol. 45, no. 2, pp. 111–147, 2017.
[14] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and

J. Grundy, “An Empirical Study of Model-Agnostic
Techniques for Defect Prediction Models,” Transactions
on Software Engineering (TSE), p. To Appear, 2020.

[15] J. Jiarpakdee, C. Tantithamthavorn, and J. Grundy,
“Online supplementary materials for Practitioners’
Perceptions of the Goals and Visual Explanations
of Defect Prediction Models,” Available at URL:
https://doi.org/10.5281/zenodo.4536698.

[16] J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan,
“The Impact of Correlated Metrics on Defect Models,”
Transactions on Software Engineering (TSE), p. To ap-
pear, 2019.

[17] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi, “A Large-Scale
Empirical Study of Just-In-Time Quality Assurance,”
Transactions on Software Engineering (TSE), vol. 39,
no. 6, pp. 757–773, 2013.

[18] B. A. Kitchenham and S. L. Pfleeger, “Personal opin-
ion surveys,” in Guide to Advanced Empirical Software
Engineering. Springer, 2008, pp. 63–92.

[19] J. A. Krosnick, “Survey research,” Annual Review of
Psychology, vol. 50, no. 1, pp. 537–567, 1999.

[20] A. Lamkanfi, J. Pérez, and S. Demeyer, “The Eclipse
and Mozilla Defect Tracking Dataset: A Genuine Dataset
for Mining Bug Information,” in Proceedings of the In-
ternational Conference on Mining Software Repositories
(MSR), 2013, pp. 203–206.

[21] J. R. Lewis, “Psychometric evaluation of the post-study
system usability questionnaire: The pssuq,” in Proceed-
ings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 36, no. 16. SAGE Publications
Sage CA: Los Angeles, CA, 1992, pp. 1259–1260.

[22] M. S. Litwin, How to Measure Survey Reliability and
Validity. Sage, 1995, vol. 7.

[23] S. M. Lundberg and S.-I. Lee, “A Unified Approach to
Interpreting Model Predictions,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 4765–
4774.

[24] T. Menzies, J. Greenwald, and A. Frank, “Data Mining
Static Code Attributes to Learn Defect Predictors,” Trans-
actions on Software Engineering (TSE), vol. 33, no. 1,
pp. 2–13, 2007.

[25] A. T. Misirli, E. Shihab, and Y. Kamei, “Studying High
Impact Fix-Inducing Changes,” Empirical Software En-
gineering (EMSE), vol. 21, no. 2, pp. 605–641, 2016.

[26] N. Nagappan and T. Ball, “Use of Relative Code Churn
Measures to Predict System Defect Density,” Proceed-
ings of the International Conference on Software Engi-
neering (ICSE), pp. 284–292, 2005.

[27] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to
Predict Component Failures,” in Proceedings of the In-
ternational Conference on Software Engineering (ICSE),
2006, pp. 452–461.

[28] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Het-

erogeneous Defect Prediction,” Transactions on Software
Engineering (TSE), vol. 44, no. 9, pp. 874–896, 2017.

[29] K. Peng and T. Menzies, “Defect Reduction Planning
(using TimeLIME),” arXiv preprint arXiv:2006.07416,
2020.

[30] ——, “How to Improve AI Tools (by Adding in SE
Knowledge): Experiments with the TimeLIME Defect
Reduction Tool,” arXiv preprint arXiv:2003.06887, 2020.

[31] C. Pornprasit and C. Tantithamthavorn, “JITLine: A Sim-
pler, Better, Faster, Finer-grained Just-In-Time Defect
Prediction,” in Proceedings of the International Confer-
ence on Mining Software Repositories (MSR), 2021, p.
To Appear.

[32] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Com-
paring Static Bug Finders and Statistical Prediction,” in
Proceedings of the International Conference on Software
Engineering (ICSE), 2014, pp. 424–434.

[33] D. Rajapaksha, C. Tantithamthavorn, J. Jiarpakdee,
C. Bergmeir, J. Grundy, and W. Buntine, “Sqaplanner:
Generating data-informed software quality improvement
plans,” 2021.

