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Most existing automated requirements formalisation techniques require system engineers to (re)write their
requirements using a set of predefined requirement templates with a fixed structure and known semantics to
simplify the formalisation process. However, these techniques require understanding and memorising require-
ment templates, which are usually fixed format, limit requirements captured, and do not allow capture of more
diverse requirements. To address these limitations, we need a reference model that captures key requirement
details regardless of their structure, format or order. Then, using NLP techniques we can transform textual
requirements into the reference model. Finally, using a suite of transformation rules we can then convert
these requirements into formal notations. In this paper, we introduce the first and key step in this process, a
Requirement Capturing Model (RCM) - as a reference model - to model the key elements of a system require-
ment regardless of their format, or order. We evaluated the robustness of the RCM model compared to 15
existing requirements representation approaches and a benchmark of 162 requirements. Our evaluation shows
that RCM breakdowns support a wider range of requirements formats compared to the existing approaches.
We also implemented a suite of transformation rules that transforms RCM-based requirements into temporal
logic(s). In the future, we will develop NLP-based RCM extraction technique to provide end-to-end solution.

1 INTRODUCTION

Formal verification techniques requires system re-
quirements to be expressed in formal notations
[Buzhinsky, 2019]. However, the majority of critical
system requirements are still predominantly written in
informal notations (textual or natural languages - NL),
which are inherently ambiguous and have incomplete
syntax and semantics [Lucio et al., 2017b, Sladekova,
2007]. To automate the formalisation process, sev-
eral bodies of work within the literature focused
on proposing pre-defined requirement templates, pat-
terns [Justice, 2013], boilerplates [Mavin et al., 2009],
and structured control English [R. S. Fuchs, 1996], to
express one system requirement sentence while elim-
inating the ambiguities. Such templates have com-
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plete syntax to ensure the feasibility of transform-
ing textual requirements into formal notations using
a suite of manually crafted, template-specific trans-
formation rules (e.g., [Yan et al., 2015]). However,
some of the predefined templates are domain depen-
dent and are hard to generalise [Rupp, 2009], or can
only capture limited subsets of requirements struc-
tures [R. S. Fuchs, 1996]. In addition, most exist-
ing formalisation algorithms are customized for trans-
forming system requirements to one target formal lan-
guage. Thus, a need to transform the same require-
ments into different formal languages mandates sig-
nificant rework of the formalisation algorithm.

Complementary to this research direction, in-
stead of considering introducing new sentence-based
templates covering a wider range of requirements
and complicating the requirements specification pro-
cess, we introduce a Requirement Capturing Model
(RCM), as a reference model that defines the key
properties that make up a system behavioral require-
ment sentence, regardless of the syntactic structure of
these properties, lexical-words, or their order. RCM
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separates the writing styles (format and structure)
from the abstract requirement properties and the for-
mal notations. Our new RCM model thus enables
us to: (1) represent a much wider range of require-
ments that have differing count, order or types of
properties, by identifying the specific properties in the
input requirement sentence to generic RCM defined
properties; (2) specify requirements in a wide vari-
ety of different formats, extremely useful to avoid re-
writing existing requirements; (3) formalize require-
ments into different formal notations through map-
ping RCM properties to those of the target formal
notation; and (4) enable use of NLP-based require-
ments extraction techniques to transform textual re-
quirements into the RCM-based requirements model.
with the key elements to be extracted now clearly de-
fined and known. Our key contributions in this paper
are:

¢ Introduce RCM as a reference model and interme-
diate representation between informal and formal
notations.

* A suite of transformation rules from RCM to Met-
ric Temporal Logic (MTL), to demonstrate how
an RCM-based requirements model can be trans-
formed into formal notations.

* Evaluating the RCM representation power by
comparing it to 15 other existing approaches us-
ing 162 behavioral requirements for critical sys-
tems. We provide the RCM representation and
corresponding automatically generated (MTL and
CTL) formal notations for the 162 requirements.

2 MOTIVATION

Jen is a system engineer working for an automotive
company. She wants to specify the requirements of
one of the system modules - a small excerpt is shown
in Table 1 - while making sure that these require-
ments can be easily transformed into formal notations
as a mandatory compliance requirement. Jen decided
to check the existing requirement specification tech-
niques in the literature to choose which one covers
most of her requirements. Jen researched existing re-
quirements formalisation techniques, see the related
work section for these techniques, and outlined her
trials to use these techniques to model her require-
ments after rephrasing some of her requirements to
suit existing templates.

Jen found that none of the existing techniques
she found can be used to cover all her require-
ments. She then had to learn and use all these tem-
plates and have these tools all running. Further-

Table 1: Examples of critical system requirements and ap-
proaches to represent

RQ1: R_STATUS shall indicate the rain sensor. It shall be
ON, when the external environment is raining.

Techniques: Universal pattern [Teige et al., 2016], Struc-
tured English [Konrad and Cheng, 2005], Rup’s boilerplates
[Rupp, 2009], ACE [R. S. Fuchs, 1996], EARS [Mavin et al.,
2009], CFG [Sladekova, 2007] and BTC [Justice, 2013]

RQ2: When the external environment rains for 1 minute, the
wipers shall be activated within 30 seconds until the rain sen-
sor equals OFF.

Techniques: Universal pattern [Teige et al., 2016] and BTC
[Justice, 2013]

RQ3: While the wipers are active, the wipers speed shall be
readjusted every 20 seconds.

