
Adaptive Security for Software Systems

Mohamed Abdelrazek, John Grundy and Amani Ibrahim

Abstract
With continuously changing operational and business needs, system security is one of the key system
capabilities that need to be updated as well. Most security engineering efforts focus on engineering security
requirements of software systems at design time and existing adaptive security engineering efforts require
complex design-time preparation. In this chapter we discuss the needs for adaptive software security, and
key efforts in this area. We then introduce a new run-time adaptive security engineering approach, which
enables adapting software security capabilities at runtime based on new security objectives, risks/threats,
requirements as well as newly reported vulnerabilities. We categorize the source of adaptation in terms
of manual adaptation (managed by end users), and automated adaption (automatically triggered by the
platform). The new platform makes use of new ideas we built for vulnerability analysis, security
engineering using aspect-oriented programming (AOP), and model-driven engineering techniques.

1. Introduction

Enterprise security objectives, reported risks and threats, and vulnerabilities are the main sources of
software security requirements. During the software development lifecycle, software vendors iteratively
refine these high-level security needs into software security requirements and mechanisms to be used.
Many software security engineering efforts [2] have been developed to help software vendors in
capturing, modeling, refining, and engineering these security requirements into their software systems at
design time or ultimately at deployment time – making use of the SOA architecture. These design time
security engineering efforts are very important not only in engineering users’ security requirements into
software, but also in engineering secure systems – i.e. taking into consideration secure software
development best practices in architecting, designing, coding and testing the underling software.

However, security has never been an one- time process. Enterprise security objectives, risks and threats
(e.g. execute arbitrary scripts and breach confidential data, elevate malicious user privileges, take the system
down), and vulnerabilities change over time due to new business goals, changes in software operational IT
environment (e.g. new deployment or operational environment – Cloud/SOA/etc), and the continuously
changing threat landscape. This usually requires changing software security capabilities to meet these
new requirements. In addition, mitigating new reported vulnerabilities is usually done manually, and
sometimes by modifying application source code and deploying new patches. These modifications are
usually translated into new software change requests sent to software vendors to effect these new
requirements. However, this usually takes a long time to fix [1]. As shown in Figure 1, time greatly lags
between vulnerability detection and patching. This means that a software service remains vulnerable to
security breaches exploiting such vulnerabilities. The possibility of vulnerability exploitation increases
dramatically in cloud computing, given the public accessibility of the cloud services and the sharing of
services with multiple tenants. Thus, in such deployment models there is an increasing need for an
online, automated vulnerability patching approach that can stop such vulnerabilities once reported.

	

Figure 1. Average time to fix security vulnerabilities (in days) [1]

In this chapter, we introduce a new adaptive security engineering approach meant to address the
following key challenges:
1) What are the key security aspects we should capture?
2) How can we model such security requirements taking into consideration that these requirements will

change overtime?
3) How can we detect new security vulnerabilities in a running system?
4) How can we automate the realization/enforcement of the new security requirements and virtual

patching of reported vulnerabilities at runtime?

Our work is based on externalizing the security engineering practices so that we can update software
security capabilities at runtime, on the fly, reflecting new requirements, new reported vulnerabilities,
or automated adaptation actions. All the security requirements modeling and refinement activities are
done externally, and easy to change at runtime.

2. Motivation

Consider SwinSoft, an imaginary software company building a large web-based Enterprise Resources
Planning (ERP) system, called “Galactic”. Galactic provides customer management, order management,
and employee management modules. Please see Figure 9 for a detailed description model of Galactic
including features, architecture, classes, and deployment details. SwinSoft targets different markets in
different countries for Galactic. However, such markets, domains and likely customers have different
regulations and information security standards that must be satisfied. Galactic must integrate with diverse
customers’ existing security solutions and other application security. Moreover, SwinSoft has found that
customers' security requirements that Galactic must meet may change dramatically over time.

A customer, Swinburne University now wants to purchase a new ERP solution in order to improve its
internal enterprise management processes. Swinburne has special security requirements because it is
ISO27001 certified. Its enterprise security architects conduct periodic risk assessment that may require
reconfiguring the deployed applications’ security to block newly discovered threats. Swinburne also
wants to have its ERP system security flexible enough as it is planning to integrate its new ERP system
with its partners. This implies that the Galactic application’s security will change over time after its
deployment.

At the same time, another potential SwinSoft customer, SwinMarket, a big brand supermarket chain, has
decided to purchase Galactic. SwinMarket also has a need for highly customizable security options on
different system features that Galactic must satisfy. SwinMarket expects security solutions deployed in its
application operational environment to change over time. Galactic must be able to be updated quickly to
adjust to these as well as any emergent security threats. A delay in patching newly discovered
vulnerabilities means a loss of money.

An analysis of this scenario identifies many challenges including: security requirements differ from one

92

138

17

160

88

0 50 100 150 200

XSS

SQLI

CSRF

Improper	Auth.

Improper	Authz.

Avg	Time	(days)

Avg	Time	(days)

customer to another; each customer’s security requirements may change over time based on current
operational environment security and business objectives; Galactic system security must be integrated with
customers’ deployed security controls in order to achieve coherent security operational environment; and
new security vulnerabilities may be discovered in the Galactic system at any time. Using traditional
security engineering techniques would require SwinSoft to conduct a lot of system maintenance iterations
to deliver system patches that block vulnerabilities and adapt the system to every new customer needs.

