
Towards Runtime Monitoring for Responsible Machine Learning
using Model-driven Engineering

Hira Naveed
Monash University

Australia
hira.naveed@monash.edu

John Grundy
Monash University

Australia
john.grundy@monash.edu

Chetan Arora
Monash University

Australia
chetan.arora@monash.edu

Hourieh Khalajzadeh
Deakin University

Australia
hkhalajzadeh@deakin.edu.au

Omar Haggag
Monash University

Australia
omar.haggag@monash.edu

ABSTRACT
Machine learning (ML) components are used heavily in many cur-
rent software systems, but developing them responsibly in prac-
tice remains challenging. ‘Responsible ML’ refers to developing, de-
ploying and maintaining ML-based systems that adhere to human-
centric requirements, such as fairness, privacy, transparency, safety,
accessibility, and human values. Meeting these requirements is es-
sential for maintaining public trust and ensuring the success of
ML-based systems. However, as changes are likely in production
environments and requirements often evolve, design-time quality
assurance practices are insufficient to ensure such systems’ re-
sponsible behavior. Runtime monitoring approaches for ML-based
systems can potentially offer valuable solutions to address this prob-
lem. Many currently available ML monitoring solutions overlook
human-centric requirements due to a lack of awareness and tool
support, the complexity of monitoring human-centric requirements,
and the effort required to develop and manage monitors for chang-
ing requirements. We believe that many of these challenges can be
addressed by model-driven engineering. In this new ideas paper, we
present an initial meta-model, model-driven approach, and proof
of concept prototype for runtime monitoring of human-centric re-
quirements violations, thereby ensuring responsible ML behavior.
We discuss our prototype, current limitations and propose some
directions for future work.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Software safety; Maintaining software; Risk management; Op-
erational analysis; Software defect analysis; • Computing
methodologies→ Machine learning.

KEYWORDS
Runtimemonitoring, ResponsibleML, Human-centric requirements,
Machine learning components, Model-driven engineering
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674092

ACM Reference Format:
Hira Naveed, John Grundy, Chetan Arora, Hourieh Khalajzadeh, and Omar
Haggag. 2024. Towards RuntimeMonitoring for Responsible Machine Learn-
ing using Model-driven Engineering. In ACM/IEEE 27th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS ’24),
September 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3640310.3674092

1 INTRODUCTION
Over the last decade, machine learning (ML) components have
emerged and become prevalent in software systems to support use
cases such as predictive analysis, sales forecasting, fraud detection,
medical diagnosis, and much more [59, 64]. While the advent of
ML-based systems has created many benefits and opportunities, it
has also introduced several new software engineering (SE) and mod-
elling challenges. One of these challenges is preventing themisappli-
cation, misuse, or potential harm caused by ML-based systems [31].
This challenge can be addressed by developing, deploying, andmain-
taining ML-based systems responsibly, i.e., responsible ML [19, 51].
Responsible ML entails that ML-based systems conform to critical
human-centric requirements such as fairness, privacy, safety, trust,
transparency, accessibility, sustainability and well-being [19, 51].
The lack of responsible ML practices results in ML-based systems
that are biased, privacy-invasive, unsafe, and untrustworthy, thus
violating several human-centric requirements [12, 66]. The likeli-
hood of such violations in ML-based systems is evident, as even
large companies have experienced them, e.g., Amazon’s gender-
biased recruitment tool [23], IBM’s unreliable cancer diagnosis [69],
and Microsoft’s offensive Twitter chatbot [17].

Given the inherent uncertainty of ML-based systems, relying
solely on responsible ML practices for development and testing is
not sufficient – many human-centric requirements can be violated
after the system has been deployed [75]. Unforeseen changes in
incoming data, changes in operating context, and anomalies can
cause the ML-based system to behave unexpectedly [22, 29]. For
example, when the COVID-19 pandemic hit, existing ML models
experienced a significant drop in predictive performance due to
changes in the operating context [60]. Such changes can impact
fairness metrics, potentially harming sensitive groups [29, 49] and
weakening defenses against privacy attacks [54]. Additionally, un-
intentional mistakes, such as bugs in the ML pipeline can cause
issues after deployment.

https://doi.org/10.1145/3640310.3674092
https://doi.org/10.1145/3640310.3674092

MODELS ’24, September 22–27, 2024, Linz, Austria Naveed, et al.

Figure 1: Runtime Monitoring of ML Systems

Runtime monitoring of ML-based systems for human-centric
requirements violations is recommended as an essential part of re-
sponsible ML deployment and maintenance [75]. Runtime monitor-
ing refers to continuously observing the behavior of a deployed ML-
based system by capturing and analyzing relevant data to identify
unwanted behavior that violates system requirements [56]. A basic
architecture of how runtime monitoring for ML-based systems is
conducted is shown in Figure 1. The monitor collects inputs and/or
predictions of the ML component, computes pre-defined metrics of
interest, and alerts ML engineers if unwanted behavior is detected.
Some examples of frequently encountered unwanted behavior in
ML components are performance drops, data drift (changes in data
patterns), concept drift (changes in operating context), prediction
drift (changes in prediction patterns), and anomalies in inputs. Op-
tionally, the monitor may receive ground truth data, which can be
available with a short delay (e.g., button clicks) or a long delay (e.g.,
loan repayments).