Techniques: Structured English [Konrad and Cheng, 2005]

more, Jen found that the majority of these solutions
rely on pre-defined formats and structure of require-
ments boilerplates. This mandates (1) a fixed or-
der of requirement components/sub-components, (2)
a fixed English-syntax for a specific component/sub-
component, (3) a fixed/small set of English verbs or
other lexical words. Thus, Jen needs to rewrite her re-
quirements to confirm the defined format which puts
more overhead on her especially if the defined formats
are limited and cannot be extended to new scenarios.

Taking into consideration all combinations of
styling, ordering, and omission/existence of different
requirements model properties will increase the size
of the defined formats. Consequently this will in-
crease the complexity of using them by system en-
gineers and the complexity of the parsing algorithms
needed to transform them to formal models. Fur-
thermore, most existing formalization techniques ap-
ply on-the fly transformation on the given structured
requirement sentences to generate formal notations.
These transformations are hard-coded or tightly cus-
tomized according to the target formal notation prop-
erties and formats. It would be much more useful if
the common parts are computed once and transformed
to intended notations as needed.

3 RELATED WORK

Many requirements formalisation approaches assume
requirements are specified in a constrained natural
language (CNL) with specific style, format and struc-
ture to be able to transform into formal notations -
e.g. [Ghosh et al., 2016, Nelken and Francez, 1996,
Michael et al., 2001, Holt and Klein, 1999, Ambriola
and Gervasi, 1997, Sturla, 2017, Pease and Li, 2010].
These CNL are meant to avoid natural language re-



lated quality problems (e.g., ambiguity inconsistency,
etc.) and increase the viability of automating the for-
malisation process.

CNL is a restricted form of NL, created for writing
technical documents as defined in [Kittredge, 2003]
with the aim to reduce/avoid NL problems (e.g., am-
biguity inconsistency, .etc). CNL typically has a de-
fined sub-set of NL grammar, lexicon and/or sen-
tence structure [Kuhn, 2014]. Different forms of
CNL are also provided as a reliable solution for re-
quirements representation. Fuchs et al. [R. S. Fuchs,
1996] propose Attempto Controlled English (ACE)
with a restricted list of verbs, nouns and adjectives for
the requirement set in addition to restrictions on the
structure of the sentence. ACE can be transformed
into Prolog. It can handle requirements with con-
dition and action components. Multiple CNLs pro-
posed later inspired by ACE (e.g., Atomate language
[Van Kleek et al., 2010], PENG [Schwitter, 2002])
for formal generation purposes and for other purposes
(e.g., BioQuery-CNL [Erdem and Yeniterzi, 2009]).

Similarly to ACE, Scott and Cook [Scott et al.,
2004] presented Context Free Grammars (CFGs) for
requirement specification. Although the format of
the requirement components is more limited than
ACE with additional restrictions on words, it cov-
ers time-related properties. Yan et al. [Yan et al.,
2015] presented a more flexible CNL with constraints
on the word set such that, a clause should con-
tain (1) single word noun as a subject and a verb
predicate with one of the following formats “verb
| be+(gerund|participle) | be+complement”, (2) the
complement should be adjective or adverbial word,
(3) prepositional phrases are not allowed except in +
time point” at the end of the clause. The CNL does not
consider time information except pre-elapsed time.

Boilerplates are also widely used. These provide
a fixed syntax and lexical words with replaceable at-
tributes. Boilerplates are more limited than CNL and
require adaptation to different domains. In [Rupp,
2009], the provided RUP’s boilerplate can handle a
limited range of requirements. EARS [Mavin et al.,
2009] boilerplates are less restricted and can support
a wider range of requirements. Esser et al. [Esser
and Struss, 2007] proposed a suite of requirement
templates (TBNLS) with support mapping to proposi-
tional logic with temporal relations. For validating the
conformity of the written requirement and the boiler-
plate, authors in [Arora et al., 2013, Arora et al., 2014]
provide checking techniques.

Requirement patterns provide a more flexible so-
Iution. However, When a new requirement struc-
ture is added, a new pattern should be created for
it, which increases the size of the patterns set. In

[Teige et al., 2016] a universal pattern was presented
to support many requirements formats (trigger, then
action). They then introduced additional time-based
kernel patterns in [Justice, 2013]. Although these pat-
terns cover many requirement properties, they do not
still cover the possible combinations of the supported
properties eligible to one requirement specification.
In addition, the approach lack complex time prop-
erties - e.g. In-between-time and pre-elapsed-time
properties. Dwyer et al. [Dwyer et al., 1999] proposed
several patterns applicable for non-real-time require-
ment specifications. These patterns are categorized
into two major groups: occurrence patterns and or-
der patterns, while considering scopes (e.g., globally,
before R, after R) for a given specification pattern.
The work is extended later in [Konrad and Cheng,
2005] to cope with real-time requirement specifica-
tions. The real time patterns considers versions of the
pre-elapsed-time, in-between-time and valid-time in-
formation for the action component.

Event-Condition-Action (ECA) was initially pro-
posed in active databases area to express behavioral
requirements. ECA became widely used by several
researchers in diffident areas. An ECA rule assumes
that when an event E occurs, the condition C will be
evaluated, and if true, the action A will be executed.
ECA notations have been extended to capture time in-
formation [Qiao et al., 2007]. However, ECA rules
do not support (e.g., factual rules), and do not con-
sider scopes for action and the time notations apply
on events.