A better security engineering approach that addresses these challenges should: enable each customer to
specify and enforce their security requirements based on their current security needs; security should be
applied to any arbitrary system component/entity; no predefined/hardcoded secure points or capabilities,
usually built at design time; security specification should be supported at different levels of abstraction
based on software customers’ experience, scale and engineers’ capabilities. Integration of security controls
with system entities should be supported at different levels of abstraction, from the system as one unit to a
specific system method. The security engineering approach should ease the integration with third-party
security controls. System and security specifications should be reconfigurable at runtime.

3. Security Engineering State-of-the-Art
Existing security engineering efforts focus on capturing and enforcing security requirements at design
time, security retrofitting (maintenance), and adaptive security engineering. On the other hand, most
industrial efforts focus on delivering security platforms to help software developers in implementing
their security requirements using readymade standard security algorithms and mechanisms. Some of the
key limitations we found in these efforts include: (i) these efforts focus mainly on design-time security
engineering – i.e. how to capture and enforce security requirements during software development phase;
(ii) limited support to dynamic and adaptive security and require design-time preparation. Benjamin et
al [2] introduce a detailed survey of the existing security engineering efforts but did not highlight
limitations of these approaches. We discuss key efforts in these areas.

3.1 Design-time Security Engineering

Software security engineering aims to develop secure systems that remain dependable in the face of attacks
[3]. Security engineering activities include: identifying security objectives that systems should satisfy;
identifying security risks that threaten system operation; elicitation of security requirements that should be
enforced on the system to achieve the expected security level; developing security architectures and
designs that deliver the security requirements and integrates with the operational environment; and
developing, deploying and enforcing the developed or purchased security controls. Below, we summarize
the key efforts in the security engineering area.

3.1.1 Early-stage Security Engineering

The early-stage security engineering approaches focus mainly on security requirements engineering
including security requirements elicitation, capturing, modeling, analysing, and validation at design time
from the specified security objectives or security risks. Below we discuss some of the key existing security
requirements engineering efforts.

Knowledge Acquisition in automated Specification (KAoS) [4] is a goal-oriented requirements
engineering approach. KAoS uses formal methods for models analysis [5]. KAoS was extended to capture
security requirements [6] in terms of obstacles to stakeholders’ goals. Obstacles are defined in terms
of conditions that when satisfied will prevent certain goals from being achieved. This is helpful in
understanding the system goals in details but it results in coupling security goals with system goals.

Secure i* [7, 8] introduces a methodology based on the i* (agent-oriented requirements modeling)

framework to address the security and privacy requirements. The secure i* focuses on identifying security
requirements through analysing relationships between users, attackers, and agents of both parties. This
analysis process has seven steps organized in three phases of security analysis as follows: (i) attacker
analysis focuses on identifying potential system abusers and malicious intents; (ii) dependency
vulnerability analysis helps in detecting vulnerabilities according to the organizational relationships among
stakeholders; (iii) countermeasure analysis focus on addressing and mitigating the vulnerabilities and
threats identified in previous steps.

Secure TROPOS [9-11] is an extension of the TROPOS requirements engineering approach that is
based on the goal-oriented requirements engineering paradigm. TROPOS was initially developed for
agent-oriented security engineering (AOSE). TROPOS introduces a set of models to capture the system
actors (actors’ model) and their corresponding goals (goal model: hard goals represent the actor functional
requirements and soft-goals represent the actor non-functional requirements). These goals are iteratively
decomposed into sub-goals until these sub-goals are refined into tasks, plans, and resources. Secure
TROPOS is used to capture security requirements during the software requirements analysis. Secure
TROPOS was appended with new notations. These included: (i) security constraints: restriction related to
certain security issue like: privacy, integrity...etc.; (ii) security dependency: this adds constraints for the
dependencies that may exist between actors to achieve their own goals and defines what each one expects
from the other about the security of supplied or required goals; and (iii) security entities: are extensions of
the TROPOS notations of entities like goals, tasks, and resources as follows: secure goal: means that the
actor has some soft-goal related to security (no details on how to achieve) this goal will be achieved
through a secure task; secure task: is a task that represents a particular way of satisfying a secure goal;
secure resource: is an informational entity that‘s related to the security of the system; and secure capability:
means the capability of an actor to achieve a secure goal.

Misuse cases [12, 13] capture use cases that the system should allow side by side with the use cases that
the system should not allow which may harm the system or the stakeholders operations or security. The
misuse cases focus on the interactions between the system and malicious users. This helps in developing
the system expecting security threats and drives the development of security use cases.

3.1.2 Later-stage Security Engineering

Efforts in this area focus on how to map security requirements (identified in the previous stage) on system
design entities at design time and how to help in generating secure and security code specified. Below we
summarize the key efforts in this area organized according to the approach used or the underlying software
system architecture and technology used.