[34] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should
I trust you?: Explaining the Predictions of Any Classi-
fier,” in Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDDM), 2016,
pp. 1135–1144.

[35] ——, “”anchors: High-precision model-agnostic expla-
nations”,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[36] N. Shrikanth and T. Menzies, “Assessing Practitioner Be-
liefs about Software Defect Prediction,” in Proceedings
of the International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2020, pp.
182–190.

[37] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zim-
mermann, “Improving Developer Participation Rates in
Surveys,” in Proceedings of the International Workshop
on Cooperative and Human Aspects of Software Engi-
neering (CHASE), 2013, pp. 89–92.

[38] M. Staniak and P. Biecek, “Explanations of Model
Predictions with live and breakDown Packages,” arXiv
preprint arXiv:1804.01955, 2018.

[39] C. Tantithamthavorn, “ScottKnottESD : The Scott-Knott
Effect Size Difference (ESD) Test. R package ver-
sion 2.0,” Software available at URL: https://cran.r-
project.org/web/packages/ScottKnottESD.

[40] C. Tantithamthavorn and A. E. Hassan, “An Experience
Report on Defect Modelling in Practice: Pitfalls and
Challenges,” in In Proceedings of the International Con-
ference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP), 2018, pp. 286–295.

[41] C. Tantithamthavorn, J. Jiarpakdee, and J. Grundy, “Ex-
plainable AI for Software Engineering,” arXiv preprint
arXiv:2012.01614, 2020.

[42] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
A. Ihara, and K. Matsumoto, “The Impact of Misla-

belling on the Performance and Interpretation of Defect
Prediction Models,” in Proceeding of the International
Conference on Software Engineering (ICSE), 2015, pp.
812–823.

[43] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “An Empirical Comparison of Model
Validation Techniques for Defect Prediction Models,”
Transactions on Software Engineering (TSE), vol. 43,
no. 1, pp. 1–18, 2017.

[44] ——, “The Impact of Automated Parameter Optimization
on Defect Prediction Models,” Transactions on Software
Engineering (TSE), p. In Press, 2018.

[45] P. Thongtanunam, S. McIntosh, A. E. Hassan, and
H. Iida, “Revisiting Code Ownership and its Relationship
with Software Quality in the Scope of Modern Code
Review,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2016, pp. 1039–1050.

[46] ——, “Review Participation in Modern Code Review,”
Empirical Software Engineering (EMSE), vol. 22, no. 2,
pp. 768–817, 2017.

[47] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and
X. Yang, “Perceptions, Expectations, and Challenges in
Defect Prediction,” Transactions on Software Engineer-
ing (TSE), 2018.

[48] S. Wang, T. Liu, and L. Tan, “Automatically Learning
Semantic Features for Defect Prediction,” in Proceedings
of the International Conference on Software Engineering
(ICSE), 2016, pp. 297–308.

[49] S. Wattanakriengkrai, P. Thongtanunam, C. Tan-
tithamthavorn, H. Hata, and K. Matsumoto, “Predicting
defective lines using a model-agnostic technique,” IEEE
Transactions on Software Engineering (TSE), 2020.

[50] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu,
B. Xu, and H. Leung, “Effort-aware just-in-time de-
fect prediction: simple unsupervised models could be
better than supervised models,” in Proceedings of the
International Symposium on Foundations of Software
Engineering (FSE), 2016, pp. 157–168.

[51] S. Yathish, J. Jiarpakdee, P. Thongtanunam, and C. Tan-
tithamthavorn, “Mining Software Defects: Should We
Consider Affected Releases?” in In Proceedings of
the International Conference on Software Engineering
(ICSE), 2019, p. To appear.

[52] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards
building a universal defect prediction model,” in Pro-
ceedings of the Working Conference on Mining Software
Repositories (MSR), 2014, pp. 182–191.

[53] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting
Defects for Eclipse,” in Proceedings of the International
Workshop on Predictor Models in Software Engineering
(PROMISE), 2007, pp. 9–19.

[54] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu,
“How Practitioners Perceive Automated Bug Report
Management Techniques,” Transactions on Software En-
gineering (TSE), 2018.