4 REQUIREMENT CAPTURING
MODEL

In this section, first, we explain the process we fol-
lowed to develop the RCM. Then, we describe the
RCM metamodel in details. Finally, we provide RCM
to formal notations transformation procedure.

4.1 RCM Development Process

To identify the key requirement properties we needed
to support in a generic reference model for safety-
critical requirements, we reviewed a large number of
natural language-based critical system requirements
collected from many sources: [Jeannet and Gaucher,
2016, Thyssen and Hummel, 2013, Fifarek et al.,
2017, Lucio et al., 2017a, Dick et al., 2017, Bitsch,
2001, Teige et al., 2016, Lucio et al., 2017b, Mavin
et al., 2009, R. S. Fuchs, 1996, Rolland and Proix,
1992, Macias and Pulman, 1995] and 15 requirement
representation approaches listed in Table.3.



Table 2: A list of identified requirement properties from existing approaches

Property

Description

Trigger

is an event that initiates action(s) (e.g., "when the system halts” in Fig.3). This component type is ubiquitous|
throughout the requirements of most critical systems.

Condition

is a constraint that should be satisfied to allow a specific system action(s) to happen (e.g., "if X is ON” in Fig.3)|
In contrast to triggers, the satisfaction of the condition should be checked explicitly by the system. The system|
is not concerned with “when the constraint is satisfied” but with is the constraint satisfied or not at the checking|
time” to execute the action (e.g., in the previous example X’ might remain "ON” for a while and have no effect|
on the system until checked for.

Action

is a task that should be accomplished by the system in response to triggers and/or constrained by conditions|
(e.g., "M should be set to TRUE” in Fig.3). In case that, a primitive requirement consists of an action component
only, it would be marked as a factual rule expressing factual information about the system (e.g., The duration|
of a flashing cycle is 1 second [Houdek, 2013]).

Component

Req-scope

determines the context under which (i) “condition(s) and trigger(s)” can be valid — called a pre-conditional
scope as it is linked to the condition or trigger; and (ii) action(s)” can occur — called an action scope, as if|
applies only on the action. The scope may define the starting boundary or the ending one (e.g., “after sailing|
termination”, “before <B_sig> is True” in Fig.3).

Fig.3 presents the main variations for starting/ending a context (e.g., None, after operational constraint
is true, until operational constraint becomes true or before operational constraint becomes true). Other
alternatives can be expressed by the main variation. For example, “"while R is true” can be ex-|
pressed by after and until as “after R is true” and “until not R”. It is worth noting that, “Be-|
fore” and ”Until” define the same end of the valid period which is "R is true”. “Until” mandates|
the precondition(s)/action(s) to hold till "R is true”, but “Before” does not care about their status.

Valid period for checking Valid period for firine

Start-up End-up Start-up End-up
- None « None - « None
« Before None X
= Afterreading reading R  Afterreading reading R
R « Until reading R - klrml reading
R

[ Pre-conditionalscope | [ Action scope |

Valid-time

represent the valid time period of the given component (e.g., in "the vehicle warns the driver by acoustical
signals < E > for 1 second” the action is hold for 1 second length of time [Houdek, 2013]). Valid-time can be|
a part of any component.

Pre-elapsed-time

is the consumed time length from an offset point —before an action to occur or a condition to be checked (e.g.,
”After less than 2 seconds” in Fig.3). This type is only eligible to action and condition components.

In-between-time

express the Iength of time between two consecutive events to occur in the repetition case (e.g., "every I seconds”
in Fig.3). Such sub-component type is eligible to action and trigger components as indicated in Fig.2.

Sub-Component

Hidden constraint

allows an explicit constraint to be defined on a specific operand within a component. For example, in "if the]
camera recognizes the lights of an advancing vehicle, the high beam headlight that is activated is reduced to|
low beam headlight within 5 second” [Houdek, 2013]. The that is activated is a constraint defined on the|
operand the high beam headlight).

We identified 19 distinct properties that we quirement properties are encoded as columns. An ap-
grouped into 8 abstract properties (4 components and proach can be represented in more than one row. This
4 sub-components). These are listed with their de- reflects that some approaches might support multiple
scription in Table.2. Fig.1 shows a manually crafted properties, but these properties cannot be used in the
example requirement that reflects most of these com- same requirement — the template or pattern does not
ponents and sub-components used through the prop- support having certain properties in one requirement.
erties description for a better understanding. The cell value equals ”1” if the property is supported

in this template.

REQ: After sailing termination, if X is ON for 1 second or (Y is ON and Z is ON), M

shall transition to TRUE after less than 2 seconds. When the acoustical signals <E> . L.
turns to TRUE every 1 seconds, M shall transition to FALSE before <B_sig> is TRUE. tions/restrictions that these approaCheS apply on

This table does not reflect the limita-

a given property formatting or order - i.e. condition

Figure 1: Crafted multi-sentence requirement "REQ” must come before action, or scope comes before

We then analysed 15 of the existing approaches
(outlined in the related work section) against these 19
requirement properties as presented in Table.3. The
approaches (rows) are encoded Al to AlS5, and re-

condition. Our analysis of this table illustrates that:
(1) no approach covers all requirement properties
possibly because this would make it too complex
to use; (2) almost all approaches support action
components as a core element; (3) approaches: Al



Table 3: Exisiting approaches proposed properties and Supported formats

Properties Codes — A:action / C:condtion / T:trigger / hidden:Hidden-constraint / SP:pre-cond Startup-phase / EP:pre-cond
Endup-Phase / SA:action Startup-phase / EA:action Endup-phase / vt:valid-time / pt:pre-elapsed-time / rt:in-between-time