UMLsec [14-16] is one of the first model-driven security engineering efforts. UMLsec extends UML
specification with a UML profile that provides stereotypes to be used in annotating system design elements
with security intentions and requirements. UMLsec provides a comprehensive UML profile but it was
developed mainly for use during the design phase. Moreover, UMLsec contains stereotypes for predefined
security requirements (such as secrecy, secure dependency, critical, fair-exchange, no up-flow, no down-
flow, guarded entity) to help in security analysis and security generation. UMLsec is supported with a
formalized security analysis mechanism that takes the system models with the specified security
annotations and performs model checking. UMLsec [17] has recently got a simplified extension to help in
secure code generation.

SecureUML [1 8] provides UML-based language for modeling role-based access control (RBAC)
policies and authorization constraints of the model-driven engineering approaches. This approach is still
tightly coupled with system design models. SecureUML defines a set of vocabulary that represents RBAC
concepts such as roles, role permissions and user-assigned roles.

Satoh et al. [19] provides end-to-end security through the adoption of model-driven security using the
UML2.0 service profile. Security analysts add security intents (representing security patterns) as
stereotypes for the UML service model. Then, this is used to guide the generation of the security policies.
It also works on securing service composition using pattern-based by introducing rules to define the
relationships among services using patterns. Shiroma et al [20] introduce a security engineering approach
merging model driven security engineering with patterns-based security. The proposed approach works on
system class diagrams as input along with the required security patterns. It uses model transformation
techniques (mainly ATL - atlas transformation language) to update the system class diagrams with the
suitable security patterns applied. This process can be repeated many times during the modeling phase.
One point to be noticed is that the developers need to be aware of the order of security patterns to be
applied (i.e. authentication then authorization, then…)

Delessy et al. [21] introduce a theoretical framework to align security patterns with modeling of SOA
systems. The approach is based on a security patterns map divided into two groups: (i) abstraction patterns
that deliver security for SOA without any implementation dependencies; and (ii) realization patterns that
deliver security solutions for web services’ implementation. It appends meta-models for the security
patterns on the abstract and concrete levels of models. Thus, architects become able to develop their SOA
models (platform independent) including security patterns attribute. Then generate the concrete models
(platform dependent web services) including the realization security patterns. Similar work introduced by
[22] to use security patterns in capturing security requirements and enforcement using patterns.

Hafner et al. [23] introduce the concept of security-as-a-service (SeAAS) where a set of key security
controls are grouped and delivered as a service to be used by different web-based applications and
services. It is based on outsourcing security tasks to be done by the SeAAS component. Security services
are registered with SeAAS and then it becomes available for consumers and customers to access whenever
needed. A key problem of the SeAAS is that it introduces a single point of failure and a bottleneck in the
network. Moreover, it did not provide any interface where third-party security controls can implement to
support integration with the SeAAS component. The SECTET project [2 4] focuses on the business-
to- business collaborations (such as workflows) where security needs to be incorporated between both
parties. The solution was to model security requirements (mainly RBAC policies) at high-level and
merged with the business requirements using SECTET-PL [25]. These modeled security requirements are
then used to automate the generation of implementation and configuration of the realization security
services using WS- Security as the target applications are assumed to be SOA-oriented.

We have also determined different industrial security platforms that have been developed to help
software engineers realizing security requirements through a set of provided security functions and
mechanisms that the software engineers can select from. Microsoft has introduced more advanced
extensible security model - Windows Identity Foundation (WIF) [26] to enable service providers
delivering applications with extensible security. It requires service providers to use and implement certain
interfaces in system implementation. The Java Spring framework has a security framework – Acegi [27]. It
implements a set of security controls for identity management, authentication, and authorization.
However, these platforms require developers’ involvement in writing integration code between their
applications and such security platforms. The resultant software systems are tightly coupled with these
platforms’ capabilities and mechanisms. Moreover, using different third-party security controls requires
updating system source code to add necessary integration code.

3.2 Security Retrofitting

Although a lot of security engineering approaches and techniques do exist as we discussed in the last
section, the efforts introduced in the area of security re-engineering and retrofitting are relatively limited.
This comes, based on our understanding, from the assumption that security should not be considered as an

afterthought and should be considered from the early system development phases. Thus, research and
industry efforts focus mainly on how to help software and security engineers in capturing and documenting
security in system design artifacts and how to enforce using model-driven engineering approaches.
Security maintenance is implicitly supported throughout updating design time system or security models.
In the real world, system delivery plans are dominated by developing business features that should be
delivered. This leads to systems that miss customers expected or required security capabilities. These
existing legacy systems lack models (either system or security or both) that could be used to conduct the
reengineering process. The maintenance or reengineering of such systems is hardly supported by existing
security (re)engineering approaches.

Research efforts in the security retrofitting area focus on how to update software systems in order to
extend their security capabilities or mitigate security issues. Abdulkarim et al [2 8] discussed the
limitations and drawbacks of applying the security retrofitting techniques including cost and time
problems, technicality problems, issues related to the software architecture and design security flaws. Hafiz
et al. [29, 30] propose a security on demand approach, which is based on a developed catalog of security-
oriented program transformations to extend or retrofit system security with new security patterns that
have been proved to be effective and efficient in mitigating specific system security vulnerabilities.
These program transformations include adding policy enforcement point, single access point,
authentication enforcer, perimeter filter, decorated filter and more. A key problem with this approach is
that it depends on predefined transformations that are hard to extend especially by software engineers.

