
Integrating Goal-Oriented and Use Case-Based
Requirements Engineering: The Missing Link

Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy
Faculty of Science, Engineering and Technology

Swinburne University of Technology
Melbourne, Australia

{huannguyen, jgrundy, malmorsy}@swin.edu.au

Abstract—Combining goal-oriented and use case modeling has

been shown as an effective method of requirements engineering.
To ensure the quality of such modeled artifacts, a conceptual
foundation is needed to govern the process of determining what
types of artifacts to be modeled, and how they should be specified
and analyzed for 3Cs problems (completeness, consistency and
correctness). However, such a foundation is missing in current
goal-use case integration approaches. In this paper, we present
GUIMeta, a meta-model, to address this problem. GUIMeta
consists of three layers. The artifact layer defines the semantics
and classification of artifacts and their relationships. The
specification layer offers specification rules for each artifact class.
The ontology layer allows semantics to be integrated into the
entire model. Our promising evaluation shows the suitability of
GUIMeta in modeling goals and use cases.

Index Terms—Goal and Use Case, Meta-model, Functional
Grammar, Ontology.

I. INTRODUCTION
Requirements Engineering (RE) is an iterative process of

eliciting, specifying, analyzing, and managing requirements on
a software system [17]. Goal-use case integration modeling
(GUIM) [8, 9, 18] has been recognized as a key approach in
this process. GUIM can capture the underlying rationale of the
system being developed while aligning the business objectives
with the functionalities and constraints of system components.
The details of system-user interactions (use cases) are also
modeled and linked to system goals. Such a combination
enables GUIM to provide a comprehensive view of the system
[1]. GUIM has been used to enhance requirements elicitation
[1, 8], modeling [9, 18], and facilitate architecture design [10].

However, despite of the recognized benefits of GUIM, no
work has been done to establish a conceptual foundation on
which system goals and use cases should be modeled together.
Such foundation is needed to provide guidance as to what types
of artifacts should be modeled, how they are specified,
classified, and connected to each other. In fact, existing GUIM
techniques are generally isolated. Different approaches, with
different foci, have different ways to specify, classify and
connect artifacts (i.e., goals, use cases). For instance, Cockburn
[4] defines the summary, user and sub-function levels of
abstraction. The first two levels are for functional goals while
the sub-function level is for use cases. Lee et al. [9] classify
goals under three facets: rigid vs. soft goals, actor-specific vs.
system-specific goals and functional vs. non-functional goals;

and use cases can be connected to goals in the intersecting type
of functional, actor-specific and rigid. Such isolation makes it
difficult if models created in different approaches were to be
combined. Also, no existing GUIM approach is comprehensive
enough to model both goals and use cases as each lacks support
for certain artifact types. Thus, requirements engineers are not
well supported in modeling both goals and use cases without a
fundamental foundation.

Moreover, the lack of a conceptual foundation prevents
goal-use case models to be adequately analyzed. Such models
need to be analyzed for defects such as incompleteness,
inconsistency, and incorrectness (the 3Cs problems). Although
some GUIM approaches have their own ways of analysis, they
do not sufficiently address key questions such as: how to verify
if an artifact is not properly specified? How to check if artifacts
are not correctly connected? How to ensure a use case is
matched with its associated goal? How to detect if a required
artifact has not been elicited? In fact, a conceptual foundation
with clearly defined and classified artifacts, and dependences
between them could potentially a solution to these problems.

In this paper, we present a novel Goal-Use Case Integration
Meta-model (GUIMeta) as a conceptual foundation of GUIM.
GUIMeta was designed to first, provide a more comprehensive
way of modeling and analyzing goals and use cases, and
second, unify the existing GUIM approaches. GUIMeta is the
underlying component of our Goal and Use case Integration
Framework (GUI-F) that provides automated support for the
extraction of goal-use case models from textual documents and
the analysis of such models for syntactic and semantic 3Cs
problems. GUIMeta consists of three layers. The artifact layer
defines the classification of commonly used artifacts in a goal-
use case integration model and their relationships. The
specification layer provides the specification rules of each
artifact type based on functional grammar [6]. The ontology
layer defines the structure of ontologies that can be optionally
integrated with artifact specifications to facilitate the semantic
understanding of the entire model. We summarize the key
contributions of GUIMeta as follows:

(1) A comprehensive meta-model of goals and use case
components, and their relationships in GUIM

(2) A set of specification rules for artifacts
(3) A method of using ontology to provide semantics to

goal-use case models. As shown later, several benefits
are offered by this feature.

978-1-4673-6908-4/15 c© 2015 IEEE MODELS 2015, Ottawa, ON, Canada
Foundations

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

328

(S1)This software system will be a Social Networking System for travellers
around the world. (S2)This system will be designed to allow travellers to
better plan their travels by providing tools to assist in facilitating the
communication between travellers. (S3)By supporting the travellers to share
and gain experiences, the system will meet the their needs while remaining
easy to understand and use. (S4)More specifically, this system is designed to
allow a traveller to quickly write reviews for different places and tours
...
Use case: Create Reviews
Brief Description: A user creates a review
Initial Step-By-Step Description
(S5) Before this use case can be initiated, the traveller has successfully
logged into the system.
Step 1. (i) The editor selects to create a review.
Step 2. (i) System prompts the user to select a review category.
Step 3. (i) The user selects review category. (ii)The list of categories
includes hotel, attraction, restaurant and tour.
Step 4. (i) System displays the suitable review creation form to user.
Step 5. (i) The user enters the review content. (ii) A review content contains
subject, overall rating, individual ratings and comment
Step 6. (i) System validates the review. (ii) The validation should be
completed within 1 second.
Step 7. (i) If the review content is valid, the system stores the review into
the database; (ii) else the system prompts the user to repeat step 5.