Approach Requirement properties
Action Condition Trigger Reg-Scope
Code| Source AJTAJTA-[A[CJCJC-|T]T] T | SP| SP- | EP| EP- | SA] SA- [ EA] EA- | Hidden
vt | rt | pt vt | pt vt | 1t vt vt vt vt
Al BTC [Justice, 2013, Teige 1 1 1 1 1 1 1 1 1 1
et al., 2016] I]1 I T[T 1 I I I I
A2 EARS [Mavin et al., 1 } 1 I
2009] I I I
A3 EARS-CTRL [Ldcio et al., 2017b] 1 1 1 1
A4 | ECA [Van Kleek et al., 2010] 1 L1 |1t |11 |1]1
AS boilerplates [Rupp, 2009] 1 1 i
A6 Safety templates [Fu 1 ! ! ! 1
etal., 2017] ! RN 1 1
? 1 1 111 1
A7 | ReqLang [Marko et al., 2015] 1|1 1 1 1 1
A8 1 1 1
CFG [Scott et al., 1 1 1
2004, Sladekova, 2007] I I 1
1 1 1
A9 | ACE [R. S. Fuchs, 1996] 1 1 1
A10 | PENG [Schwitter, 2002] 1 1 1 1 1 1 1 1
A1l | Structured English [Yan et al., 2015]| 1 1 1 1 1 1 1 1
A12 | TBNLS [Esser and Struss, 2007] 1 1 1 1 1 1 1
Al3 1 1 1 1
1 1 1 1
Real-time [Konrad and 1 1 1 1
Cheng, 2005] 1 1 1 1 1
I]1 I 1 I
I I 1 I |
Al4 | Dawyer [Dwyer et al., 1999] 1 1 1 1 1
A15 | Pattern_based [Berger et al., 2019] 1 1 1 1 1

and All are the most expressive approaches as
they cover majority of the properties; and (4) the
valid-time property for the StartUp and the EndUP
phases of the pre-conditional scope is not supported
by any of these approaches although its appearance
in the analysed requirements.

4.2 RCM Domain Model

The RCM is designed to capture the requirements
properties listed above while relaxing the ordering
and formatting restrictions presented by the existing
techniques. In RCM, a system is represented as a set
of requirements R. Each requirement R; represented
by one RCM and may have one or more primitive
requirements PR where {R; = < PR, > and n>0}.
Each PR; represents only one requirement sentence,
and may include condition(s), trigger(s), action(s) and
requirement scope(s). The detailed meta-model of the
RCM to one requirement R; is presented in Fig.2.
The figure shows that a primitive requirement is
composed of four requirement component types: con-
dition, trigger, action and requirement scope. Except
for action(s), the existence of each of these compo-
nents is optional in a primitive requirement. A re-
quirement component has a component core-segment
that expresses the main portion of the component, and

optionally could also have a valid-time: the compo-
nent’s valid time-length. The pre-elapsed-time sub-
component can only appear with a condition or action
component. An in-between-time sub-component can
only appear with Trigger or Action components ac-
cording to the reviewed scenarios (e.g., requirements
and representation formats). A hidden-constraint is
an optional sub-component to an operand. To store
this information without loss, RCM stores the hidden
constraint inside the relevant operand object as indi-
cated in Fig.2. This structure is intrinsic to allow the
nested hidden constraints. For example, “the entry of
Al whose index is larger than the first value in A2
that is larger than S1 shall be set to 0.

All five sub-components are instances of either
Predicate or Time structure. The Predicate structure
consists of the operands, the operator and negation
flag/property (e.g., in ”if X exceeds 1” the "X and
”1” are the operands and “exceeds” is the operator
in the semi-formal semantic and ”>" is the operator
in the formal semantic). The Time structure stores
the unit, value and quantifying relation (e.g., “for
less than 2 seconds”, ”2” and “seconds” are the unit
and value respectively, “less than” is the semi-formal
quantifying relation whose formal semantic is ”<”).
Since the Predicate and Time structures are the in-
frastructure of the entire properties, they are designed
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Figure 2: RCM meta-model (simplified)

to encapsulate the semi-formal and formal semantic
allowing mappability to multiple TL. The details of
formal semantic are described in section.4.3.2.

Components with the same type can be stored as a
tree —the most suitable to keep nested relation appro-
priately, where leafs are the components, and inner
nodes are coordinating relationships (e.g., check the
conditions components of PR[1] in Fig.3).

Fig.3, shows the RCM representation of the REQ
example. It has two primitive requirements: PR[1]
and PR[2]. Components of each primitive require-
ment are presented in separate blocks in the figure.
In each block, sub-components are separated by hor-
izontal line. Fig.3 highlights the encapsulation of
semi-formal semantic (in black) and formal seman-
tic (in red). Components with the same type (e.g.,
conditions in PR[1]) are represented by tree structure.
The figure also provides the the corresponding MTL
representation, see subSection.4.3.3.

4.3 RCM Transformation

In this section, we illustrate transformation into tem-
poral logic (TL)- as an example of formal notations.
We first illustrate: (1) the mapping between the RCM
to TL, and (2) the formalization of the RCM infras-
tructure (i.e., Predicate and Time structures). Then,
we provide the transformation process.

