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ABSTRACT
Machine learning (ML) components are used heavily in many cur-
rent software systems, but developing them responsibly in prac-
tice remains challenging. ‘Responsible ML’ refers to developing, de-
ploying and maintaining ML-based systems that adhere to human-
centric requirements, such as fairness, privacy, transparency, safety,
accessibility, and human values. Meeting these requirements is es-
sential for maintaining public trust and ensuring the success of
ML-based systems. However, as changes are likely in production
environments and requirements often evolve, design-time quality
assurance practices are insufficient to ensure such systems’ re-
sponsible behavior. Runtime monitoring approaches for ML-based
systems can potentially offer valuable solutions to address this prob-
lem. Many currently available ML monitoring solutions overlook
human-centric requirements due to a lack of awareness and tool
support, the complexity of monitoring human-centric requirements,
and the effort required to develop and manage monitors for chang-
ing requirements. We believe that many of these challenges can be
addressed by model-driven engineering. In this new ideas paper, we
present an initial meta-model, model-driven approach, and proof
of concept prototype for runtime monitoring of human-centric re-
quirements violations, thereby ensuring responsible ML behavior.
We discuss our prototype, current limitations and propose some
directions for future work.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Software safety; Maintaining software; Risk management; Op-
erational analysis; Software defect analysis; • Computing
methodologies→ Machine learning.
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1 INTRODUCTION
Over the last decade, machine learning (ML) components have
emerged and become prevalent in software systems to support use
cases such as predictive analysis, sales forecasting, fraud detection,
medical diagnosis, and much more [59, 64]. While the advent of
ML-based systems has created many benefits and opportunities, it
has also introduced several new software engineering (SE) and mod-
elling challenges. One of these challenges is preventing themisappli-
cation, misuse, or potential harm caused by ML-based systems [31].
This challenge can be addressed by developing, deploying, andmain-
taining ML-based systems responsibly, i.e., responsible ML [19, 51].
Responsible ML entails that ML-based systems conform to critical
human-centric requirements such as fairness, privacy, safety, trust,
transparency, accessibility, sustainability and well-being [19, 51].
The lack of responsible ML practices results in ML-based systems
that are biased, privacy-invasive, unsafe, and untrustworthy, thus
violating several human-centric requirements [12, 66]. The likeli-
hood of such violations in ML-based systems is evident, as even
large companies have experienced them, e.g., Amazon’s gender-
biased recruitment tool [23], IBM’s unreliable cancer diagnosis [69],
and Microsoft’s offensive Twitter chatbot [17].

Given the inherent uncertainty of ML-based systems, relying
solely on responsible ML practices for development and testing is
not sufficient – many human-centric requirements can be violated
after the system has been deployed [75]. Unforeseen changes in
incoming data, changes in operating context, and anomalies can
cause the ML-based system to behave unexpectedly [22, 29]. For
example, when the COVID-19 pandemic hit, existing ML models
experienced a significant drop in predictive performance due to
changes in the operating context [60]. Such changes can impact
fairness metrics, potentially harming sensitive groups [29, 49] and
weakening defenses against privacy attacks [54]. Additionally, un-
intentional mistakes, such as bugs in the ML pipeline can cause
issues after deployment.
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Figure 1: Runtime Monitoring of ML Systems

Runtime monitoring of ML-based systems for human-centric
requirements violations is recommended as an essential part of re-
sponsible ML deployment and maintenance [75]. Runtime monitor-
ing refers to continuously observing the behavior of a deployed ML-
based system by capturing and analyzing relevant data to identify
unwanted behavior that violates system requirements [56]. A basic
architecture of how runtime monitoring for ML-based systems is
conducted is shown in Figure 1. The monitor collects inputs and/or
predictions of the ML component, computes pre-defined metrics of
interest, and alerts ML engineers if unwanted behavior is detected.
Some examples of frequently encountered unwanted behavior in
ML components are performance drops, data drift (changes in data
patterns), concept drift (changes in operating context), prediction
drift (changes in prediction patterns), and anomalies in inputs. Op-
tionally, the monitor may receive ground truth data, which can be
available with a short delay (e.g., button clicks) or a long delay (e.g.,
loan repayments).