Fig. 1. Goal-Use Case Modeling Scenario

The rest of the paper is organized as follows. In Section II,
we discuss the key motivation for this work. Section III
provides an overview of our approach. Section IV describes the
details of GUIMeta. Section V presents the evaluation results
and our applications of GUIMeta. Section VI and section VII
provide additional discussions on the meta-model and related
research respectively. Section VIII summaries our contribution.

II. MOTIVATION
In this section, we discuss the motivation for this work. We

use the term artifact to refer to goals, use cases and use case
components (i.e., step, condition).

A. Modeling Goals and Use Cases
Consider a scenario in which goals and use cases need to

be extracted and modeled from the requirements text in Fig 1.
1. What to model and how to specify them?
Although general understanding of requirements and goals

may help identify artifacts from text (i.e., sentence (S1) should
not be considered as an artifact since it is an introduction to a
system), to ensure the consistency of goal-use case modeling,
fundamental guidelines are needed to instruct requirements
engineers on what artifacts to be modeled, what their roles are
and how they should be specified. For instance, should the
sentences Step 3-(ii), Step 5-(ii) and Step 6-(ii) be modeled as
artifacts? From our analysis, they are important artifacts (data
and quality constraints) within the use case. However they are
not supported in many existing approaches (i.e., [9], [4]). In
addition, although the artifact “Facilitate the communication
between travelers” can be modeled in several GUIM
techniques, it is classified into different categories by those
techniques. For instance, it is categorized as a rigid goal in [9],
summary goal in [4] and design goal in [8]. Therefore, we need
to unify them in a conceptual foundation. Moreover, artifacts in
a model need to be consistently specified. For example, should
the entire sentence (S2) be a specification for an artifact or
should it be split into two artifacts whose specifications are
highlighted in Fig. 1? Unfortunately, existing approaches
provide insufficient guidance on how to specify such artifacts.

2. How to specify relationships between artifacts?
The existing GUIM techniques lack support for several

important relationships between artifacts at goal levels and use
case level. For instance, the refine relationship between the
goal “travellers shall be able to quickly write reviews” (from
(S4)) and the use case constraint “the validation should be
completed within 1 second” (from Step 6-(ii)) (both are about
speed) is neglected. Moreover, since different techniques use
different artifact categories, different sets of relationships are
defined. Thus, we need to study the correlation of these
relationships and unify them under a conceptual foundation.

B. Analyzing Goal-Use Case Integration Models
Since different existing GUIM approaches define different

sets of modeled artifacts, no single method can be used to
analyze a goal-use case model if such a model does not follow
a specific approach. Moreover, not all techniques provide
analysis support (i.e., [4, 8, 15]). In addition, as each existing
approach lacks support for several types of artifacts that may be
modeled in a goal-use case integration model, their analysis
method, if any, is inadequate for such a model. Therefore, to
provide a comprehensive analysis framework for GUIM, there
needs to be a foundation that classifies GUIM’s commonly
used artifacts and relationships, and defines rules as to how
each artifact and relationship should be specified to be
considered correct, consistent and complete. Below, we
provide some examples of common 3Cs problems in GUIM:

Incorrectness: The modeled goals and use cases may be
incorrect due to their unsound specifications or ill-formed
relationships between them.

Example 1: Consider the functional goal G “The system
being built shall be secure” and the use case step S “User
enters article subject quickly”. These specifications are
malformed for their types. G should describe a system’s
functionality rather than quality while S should not state how a
user achieves a task.

Example 2: Consider a use case UC that has the pre-
condition “user has been logged in” and the post-condition
“traveller has been signed in”. Such a use case specification is
invalid since its post-condition is identical to its pre-condition,
given that user is equivalent to traveller and logged in is
identical to signed in in this domain.

Example 3: The goals “users shall be able to create website
contents” and “users shall be able to create travel articles” are
linked to each other via a bidirectional refinement link. Such a
dependency is invalid as refinement is a one-way relationship.

Incompleteness: Goal and use case model can be
incomplete. (i.e., missing artifacts or relationships).

Example 4: Consider two goals G1 “Users shall be able to
register for a membership” and G2 “System shall support
communication”. G1 should have an operationalizing use case
while G2 needs to be further refined into more specific goals.

Example 5: Consider goal G “Users shall be able to create
travel articles” and a use case UC for “a user creates a travel
article”. Assume they are not connected, then that is
incomplete since UC describes the steps to realize G.

Inconsistency: Mismatches between specifications give
rise to inconsistencies.

329

Specification

Core
Predicate

Reference Location Spatial
Orientation

Destination

Source

0..1 0..2
0..1 0..1

Purpose

0..1

Co-Target
0..1 0..1 0..1

0..1

0..1

Additional
Participant

Beneficiary

Company

Way

Means

Manner

Extended
Predicate

Tense Negation

1

1 1

Duration
0..1

Nuclear
Predicate

Verb Target

Object

Quality

1

1 0..1
Primary

Participant

Agent

Positioner

0..1

Frequency
0..1

Proposition
Predicate

Condition Event

0..1

0..1 0..1

Fig. 2. Structure of a Specification

Example 6: The goal G “Users shall be able to create
travel articles” is operationalized by a use case UC that has
the description of “A user edits a review”. This is considered
an inconsistency because UC needs to describe the steps to
achieve the goal that it operationalizes (not right in this case).

Example 7: Consider two goals “Users shall be able to
create reviews for tours” and “Users shall be able to write
only reviews for places”. They are inconsistent given “write
reviews” and “create reviews” are equivalent activities while
tour and place are disjoint concepts in the domain of interest.

III. OUR APPROACH
We developed a three-layered meta-model (GUIMeta) as a

conceptual foundation for GUIM. The artifact layer classifies
the artifacts and relationships to be modeled. It also specifies
the dependencies between relationships. The specification layer
provides specification rules for the defined artifacts. It provides
the guidelines on what should and should not be included in the
specifications of each artifact type. The ontology layer defines
the ontology structure to allow semantics to be integrated into
the entire model. GUIMeta also incorporates a categorization
of correctness, consistency and completeness problems in a
model. Based on that, 3Cs problems can be verified.