4.3.1 RCM and Temporal Logic

In order to formally model a given requirement rep-
resented by RCM in temporal logic (TL), we have
to define a set of transformation rules. A TL for-
mula F; is built from a finite set of proposition vari-
ables AP by making use of boolean connectives (e.g.,

”AND”, ”OR”) and the temporal modalities (e.g., U
(until)) [Haider, 2015, Brunello et al., 2019]. Within
such formula, each proposition letter is expressed by
a true/false statement and may be attached with time
notation in some versions of temporal logic (e.g.,
MTL). Consider the following sentence:”After the
button is pressed, the light will turn red until the ele-
vator arrives at the floor and the doors open [Brunello
et al., 2019]”. Such sentence can be captured by the
following TL formula:

p— (qU(sAv))

where p, q, s, and v are proposition variables
corresponding to “the button being pressed”, “the
light turning red”, the elevator arriving”, and “the
doors opening”, respectively.

We use the following to build the mapping be-
tween RCM and TL:

1. Propositions and time notations: Given that,
RCM components and sub-components are ex-
pressed as predicates or time structures as indi-
cated in Fig.2. These structures are eventually
mapped to proposition and time notations in the
corresponding temporal logic formula (e.g., the
action component "M shall transition to TRUE
after less than 2 seconds” mapped to "F;2(S)”,
where S and “t<2” represent the predicate in bold
and time phrase underlined).

2. Coordinating relations: The booleans connect-
ing propositions can be obtained from coordi-
nating relations connecting multiple components
with the same types. Such relations are repre-
sented by tree for each component type as dis-
cussed before (e.g., the condition components X
is ON for 1 second or (Y is ON and Z is ON)”



After sailing termination, if X is ON for 1 second or (Y is ON and Z is ON), M shall transition to TRUE after less than 2 seconds.

REQ When the acoustical signals <E> turns to TRUE every 1 seconds, M shall transition to FALSE before <B_sig> is TRUE.
RCM of REQ
Reg-Scope Action Reg-Scope Action
+*Pre-conditional Scope >CompText = “M shall transition to +*Action Scope >CompText = “M shall
>ScopeType = StartUpPhase TRUE after less than 2 seconds” >ScopeType = EndUpPhase transition to FALSE”
>Timekeyword = after “Predicate >Timekeyword = Before <Predicate
>CompText = “After sailing termination ” > Relation = shall transition to >CompText = “before <B_sig>is | > Relation = shall transition
> Predicate > Opl TRUE” to
> Relation = equals v Text=M >Predicate > op1
> op1 > Op2 > Relation = is v Text=M
v Text = sailing termination v Text = TRUE > Op1 > Op2
> op2 > neg_flag = false v Text = <B_sig> v Text = FALSE
v Text = TRUE > Formal Semantic > op2 > neg_flag = false
> neg_flag = false v LHS 9 M v Text = TRUE > Formal Semantic
> Formal Semantic v~ RHS = TRUE > neg_flag = false v LHS > M
v~ LHS = sailing termination v~ Operator = “=“ > Formal Semantic v~ RHS =» FALSE
v RHS = TRUE - - v LHS > <B_sig> v Operator 2 “=“
v Operator =» “=* ’-'Pre—Elaps.e'd time v' RHS =» TRUE
> Preposition = “after” 7 Operator > “=t
> Value=2
> Unit= second
> QR=less th
P Z Formal Semantic S A Q
v Operator & “<“
v~ Value = 2
—| Conditions —| Trigger
= e S| compText = “When the acoustical signals <E> turns to TRUE
E o | every 1 seconds”
**Predicate
v v > Relation = turns to
Condition 1 . Condition_2 Condition_3 > Op1
CompliextEIplisloNicy CompText = “If Y is ON” CompText = “If Z is ON” v Text = the acoustical signals <E>
1 second” < Predicate < Predicate > Op2
& l::lda-‘cl:tne . ;gel:llon =is )): gel:llon =is v~ Text = TRUE
= = P P > flag = fal
s e T e > pem ez,
>0p2 ext=on Sext=on v LHS > <E>
v Text = ON >neg_flag = false > neg_flag = false v~ RHS =» TRUE
>neg_flag = false 5 p . v Operator = “=
>Formal semantic YV LHS Y VIHS > 2
‘; LHS :X v RHS < ON v RHS < ON +*In-Between-time
J R on ~ Operator = “=* + Operator = > Preposition = “every”
> Value=1
> Unit= second T
:»—Unitj second C1 c2 c3 ; g::‘r':lslq;earlnantic
>QR = equal -
>Formal Semantic ; Operator = “=
v Operator = “=“ Value =1
v Viaue & 2
*  G(P= F(G»(C1) V (C, » C3) = F5(S)) = G(Ft=1(T)) =(F(A) =(F(QVA)UA))
- G(sailing_termination=TRUE = F(G,_,(X=ON) V (Y=ON  Z=ON) - G(Ft=1(<E>=TRUE)) =(F(<B_sig>=TRUE) =
= F,.,(M=TRUE)) (F(M=FALSE V <B_sig>=TRUE) U <B_sig>=TRUE))
Figure 3: An example presents multi-sentence requirement "REQ” and the corresponding RCM representation
Table 4: RCM mapping to MTL & CTL
RCM TL Mapping
Properties (component/ subcomponents) Versions Applicable on MTL CTL
Action 1 A: do something A A
Pre- Condition 2 | IS Action (P in G(S = P) AG(S = P)
condition Trigger 3 | WhenS ing) G = P) AG(S = P) =
Conditions and 4 | WhenS,IFQ L G(SAQ = P) [AG(SAQ = P) | =
triggers §
AG(S — =
Reg-Scope: StartUP 5 | AfterS Precondition/ G(S = F(P)) AG(AF (P))) g
(Preconditional- 6 | Before S action (P in F(S) = (F(PV [A[[((AF(P V 8)) V| &
Scope / EndUP mapping) S)Us) AG(=S))WS] &
Action-Scope) 7 [ UnalS PPIS F(P)US AF(P)US
-After Q & Before S GOA-SAF(S) | AGIRA=S) =
StartUP and 8 | Betweon Qand S — F(PVS)US)) A[((AF(P Vv S) V
EndUp AG(—S))WS])
o | aie 7 (oze GIQA-S) = |AG(QA-S) =
S=-7} F(PUS)) A[(AF(PV S)WS])
10 | After c time Condition/ F—:(P)
Pre-elapsed-time 11 | after at-most ¢ time Action (P in Fi<.(P)
12 | after at-least ¢ time mapping) Fi>c(P) _8
13 | after less-than ¢ time Fi<c(P) g
14 | after greater-than ¢ Fi~c(P) =
o 15 | for c time Condition/ Gi=c(P) Q
Val - - . . <
alidation-time 16 | for at-most ¢ time Trigger/ Action Gi<c(P) E
17 | for at-least c time (P in mapping) G>c(P)
18 | for less-than c time Gi<(P)
19 | for greater-than ¢ Gi~c(P)
20 | every c time . . G(Fi=c(P))
In-between-time 21 | every at-most ¢ time ?If?jm Trlgge)r G(Fi<c(P))
22 | every at-least ¢ time PPIng G(Fi>c(P))
every less-than ¢
23| e GlFrce(P)
24 | every greater-than c G(F~.(P))
Hidden-Constraint 25 | Whose S P is Any component AG(3S = P) branching