At present, numerous approaches and tools exist for runtime
monitoring of ML-based systems, most focusing entirely on techni-
cal aspects such as performance degradation and drift [30, 32, 48, 65,
73]. However, these approaches often fail to monitor human-centric
requirements violations and the consequences of technical require-
ments violations on human-centric requirements [56]. The absence
of such monitoring raises several problems: 1) delayed detection of
human-centric requirements violations, relying on user feedback
or tedious manual observations; 2) frustration among users and
reduced trust in the ML-based system; 3) reputational damage, fi-
nancial losses, and legal consequences for businesses. Therefore,
a key step of responsible ML is to monitor ML-based systems
for human-centric requirements violations [56, 75]. In practice,
monitoring ML-based systems for human-centric requirements vi-
olations is far from trivial. Deploying and maintaining ML-based
systems, in general, is challenging due to a lack of technical skills
in the market [5], lack of awareness and understanding regard-
ing responsible ML among practitioners [53], or the fact that most
organizations find it difficult to monitor ML models at runtime [55].

Implementing runtime monitors for responsible ML involves sev-
eral activities. ML engineers must implement monitors for various
human-centric requirements of interest and integrate themwith the
ML infrastructure. The lack of ground truth data and subjectivity
of some human-centric requirements such as pleasure, trust, and
autonomy make direct monitoring difficult and proxy measures
need to be specified [35]. Furthermore, as requirements evolve, the
monitors must be updated and maintained to capture the current
properties of interest, this is also essential for efficient resource

management [16, 52]. Maintaining the monitors for human-centric
and technical requirement violations requires significant time and
effort from ML engineers, as they must ensure consistency across
all monitors [43]. These monitors may be built from scratch or use
existing toolkits, further exacerbating the maintenance issue. While
monitoring is the responsibility of the ML engineer, organizations
may not always have a designated role for this task. Depending
on the organization, the monitoring process may be conducted by
multidisciplinary teams with employees in various other roles (e.g.,
data scientists and software engineers); this becomes challenging
as all have different expertise and preferences [55].

We believe that model-driven engineering (MDE) can address
many of these challenges. The abstraction of models can hide many
complexities and improve collaboration, whereas automated model
transformations can reduce development and maintenance effort
for runtime monitors [72]. MDE has been successfully applied for
runtime monitoring of traditional software systems [47, 72] and
recently for performance monitoring of ML-based systems [43, 44].
However, its application to runtime monitoring for human-centric
requirement violations in ML-based systems, crucial for ensuring
responsible behavior, remains unexplored. As runtime monitoring
for responsible ML is challenging and often overlooked, we address
this gap by presenting an initial approach to make it easier and
faster. In this new ideas paper, we present an initial meta-model
of our domain-specific language (DSL), MoReML – Monitoring
Responsible ML, an example of a model created in MoReML, a
model-driven approach, and a proof of concept prototype1 for run-
time monitoring of human-centric requirements violations in ML
components, thereby helping to ensure more responsible ML. We
also incorporate performance and drift monitors, as they may im-
pact the violations of human-centric requirements. We discuss how
models can be created in MoReML, how runtime monitors can be
generated from these models, the current limitations in our work,
and future directions.

2 RUNTIME MONITORING FOR RESPONSIBLE
ML

Our research is based on the following research questions:
• RQ1. Does the DSL (MoReML) effectively capture and rep-
resent ML monitoring aspects and human-centric require-
ments in a comprehensible manner for engineers to conduct
runtime monitoring?

• RQ2. How well can the generated runtime monitors detect
violations of specified human-centric requirements (e.g., fair-
ness, privacy) and technical requirements (e.g. performance,
drift)?

2.1 Our Approach
Figure 2 provides an overview of our proposed approach. (1) TheML
expert identifies the key human-centric requirements of interest,
which may vary depending on the context, goal, and application
domain of the ML-based system. For example, fairness (concern-
ing race or gender) is an important human-centric requirement in
credit score prediction systems. (2) The ML expert specifies techni-
cal requirements corresponding to the high-level human-centric
1Prototype available at https://zenodo.org/records/11394260
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Figure 2: Our Proposed Approach

requirements, such as fairness metrics and thresholds. (3) The ML
expert constructs a model describing the required monitors. To
ensure this model conforms to the MoReML meta-model, we spec-
ify constraints using the Epsilon Validation Language (EVL) [42].
The model includes the ML component, the monitoring system,
monitors of interest (e.g., fairness monitor), and the linked require-
ments. (4) Our tool generates code for the runtime monitors by
applying model-driven engineering. (5) The generated monitors
monitor the ML component at runtime. The monitors collect data
from the ML component and compute metrics to identify violations
of the specified requirements.