To unify the existing concepts in GUIM, we established a
correspondence between GUIMeta and the existing GUIM
approaches. The formation of our specification rules is inspired
by function grammar [6], in which a specification is described
by a verb and a number of parameters, each having its own
semantic function (e.g., agent, object, location). That provides a
consistent way to interpret the semantics of a specification.

The design of GUIMeta was based on over 450 goals and
170 use cases from the literature and industry. These are from
many different domains including web applications, embedded
systems, process control systems, and information systems. It
was done in four steps. First, we focused on the artifact layer.
We studied the existing GUIM approaches to identify the
overlaps and differences between their defined artifacts. Based
on that, we developed the core categories of artifacts. We then
examined the exemplar goals and use cases to recognize the
goals and use case components that were not classifiable into
the core categories. In such cases, we obtained new categories.
At the end of this step, the newly identified categories were
merged into the core categories. A similar process was done
for characterizing relationships between artifacts. The
correspondence between our artifact and relationships
categories and those in existing GUIM approaches was also an
outcome of this step. Second, we analyzed individual goals
and use cases. We used functional grammar to parameterize
the specifications of goals and use cases, and studied the

commonalities among semantic functions usually used for
each category of goal or use case component. The outcome of
step two is the specification layer. Third, we focused on
providing semantics to artifact specifications. The criterion is
to allow the meaning tracking for each semantic function in a
specification. The result of this step was the ontology structure
and how ontology is integrated to models. Lastly, based on the
artifact and relationship classifications, we developed a
categorization of incompleteness, inconsistency and
incorrectness in goal-use case integration models.

IV. GOAL-USE CASE INTEGRATION META-MODEL
Due to space limitations, only selected components of

GUIMeta are presented in this paper. Interested readers are
referred to http://goo.gl/ttqX4Z for more details.

A. Functional Grammar
Functional Grammar (FG) is a general theory concerning

the grammatical organization of natural languages [6]. In our
work, FG is used to parameterize artifact textual specifications
into different parameters called semantic functions. Such
parameterization provides a standard way to interpret the
semantic role of each group of words in a specification and
thus offers means to analyze the semantics of specifications.

Fig. 2 shows the key components of an artifact
specification in our meta-model (i.e., goals, use case
steps/conditions). A specification consists of four predicates,
each denoting a number of semantic functions. For instance,
nuclear predicate contains elements describing which action is
conducted (verb), by whom (agent), or on what target (object).
Core predicate enriches nuclear predicate with details about
the beneficiary or how an activity is performed (manner).

Each semantic function is described by a term. For
instance, verbal terms describe activities and thus are used to
specify statements; nominal terms denote entities and are used
to specify the values of most semantic functions. For example,
the nominal term Head(Review) + Quantifier(Quantity(2) +
Comparative_Operator(More_Than_Or_Equal)) + Quality(
Attribute(High_ quality)) describes the phrase ‘2 or more high
quality reviews’. The following examples demonstrate the use
of FG in parameterizing artifact specifications.

Example 1: A goal “System shall notify users when new
messages arrive” is parameterized as “Agent(system) + Verb(
notify) + Object(users) + Event(Positioner(Attribute(new) +
Head(messages)) + Verb(arrive) + Tense(present) +
Negation(false)) + Tense(present) + Negation(false)”.

Example 2: A use case step “If the review has less than 50
characters, the system shall display an error message” is
parameterized as “Condition(the review has less than 50

330

NonFunctional
Product Goal

NonFunctional
Use Case
Constraint

NonFunctional
Service Goal

NonFunctional
Feature Goal

Business Goal

Functional
Service Goal

Functional
Feature Goal

Data Constraint

Use Case Step

Use Case

NonFunctional
Goal

Functional Goal

refine

operationalize
composition

constrain1

*

*

sub-type
refine and constrain are many-to-many relationships
require and exclude relationships can be established
between any pair of artifacts

Use Case Step

Use Case

System Step Repeating Step

Dead-end StepExtension Step

User Step

Post-condition

Precondition

Extension
ConditionExtension

composition
specify

sub-type

resume at
start from

precede
reference

**

*

*

**

*

*
*

*

*

*

1 1

1

*

Repeating
Condition*

Fig. 3. Artifact Layer

characters) + Agent(system) + Verb(display) + Object(error
message) + Tense(present) + Negation(false)”. The condition
is structured as “Positioner(review) + Verb(has) + Object(
Quantifier(Comparative_Operator(less_than) + Quantity(50)
+ Head(characters)) + Tense(present) + Negation(false)”.

B. Artifact Layer
Fig. 3 illustrates the artifact layer, which defines the

following components:
Business goals (BG) describe the business objectives of the
software system being built. A business goal does not include
any information about what the system should do or how it
should operate (e.g., “Improve quality of travel planning”).
Functional feature goals (FFG) list features a system should
support in order to achieve business goals. FFGs should not
offer details as to what functions are needed for the system to
support a feature; rather a FFG is an abstract description of the
feature itself (e.g., “System shall support communication”).
Functional service goals (FSG) provide the details of how a
feature is achieved. A FSG describes what function a user or
the system can perform. The main difference between a FSG
and a FFG is that, a FSG is detailed enough to form a testable
unit and is operationalized by a use case, whereas a FFG
cannot have any connected use cases (e.g., “Users shall be
able to create travel articles”).
Non-functional product goals (NPG) describe quality
constraints on the entire product. A NPG should not contain
any information about particular features or services supported
by the system (e.g., “The system being built shall be secure”).
Non-functional feature goals (NFG) name quality constraints
of a particular feature of the system (i.e., which is specified in
a FFG). A NFG should not contain detailed information about
how such constraint can be met by the system (e.g., “Users
shall be able to share experience easily”).