mapped to ”(G;—(C1) V (C2AC3))”.

3. Temporal modality: The temporal modalities
can be identified based on the component type
(e.g., the type of the component ”After sailing
termination” is “pre-conditional-scope startup-
phase” mapped to "—=>"

To demonstrate the robustness of the RCM and ca-
pability to transform to different formal notations, we
provide here a mapping into two examples of tem-
poral logic, MTL [Alur and Henzinger, 1993] and
CTL [Clarke and Emerson, 2008], as shown in Table
4 as a proof of multiple map-ability. We chose these
notations as they are widely used in model checking
as indicated in [Konur, 2013] and [Haider, 2015] re-
spectively. We base our temporal-modality and time-
notation mapping on the mapping done in [Konrad
and Cheng, 2005].

The first column in Table.4 shows the RCM prop-
erties (components and sub-components) employed in
formal roles, each attached with alternatives if any
(e.g., The pre-conditions may be conditions, triggers,
or both of them based on the given requirement). Pos-
sible structures corresponding to each property ver-
sion are listed in the third column (i.e., the used key-
words (e.g., when) are just examples, any replaceable
keyword could be used). The fourth column indi-
cates which components can be linked to each prop-
erty type. The MTL and CTL representations of each
property are presented in the fifth and sixth columns
respectively, where these notations are grouped based
on their formal types in the last column.

4.3.2 RCM and Formal Semantics

Temporal logic has multiple versions exhibiting slight
differences. In order to support the transformation
to multiple versions with minimal adjustment in the
transformation technique, RCM encapsulates formal
semantics with semi-formal semantics. Design-wise,
RCM augments the formal semantic in the basic units,
predicate and time structures in Fig.2, that are ma-
pable to temporal logic, as indicated in the previous
subsubsection. The formal semantic of a predicate
covers three formats:

* Process format: is suitable to predicates ex-
press functions or process (e.g., “the monitor
sends a request REQ_Sig to the station” —
”send(the_monitor, the_station,REQ_Sig)”).

* Relational format with plain RHS: the type is
suitable for assignment predicates (e.g., ’set X
to True” —”’X = True”), comparison predicates
(e.g., "If X exceeds Y’ —”X > Y”’) and chang-
ing state predicates (e.g., "the window shall be
moving up” —”’the_window = moving-UP”).

* Relational format with aggregated RHS: this
format is similar to the previous one but the RHS
is expressed with aggregating function (e.g., "If
the fuel level is less than the min value of Thrl and
Thr2” —”the_fuel_level < "min(Thr1, Thr2)”).

Similarly, the formal semantic is added to time
structure in which the technical time operator (e.g.,
{>,<,=,<,>}) is identified (e.g., "for at least 2 sec-
onds” — 7t > 27).

4.3.3 RCM Transformation Algorithm

To accomplish the automatic transformation from
RCM-to-MTL, we use the mapping rules provided in
Table 4 on the obtained formal semantics of the given
primitive requirements. Algo.1 shows the automatic
transformation pseudo-code annotated in Fig.4 with
each step output for PR[1] in the REQ Fig.3.