Ganapathy et al. [31, 32] propose an approach to retrofit legacy systems with authorization security
policies. They used concept analysis techniques (locating system entities using certain signatures) to find
fingerprints of security-sensitive operations performed by system under analysis. Fingerprints are defined
in terms of data structures (such as window, client, input, Event, Font) that we would like to secure their
access and the set of APIs that represent the security sensitive operations. The results represent a set of
candidate joinpoints where we can operate the well-known “reference monitor” authorization mechanism.

Padraig et al. [33] present a practical tool to inject security features that defend against low-level
software attacks into system binaries. The authors focus on cases where the system source code is not
available to system customers. The proposed approach focuses on handling buffer overflow related attacks
for both memory heap and stack.

Welch et al. [34] introduce a security reengineering approach based on java reflection concept. Their
security reengineering approach is based on introducing three meta-objects that are responsible for
authentication, authorization, and communication confidentiality. These meta-objects are weaved with the
system objects using java reflection. However, this approach focuses only on adding predefined types of
security attributes and do not address modifying systems to block reported security vulnerabilities.

3.3 Adaptive Application Security

Several research efforts target to enable systems to adapt their security capabilities at runtime. Elkhodary
et al. [3 5] survey adaptive security systems. Extensible Security Infrastructure [3 6] is a framework
that enables systems to support adaptive authorization enforcement through updating in memory
authorization policy objects with new low level C code policies. It requires developing wrappers for
every system resource that catch calls to such resource and check authorization policies. Strata Security
API [37] where systems are hosted on a strata virtual machine which enables interception of system
execution at instruction level based on user security policies. The framework does not support
securing distributed systems and it focuses on low level policies specified in C code.

The SERENITY project [3 8 - 4 0] enables provisioning of appropriate security and dependability
mechanisms for Ambient Intelligence (AI) systems at runtime. The SERENITY framework supports:

definition of security requirements in order to enable a requirements-driven selection of appropriate
security mechanisms within integration schemes at run-time; provide mechanisms for monitoring security
at run-time and dynamically react to threats, breaches of security, or context changes; and integrating
security solutions, monitoring, and reaction mechanisms in a common framework. SERENITY attributes
are specified on system components at design time. At runtime, the framework links serenity-aware
systems to the appropriate security and dependability patterns. SERENITY does not support dynamic or
runtime adaptation for new unanticipated security requirements neither adding security to system entities
that was not secured before and become critical points.

Morin et al. [41] propose a security-driven and model-based dynamic adaptation approach to adapt
applications’ enforced access control policies in accordance to changes in application context – i.e.
applying context-aware access control policies. Engineers define security policies that take into
consideration context information. Whenever the system context changes, the proposed approach updates
the system architecture to enforce the suitable security policies. The key limitation of this work is that it
focuses mainly on access control policies and requires design time preparation of the software.

Mouelhi et al. [41] introduce a model-driven security engineering approach to specify and enforce
system access control policies at design time based on AOP-static weaving. These adaptive approaches
require design time preparation (to manually write integration code or to use specific platform or
architecture). They also support only limited security objectives, such as access control. Unanticipated
security requirements are not supported. No validation that the target system (after adaptation)
correctly enforces security as specified.

Eric et al [42] introduce a more comprehensive survey of efforts in the area of self-protecting software
systems. They have also outlined the key research gaps in the existing techniques. This includes: (i) lack of
comprehensive self-protecting systems either from the monitoring, planning, execution perspective, or
from the software stack perspective – i.e. host, network and software; (ii) lack of an integrated solution that
supports both design-time and runtime security, (iii) support of more security adaptation patterns. Our
approach focus is the first problem, which is to extend a given software system with necessary security
monitors (using user defined metrics and properties), security analysis (using formalized vulnerability
signatures), planning (using models for manual adaptation and rules for automated adaptation), and
execution (using aspect-oriented programming). Furthermore, we generate a set of integration test cases to
verify that the specified adaptations (realized by security controls’ integration with the software system)
are functioning as expected. The big picture of our approach is available in [43]. In this chapter we focus
mainly on how adaptation can be specified (manually/automatically) and how such adaptations can be
realized.

4. Run-time Security Adaptation
We identified two potential types of security adaptation: manual adaptation: usually triggered
manually by security engineers/administrators based on change in security goals, security threats and risks;
and automated adaptation: triggered automatically based on specified adaptation rules fired when a certain
metric exceeds a user-defined threshold, a property is violated, or a new vulnerability was reported.
Our approach, outlined in Figure 2, is based on externalizing the software security capabilities from
the software so that we can easily change such security capabilities without the need to change the
software itself. At the same time being able to integrate (inject) such new capabilities within the
software at any arbitrary system entity. This is abstracted to end users by a set of Domain-Specific
Visual Languages (DSVLs) at different levels of abstraction to help them describe their security needs,
software details, and mapping security to system entities at the right level of abstraction for different
stakeholders. This helps in speeding up the software change time to ad-hoc security needs. The security

vulnerability analysis is based on formalized signatures that describe bad code smells we need to look for
in a given system. The same idea is used in the security monitoring component. All these inputs
(requirements for adaptation) are realized/executed using the same execution component (MDSE@R,
Security Engineering at Runtime).
	