Non-functional service goals (NSG) list quality constraints on
a particular service. For example, “The article creation
process shall be familiar to typical Internet users” is a NSG
restricting the FSG “Users shall be able to create articles”.
Use cases only operationalize functional service goals. Our use
case structure is adopted from Cockburn’s use case template
[5]. A use case includes pre/post conditions, steps, and
extensions. Steps describe system-user interactions, whereas
extensions handle exceptions. We also define two types of
constraints in use cases. A non-functional use case constraint
(NUUC) describes a quality constraint at use case level (e.g.,
“The system validates a user’s identity within 2 seconds”). A
data constraint (DC) captures a data requirement for a
particular entity mentioned in a functional service goal or use
case (e.g., “A review contains a rating, and a comment)”.

The artifact layer also defines commonly used relationships
between artifacts in goal and use case integrated modeling [3,
5, 19]. The main relationships are described as follows:
Refine relationships are used to model the refinements of
goals and constraints. AND-refine relationships are used for
cases of minimal refinement, which means an artifact would
only be satisfied if all the sub-artifacts linked to it via AND-
refine relationships are satisfied. OR-refine relationships are
used in cases of alternative refinement, which means the
artifact being refined can be satisfied by fulfilling any of the
sub-artifacts involved in the OR-refine relationships.
Optional-refine relationships are used in cases of optional
refinement. This denotes that the sub-artifacts involved in
Optional-refine relationships are preferred options but they are
not strictly required for the parent-artifact to be fulfilled.
Constrain relationships are used to define non-functional or
data constraints on a functional goals or a use case step. For
instance, the data constraint DC1 constrains the use case step
UC1_Step5.

331

BG1: Improve the
quality of travel planning

FFG3: The system shall
support communication

FSG3: Users shall be able
to create travel articles

FFG2: Users shall be able
to share their travel
experiences with others

 UC2: A user create a travel article
 Pre-condition:
 User has been logged in
 Post-condition:
 A new travel article is created
 Steps:

 User requests to submit the article
 System validates the article content

 UC1: A user write a review
 Pre-condition:
 User has been logged in
 Post-condition:
 A new review is created
 Steps:

... NPG2: System being
built shall be secure

FSG1: Users shall be
able to write reviews

NPG1: System being
built shall be easy to
use

NFG1: Users shall be able
to share their travel
experiences easily

FFG1: Users shall be able
to gain travel experiences
from others

NFG2: Guarantee the
reliability of the shared
experience

NUUC1: System must
validate the article content
in less than 1 second

NSG1: The article creation
process is familiar to typical
Internet users

Operationalize

AND-refine

Constrain

...

...

...

...

... ...

...

Business Level

Functional Feature Level

Functional Service Level

Non-Functional Product Level

Use Case Level

Non-Functional Service Level

BGx: Business Goal - FFGx: Functional Feature Goal
FSGx: Functional Service Goal - UCx: Use Case
Where x is a number (1,2...)

NSG1: Users shall be able
to create travel articles
quickly

...

Non-Functional Feature Level

Fig. 4. A Sample Goal-Use Case Integration Model

Business
Goal

Nuclear
Predicate

Core
Predicate

Verb Target Beneficiary

Possessive
Verb

Action Verb

ToBe

Transitive
Action Verb
Intransitive
Action Verb

Object

Quality

Reference Manner

1

1 0..1

Extended
Predicate

Tense Negation

1

1 1

Location Spatial
Orientation

Destination

Source

0..1 0..20..1 0..1

Purpose

0..1

Co-Target
0..1 0..1 0..1

0..1

0..1

Fig. 5. Specification Rules for Business Goals

Fig. 6. Specification Rules for Business Goals

Require relationships describe situations in which the
satisfaction of an artifact requires the satisfaction of another.
Exclude relationships are opposite to require relationships.
They describe the situations in which two artifacts in the
model cannot be both satisfied.

Operationalize relationships are used to connect a use case to
a functional service goal to model the situation that the use
case describes the system-user interactions to achieve the goal.

Fig. 4 shows a partial goal-use case model where each
artifact is classified into our defined artifact types.

B1. <transitive action verb> <object> ((for) <beneficiary>) ([with | to])
<reference> ([in | at | on] <location>) (for <purpose>)
B2. <transitive action verb> <object> ((for) <beneficiary>) ([in | at | on]
<location>) (from <source>) (to <destination>) (for <purpose>)
B3. <intransitive action verb> ((for) <beneficiary>) ([with | to | of])
<reference> ([in | at | on] <location>) (for <purpose>)

Note: (…) denotes optional parameters. [x | y | .. | z] denotes alternative parameters

332

Verb

Action
Verb

Possession
Verb

State
Verb ToBe

Property

Adjectival
Property

Adverbial
Property

Functional
Property

Quality
Property

Activity

Measurement
Unit

Comparative
Operator

Quantitative
Operator

Relationship

hasObject Require
Exclude

LeadTo

SubClass

Equivalent Disjoint

Entity

Active
Entity

Inactive
Entity Product

Preceed

Transitive
Action Verb

Intransitive
Action Verb

Temporal
Property

hasAttribute

hasSubject

Fig. 7. Ontology Structure

Specification

Proposition
Predicate

haserror message reviewdisplays

VerbAgent

Head

Nuclear
Predicate

Nominal Term

Atomic
Nominal Term

Object

System

Condition

VerbalTerm

Head

Nominal Term

Atomic
Nominal Term

VerbPositioner

Head

Nuclear
Predicate

Nominal Term

Atomic
Nominal Term

less than 50 characters

Quantity

Quantifier

Object

Head

Nominal Term

Atomic
Nominal Term

Comparative
Operator

(Product Entity) (Inactive Entity)(Inactive Entity)(Action Verb) (Possession
Verb)

(Comparative
 Operator)

(Inactive Entity)

Have_vErrorMessage_e Review_vDisplay_vSystem_e LessThan_co Character_e

Ontological Items
Fig. 8. Example of Integrating Specifications with Ontology

C. Specification Layer
The specification layer provides rules for specifying each

type of artifacts defined in the artifact layer. The benefits of
specification models are twofold. First, they provide guidelines
for writing artifacts. For instance, as business goals are usually
high-level strategic statements, condition or duration should
not be specified while other parameters (i.e., beneficiary,
destination) are permitted.