Stepl: Step2:

v' sailing_termination=TRUE v’ sailing_termination=TRUE
j Gi=2(X=0N) v' G»(X=ON) V (Y=ON ~ Z=ON)
v

Y=ON v Feea(M=TRUE
o wal )

v Fr2(M=TRUE)

Step3: Step4:

v' preConds: Gi-2(X=ON) VvV v~ IHS: G( sailing_termination=TRUE
(Y=ON ~ Z=ON) = F(Gt=2(X=ON) V (Y=ON ~ Z=ON))

v" rHs: Fi2(M=TRUE)

Step5:
v mTLFormula: G(sailing_termination=TRUE = F(G-»(X=ON) V (Y=ON »
Z=0ON) = F2(M=TRUE))

Figure 4: Step by Step generation of PR[1] from Fig.3

First, we get the formal semantics of each com-
ponent according to Subsection.4.3.2. Then, we com-
pute the formal semantics of the entire tree (i.e., leaf
nodes represent components and inner nodes repre-
sent logical relations as discussed before) of each
component type through the recursive function ag-
gRel. After that, we construct the main parts of the
formula (i.e., preCondtions, LHS and RHS) in Step3
and 4 with the help of RCM-to-MTL mapping rules in
Table 4. Finally, we generate the entire formula based
on the bound sides either "LHS — RHS” or "RHS”
as in Step5.

S EVALUATION

5.1 Dataset Description

We evaluate the coverage of our proposed RCM on
162 requirement sentences. These requirements were
extracted from existing case studies in the litera-
ture and grouped into three sub datasets as follows:
(1) expressiveness dataset (81 requirements): these
are requirements collected from papers that intro-
duced different requirement templates and formats in



Algl: RCM-to-MTL Transformation

1: Input:
R: RCM-to-MTL indexed Mapping Rules
PrimReq: primitive requirement of interest
2: procedure
3: Step 1: Prepare each component
4: for all comp € PrimReq do
Comp.Formal<— Comp.CoreSegment
.getFormalSemantic()
5: for all timeInfo € comp do
Comp.Formal«— comp.
AttachTimeSemantic(timeInfo, R{9:25})
6: end for
7 end for
8.
9

Step 2: Aggregate components of the same type
for all compTree € CompTypeTree do
aggVal < aggRel(compTree)

10: procedure AGGREL(Tree compTree)
11: if compTree is leaf then

return compTree.data.Formal;
12: else

return ”’(” + aggRel(compTree.Left)
+ compTree.data.LR() +
aggRel(CompTree.Right) )"

13: end if

14: end procedure
map.put(compTree.Type, aggVal)

15: end for

16: Step 3: Prepare Preconditions
preConds < preparePrecond(map|Triggers],
map[Conditions], R{2:4})
17: Step 4: Prepare LHS and RHS
IHS « prepareSide(preConds, R{5:9})
rHS «+ prepareSide(Actions, R{5:9})
18: Step 5: Generate Formulat
19: if IHS # ¢ then
return IHS +”—" + rHS

20: else
return rHS
21: end if

22: end procedure

different domains and considering different writing
styles in [Justice, 2013] [Jeannet and Gaucher, 2016]
[Thyssen and Hummel, 2013], [Fifarek et al., 2017],
[Lucio et al., 2017a], [Dick et al., 2017], [Bitsch,
2001], [Teige et al., 2016], [Lucio et al., 2017b],
[Mavin et al., 2009], [R. S. Fuchs, 1996], (2) for-
malisation dataset (28 requirements): these are re-
quirements extracted from papers that introduced re-
quirement formalisation techniques including [Ghosh
et al., 2016, Yan et al., 2015] with total of 28 re-
quirements and (3) online sources (43 requirements):
these are requirements extracted from an online avail-
able critical-system requirements including [Houdek,
2013]. These requirements are available from !.

1 Dataset:https://github.com/ABC-7/RCM-
Model/tree/master/dataSet

Fig.5 presents the percentages of each of the 19 re-
quirement properties (components/sub-components)
within the entire dataset. The figure shows that time-
based and hidden constraints existed in a few require-
ments compared to the key requirement components
such as action, trigger, and condition. Overall, the dis-
tribution of the properties is biased towards the popu-
lar properties that exist in most approaches.

Properties Frequency wihtin the Entire
Requirements
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Figure 5: Properties Frequency wihtin the Entire Require-
ments

Fig.6 shows the relative complexity of the 162 re-
quirements. We grouped the requirements based on
the count of their existing properties (i.e., number of
properties per requirement increases T, its complexity
increases 1T). The following examples show two re-
quirements with one and six properties respectively,
where each property is separately underlined: (1) "the
monitor mode shall be initialized to INIT”, and (2)
“after X becomes TRUE for 2 seconds, when Z turns
to 1 for 1 second, Y shall be set to TRUE every 2
seconds”. In Fig.6, each group represents the count
of properties regardless of the type of the property -
i.e., R1: requirement with condition and action, and
R2: requirement with trigger and action, both have 2
properties). For each group, we calculated the per-
centage of requirements. Fig.6 presents the properties
count used for each requirements group on the x-axis
and the corresponding requirements percentage on the
y-axis. This shows that a large portion of the entire re-
quirements sentences 9%, 49% and 22%, only consist
of one, two and three properties respectively. On the
other hand, 20% of the requirements sentences consist
of more than three properties.

5.2 Evaluation Experiments

Experimentl. RCM expressiveness: We evaluated
our proposed RCM reference model’s ability to cap-
ture and represent the requirements in our test dataset
compared to 15 exiting approaches in Table.3. To do
this, we manually labelled all the requirements in the
dataset against the 19 requirement properties we iden-
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tified in section 4. After that, we wrote a script to
check each requirement (identified properties) against
all existing approaches to assess if the approach pro-
vides a boilerplate or a template that supports repre-
senting the requirement or not. The results are avail-
able online 2. Fig.7 summarises the results of our
analysis as percentage of the test requirements that
each approach supports.