2.2 Monitoring Meta-Model
Models provide several benefits, including reduced complexity, eas-
ier stakeholder communication, automated code generation, and
increased productivity [33, 74]. While general-purpose modeling
languages such as UML [26] are generic and complex, a domain-
specific language (DSL) is relatively much easier to use as it captures
domain-specific information in familiar terminology [28, 33]. The
abstract syntax for a DSL is specified through a meta-model and
the concrete syntax may be textual, visual, or both. In this work,
we present our initial effort towards a DSL, MoReML, to capture
runtime monitoring concepts for responsible ML behavior.

We present an initial meta-model of MoReML that enables the
specification of the monitoring system, the ML component being
monitored, runtime monitor characteristics, key runtime monitor-
ing metrics, and the linked high-level human-centric requirements.
The concepts in the meta-model are based on the findings from
our systematic literature review [57]. Figure 3 shows the classes
and their relationships in our initial meta-model. The rationale and
purpose of each key class in the meta-model are explained below.

2.2.1 MonitoringSystem. This is the top-most class that represents
the entire ML monitoring system. It is essential for controlling all
monitors, managing datasets, and interacting with the ML compo-
nent. The MonitoringSystem class has the attributes name and a
unique id. It is linked to exactly oneMLcomponent being monitored
and contains one or more Dataset and Monitor class instances.

2.2.2 MLcomponent. This class describes the ML component being
monitored. Specifying the ML component allows tailored moni-
toring suitable to the component characteristics such as the ML

algorithm. An ML component is similar to a traditional software
component with code and input/output interfaces. The ML compo-
nent contains code of exactly one trained ML model and interfaces
for inputs (ML model inputs) and outputs (ML model predictions).
This class also contains the model ID, and ML algorithm (e.g. Logis-
tic Regression).

2.2.3 Dataset. This class represents the datasets available for mon-
itoring and baseline comparison, these can be training, testing,
or production datasets. The dataset class is needed for specifying
datasets used by the ML component, tracking changes, and . We as-
sume that monitoring is being done in batches with the production
dataset. The other alternative would be to monitor each in real-time.
For easier version control and analysis, theMonitoringSystem main-
tains a record of all the Dataset objects. The Dataset class consists
of attributes for dataset path, label name (prediction column name),
column names and categorical features needed to load the dataset.

2.2.4 Monitor. This class represents a runtime monitor that is a
part of the monitoring system. We include this in the meta-model
to represent a generic monitor, its characteristics, and its relations
to other concepts. A monitor offers ML engineers the flexibility
to activate or deactivate it based on the current requirements of
interest and a defined interval for computing metrics periodically.
These capabilities enable efficient resource management and the
adaptability of monitors. Each monitor contains one instance of
MonRequirement class representing the high-level requirement be-
ing monitored and one instance of the Alert class representing the
alert triggered if the requirement is violated. The low-level technical
requirements linked to these high-level requirements are specified
through the metric classes.

The Monitor is a generic class further specified into the four
types of monitors we consider in this work i.e., FairnessMonitor,
PrivacyMonitor, PerformanceMonitor, and DriftMonitor. Each mon-
itor type has different attributes and metrics so we define them
as separate classes in the meta-model. Monitoring human-centric
requirements in isolation is not as effective as monitoring them in
combination with more technical aspects such as performance and
drift. A single holistic monitoring solution provides a unified view
of the ML-based system’s behavior and eliminates the complexity
of managing multiple monitoring tools.

The FairnessMonitor class describes a monitor that receives a
dataset containing model predictions and another dataset including
ground truth labels. It computes fairness metrics for the specified
protected attributes (e.g., sex, race) and privileged groups (e.g., Male,
Caucasian) to assess whether the ML model behaves fairly or not.
The FairnessMonitor class contains one or more instances of the
FairnessMetric class which has an enumeration attribute name for
metric type (e.g., statistical parity difference) and a threshold.