Second, they enable the detection of 3Cs problems. Fig. 5
shows the specification model of business goals that indicates
the compulsory and optional semantic functions of a business
goal specification. For example, the nuclear predicate’s
possible semantic functions are verb, object, location, source
and destination in which verb and object are compulsory
components. Consider a valid business goal “Assist travellers
to plan their travels”, parameterized as “Verb(assist) +
Object(Agent(traveller) + Verb(plan) + Object (travel))”. If a
condition were specified (i.e. “If the demand is high”), the
specification would become invalid because a condition
semantic function is not permitted here. This specification
model is used to define specification rules in the form of

boilerplates1. Each rule outlines one or more ways of writing
specifications of a certain type of artifacts. Fig. 6 presents some
specification rules for business goals, which are derived from
the specification model in Fig. 5. The specification boilerplates
for other artifacts can be found at http://goo.gl/ttqX4Z.
D. Ontology Layer

GUIMeta enables semantics to be added into models by
allowing ontologies to be integrated with artifact specifications
in case semantics are needed. Fig. 7 depicts GUIMeta’s
ontology structure that includes the key components as follows:
Verb refers to verbs in the domain that describe actions (i.e.,
display, create), possession (i.e., have, contain) or statuses
(i.e., arrive, come). Action verbs are further classified as
transitive and intransitive action verbs.
Entities are core elements in the domain. Product entities refer
to the system and its components (e.g., system, product).
Active entities are the rest of the entities that can perform an
action (e.g., user, librarian). Inactive entities cannot perform
actions; they are objects of actions (e.g., book, password).

1 Boilerplates are templates for writing textual artefact specifications

333

Table I. Correspondence between key GUIM approaches and GUIMeta

Approach Existing GUIM Approaches’ Concept GUIMeta’s Corresponding Concept(s)
Lee [9] Rigid goal: goal that must be completely satisfied FFG, FSG

Soft goal: goal that can be partially satisfied BG, NPG, NFG, NSG
Actor-specific goal: actors’ objectives with the system FFG, NFG, FSG, NSG with agent is an actor
System-specific goal: requirements on services that system provides NPG, NFG, NSG with agent is a system or system component
Functional goal FFG, FSG
Non-functional goal NPG, NFG, NSG
Original goal: intersection of rigid, actor-specific and function goal FFG, FSG with agent is an actor
Cooperative and conflict relationships between goals Require/refine and exclude relationships respectively
Satisfied/denied relationships between an original goal and a use case Satisfied/denied relationships can be represented in

GUIMeta through operationalize, refine, require and exclude
relationships.

Cockburn [4] Summary goal: system objectives FFG
User goal: user’s task FSG
Sub-function goal: describe user activities Use case step

Rolland [15],
Kim [8]

Business Goal: ultimate purpose of the system BG
Design goal: possible manners of fulfilling a business goal FFG
Service goal: possible manners of providing services to fulfill design goals FSG
Refinement/alternative relationship Refine/alternative relationship

Gorschek [7] Product level requirement: product strategies NPG, FFG
Feature level requirement: high-level feature that the product supports FFG
Functional level requirement: action that users can perform FSG
Component level requirement: steps of how each function is performed DC, NUCC

Measurement unit refers to measurement units in the domain.
They can be classified further (e.g., data storage units like MB,
or time units like MHz).
Property includes adjectival properties (e.g., high, low) and
adverbial properties. An adverbial property is either a
functional property (e.g., automatically, manually) or
qualitative property (e.g., quickly, safely)
Equivalent, Subclass and Disjoint respectively specifies
analogous, refinement and non-overlapping relationships
between concepts.

Fig. 8 shows an example in which a use case step “if the
review has less than 50 characters, the system displays an
error message” is parameterized into terms and ontological
items (represented as shaded boxes). Extended predicates are
omitted for simplicity.
E. GUIMeta’s Correspondence with GUIM Approaches

Apart from providing a fundamental foundation for GUIM,
GUIMeta was designed to unify existing GUIM approaches. In
fact, we provide one-to-one mappings between their concepts
and GUIMeta’s. This enables the transformation of models
from those approaches into our format. Based on that, the
combination of models specified in different approaches can be
facilitated. Table II presents the correspondence between key
GUIM techniques and GUIMeta. It can be seen that they only
cover subsets of artifacts and relationships in GUIMeta.

V. EVALUATION
A. Evaluation on Example Requirements Documents

We evaluated GUIMeta by assessing its suitability in goal
and use case integration modeling. Specifically, we aimed to
address the following questions:
• RQ1: How well does GUIMeta handle different types of

artifacts in goal and use case integration modeling?
• RQ2: How suitable are GUIMeta’s specification rules for

goal and use case integration modeling?

To answer these questions, we employed six industrial case
studies. In each case study, we manually identified goals and
use cases and used them to evaluate GUIMeta. To address
RQ1, we focused on the coverage of GUIMeta’s artifact layer.
Specifically, we aimed to identify which goals and use case
components in each case study could and could not be
classified by our artifact layer. To address RQ2, we evaluated
the appropriateness of our specification rules, which are
defined in GUIMeta’s specification layer, in specifying the
classified goals and use case components. To do that, we
manually parameterized each artifact and verified if there was
one or more of these problems: (1) the artifact specification
cannot be sufficiently parameterized using the functional
grammar’s semantic functions adopted in our work, or (2) the
parameterized specification of such artifact contains a semantic
functions that is not included in the corresponding specification
rule (e.g., a condition semantic function exists in the
parameterization of a business goal while it is not included in
the business goal specification rule).