Percentage of Captured Requirements per Approach

Percentage of captured requirements
Q
R

Al A2 A3 A4 AS A6 A7 A8 A9 AIO All Al2 Al3 Al4 Al5 Al6
Approache

Figure 7: Percentage of Captured Requirements per Ap-
proach (RCM represented by A16 and the other represent
by codes proposed in subsection.4.2)

This shows that none of the existing 15 ap-
proaches is able to represent the entire dataset of re-
quirements. This is mainly for two reasons: (1) miss-
ing properties in the used templates e.g., Al does not
support StartUp-phase Pre-conditional scope (SP), or
(2) restrictions on the included properties in a require-
ment format e.g., A2:EARS does not support the ex-
istence of the trigger (core-segment) and a ReqScope
(core-segments) using the same format. In addition,
~4% of the test requirements were not covered by
any of these approaches combined. An example is
”if the maximum deceleration is [insufficient] before
a collision with the vehicle ahead, the vehicle warns
the driver by acoustical signals for 1 seconds every 2
seconds”, where the existing properties are: condi-
tion (core-segment), StatrtUp-phase Pre-conditional
scope (SP core-segment), action (core-segment), ac-

2 Approaches representations, and eval-
uation: https://github.com/ABC-7/RCM-
Model/blob/master/Approaches-Evaluation.xlsx

tion valid-time (Vt) , and action in-between-time (Rt).
These properties do not exist together in the same rep-
resentation of any of the 15 approaches, see Table 3.

In contrast, our proposed RCM requirements
model can represent all of the 162 requirements sen-
tences. This is because it covers all properties that ex-
ist in the other approaches and puts no restriction on
the included properties in one requirement (i.e., any
property could exist in the requirement format).

Existing approaches require extension in two
cases: (1) considering new requirement properties,
and (2) considering new formats i.e, defining a set
of properties that can exist together in one format
regulated by customized grammatical rules. In con-
trast, since RCM covers all properties of the other ap-
proaches and more and puts no constraints on prop-
erties used in requirement, it is powerful enough to
represent all requirements that can be represented by
all the other approaches. It can also be used in other
scenarios not currently supported by any of the 15 ap-
proaches, due to the fact that it does not enforce any
restriction on the input requirement formats.

RCM encounters two main limitations: (1) it is
designed for behavioral requirements of critical sys-
tems, and (2) it requires complex NL-extraction tech-
niques i.e., the current NL-extraction processes prim-
itive requirements expressed in one sentence.

Experiment2: RCM to formal notations: We
applied our RCM-to-MTL and RCM-to-CTL trans-
formation rules to the dataset of the 162 requirements.
In this experiment, we used our NLP-approach to ex-
tract RCM from the 162 requirements(out of scope
of this paper). We then manually reviewed all the
extracted RCM models, fixed all the broken RCM
extractions manually. Once we had the full list of
162 RCM models, we applied the automatic RCM-to-
Formal transformation as outlined in Sec.4.3.3. The
full list of RCMs representation and the correspond-
ing automatically generated MTL and CTL formulas
are available online 3.

We successfully transformed 156 out of the 162
requirement RCM models into MTL notations. The
other 6 requirements were partially correct. These 6
requirements turned out to involve hidden constraints
expressed with 3 and V properties with a branching
structure that is not supported by MTL, since it is
linear. For example, the requirement “’the cognitive
threshold of a human observer shall be set to a devia-
tion that is less than 5. [Houdek, 2013]” was correctly
represented in RCM, but the generated MTL is par-
tially correct "G(the cognitive threshold of a human

3RCM-Representation and formal-notation:
https://github.com/ABC-7/RCM-Model/tree/master/RCM-
Auto-Transformation



observer = the deviation)”. A correct generation could
be ”AG((3 deviation<5) = (the cognitive thresh-
old of a human observer = deviation))” in CTL.

Similarly, CTL could represent requirements with
hidden constraints correctly, but it provides partial
solutions for requirements with time notation e.g.,
validation-time, pre-elapsed-time and in-between-
time. In total, it is capable of representing 120 re-
quirements correctly and provides partial solutions
42 ones due the inclusion of time notation (e.g., the
requirement “if air_ok signal is low, auto control
mode is terminated within 3 sec” has a partially cor-
rect generated CTL formal ”AG([air_ok signal = low]
— [auto control mode.crrStatus = terminated])”,
but a correct formula could be ”G([air_ok signal =
low] = [Ft=3(auto control mode.crrStatus = ter-
minated)]” in MTL notation).

6 SUMMARY

We introduced a new requirements capturing model -
RCM - for representing safety-critical system require-
ments. RCM defines a wide range of key requirement
elements and attributes that may exist in an input re-
quirement. The model allows for standardising the
textual requirements extraction process and simpli-
fies the transformation rules to convert requirements
to formal notations We compared the coverage of our
RCM model to 15 existing requirements modelling
approaches using 162 diverse requirements. Our re-
sults show that RCM can capture a wider range of
requirements compared to others due to the flexibility
in including/excluding its properties conforming the
input requirement. In addition, we provided a suite
of RCM-to-MTL transformation rules and presented
the corresponding automatically generated MTL rep-
resentation of the evaluation dataset. For our fu-
ture work, we are developing an automated require-
ments extraction technique to populate RCM from
textual requirements in addition to requirements qual-
ity checking and visualising tool of the RCM model.
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