At present, numerous approaches and tools exist for runtime
monitoring of ML-based systems, most focusing entirely on techni-
cal aspects such as performance degradation and drift [30, 32, 48, 65,
73]. However, these approaches often fail to monitor human-centric
requirements violations and the consequences of technical require-
ments violations on human-centric requirements [56]. The absence
of such monitoring raises several problems: 1) delayed detection of
human-centric requirements violations, relying on user feedback
or tedious manual observations; 2) frustration among users and
reduced trust in the ML-based system; 3) reputational damage, fi-
nancial losses, and legal consequences for businesses. Therefore,
a key step of responsible ML is to monitor ML-based systems
for human-centric requirements violations [56, 75]. In practice,
monitoring ML-based systems for human-centric requirements vi-
olations is far from trivial. Deploying and maintaining ML-based
systems, in general, is challenging due to a lack of technical skills
in the market [5], lack of awareness and understanding regard-
ing responsible ML among practitioners [53], or the fact that most
organizations find it difficult to monitor ML models at runtime [55].

Implementing runtime monitors for responsible ML involves sev-
eral activities. ML engineers must implement monitors for various
human-centric requirements of interest and integrate themwith the
ML infrastructure. The lack of ground truth data and subjectivity
of some human-centric requirements such as pleasure, trust, and
autonomy make direct monitoring difficult and proxy measures
need to be specified [35]. Furthermore, as requirements evolve, the
monitors must be updated and maintained to capture the current
properties of interest, this is also essential for efficient resource

management [16, 52]. Maintaining the monitors for human-centric
and technical requirement violations requires significant time and
effort from ML engineers, as they must ensure consistency across
all monitors [43]. These monitors may be built from scratch or use
existing toolkits, further exacerbating the maintenance issue. While
monitoring is the responsibility of the ML engineer, organizations
may not always have a designated role for this task. Depending
on the organization, the monitoring process may be conducted by
multidisciplinary teams with employees in various other roles (e.g.,
data scientists and software engineers); this becomes challenging
as all have different expertise and preferences [55].

We believe that model-driven engineering (MDE) can address
many of these challenges. The abstraction of models can hide many
complexities and improve collaboration, whereas automated model
transformations can reduce development and maintenance effort
for runtime monitors [72]. MDE has been successfully applied for
runtime monitoring of traditional software systems [47, 72] and
recently for performance monitoring of ML-based systems [43, 44].
However, its application to runtime monitoring for human-centric
requirement violations in ML-based systems, crucial for ensuring
responsible behavior, remains unexplored. As runtime monitoring
for responsible ML is challenging and often overlooked, we address
this gap by presenting an initial approach to make it easier and
faster. In this new ideas paper, we present an initial meta-model
of our domain-specific language (DSL), MoReML – Monitoring
Responsible ML, an example of a model created in MoReML, a
model-driven approach, and a proof of concept prototype1 for run-
time monitoring of human-centric requirements violations in ML
components, thereby helping to ensure more responsible ML. We
also incorporate performance and drift monitors, as they may im-
pact the violations of human-centric requirements. We discuss how
models can be created in MoReML, how runtime monitors can be
generated from these models, the current limitations in our work,
and future directions.

2 RUNTIME MONITORING FOR RESPONSIBLE
ML

Our research is based on the following research questions:
• RQ1. Does the DSL (MoReML) effectively capture and rep-
resent ML monitoring aspects and human-centric require-
ments in a comprehensible manner for engineers to conduct
runtime monitoring?

• RQ2. How well can the generated runtime monitors detect
violations of specified human-centric requirements (e.g., fair-
ness, privacy) and technical requirements (e.g. performance,
drift)?

2.1 Our Approach
Figure 2 provides an overview of our proposed approach. (1) TheML
expert identifies the key human-centric requirements of interest,
which may vary depending on the context, goal, and application
domain of the ML-based system. For example, fairness (concern-
ing race or gender) is an important human-centric requirement in
credit score prediction systems. (2) The ML expert specifies techni-
cal requirements corresponding to the high-level human-centric
1Prototype available at https://zenodo.org/records/11394260

Towards Runtime Monitoring for Responsible Machine Learning using Model-driven Engineering MODELS ’24, September 22–27, 2024, Linz, Austria

Figure 2: Our Proposed Approach

requirements, such as fairness metrics and thresholds. (3) The ML
expert constructs a model describing the required monitors. To
ensure this model conforms to the MoReML meta-model, we spec-
ify constraints using the Epsilon Validation Language (EVL) [42].
The model includes the ML component, the monitoring system,
monitors of interest (e.g., fairness monitor), and the linked require-
ments. (4) Our tool generates code for the runtime monitors by
applying model-driven engineering. (5) The generated monitors
monitor the ML component at runtime. The monitors collect data
from the ML component and compute metrics to identify violations
of the specified requirements.

2.2 Monitoring Meta-Model
Models provide several benefits, including reduced complexity, eas-
ier stakeholder communication, automated code generation, and
increased productivity [33, 74]. While general-purpose modeling
languages such as UML [26] are generic and complex, a domain-
specific language (DSL) is relatively much easier to use as it captures
domain-specific information in familiar terminology [28, 33]. The
abstract syntax for a DSL is specified through a meta-model and
the concrete syntax may be textual, visual, or both. In this work,
we present our initial effort towards a DSL, MoReML, to capture
runtime monitoring concepts for responsible ML behavior.

We present an initial meta-model of MoReML that enables the
specification of the monitoring system, the ML component being
monitored, runtime monitor characteristics, key runtime monitor-
ing metrics, and the linked high-level human-centric requirements.
The concepts in the meta-model are based on the findings from
our systematic literature review [57]. Figure 3 shows the classes
and their relationships in our initial meta-model. The rationale and
purpose of each key class in the meta-model are explained below.