The first three case studies we used came from the domains
of traveller social network (TSN), online publication system
(OPS) and split payment system (SPS)2. Three further case
studies were chosen from the PROMISE (PRedictOr Models
in Software Engineering) dataset [2], which provided
requirements in the domains of Master Scenario Events List
Management (MSEL), Real Estate (REs) and Nursing Training
Program Administration (NTPA). The number of artifacts in
each PROMISE case study is smaller than those in the TSN,
OPS and SPS because they do not contain use cases and
business goals, due to the focus mainly on functional and non-
functional requirements of this dataset. The reasons for
choosing these case studies were twofold. First, they provided a
wide range of artifacts in different domains. Second, since the

2 The original requirements for the case studies can be found at

http://goo.gl/gCUofM

334

PROMISE dataset had been used extensively for evaluations in
the Requirements Engineering research community, using this
dataset in our validation would potentially provide a solid
comparison of our work to other works in the field.

As shown in table 3, we successfully categorized all 773
artifacts extracted from all six case studies into our defined
artifact classes in GUIMeta’s artifact layer, including different
types of goals, and use case steps, conditions, data and
nonfunctional constraints. Every artifact was classified into
one and only one artifact class, which means there was no
confusion regarding which class an artifact should belong to.
The C rows in each case study section (i.e., TSN, OPS) in
table III show the number of artifacts classified into each
artifact class. Similarly, the NC rows present the number of
artifacts that were not classifiable (the NC values were zero in
all case studies, meaning all artifacts were successfully
classified).

 In addition, as indicated by the zero values in the RM –
rule mismatched rows, we identified no mismatch between the
artifacts’ parameterized specifications and their corresponding
specification rules (in table III). Moreover, there was only a
small subset of the artifacts (70 out of 773) that were not
parameterizable using our adopted set of semantic functions
(showed by the NP rows). All of these results showed that
GUIMeta is suitable for classifying, parameterizing and
providing specification rules for goal-use case modeling.

We encountered some problems with parameterizing
artifacts with temporal properties. i.e., a goal “System logs a
user off after 15 minutes of being inactive” or a constraint “A
locked account is locked until an admin unlocks it” was not
parameterizable in GUI-F. In addition, specifications with
time expressions like “The product shall be available for use
24 hours per day, 365 days per year” or with “as” like “The
user marks the article as ‘favorite’” were also not supported.
That was due to the lack of sufficient support for such
properties in functional grammar.

To sum up, the evaluation results to-date showed that
GUIMeta is suitable to use for modeling goal and use case
models from requirements documents, which was indicated by
the fact that all artifacts identified in each case study was
successfully and uniquely classified into a GUIMeta’s artifact
class. Moreover, the fact that there were only 70 over 773
(9%) indicated that GUIMeta’s specification rules are reliable
to provide templates for writing and validating textual
specifications in goal and use case integrated models. Our full
evaluation data can be found at http://goo.gl/gCUofM.

B. GUIMeta Applications
GUIMeta has been used as a fundamental foundation for
goal-use case integration modeling in our GUITARiST
tool. The tool consists of two integrated components called
GUEST [13] (Goal-Use case Extraction Supporting Tool)
and GUITAR [11, 12] (Goal-Use case Integration Tool for
Analysis of Requirements). In this section, we discuss
these components and show their use of GUIMeta.
GUITARiST and its evaluation results can be obtained
from http://goo.gl/gCUofM.

Table II. GUIMeta Evaluation Results

ss BG FFG FSG NPG NFG NSG NUCC DC UCS UCC Tot.

TSN

C 4 11 23 4 7 14 19 9 117 47 255
NC 0 0
RM 0 0
NP 0 0 0 0 1 4 7 0 8 0 21

OPS

C 3 19 21 4 8 8 9 5 90 35 200
NC 0 0
RM 0 0
NP 0 0 0 0 4 1 3 0 9 0 17

SPS

C 2 16 21 8 11 9 9 11 73 3 163
NC 0 0
RM 0 0
NP 0 0 0 0 2 2 4 0 4 0 12

MSEL C 0 0 15 6 2 5 5 0 0 0 33
NC 0 0
RM 0 0
NP 0 0 0 1 0 5 1 0 0 0 7

REs C 0 3 15 11 6 4 2 0 0 0 41
NC 0 0
RM 0 0
NP 0 1 1 2 1 0 2 0 0 0 7

NTPA C 0 8 39 10 9 5 0 10 0 0 81
NC 0 0
RM 0 0
NP 0 1 0 3 1 1 0 0 0 0 6

C: classified NC: not classified RM: rule mismatched NP: not
parameterizable BG: Business Goal FFG: Functional Feature Goal FSG:
Functional Service Goal NPG: Non-functional Product Goal NFG: Non-
functional Feature Goal NSG: Non-functional Service Goal NUCC: Non-
functional Use case Constraint DC: Data Constraint UCS: Use Case Step
UCC: Use Case Condition

1) GUEST: GUEST was developed to improve the goal and
use case modeling process by providing automated support for
the extraction of goals and use cases from textual requirements
documents. Based on linguistic techniques and an extendable
set of extraction rules, GUEST is able to automatically
identify goals and use cases and their relationships from text,
classify them and ensure they are properly specified (ensure
grammatical correctness, rewrite goal such as “users is
capable of creating reviews” to a recommended format of
“users shall be able to create reviews”). In this work,
GUIMeta provides a conceptual foundation to determine what
artifacts to be extracted, what categories they should be
classified into and how they should be specified.