Similarly, the PerformanceMonitor class refers to a monitor that
analyzes a dataset with model predictions and another dataset with
ground truth labels to calculate performance metrics (e.g., accuracy).
The PerformanceMonitor class contains one or more instances of
the PerformMetrics classes that represent the performance metrics.
This monitor is useful for detecting any performance drops in the
ML model.

TheDriftMonitor class describes amonitor that identifies changes
in data patterns between the production and training datasets. It
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Figure 3: Meta-model of MoReML

has a feature attribute to specify the input data features under
observation for drift detection. Various drift metrics (e.g., Kol-
mogorov–Smirnov) can be used to compute drift with a certain
threshold and feature type (e.g., numerical or categorical). While
there are other types of drift, such as concept drift and prediction
drift, we only consider data drift monitoring in this initial version.

The PrivacyMonitor class represents a monitor that identifies
privacy risks or leaks in the ML model by analyzing the labeled
training dataset and production dataset with ground truth labels.
This monitor also has attack models that can generate privacy
attacks (e.g., black box membership inference attack) against the
ML model to asses the privacy risks. This class contains one or
more PrivacyMetric class instances with an enumeration attribute
name for metric type (e.g., SHAPr membership privacy risk [24])
and a threshold.

Currently, the specification of two human-centric requirements
(fairness and privacy) is supported in MoReML, however, the meta-
model can be augmented to add support for additional human-
centric requirements and associated metrics.

2.2.5 MonRequirement. This class represents the high-level re-
quirements specifying which aspects of the system’s behavior are
being monitored for potential violations. These include human-
centric requirements (e.g., fairness, privacy) and more technical
requirements (e.g., performance and drift). We include this class in

the meta-model for traceability between high-level requirements
and the violations detected by runtime monitors. The class consists
of an enumeration attribute type for the high-level requirement cat-
egory and the specific requirement in natural language. Low-level
technical monitoring requirements linked to these are specified as
the metric classes.

2.2.6 Alert. This class describes the alert generated for ML engi-
neers whenever a runtime monitor identifies a requirement viola-
tion. It contains a description of the alert and an email address.

2.3 MoReML Example
We designed MoReML, a textual DSL to enable the specification of
an ML-based component, human-centric requirements, and run-
time monitors. Listings 1, 2, 3 show snippets of a model created in
MoReML. This model is based on an ML component that classifies
whether the income of an adult exceeds $50K per year or not using
features such as age, education, sex, marital status, and occupation.

Listing 1 shows the specification of a MonitoringSystem called
demo (line 4) for an ML component with the id MLmodel-1 (line 5),
a Dataset with ground truth labels (line 6-17), and a MLcomponent
that uses a logistic regression model to classify adults’ incomes (line
20-24). The dataset with model predictions and the performance
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and privacy monitors are not shown in the example due to space
limitations.
1 ?nsuri: MLmonitoring_project

2 MonitoringSystem: {

3 monsys_id: 1,

4 name: demo ,

5 model: MLmodel -1,

6 Dataset: {

7 dataset_path: data/adult_labels.csv ,

8 label_name: income -per -year ,

9 column_names: [age , education -num , race , sex ,

10 capital -gain , capital -loss , hours -per -week ,

11 income -per -year , workclass , education ,

12 marital -status , occupation , relationship ,

13 native -country],

14 categorical_features :[workclass , education ,

15 marital -status , occupation , sex , race ,

16 relationship]

17 },

18 .....

19 }

20 MLcomponent: {

21 model_id: MLmodel -1,

22 algorithm: Logistic_Regression

23 }

Listing 1: MoReML model for the Monitoring System, ML
Component and Dataset

Listing 2 depicts a DriftMonitor modeled for the ’education’ fea-
ture (line 5). The monitor executes hourly (line 3) and calculates
data drift using the probability stability index metric (line 7).
1 DriftMonitor: {