2.2.1 MonitoringSystem. This is the top-most class that represents
the entire ML monitoring system. It is essential for controlling all
monitors, managing datasets, and interacting with the ML compo-
nent. The MonitoringSystem class has the attributes name and a
unique id. It is linked to exactly oneMLcomponent being monitored
and contains one or more Dataset and Monitor class instances.

2.2.2 MLcomponent. This class describes the ML component being
monitored. Specifying the ML component allows tailored moni-
toring suitable to the component characteristics such as the ML

algorithm. An ML component is similar to a traditional software
component with code and input/output interfaces. The ML compo-
nent contains code of exactly one trained ML model and interfaces
for inputs (ML model inputs) and outputs (ML model predictions).
This class also contains the model ID, and ML algorithm (e.g. Logis-
tic Regression).

2.2.3 Dataset. This class represents the datasets available for mon-
itoring and baseline comparison, these can be training, testing,
or production datasets. The dataset class is needed for specifying
datasets used by the ML component, tracking changes, and . We as-
sume that monitoring is being done in batches with the production
dataset. The other alternative would be to monitor each in real-time.
For easier version control and analysis, theMonitoringSystem main-
tains a record of all the Dataset objects. The Dataset class consists
of attributes for dataset path, label name (prediction column name),
column names and categorical features needed to load the dataset.

2.2.4 Monitor. This class represents a runtime monitor that is a
part of the monitoring system. We include this in the meta-model
to represent a generic monitor, its characteristics, and its relations
to other concepts. A monitor offers ML engineers the flexibility
to activate or deactivate it based on the current requirements of
interest and a defined interval for computing metrics periodically.
These capabilities enable efficient resource management and the
adaptability of monitors. Each monitor contains one instance of
MonRequirement class representing the high-level requirement be-
ing monitored and one instance of the Alert class representing the
alert triggered if the requirement is violated. The low-level technical
requirements linked to these high-level requirements are specified
through the metric classes.

The Monitor is a generic class further specified into the four
types of monitors we consider in this work i.e., FairnessMonitor,
PrivacyMonitor, PerformanceMonitor, and DriftMonitor. Each mon-
itor type has different attributes and metrics so we define them
as separate classes in the meta-model. Monitoring human-centric
requirements in isolation is not as effective as monitoring them in
combination with more technical aspects such as performance and
drift. A single holistic monitoring solution provides a unified view
of the ML-based system’s behavior and eliminates the complexity
of managing multiple monitoring tools.

The FairnessMonitor class describes a monitor that receives a
dataset containing model predictions and another dataset including
ground truth labels. It computes fairness metrics for the specified
protected attributes (e.g., sex, race) and privileged groups (e.g., Male,
Caucasian) to assess whether the ML model behaves fairly or not.
The FairnessMonitor class contains one or more instances of the
FairnessMetric class which has an enumeration attribute name for
metric type (e.g., statistical parity difference) and a threshold.

Similarly, the PerformanceMonitor class refers to a monitor that
analyzes a dataset with model predictions and another dataset with
ground truth labels to calculate performance metrics (e.g., accuracy).
The PerformanceMonitor class contains one or more instances of
the PerformMetrics classes that represent the performance metrics.
This monitor is useful for detecting any performance drops in the
ML model.

TheDriftMonitor class describes amonitor that identifies changes
in data patterns between the production and training datasets. It

MODELS ’24, September 22–27, 2024, Linz, Austria Naveed, et al.

Figure 3: Meta-model of MoReML

has a feature attribute to specify the input data features under
observation for drift detection. Various drift metrics (e.g., Kol-
mogorov–Smirnov) can be used to compute drift with a certain
threshold and feature type (e.g., numerical or categorical). While
there are other types of drift, such as concept drift and prediction
drift, we only consider data drift monitoring in this initial version.

The PrivacyMonitor class represents a monitor that identifies
privacy risks or leaks in the ML model by analyzing the labeled
training dataset and production dataset with ground truth labels.
This monitor also has attack models that can generate privacy
attacks (e.g., black box membership inference attack) against the
ML model to asses the privacy risks. This class contains one or
more PrivacyMetric class instances with an enumeration attribute
name for metric type (e.g., SHAPr membership privacy risk [24])
and a threshold.

Currently, the specification of two human-centric requirements
(fairness and privacy) is supported in MoReML, however, the meta-
model can be augmented to add support for additional human-
centric requirements and associated metrics.

2.2.5 MonRequirement. This class represents the high-level re-
quirements specifying which aspects of the system’s behavior are
being monitored for potential violations. These include human-
centric requirements (e.g., fairness, privacy) and more technical
requirements (e.g., performance and drift). We include this class in

the meta-model for traceability between high-level requirements
and the violations detected by runtime monitors. The class consists
of an enumeration attribute type for the high-level requirement cat-
egory and the specific requirement in natural language. Low-level
technical monitoring requirements linked to these are specified as
the metric classes.

2.2.6 Alert. This class describes the alert generated for ML engi-
neers whenever a runtime monitor identifies a requirement viola-
tion. It contains a description of the alert and an email address.

2.3 MoReML Example
We designed MoReML, a textual DSL to enable the specification of
an ML-based component, human-centric requirements, and run-
time monitors. Listings 1, 2, 3 show snippets of a model created in
MoReML. This model is based on an ML component that classifies
whether the income of an adult exceeds $50K per year or not using
features such as age, education, sex, marital status, and occupation.