Figure 2. Block diagram of our adaptive security approach

4.1 Supporting Manual Adaptation using MDSE@R

The MDSE@R (model-driven security engineering at runtime) approach [4 4 , 4 5] targets externalizing
all security engineering activities so we can define and change system security at any time, while
being able to integrate these new security capabilities on the system at runtime. MDSE@R is based on
two key concepts: (i) Model-driven Engineering (MDE), using DSVL models at different levels of
abstraction to describe system and security details; and (ii) Aspect-oriented Programming, that enables
dynamic runtime weaving of interceptors and system code based on configuration files that specify the
required security point-cuts in the system. Figure 3 shows an overview of how to apply MDSE@R in
engineering security for a given system at runtime, as discussed here.

Figure 3. Security engineering at runtime

System	Description	Models Security	Specification	Models

Security	Enforcement	Point

System	Engineer Security	Engineer

Sy
ste

m
	Co

nt
ain

er

Sy
ste

m

Se
cu
rit
y	S

er
vic

es

Develop Develop

1 3

Live	System	
Interceptors
Document

Live	Security	
Specification
Document

Se
cu
rit
y	T
es
tin

g

852

4

67

9

10

	

	

	

Build System Description Model (SDM): A detailed system description model (Figure 3-1, see Figure 9 for
an example) made up of a set of models delivered by the system provider. This describes various details
of the target software application. Our system description models include: system features (using use
case diagrams), system architecture (using component diagrams), system classes’ model (using class
diagrams), system behavior model (using sequence diagrams), system deployment (using deployment
diagrams), and system context (using component diagrams). We have selected these models as they
cover all system perspectives that may be required in order to specify system security. The use of many
of these sub-models is optional. It depends on how many of the system details the system provider
exposes to their customers and how many details customers’ security engineers will need in enforcing
the required security on the target system. Security engineers may be interested in specifying security
on system entities (using system components and/or classes models), on system status (using system
behavior model), on system hosts (using system deployment model), or external system interactions
(using system context model). Moreover, system customers can specify security on coarse-grained
level (using system component model), or on fine- grained level (using system class models). The
system description models can be synchronized with the running system instance using models@runtime
synchronization techniques [25, 26], or manually by the system provider. Some of such system
description information can be reverse-engineered, if not available, from the target system (Figure 3-2).

Build Security Specification Model (SSM): A set of models developed and managed by security
engineers (Figure 3-3) to specify the security needs that must be satisfied in the target system. They
include a set of sub-models that capture the details required during the security engineering process
including: security goals and objectives, security risks and threats, security requirements, security
architecture for the operational environment, and security controls to be enforced. These models deliver
different levels of abstractions and enable separation of concerns between customer stakeholders including
business owners, security analysts, security architects and implementers. The key mandatory model in the
security specification models set is a security controls model. This is required in generating interceptors
and security aspect code.

System-Security Models Weaving: A many-to-many mapping between the system description models and
security specification models is developed by the customer security engineers (Figure 3-4). One or
more security concepts (security objective, security requirement and/or security control) is mapped to one
or more system model entities (system-level, feature-level, component-level, class-level and/or method-
level entities). Mapping a security concept on a higher level system entity implies a delegation to the
underlying levels. Whenever a security specification is mapped to a system feature, this implies that the
same security specification is mapped on the feature related components, classes, and methods.

The few steps discussed so far helps in addressing the planning phase in security adaption. New
security requirements (objectives, risks, etc.) can easily be reflected on the security specification model
described above. The next steps related to enforcing (executing) the specified security, and are automated
by MDSE@R without any involvement from the security or system engineers. Whenever a mapping is
defined or updated between a security specification model and a system description model, the underlying
MDSE@R framework propagates such changes as follows:

Update Live System Interceptors’ Document (Figure 3-5) – this maintains a list of pointcuts where security
controls should be weaved/integrated with the target software application entry points. This
document is updated based on the modeled security specifications and the corresponding system entities
where security should be applied. Update a Live Security Specification Document (Figure 3-6) - this
maintains a list of security controls to be applied at every pointcut defined in the system interceptors’

document. Update the System Container (Figure 3-7) - this is responsible for injecting interceptors defined
in the system interceptors’ document into the target system at runtime using dynamic weaving AOP. Any
call to a method, with a matching in the interceptors’ document, will be intercepted and delegated to a
central security enforcement point. Test Current System Security (Figure 3-8) – this validates that the target
system is currently enforcing the specified security levels. The security-testing component makes sure that
the intended security is correctly integrated with the target application at run-time. MDSE@R generates
and fires a set of security integration test cases. This is done before MDSE@R gives confirmation to
security engineers that required security is now enforced. Security Enforcement Point (Figure 3-9) – this
acts as a bridge between the target system (system container) and the security controls that deliver the
required security. The security enforcement point uses the live security specification document to
determine, and initiate, security control to be enforced on a given, intercepted, request. Security Services
(Figure 3-10) are the application security controls (deployed in the system operational environment) that
are integrated with the security enforcement point. This enables the security enforcement point to
communicate with these services via APIs implemented by each service.

Thus, MDSE@R covers manually adaptation scenarios. A given set of security objectives and
requirements are reflected on the security specification model, and MDSE@R will make sure to
automatically inject (or may be leave out) these security requirements as needed. For legacy systems, this
might seem infeasible, but we have used static aspect oriented to modify system binaries and add calls to
our security enforcement point.