2 name: dmon1 ,

3 interval: 3600, #1 hour in seconds

4 active: True ,

5 features: [education],

6 DriftMetric: {

7 name: Probability_stability_index ,

8 threshold: 0.1,

9 type: Categorical },

10 MonRequirement: {

11 type: Drift ,

12 requirement: Education feature must not

13 drift more than 0.1) },

14 Alert: {

15 email: developedid@companyname.org ,

16 description: Data drift req. of MLmodel -1

17 has been violated }

18 }

Listing 2: MoReML model for Drift Monitor

Listing 3 shows a FairnessMonitor modeled for the protected at-
tribute ’sex’ (line 5) with the privileged group as ’male’ (line 6). The
monitor computes fairness in the predictions of the ML component
using the statistical parity difference metric (line 8).
1 FairnessMonitor: {

2 name: fmon1 ,

3 interval: 86400, #24 hours in seconds

4 active: True ,

5 protected_attributes: [sex],

6 privileged_groups: [Male],

7 FairnessMetric: {

8 name: statistical_parity_difference ,

9 threshold: 0.1 },

10 MonRequirement: {

11 type: Fairness ,

12 requirement: Model must be fair w.r.t

13 protected attribute sex (SPD should not

14 be more than 0.1) },

15 Alert: {

16 email: developedid@companyname.org ,

17 description: Fairness req. of MLmodel -1 has

18 been violated }

19 }

Listing 3: MoReML model for Fairness Monitor

2.4 Monitor Generation and Prototype Tool
ML experts model runtime monitors conforming to our meta-model
shown in figure 3 without specifying any implementation details.
The models are shown in Listing 1, 2, and 3 are defined in Flexmi
[41], a reflective textual syntax for EMF models [67]. Other general
textual syntaxes such as XML can also be used to define the mod-
els, however, we prefer the YAML syntax flavor of Flexmi [41]. To
automatically generate runtime monitors we wrote a model-to-text
transformation using the Epsilon Generation Language (EGL) [61].
The transformer takes models conforming to our meta-model as
input and generates Python code for the runtime monitors. For
infrastructure support, we leverage existing toolkits and libraries to
implement metrics required for runtime monitoring. We use IBMAI
fairness 360 [15] for fairness metrics, IBM AI adversarial robustness
[58] for privacy metrics, Evidently AI [10] for drift metrics, and
scikit-learn [45] for performance metrics. The generated code in-
cludes all necessary libraries, ensuring seamless integration without
manual intervention. We implement our proof-of-concept proto-
type as an Eclipse-based [67] tool with our meta-model defined in
Ecore and model-to-text transformations in Epsilon EGL [61].

3 EVALUATION
To demonstrate the utility of our approach, we carried out a prelimi-
nary evaluation using an ML component with a Logistic Regression
model trained on the Adult dataset [1]. The model performs binary
classification to determine if adult incomes exceed $50K per year
or not using features such as age, education, sex, occupation, and
weekly hours. We conduct an experiment to answer RQ1 and RQ2.
For RQ1, we model ML monitoring aspects and related human-
centric requirements in MoReML. Snippets of the model used in our
evaluation are shown in Listings 1, 2, and 3. For RQ2, we intention-
ally introduced requirements violations to assess the performance
of the generated monitors. We added dummy drift in the education
feature for the drift monitor, leveraged a dataset with sex and race
biases for the fairness monitor, omitted privacy risk mitigation
for the privacy monitor, and set a high performance threshold for
the performance monitor. Next, we divided the Adult dataset into
training, testing, and production subsets, reserving one portion for
assumed production data available in batch. The dataset is labeled,
allowing us to use the labels as ground truth for metric calculation.

Our monitors were able to successfully identify the requirements
violations. An example of our runtime ML monitor flagging require-
ments violations of drift and fairness is shown in Figure 4. The
detected violation is presented with the monitor name, monitoring
metric, value of the metric, and alert status.
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Figure 4: Violations Detected by Generated Monitors

4 LIMITATIONS
As our work is in its initial stages there are several limitations.
Currently, our work is limited to i) a single ML component, ii) ML
components for classification problems, iii) human-centric require-
ments of fairness and privacy, iv) a few monitoring metrics (all
relying on the availability of ground truth labels), v) locally de-
ployed ML components, vi) monitors receiving production data in
batches, and vii) a preliminary evaluation. We have also not consid-
ered various ML frameworks (e.g. Tensorflow) in this version and
would like to add support for them in the future.