Listing 1 shows the specification of a MonitoringSystem called
demo (line 4) for an ML component with the id MLmodel-1 (line 5),
a Dataset with ground truth labels (line 6-17), and a MLcomponent
that uses a logistic regression model to classify adults’ incomes (line
20-24). The dataset with model predictions and the performance

Towards Runtime Monitoring for Responsible Machine Learning using Model-driven Engineering MODELS ’24, September 22–27, 2024, Linz, Austria

and privacy monitors are not shown in the example due to space
limitations.
1 ?nsuri: MLmonitoring_project

2 MonitoringSystem: {

3 monsys_id: 1,

4 name: demo ,

5 model: MLmodel -1,

6 Dataset: {

7 dataset_path: data/adult_labels.csv ,

8 label_name: income -per -year ,

9 column_names: [age , education -num , race , sex ,

10 capital -gain , capital -loss , hours -per -week ,

11 income -per -year , workclass , education ,

12 marital -status , occupation , relationship ,

13 native -country],

14 categorical_features :[workclass , education ,

15 marital -status , occupation , sex , race ,

16 relationship]

17 },

18

19 }

20 MLcomponent: {

21 model_id: MLmodel -1,

22 algorithm: Logistic_Regression

23 }

Listing 1: MoReML model for the Monitoring System, ML
Component and Dataset

Listing 2 depicts a DriftMonitor modeled for the ’education’ fea-
ture (line 5). The monitor executes hourly (line 3) and calculates
data drift using the probability stability index metric (line 7).
1 DriftMonitor: {

2 name: dmon1 ,

3 interval: 3600, #1 hour in seconds

4 active: True ,

5 features: [education],

6 DriftMetric: {

7 name: Probability_stability_index ,

8 threshold: 0.1,

9 type: Categorical },

10 MonRequirement: {

11 type: Drift ,

12 requirement: Education feature must not

13 drift more than 0.1) },

14 Alert: {

15 email: developedid@companyname.org ,

16 description: Data drift req. of MLmodel -1

17 has been violated }

18 }

Listing 2: MoReML model for Drift Monitor

Listing 3 shows a FairnessMonitor modeled for the protected at-
tribute ’sex’ (line 5) with the privileged group as ’male’ (line 6). The
monitor computes fairness in the predictions of the ML component
using the statistical parity difference metric (line 8).
1 FairnessMonitor: {

2 name: fmon1 ,

3 interval: 86400, #24 hours in seconds

4 active: True ,

5 protected_attributes: [sex],

6 privileged_groups: [Male],

7 FairnessMetric: {

8 name: statistical_parity_difference ,

9 threshold: 0.1 },

10 MonRequirement: {

11 type: Fairness ,

12 requirement: Model must be fair w.r.t

13 protected attribute sex (SPD should not

14 be more than 0.1) },

15 Alert: {

16 email: developedid@companyname.org ,

17 description: Fairness req. of MLmodel -1 has

18 been violated }

19 }

Listing 3: MoReML model for Fairness Monitor

2.4 Monitor Generation and Prototype Tool
ML experts model runtime monitors conforming to our meta-model
shown in figure 3 without specifying any implementation details.
The models are shown in Listing 1, 2, and 3 are defined in Flexmi
[41], a reflective textual syntax for EMF models [67]. Other general
textual syntaxes such as XML can also be used to define the mod-
els, however, we prefer the YAML syntax flavor of Flexmi [41]. To
automatically generate runtime monitors we wrote a model-to-text
transformation using the Epsilon Generation Language (EGL) [61].
The transformer takes models conforming to our meta-model as
input and generates Python code for the runtime monitors. For
infrastructure support, we leverage existing toolkits and libraries to
implement metrics required for runtime monitoring. We use IBMAI
fairness 360 [15] for fairness metrics, IBM AI adversarial robustness
[58] for privacy metrics, Evidently AI [10] for drift metrics, and
scikit-learn [45] for performance metrics. The generated code in-
cludes all necessary libraries, ensuring seamless integration without
manual intervention. We implement our proof-of-concept proto-
type as an Eclipse-based [67] tool with our meta-model defined in
Ecore and model-to-text transformations in Epsilon EGL [61].

3 EVALUATION
To demonstrate the utility of our approach, we carried out a prelimi-
nary evaluation using an ML component with a Logistic Regression
model trained on the Adult dataset [1]. The model performs binary
classification to determine if adult incomes exceed $50K per year
or not using features such as age, education, sex, occupation, and
weekly hours. We conduct an experiment to answer RQ1 and RQ2.
For RQ1, we model ML monitoring aspects and related human-
centric requirements in MoReML. Snippets of the model used in our
evaluation are shown in Listings 1, 2, and 3. For RQ2, we intention-
ally introduced requirements violations to assess the performance
of the generated monitors. We added dummy drift in the education
feature for the drift monitor, leveraged a dataset with sex and race
biases for the fairness monitor, omitted privacy risk mitigation
for the privacy monitor, and set a high performance threshold for
the performance monitor. Next, we divided the Adult dataset into
training, testing, and production subsets, reserving one portion for
assumed production data available in batch. The dataset is labeled,
allowing us to use the labels as ground truth for metric calculation.

Our monitors were able to successfully identify the requirements
violations. An example of our runtime ML monitor flagging require-
ments violations of drift and fairness is shown in Figure 4. The
detected violation is presented with the monitor name, monitoring
metric, value of the metric, and alert status.

MODELS ’24, September 22–27, 2024, Linz, Austria Naveed, et al.

Figure 4: Violations Detected by Generated Monitors

4 LIMITATIONS
As our work is in its initial stages there are several limitations.
Currently, our work is limited to i) a single ML component, ii) ML
components for classification problems, iii) human-centric require-
ments of fairness and privacy, iv) a few monitoring metrics (all
relying on the availability of ground truth labels), v) locally de-
ployed ML components, vi) monitors receiving production data in
batches, and vii) a preliminary evaluation. We have also not consid-
ered various ML frameworks (e.g. Tensorflow) in this version and
would like to add support for them in the future.