2) GUITAR: GUITAR provides an automated support for
the detection and resolution of inconsistency, incompleteness
and incorrectness in goal-use case integration models.
GUIMeta plays a central role in GUITAR. First, from the
definitions and classifications of artifacts and relationships in
GUIMeta, we identify the classification of 3Cs problems to
deal with. Second, it offers a way in which textual artifact
specifications can be parameterized. Third, it offers a
technique of understanding semantics of artifacts using
ontology (i.e., by the ontology layer). GUITAR identifies
syntactic problems based on the artifact and relationship rules
defined in GUIMeta. For semantic problems, we developed an
ontology-based technique to employ domain ontologies of
knowledge and semantics to reason about goals and use cases.

335

In this technique, the parameterization of artifact is used to
transform artifact specifications into Manchester OWL Syntax
statements that then facilitate the automated detection of
problems based on the Pellet reasoner [16].

C. Threat to validity
Some threats to validity from this evaluation exist. A threat

to external validity was the representativeness of the selected
case studies. To reduce this threat, we diversified the data by
selecting case studies from different domains while obtaining a
large number of requirements. Another external threat is that
our validation was done using case studies only and thus
insufficient for evaluating the use of GUIMeta in practical use.
We therefore plan to conduct another evaluation with our
industrial partners’ projects in future work.

A threat to internal validity was the human factors in
classifying (in RQ1), parameterizing artifacts and determining
the matching of the parameterized specifications and
specification rules (in RQ2). To alleviate this, we did the tasks
carefully and reviewed them twice after they had been done. In
addition, to further minimize the risk of manual artifact
parameterization, we used our FGParam tool to generate the
initial parameterizations, and then manually verified the results
and made necessary corrections. The threat can be further
reduced if two or more people with relevant knowledge and
experiences were involved in the validation.

VI. DISCUSSION
Apart from the use in our GUI-F framework, GUIMeta can

also offer various benefits in goal and use case modeling.
Specification guidelines: developed based on the

commonality of a large number of exemplar requirements,
GUIMeta’s specification rules (described in the form of
boilerplates) can be used as guidelines on writing goal and
use case specifications. This helps to ensure the properness of
artifact specification right in the stages of elicitation and
modeling to save analysis effort later on.

Improve the understanding of artifacts: GUIMeta offers a
way to add semantics to textual artifact specifications by the
use of functional grammar-based parameterization and
ontology. For each specification, it is known what activity it
is about, who takes such activity, what object is affected, by
what means, in what manner and condition the activity is
conducted and so on. Moreover, each word in those semantic
functions can be mapped to an ontological concept whose
semantic is known. This offers a way to understand artifacts
in a model. Below we discuss the tasks that can be beneficial
by such understanding. Importantly, our FGParam library can
be used to facilitate the automation of these tasks.

- Redundancy and Overlap detection: artifacts’ meaning
can be compared to identify redundancies and overlaps.

- Detection of other defects: based on the captured
semantics of artifacts, if detection rules for defects such
as ambiguity, unverifiability are defined, artifacts can be
analyzed to detect such problems. Our parameterization
can offer a more powerful technique than keyword-based
detection methods as it offers deeper semantic analysis.

- Generation of UML models: Some UML models such
as sequence diagram and class diagram can be
automatically generated based on the captured semantics
of use case components (i.e., step, condition, extension).

The key limitation of GUIMeta is that it currently does not
support the specifications of temporal properties such as
“until”, “unless”, “after x seconds”. Specifications using “as”
in the form like “The DBMS may be located on the same
machine as the product” or “The user marks the article as
‘favorite’” are also not parameterizable with GUIMeta. That
is because these properties are not supported by functional
grammar. In functional grammar, the discussed temporal
properties are all captured as a general “time” semantic
function, which does not sufficiently indicate the semantic
difference between these properties. Moreover, functional
grammar lacks support to handle the phrases such as “same
machine as product” and “as favorite” in the examples. We
plan to extend functional grammar with additional semantic
functions to accommodate these cases. For instance, each
temporal property would be associated to a unique semantic
function so that their semantic roles can be fully differentiated.

VII. RELATED WORK
Several approaches have been proposed to integrate goal

and use case modeling, or use such integration to improve the
requirements engineering process. Cockburn [4] suggests the
use of goals to structure scenarios by connecting every action
in a scenario to a goal assigned to an actor. He defines three
abstraction levels of artifacts: summary goals are for system-
level objectives, user goals specify user tasks in the system,
and sub-functions refine user goals and can be steps in the use
cases that operationalize user goals. However, non-functional
goals are kept out of scope. Also, although writing guidelines
are provided for use cases, they remain at a high level and do
not specify how these artifacts are formed and validated.

Lee et al. [9] developed an approach called goal-driven use
cases to structure use cases by goals, handle nonfunctional
goals and analyze interactions between goals and use cases.
They defined a number of artifacts and relationships. For
instance, goals are classified in 3 facets: rigid vs. soft, system-
specific vs. actor-specific and functional vs. nonfunctional. A
use case that achieves an original goal (defined as the
intersection of rigid, actor-specific and functional goals) is
called an original use case while extension use cases are those
maintain or optimize soft, system-specific or nonfunctional
goals that constrain original goals. However, this work does
not provide the internal structure of use cases and thus it is not
clear how extension use cases and original use cases are
different. Moreover, except for constrain relationships, other
interactions between goals are not defined. This work also
lacks guidelines on how each artifact should be specified.