4.2 Automated Adaptation using Vulnerability Analysis, and Mitigation

Another key trigger for security adaption is the discovery of a new vulnerability in the software. In our
approach [46-48], we assume that this requires automated adaptation of the enforced security to
(virtually) patch the reported security until the software vendor develops a real patch. In this section we
discus how we can do the vulnerability analysis, and then using a set of rules to come up with necessary
adaptation actions to block such vulnerability. Figure 4 summarizes the interactions between the
vulnerability analysis component, security mitigation component, and the software. Our vulnerability
analysis approach depends on a formalized vulnerability definition schema that covers many concepts of
software security weaknesses (flaws) such as vulnerability signature - what are the key things in the
software when found, it means that the system suffers from such vulnerability, and mitigation actions –
what adaptation we need to apply to patch the vulnerability.

Figure 4. Automated vulnerability analysis and mitigation

Formalizing vulnerability signatures helps automating the vulnerability analysis process. Ideally, a
formal vulnerability signature should be specified on an abstract level far from the source code and
programming language details, enabling locating of possible vulnerability instances in different programs
written in different programming languages. We use Object Constraint Language (OCL) as a well-known,

extensible, and formal language to specify semantic rather than syntactical signatures of security
weaknesses. To support specifying and validating OCL-based vulnerabilities’ signatures, we have
developed a system-description meta-model, shown in Figure 5. This model is inspired from our analysis
of the nature of the existing security vulnerabilities. It captures the main entities in any object-oriented
program and relationships between them including components, classes, instances, inputs, input sources,
output, output targets, methods, method bodies, statements e.g. if-else statements, loops, new objects, etc.
Each entity has a set of attributes such as method name, accessibility, variable name, variable type, method
call name. This model helps conducting semantic analysis of the specified vulnerability signatures. Table 1
shows examples of vulnerability signatures specified in OCL and using our system description model.

Table 1. Example vulnerability signatures

Vuln. Vulnerability Signature
SQLI Context Method Inv SQLICheck:

self.Statements->exists(S | S.StatementType = ‘MethodInvocation’ and S.MethodName = ‘ExecuteSQL’
and S.Parameters.exists(P | self.IsTainted(P.ParameterName) = true)

XSS Context Method Inv SQLICheck:

self.Exists(S | S.StatementType = ‘Assignment’ and S.RightPart.Contains(InputSource) and
S.LeftPart.Contains(OutputTarget))

Authn.
Bypass

Context Method Inv SQLICheck:

self.IsPublic == true and self->Exists(S | S.StatementType = ‘MethodInvocation’ and S.IsAuthenitcationFn
== true and S.Parent == IFElseStmt and S.Parent.Condition.Contains(InputSource))

Improper
Authz.

Context Method Inv SQLICheck:

self.IsPublic == true and self.Contains(S| S.Exists(X| X.StatementType = ‘InputSource’ and X.IsSanitized
= false or X.IsAuthorized == False)

SQLI: any method statement “S’ of type “MethodInvocation” where the callee function is
“ExecuteQuery” and one of the parameters passed to it, is assigned to “identifier” coming from one of the
input sources. Taint analysis “IsTainted” can be defined as an OCL function that adds every variable
assigned to a user input parameter to a suspected list.

XSS Signature: any method statement “S” of type assignment statement where left part is of type
“output target” e.g. text, label, grid, etc. and right part uses input from the input sources or tainted
identifier as just discussed.
Authn. Bypass: any public method that has statement “S” of type “MethodInvocation” where the callee
method is marked as Authentication function while this method call can be skipped using user input as part
of the bypassing condition.

Improper Authz.: any public method that has statement “S” that uses input data X without being
sanitized, authorized.

OCL-based Vulnerability Analyzer

Given that vulnerability signatures become now formally specified using OCL, the static vulnerability
analysis component simply traverses the given program looking for code snippets with matches to the
given vulnerabilities’ signatures.

Figure 5. Software description meta-model

Program	
Representation	1

AST

Program	
Representation

……

……

Signature-based	Static	
Signature	Locator

OCL	
Functions

Platform	
Profile

Weakness	
Signatures	
(OCL)

Vulnerability	List

Program	
Source

Figure 6. OCL-based vulnerability analysis

The architecture of our formal and scalable static vulnerability analysis component, as shown in Figure 6,
is based on our formalized vulnerability signature concept.

Program Source Code: we should have source code or binaries (dlls, exes - de-compilation is used to
reverse engineer source code) of the application to be analyzed.

Abstract Program Representation: Source code is transformed into an abstract syntax tree (AST)
representation. This abstracts language-specific source code details away from specific language
constructs. Extracting source code AST requires using different language parsers (currently support
C++, VB.Net and C#). Then, we perform more abstract transforming from AST to system description
model that conforms to the model.

OCL Functions: represent a library of predefined functions that can be used in specifying
vulnerability signatures and in identifying matches to these signatures. This includes control flow,
data flow, string patterns, program taint analysis, etc.