5 RELATEDWORK
Responsible ML: Responsible ML is a subfield of responsible ar-
tificial intelligence (AI) that refers to designing, developing, and
deploying ML-based systems to benefit individuals, groups, and
society while minimizing negative impacts [21]. Recently, many
high-level responsible/ethical AI frameworks have been proposed
by governments and large organizations including the European
Union’s Ethics Guidelines for Trustworthy AI [4], Australia’s AI
Ethics Principles [3], and more [11, 27, 39]. These frameworks em-
phasize that AI (including ML) systems must conform to human-
centric requirements of fairness, privacy, explainability, account-
ability, safety, human values, and professional responsibility [27].
Despite the availability of several frameworks, none of them pro-
vide practical implementation guidance for responsible ML [63, 75].
Recently, someworks have explored strategies to implement respon-
sible ML in practice. For example, Sanderson et al. [63] interviewed
AI practitioners to investigate the operationalization of responsible
ML, they found governance, AI system design and development,
competence and knowledge development, and stakeholder com-
munication as the key practices required for realizing responsible
AI. Zhu et al. [75] discuss methods to realize responsible AI by
achieving trustworthiness through product and process assurance
mechanisms. While many studies on responsible ML mention the
importance and need for runtime monitoring [50, 75], none provide
detailed implementable solutions.
Runtime Monitoring of ML Systems: Numerous runtime moni-
toring solutions for ML-based systems are available that monitor
various requirements violations. Kourouklidis et al. [43] propose
a low-code approach for performance monitoring of ML using
various drift detection techniques. A domain-specific language is
described in [44] for data scientists to specify ML model monitoring
workflows and a runtime component for software engineers that

implements the monitoring behavior. An approach and toolset for
realistic data drift detection in deployed ML systems is proposed in
[48], the approach focuses on drift behavior analysis and informed
monitoring for responsible AI. An ML model monitoring solution
is described in [73], it detects anomalies in model inputs and predic-
tions by leveraging deep learning. Other examples of studies on drift
and anomaly monitoring include [20, 36, 59], and [70]. Some promi-
nent commercial and open-source tools for runtime monitoring of
ML-based systems include Amazon SageMaker [9], IBM Watson
OpenScale [6], Microsoft Azure [8], Google Vertex AI [7], Arize
AI [2], and Evidently AI [10]. While most studies and tools focus on
monitoring technical requirements violations in ML-based systems,
few studies explore monitoring for human-centric requirements vi-
olations. These include fairness and bias monitoring [13, 29, 37, 38],
privacy and adversarial robustness monitoring [40, 54], safety mon-
itoring [14, 34, 68, 71], and trust monitoring [18, 25, 46, 62]. Few
approaches for monitoring human-centric requirements violations
exist. The ones that do have several limitations: 1) Studies focus
only on a single human-centric requirement [13, 46, 59]. 2) Techni-
cal expertise in statistics and software engineering are required to
set up a monitoring system [43, 59]. 3) Limited support for mon-
itoring evolving human-centric requirements. As for commercial
solutions, they are platform-dependent, require payment for most
services, and do not consider human-centric requirements other
than fairness and explainability [2, 7, 9].

6 CONCLUSION AND FUTUREWORK
We have described a novel MDE approach for runtime monitor-
ing of ML components to adhere to human-centric requirements,
thus ensuring responsible behavior. Our approach successfully ab-
stracts and automates the development and maintenance of runtime
monitors for human-centric requirements violations. We proposed
a DSL, MoReML, to represent human-centric requirements, ML
components, and runtime monitors. We also provided an example
of a MoReML model, demonstrating how to specify these in an
Eclipse-based tool. Initial evaluation of our toolset and approach
shows that it can model ML components for classification problems,
human-centric requirements of fairness and privacy, and generate
runtime monitors using existing toolkits.

A number of future work directions exist. These include adding
support for a wider range of ML components and human-centric
requirements, monitoring multiple ML components, generating a
wider set of ML monitors, establishing connections between tech-
nical aspects and human-centric requirements (e.g., the impact of
drift on privacy), and incorporating metrics that do not depend
on ground truth labels. We also plan to extensively evaluate the
usability and usefulness of MoReML and our approach in wider
ML-heavy applications.

ACKNOWLEDGMENTS
Naveed is supported by a Faculty of IT Post-graduate scholarship.
Grundy and Haggag are supported by ARC Laureate Fellowship
FL190100035. This work is also partly supported by ARC Discovery
Project DP200100020.

Towards Runtime Monitoring for Responsible Machine Learning using Model-driven Engineering MODELS ’24, September 22–27, 2024, Linz, Austria

REFERENCES
[1] [n. d.]. Adult dataset. https://archive.ics.uci.edu/ml/datasets/Adult
[2] [n. d.]. The AI Observability & LLM Evaluation Platform. https://arize.com/
[3] [n. d.]. Australia’s AI Ethics Principles. https://www.industry.gov.au/

publications/australias-artificial-intelligence-ethics-framework/australias-ai-
ethics-principles

[4] [n. d.]. Ethics guidelines for trustworthy AI. https://digital-strategy.ec.europa.eu/
en/library/ethics-guidelines-trustworthy-ai

[5] [n. d.]. Future of ai technologies report. https://www.gartner.com/
smarterwithgartner/gartner-predictsthe-future-of-ai-technologies

[6] [n. d.]. IBM Watson Openscale. https://www.ibm.com/docs/en/cloud-paks/cp-
data/3.5.0?topic=services-watson-openscale