5 RELATEDWORK
Responsible ML: Responsible ML is a subfield of responsible ar-
tificial intelligence (AI) that refers to designing, developing, and
deploying ML-based systems to benefit individuals, groups, and
society while minimizing negative impacts [21]. Recently, many
high-level responsible/ethical AI frameworks have been proposed
by governments and large organizations including the European
Union’s Ethics Guidelines for Trustworthy AI [4], Australia’s AI
Ethics Principles [3], and more [11, 27, 39]. These frameworks em-
phasize that AI (including ML) systems must conform to human-
centric requirements of fairness, privacy, explainability, account-
ability, safety, human values, and professional responsibility [27].
Despite the availability of several frameworks, none of them pro-
vide practical implementation guidance for responsible ML [63, 75].
Recently, someworks have explored strategies to implement respon-
sible ML in practice. For example, Sanderson et al. [63] interviewed
AI practitioners to investigate the operationalization of responsible
ML, they found governance, AI system design and development,
competence and knowledge development, and stakeholder com-
munication as the key practices required for realizing responsible
AI. Zhu et al. [75] discuss methods to realize responsible AI by
achieving trustworthiness through product and process assurance
mechanisms. While many studies on responsible ML mention the
importance and need for runtime monitoring [50, 75], none provide
detailed implementable solutions.
Runtime Monitoring of ML Systems: Numerous runtime moni-
toring solutions for ML-based systems are available that monitor
various requirements violations. Kourouklidis et al. [43] propose
a low-code approach for performance monitoring of ML using
various drift detection techniques. A domain-specific language is
described in [44] for data scientists to specify ML model monitoring
workflows and a runtime component for software engineers that

implements the monitoring behavior. An approach and toolset for
realistic data drift detection in deployed ML systems is proposed in
[48], the approach focuses on drift behavior analysis and informed
monitoring for responsible AI. An ML model monitoring solution
is described in [73], it detects anomalies in model inputs and predic-
tions by leveraging deep learning. Other examples of studies on drift
and anomaly monitoring include [20, 36, 59], and [70]. Some promi-
nent commercial and open-source tools for runtime monitoring of
ML-based systems include Amazon SageMaker [9], IBM Watson
OpenScale [6], Microsoft Azure [8], Google Vertex AI [7], Arize
AI [2], and Evidently AI [10]. While most studies and tools focus on
monitoring technical requirements violations in ML-based systems,
few studies explore monitoring for human-centric requirements vi-
olations. These include fairness and bias monitoring [13, 29, 37, 38],
privacy and adversarial robustness monitoring [40, 54], safety mon-
itoring [14, 34, 68, 71], and trust monitoring [18, 25, 46, 62]. Few
approaches for monitoring human-centric requirements violations
exist. The ones that do have several limitations: 1) Studies focus
only on a single human-centric requirement [13, 46, 59]. 2) Techni-
cal expertise in statistics and software engineering are required to
set up a monitoring system [43, 59]. 3) Limited support for mon-
itoring evolving human-centric requirements. As for commercial
solutions, they are platform-dependent, require payment for most
services, and do not consider human-centric requirements other
than fairness and explainability [2, 7, 9].

6 CONCLUSION AND FUTUREWORK
We have described a novel MDE approach for runtime monitor-
ing of ML components to adhere to human-centric requirements,
thus ensuring responsible behavior. Our approach successfully ab-
stracts and automates the development and maintenance of runtime
monitors for human-centric requirements violations. We proposed
a DSL, MoReML, to represent human-centric requirements, ML
components, and runtime monitors. We also provided an example
of a MoReML model, demonstrating how to specify these in an
Eclipse-based tool. Initial evaluation of our toolset and approach
shows that it can model ML components for classification problems,
human-centric requirements of fairness and privacy, and generate
runtime monitors using existing toolkits.

A number of future work directions exist. These include adding
support for a wider range of ML components and human-centric
requirements, monitoring multiple ML components, generating a
wider set of ML monitors, establishing connections between tech-
nical aspects and human-centric requirements (e.g., the impact of
drift on privacy), and incorporating metrics that do not depend
on ground truth labels. We also plan to extensively evaluate the
usability and usefulness of MoReML and our approach in wider
ML-heavy applications.
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