Signature Locator: This is the main component in our vulnerability analysis tool. It receives the
abstract service/application model and outputs the list of discovered vulnerabilities in the given
system along with their locations in code. At analysis time, it loads the platform (C#, VB, PHP)
profile based on the details of the program under analysis. Then, it loads the existing weaknesses
defined in the weaknesses’ signatures database, based on the target program platform/language. The
signature locator transforms these signatures into C# methods that check different program entities
based on the specified vulnerability signature. We use Application Vulnerability Description Language
(AVDL) to represent the identified vulnerabilities in XML format to support interoperability with
existing vulnerability databases such as National Vulnerabilities Database (NVD).

Vulnerability Mitigation

Discovered application/service security vulnerabilities can be mitigated in different approaches
including: modifying application source code to block the identified problems (patches); however, this
solution will be hard to approach in public accessible software systems – e.g. cloud systems - as it may
take long time to deliver patched version. A quick solution is to use Web application firewall
(WAF) to filter requests/responses that exploit such vulnerabilities; however, WAF has many limitations
including it does not help in output validation, cryptography storage, and mitigating improper
authorization.
Table 2. Example vulnerability mitigation rules/actions

Vul. Security Control Entity Level

SQLI Input sanitization Method level

XSS Input encoding Component level

Authn. Bypass WAF Component level

Improper Authz. Authorization Method Level

Our approach supports integrating different security controls including identity management,
authentication controls, authorization controls, input validation, output encoding, WAF,
cryptography controls, etc. In our approach, each vulnerability mitigation action specifies a security
control type/family to be used in mitigating the related vulnerability, its required configurations, and
application/service entity where the security control will be integrated with (hosting service –
webserver or operating system, components, classes, and methods). Thus, a reported SQLI
vulnerability in a method (M) that belongs to component (C) can be mitigated by adding input
sanitization control (Z) on component (C) that removes SQL keyword from every single request to the
method (M). In Table 2, we show examples of mitigation actions for some of the known security
vulnerabilities. These actions should be specified in XML and included as a part of the formalized
vulnerability definition.

Figure 7. Vulnerability mitigation component
	
Vulnerability Mitigation Component

The analysis component outputs a list of the discovered vulnerabilities in the software system (Figure 7-1).
Each entry in this list has a service/application vulnerable entity (method, class, or component) along with
the list of discovered vulnerabilities in this entity. Given this list of vulnerabilities, the security
vulnerability mitigation manager queries the vulnerability definition schema database (Figure 7-2) to
retrieve the appropriate actions to be taken in order to mitigate each of such reported vulnerabilities.
Examples of the retrieved actions are shown in Table 2. Using these two lists (vulnerable software entities
and mitigation actions), the vulnerability mitigation manager (Figure 7-3) decides the patching level
(component level, class level, or method level) using e.g. HttpModules, object interceptor using
dependency injection, or method level interception using dynamic weaving AOP respectively. The rest of
the steps to enforce the right security control at the right place are as described in the MDSE@R section.

5 USAGE EXAMPLE

To demonstrate the capabilities of our new MDSE@R security engineering approach we revisit our
example discussed in section 2, the ERP system “Galactic” developed by SwinSoft and procured by
Swinburne and SwinMarket. The two customers using the Galactic ERP system have their own distinct
security requirements to be enforced on each of their Galactic ERP application instances. We illustrate this
security engineering scenario using screen dumps from our prototype tool.

	

	

 	

	

	
	

	
	
	
	

…	
	

	
	

	
	
	

…	
	

	
	
	

	

C	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

<profile	name="				 SecExtensionProfile			 "	 displayName	="			 Security	Extensions	Profile					"	
...	

	
rityConcepts			"		 displayName				="Security	Concepts">	

	
urityObjectives			 "		displayName	="		 Security	Objectives				"	>	
urityRequirements				"		 displayName	="			Security	Requirements				">	
urityControls			"		 displayName	="		 Security	Controls			 “>	

	
	

hitectureConcept				 "		displayName	="			Architecture	Concept				 ">	
	

ploymentPath		 "			displayName	="		 Deployment	Path			 “	>	
nfigurationFile		 "			displayName	="		 Configuration	File			 “	>	
latedFeatures		 "			displayName	="		 RelatedFeatures		 “	>	

	
sDiagramConcept		 "			 displayName				 ="Class	Diagram	Concept">	
urityClassFn		 "			displayName	="		 IsSecurityClassOrFn		 ">	
ntComponent			"			displayName	="		 Parent	Component			 ">	

	
Figure 8. Examples of Galactic software definition model

Figure 9. Examples of Swinburne security specification model

B	

E	

D	

Task 1- Model Galactic System Description - one time task

This task is done during or after the system is developed. SwinSoft decides the level of application details
to provide to its customers in the Galactic system model. Figure 8 shows that SwinSoft provides its
customers with description of system features including customer, employee and order management
features (Figure 8-b), system architecture including presentation, business logic layer and data access layer
(Figure 8-c), system classes including CustomerBLL, OrderBLL, EmployeeBLL (Figure 8-d), and system
deployment including web tier, application tier, and data tier (Figure 8-e). SwinSoft uses the provided
UML profile (Figure 8-a) to specify the dependences and relations between system features and
components, and components and their classes. Figure 8-a shows the UML profile we built to extend UML
with security properties (what security controls/requirements/objectives) are mapped to a given system
entity; and to store the tracability information between different system artifacts – e.g. system features to
realization components, components to classes, etc.