[7] [n. d.]. Introduction to Vertex AI Model Monitoring. https://cloud.google.com/
vertex-ai/docs/model-monitoring/overview

[8] [n. d.]. Model monitoring with Azure Machine Learning. https:
//learn.microsoft.com/en-us/azure/machine-learning/concept-model-
monitoring?view=azureml-api-2

[9] [n. d.]. Monitor data and model quality. https://docs.aws.amazon.com/sagemaker/
latest/dg/model-monitor.html

[10] [n. d.]. The open-source ML observability platform. https://www.evidentlyai.com/
[11] [n. d.]. Principles for the Ethical Use of AI in the UN System. https://unsceb.org/

principles-ethical-use-artificial-intelligence-united-nations-system
[12] Khlood Ahmad, Mohamed Abdelrazek, Chetan Arora, Muneera Bano, and John

Grundy. 2023. Requirements engineering for artificial intelligence systems: A
systematic mapping study. Information and Software Technology (2023), 107176.

[13] Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-aware programming.
In Proceedings of the Conference on Fairness, Accountability, and Transparency.
211–219.

[14] Koorosh Aslansefat, Ioannis Sorokos, Declan Whiting, Ramin Tavakoli Kolagari,
and Yiannis Papadopoulos. 2020. SafeML: safety monitoring of machine learning
classifiers through statistical difference measures. In International Symposium on
Model-Based Safety and Assessment. Springer, 197–211.

[15] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie
Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilović, et al. 2019. AI Fairness 360: An extensible toolkit for de-
tecting and mitigating algorithmic bias. IBM Journal of Research and Development
63, 4/5 (2019), 4–1.

[16] Thomas Brand and Holger Giese. 2018. Towards software architecture runtime
models for continuous adaptive monitoring.. In MoDELS (Workshops). 72–77.

[17] Petter Bae Brandtzaeg and Asbjørn Følstad. 2018. Chatbots: changing user needs
and motivations. interactions 25, 5 (2018), 38–43.

[18] Taejoon Byun and Sanjai Rayadurgam. 2020. Manifold for machine learning
assurance. In ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results. 97–100.

[19] Australia’s National Artificial Intelligence Centre. [n. d.]. Responsible
AI. https://www.csiro.au/en/work-with-us/industries/technology/national-ai-
centre,2023.Accessed:November2023

[20] Oliver Cobb and Arnaud Van Looveren. 2022. Context-aware drift detection. In
International Conference on Machine Learning. PMLR, 4087–4111.

[21] CSIRO. 2023. Responsible AI Pattern Catalogue. https://www.csiro.au/en/research/
technology-space/ai/Responsible-AI/RAI-Pattern-Catalogue

[22] Alex Cummaudo, Scott Barnett, Rajesh Vasa, and John Grundy. 2020. Threshy:
Supporting safe usage of intelligent web services. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1645–1649.

[23] Jeffrey Dastin. 2022. Amazon scraps secret AI recruiting tool that showed bias
against women. In Ethics of data and analytics. Auerbach Publications, 296–299.

[24] Vasisht Duddu, Sebastian Szyller, and N Asokan. 2021. SHAPr: An efficient and
versatile membership privacy risk metric for machine learning. arXiv preprint
arXiv:2112.02230 (2021).

[25] Lisa Ehrlinger, Verena Haunschmid, Davide Palazzini, and Christian Lettner. 2019.
A DaQL to monitor data quality in machine learning applications. In Database
and Expert Systems Applications: 30th International Conference, DEXA 2019, Linz,
Austria, August 26–29, 2019, Proceedings, Part I 30. Springer, 227–237.

[26] Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado. 2003. UML 2
toolkit. John Wiley & Sons.

[27] Jessica Fjeld, Nele Achten, Hannah Hilligoss, A Nagy, and Madhulika Srikumar.
2020. Principled artificial intelligence. Berkman Klein Center, February 14 (2020).

[28] Robert France and Bernhard Rumpe. 2005. Domain specific modeling. Software
& Systems Modeling 4, 1 (2005), 1–3.

[29] Avijit Ghosh, Aalok Shanbhag, and Christo Wilson. 2022. Faircanary: Rapid
continuous explainable fairness. In Proceedings of the 2022 AAAI/ACM Conference
on AI, Ethics, and Society. 307–316.

[30] Tony Ginart, Martin Jinye Zhang, and James Zou. 2022. Mldemon: Deployment
monitoring for machine learning systems. In International Conference on Artificial
Intelligence and Statistics. PMLR, 3962–3997.

[31] Polyxeni Gkontra, Gianluca Quaglio, Anna Tselioudis Garmendia, and Karim
Lekadir. 2023. Challenges of Machine Learning and AI (What Is Next?), Respon-
sible and Ethical AI. In Clinical Applications of Artificial Intelligence in Real-World
Data. Springer, 263–285.

[32] Johannes Grohmann, Patrick K Nicholson, Jesus Omana Iglesias, Samuel Kounev,
and Diego Lugones. 2019. Monitorless: Predicting performance degradation in
cloud applications with machine learning. In Proceedings of the 20th international
middleware conference. 149–162.

[33] John Grundy, Hourieh Khalajzadeh, Jennifer McIntosh, Tanjila Kanij, and Ingo
Mueller. 2020. Humanise: Approaches to achieve more human-centric software
engineering. In International Conference on Evaluation of Novel Approaches to
Software Engineering. Springer, 444–468.

[34] Joris Guerin, Raul Sena Ferreira, Kevin Delmas, and Jérémie Guiochet. 2022.
Unifying evaluation of machine learning safety monitors. In 2022 IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 414–
422.