Supakkul and Chung [18] proposed an approach to better
integrate functional and nonfunctional requirements (NFR). In
this work, use cases, which capture functional requirements,
are associated to nonfunctional goals specified using the NFR
framework [3]. To facilitate the integration, a set of NFR
association points was proposed. For instance, an actor

336

association point is used to link an actor of a use case to his/her
desired nonfunctional properties of the system while a use case
association point is used to link a use case with its required
nonfunctional constraints. The approach also provides a set of
propagation rules to enable the traceability across a goal-use
case model. The limitation of this work is its lack of support for
functional goals and thus the interactions between functional
goals, nonfunctional goals and their related use cases cannot be
captured. Moreover, no specification rules/guidelines, and 3Cs
problem analysis support are provided.

Rolland et al. [15] focus on guiding the elicitation of goals
using scenarios based on the concept of requirement chunks.
Each chunk contains a goal and a scenario that operationalizes
the goal. There are three abstraction types of requirement
chunks: contextual, system interaction, and system internal
level and four abstraction types of goals: business, design,
service, and internal goals. At each level of chunks, a goal is
operationalized into a scenario and thus a new chunk is formed.
A suitable scenario step is then selected as a goal and refined
further. The authors also provide writing guidelines for goals
and scenarios based on functional grammar. However, they are
still very abstract and do not specifically define how each
artifact is specified and verified. Also, no dedicated support for
non-functional goals and 3Cs problem analysis are included.
Kim et al. [8] extended [15] to provide guidelines for
transferring goals and scenarios into use case models.

In the area of requirements abstraction, Gorschek and
Wohlin [7] proposed a requirements abstraction model in
which requirements are classified into 4 abstraction levels:
product, feature, functional and component. However,
nonfunctional requirements are left out of scope and no
specification guidelines are provided for the classified artifacts.

A number of linguistic techniques have been proposed to
help with the specifications of goals and use case (i.e., [5, 14]).
However, they remain at a high level and are not specific to
different types of goals and use case components. They thus do
not offer the ability to reason about the 3Cs problems.

VIII. SUMMARY
In this paper, we introduced GUIMeta, a novel meta-model

to improve the current practice of goal and use case integration
modeling. GUIMeta supports more types of artifacts and
relationships than existing goal-use case integrated
approaches. GUIMeta consists of three layers. The artifact
layer defines the classification of artifacts in a goal-use case
model and their relationships. The specification layer provides
specification rules of artifacts based on functional grammar.
The ontology layer defines the ontology structure to allow
semantics to be integrated into the entire model. We have
established the correspondence between GUIMeta and existing
goal-use case integration approaches to allow models in such
approaches to be transformed into the format of GUIMeta.
GUIMeta has been used in our GUI-F framework to provide
automated extraction of goal-use case models from text and
analysis of such models for inconsistency, incompleteness and
incorrectness. Our promising evaluation results showed that
GUIMeta meets all goal and use case integrated modeling
requirements.

ACKNOWLEDGEMENT
The authors gratefully acknowledge support from the

Victorian Government under the Victorian International
Research Scholarships scheme, Swinburne University of
Technology, and the Australian Research Council under
Linkage Project LP130100201.

REFERENCES
[1] A.I. Anton, R.A. Carter, A. Dagnino, J.H. Dempster, and D.F.

Siege, “Deriving goals from a use-case based requirements
specification,” Requirements Engineering, 6(1): p. 63-73. 2001.

[2] G. Boetticher, T. Menzies, and T. Ostrand, “The PROMISE
Repository of Empirical Software Engineering Data,” 2007.

[3] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-functional
Requirements,” Software Engineering. 2000.

[4] A. Cockburn, “Structuring Use Cases with Goals,” 1997.
[5] A. Cockburn, “Basic use case template,” Humans and

Technology, Technical Report, 96. 1998.
[6] S.C. Dik, “The theory of functional grammar,” Walter de

Gruyter. 1989.
[7] T. Gorschek and C. Wohlin, “Requirements abstraction model,”

Requirements Engineering, 11(1): p. 79-101. 2006.
[8] J. Kim, S. Park, and V. Sugumaran, “Improving use case driven

analysis using goal and scenario authoring: A linguistics-based
approach,” Data & Knowledge Engineering, 58(1): p. 21-46.
2006.

[9] J. Lee, N.-L. Xue, and J.-Y. Kuo, “Structuring requirement
specifications with goals,” Information and Software
Technology, 43(2): p. 121-135. 2001.

[10] L. Liu and E. Yu, “Designing information systems in social
context: a goal and scenario modeling approach,” Information
systems, 29(2): p. 187-203. 2004.

[11] T.H. Nguyen, J. Grundy, and M. Almorsy. “GUITAR: An
ontology-based automated requirements analysis tool,”
Requirements Engineering Conference (RE), 2014.

[12] T.H. Nguyen, J. Grundy, and M. Almorsy, “Ontology-based
automated support for goal–use case model analysis,” Software
Quality Journal, 23(3). 2015.

[13] T.H. Nguyen, J. Grundy, and M. Almorsy, “Rule-Based
Extraction of Goal-Use Case Models from Text,” 10th Joint
Meeting of the European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2015.

[14] N. Prat, “Goal formalization and classification for requirements
engineering, fifteen years later,” Research Challenges in
Information Science (RCIS), 2013.

[15] C. Rolland, C. Souveyet, and C.B. Achour, “Guiding goal
modeling using scenarios,” Software Engineering, IEEE
Transactions on, 24(12): p. 1055-1071. 1998.

[16] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz,
“Pellet: A practical owl-dl reasoner,” Web Semantics: science,
services and agents on the WWW, 5(2): p. 51-53. 2007.

[17] I. Sommerville and G. Kotonya, “Requirements engineering:
processes and techniques,” John Wiley & Sons, Inc. 1998.

[18] S. Supakkul and L. Chung, “Integrating FRs and NFRs: A use
case and goal driven approach,” framework, 6: p. 7. 2005.

[19] A. Van Lamsweerde, “Goal-oriented requirements engineering:
A guided tour,” Requirements Engineering, 2001.

337