[35] Thilo Hagendorff and David Danks. 2023. Ethical and methodological challenges
in building morally informed AI systems. AI and Ethics 3, 2 (2023), 553–566.

[36] Ben Halstead, Yun Sing Koh, Patricia Riddle, Russel Pears, Mykola Pechenizkiy,
Albert Bifet, Gustavo Olivares, and Guy Coulson. 2022. Analyzing and repairing
concept drift adaptation in data stream classification. Machine Learning 111, 10
(2022), 3489–3523.

[37] Michaela Hardt, Xiaoguang Chen, Xiaoyi Cheng, Michele Donini, Jason Gelman,
Satish Gollaprolu, John He, Pedro Larroy, Xinyu Liu, Nick McCarthy, et al. 2021.
Amazon sagemaker clarify: Machine learning bias detection and explainability
in the cloud. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2974–2983.

[38] Thomas Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik.
2023. Runtime Monitoring of Dynamic Fairness Properties. In Proceedings of the
2023 ACM Conference on Fairness, Accountability, and Transparency. 604–614.

[39] Anna Jobin, Marcello Ienca, and Effy Vayena. 2019. The global landscape of AI
ethics guidelines. Nature machine intelligence 1, 9 (2019), 389–399.

[40] Myeongseob Ko, Xinyu Yang, Zhengjie Ji, Hoang Anh Just, Peng Gao, Anoop
Kumar, and Ruoxi Jia. 2023. PrivMon: A Stream-Based System for Real-Time
Privacy Attack Detection for Machine Learning Models. In Proceedings of the
26th International Symposium on Research in Attacks, Intrusions and Defenses.
264–281.

[41] Dimitris Kolovos and Alfonso de la Vega. 2023. Flexmi: a generic and modular
textual syntax for domain-specific modelling. Software and Systems Modeling 22,
4 (2023), 1197–1215.

[42] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2009. On the evolution
of OCL for capturing structural constraints in modelling languages. Rigorous
Methods for Software Construction and Analysis: Essays Dedicated to Egon Börger
on the Occasion of His 60th Birthday (2009), 204–218.

[43] Panagiotis Kourouklidis, Dimitris Kolovos, Joost Noppen, andNicholasMatragkas.
2021. A model-driven engineering approach for monitoring machine learning
models. In 2021 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). IEEE, 160–164.

[44] Panagiotis Kourouklidis, Dimitris Kolovos, Joost Noppen, andNicholasMatragkas.
2023. A domain-specific language for monitoring ML model performance. In
2023 ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). IEEE, 266–275.

[45] Oliver Kramer and Oliver Kramer. 2016. Scikit-learn. Machine learning for
evolution strategies (2016), 45–53.

[46] Michael Austin Langford, Kenneth H Chan, Jonathon Emil Fleck, Philip K McKin-
ley, and Betty HC Cheng. 2021. Modalas: Model-driven assurance for learning-
enabled autonomous systems. In 2021 ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems (MODELS). IEEE, 182–193.

[47] Dorian Leroy, Pierre Jeanjean, Erwan Bousse, Manuel Wimmer, and Benoit
Combemale. 2020. Runtime monitoring for executable DSLs. The Journal of
Object Technology 19, 2 (2020), 1–23.

[48] Grace A Lewis, Sebastián Echeverría, Lena Pons, and Jeffrey Chrabaszcz. 2022.
Augur: A step towards realistic drift detection in production ml systems. In
Proceedings of the 1st Workshop on Software Engineering for Responsible AI. 37–44.

[49] Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. 2018.
Delayed impact of fair machine learning. In International Conference on Machine
Learning. PMLR, 3150–3158.

[50] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, and Zhenchang Xing. 2022.
Towards a roadmap on software engineering for responsible AI. In Proceedings of
the 1st International Conference on AI Engineering: Software Engineering for AI.
101–112.

[51] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, Didar Zowghi, and Aurelie
Jacquet. 2023. Responsible ai pattern catalogue: A collection of best practices for
ai governance and engineering. Comput. Surveys (2023).

[52] Lucy Ellen Lwakatare, Aiswarya Raj, Ivica Crnkovic, Jan Bosch, and Helena Holm-
strömOlsson. 2020. Large-scale machine learning systems in real-world industrial
settings: A review of challenges and solutions. Information and software technol-
ogy 127 (2020), 106368.

https://archive.ics.uci.edu/ml/datasets/Adult
https://arize.com/
https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://www.gartner.com/smarterwithgartner/gartner-predictsthe-future-of-ai-technologies
https://www.gartner.com/smarterwithgartner/gartner-predictsthe-future-of-ai-technologies
https://www.ibm.com/docs/en/cloud-paks/cp-data/3.5.0?topic=services-watson-openscale
https://www.ibm.com/docs/en/cloud-paks/cp-data/3.5.0?topic=services-watson-openscale
https://cloud.google.com/vertex-ai/docs/model-monitoring/overview
https://cloud.google.com/vertex-ai/docs/model-monitoring/overview
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://www.evidentlyai.com/
https://unsceb.org/principles-ethical-use-artificial-intelligence-united-nations-system
https://unsceb.org/principles-ethical-use-artificial-intelligence-united-nations-system
https://www.csiro.au/en/work-with-us/industries/technology/national-ai-centre, 2023. Accessed: November 2023
https://www.csiro.au/en/work-with-us/industries/technology/national-ai-centre, 2023. Accessed: November 2023
https://www.csiro.au/en/research/technology-space/ai/Responsible-AI/RAI-Pattern-Catalogue
https://www.csiro.au/en/research/technology-space/ai/Responsible-AI/RAI-Pattern-Catalogue

MODELS ’24, September 22–27, 2024, Linz, Austria Naveed, et al.

[53] Andrew McNamara, Justin Smith, and Emerson Murphy-Hill. 2018. Does ACM’s
code of ethics change ethical decision making in software development?. In
Proceedings of the 2018 26th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering. 729–733.

[54] Seung Ho Na, Kwanwoo Kim, and Seungwon Shin. 2023. Witnessing Erosion of
Membership Inference Defenses: Understanding Effects of Data Drift in Member-
ship Privacy. In Proceedings of the 26th International Symposium on Research in
Attacks, Intrusions and Defenses. 250–263.

[55] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2022. Collabora-
tion challenges in building ml-enabled systems: Communication, documentation,
engineering, and process. In Proceedings of the 44th international conference on
software engineering. 413–425.

[56] Hira Naveed. 2023. Runtime Monitoring of Human-Centric Requirements in
Machine Learning Components: A Model-Driven Engineering Approach. In 2023
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C). IEEE, 146–152.

[57] Hira Naveed, Chetan Arora, Hourieh Khalajzadeh, John Grundy, and Omar
Haggag. 2024. Model driven engineering for machine learning components: A
systematic literature review. Information and Software Technology (2024), 107423.

[58] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish
Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen,
Heiko Ludwig, et al. 2018. Adversarial Robustness Toolbox v1. 0.0. arXiv preprint
arXiv:1807.01069 (2018).

[59] David Nigenda, Zohar Karnin, Muhammad Bilal Zafar, Raghu Ramesha, Alan Tan,
Michele Donini, and Krishnaram Kenthapadi. 2022. Amazon sagemaker model
monitor: A system for real-time insights into deployed machine learning models.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 3671–3681.

[60] Theresa Roland, Carl Böck, Thomas Tschoellitsch, Alexander Maletzky, Sepp
Hochreiter, Jens Meier, and Günter Klambauer. 2022. Domain shifts in machine
learning based Covid-19 diagnosis from blood tests. Journal of Medical Systems
46, 5 (2022), 23.

[61] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. 2008.
The epsilon generation language. In Model Driven Architecture–Foundations and
Applications: 4th European Conference, ECMDA-FA 2008, Berlin, Germany, June
9-13, 2008. Proceedings 4. Springer, 1–16.

[62] Anirban Roy, Adam Cobb, Nathaniel Bastian, Brian Jalaian, and Susmit Jha.
2022. Runtime monitoring of deep neural networks using top-down context
models inspired by predictive processing and dual process theory. In AAAI Spring
Symposium 2022.

[63] Conrad Sanderson, Qinghua Lu, David Douglas, Xiwei Xu, Liming Zhu, and Jon
Whittle. 2022. Towards implementing responsible AI. In 2022 IEEE International
Conference on Big Data (Big Data). IEEE, 5076–5081.

[64] Tim Schröder and Michael Schulz. 2022. Monitoring machine learning models:
a categorization of challenges and methods. Data Science and Management 5, 3
(2022), 105–116.

[65] Zhihui Shao and Jianyi Yang. 2020. Increasing the Trustworthiness of Deep
Neural Networks via Accuracy Monitoring. In Workshop on Artificial Intelligence
Safety 2020 (co-located with IJCAI-PRICAI 2020).

[66] Pravik Solanki, John Grundy, and Waqar Hussain. 2023. Operationalising ethics
in artificial intelligence for healthcare: A framework for AI developers. AI and
Ethics 3, 1 (2023), 223–240.

[67] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

[68] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-
behaviour prediction for autonomous driving systems. In Proceedings of the
ACM/IEEE 42nd international conference on software engineering. 359–371.

[69] Eliza Strickland. 2019. IBM Watson, heal thyself: How IBM overpromised and
underdelivered on AI health care. IEEE Spectrum 56, 4 (2019), 24–31.

[70] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. 2022. Out-of-distribution
detection with deep nearest neighbors. In International Conference on Machine
Learning. PMLR, 20827–20840.

[71] Hazem Torfah and Sanjit A Seshia. [n. d.]. Runtime Monitors for Operational
Design Domains of Black-Box ML-Models. In NeurIPS ML Safety Workshop.

[72] Michael Vierhauser, Antonio Garmendia, Marco Stadler, Manuel Wimmer, and
Jane Cleland-Huang. 2023. GRuM—A flexible model-driven runtime monitoring
framework and its application to automated aerial and ground vehicles. Journal
of Systems and Software 203 (2023), 111733.

[73] Zhentao Xu, Ruoying Wang, Girish Balaji, Manas Bundele, Xiaofei Liu, Leo Liu,
and Tie Wang. 2023. Alertiger: Deep learning for ai model health monitoring
at linkedin. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 5350–5359.

[74] Alfa Yohannis and Dimitris Kolovos. 2022. Towards model-based bias mitigation
in machine learning. In Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems. 143–153.

[75] Liming Zhu, Xiwei Xu, Qinghua Lu, Guido Governatori, and Jon Whittle. 2022.
AI and ethics—Operationalizing responsible AI. Humanity driven AI: Productivity,
well-being, sustainability and partnership (2022), 15–33.

Received 28 March 2024

	Abstract
	1 Introduction
	2 Runtime Monitoring for Responsible ML
	2.1 Our Approach
	2.2 Monitoring Meta-Model
	2.3 MoReML Example
	2.4 Monitor Generation and Prototype Tool

	3 Evaluation
	4 Limitations
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