Task2 –Model Swinburne Security Needs

This step is conducted by Swinburne and SwinMarket security engineers during their repetitive security
management process. In our scenario, Swinburne security engineers document Swinburne security
objectives that must be satisfied by Galactic system. This is done using a high-level security objectives
model (Figure 9-a). This model can be revisited at any time to incorporate changing Swinburne security
objectives. Security engineers refine these security objectives in terms of security requirements that must
be enforced on the Galactic system, developing a security requirements model. This model keeps track of
the detailed security requirements and their link back to the high level security objectives (Figure 9-b).
This example shows user authentication requirements to be enforced on the Galactic application and its
hosting server.
Swinburne security engineers next develop a detailed security architecture including other existing IT
systems. This security architecture (Figure 9-c) identifies the different security zones (Big Boxes) that
cover Swinburne network and the allocation of IT systems, including Galactic, as either one unit or in
terms of system components according to the Galactic deployment model. The security architecture also
shows the security services, security mechanisms and standards that should be deployed. Swinburne
security engineers finally specify the security controls (i.e. the real implementations) for the security
services modeled in the security architecture model (Figure 9-d). This includes SwinIPS Host Intrusion
Prevention System, LDAP access control and SwinAntivirus. These are used to realize the security
requirements and security architecture as previously specified. Each security specification model maintains
traceability information to parent models’ entities. In Figure 9-d, we specify that LDAP “realizes” the
AuthenticateUser requirement. Whenever MDSE@R finds a system entity with a mapped security
requirement AuthenticateUser it adds LDAP as its realization control i.e. an LDAP authentication check is
run before the entity is used e.g. before a method or web service is called or module loaded.

Task 3 – System - Security Weaving

After developing the system SDMs – done by SwinSoft, and the security SSMs – done by Swinburne
security engineers, the Swinburne security engineers map security attributes (in terms of objectives,
requirements and controls) to Galactic system specification details (in terms of features, components,
classes). This is achieved by drag and drop of security attributes to system features in our toolset. Any
system feature, structure or behaviour can dynamically and at runtime reflect different levels of security
based on the currently mapped security attributes on it.

Figure 9-e shows a sample of the security objectives, requirements and controls mapped to customerBLL
class. In this example the security engineer has specified that the AuthenticateUser security requirement

should be enforced on the CustomerBLL class (1). Such a requirement is achieved using LDAP control (3).
Moreover, they have specified Forms-based authentication on the GetCustomers method (2). This means
that a request to a method in the CustomerBLL class will be authenticated by the caller’s Windows
identity, but a request to the GetCustomers method will be authenticated with a Forms-based identity.
MDSE@R uses security attributes mapped to system entities to generate the full set of methods’ call
interceptors and entities’ required security controls, as shown in Figure 13.

Task 4 - Galactic security testing

Once security has been specified and interceptors and configurations are generated, MDSE@R makes sure
that the system is correctly enforcing security as specified. MDSE@R generates and fires a set of required
security integration test cases. Our test case generator uses the system interceptors and security
specification documents to generate a set of test cases for each method listed in the interception document.
The generated test case contains a set of security assertions (one for each security property specified on a
given system entry). During the firing phase, the security enforcement point is instrumented with logging
transactions to reflect the calling method, called security control, and the returned values. Security
engineers should check the security test cases execution log, as shown in Figure 10, to make sure that no
errors introduced during the security integration with Galactic entities. Figure 11 shows a sample run of
Galactic after weaving Forms-based authentication control when calling GetCustomers method.

Figure 10. Sample test cases firing log

Figure 11. Testing Galactic with injected form-based authentication

SwinMarket security engineers go through the same process as Swinburne did when specifying their
security requirements. However, SwinMarket specifies their requirements, context, security controls, and
IT applications. This results in quite different generated security enforcement controls.
Both Swinburne and SwinMarket security engineers can modify the security specifications while their
Galactic applications are in use. MDSE@R framework updates interceptors in the target systems and
enforces changes to the security specification for each system as required. For example, the Swinburne
Galactic security model can be updated with a Shibboleth single sign-on security authentication
component. The updated interceptors and security specification are applied to the running Galactic
deployment, which then enforces this authentication protocol instead of the Forms approach as above.

Task5 - Galactic Continuous Vulnerability Analysis and Mitigation

We have applied the vulnerability analysis tool on Galactic ERP system (and many other applications), and
using the mitigation actions, summarized in Table 2. Table 3 shows the number of reported vulnerability
instances grouped by vulnerability type. We applied the vulnerability analysis incrementally – i.e. SQLI
analysis, then XSS, and so on. For each of these reported vulnerabilities, we have checked that the
proper security control(s) was integrated successfully as specified in the actions table, Table 2, and
that the reported vulnerability is no longer exploitable.

Table 3. Number of reported vulnerabilities

 SQLI XSS Authn. Bypass Improper Authz.

TP FP FN TP FP FN TP FP FN TP FP FN

2 0 0 3 1 1 4 0 0 2 1 0

(TP: True Positives, FP: False Positives, FN: False Negative)

6 DISCUSSION
Our approach is based on promoting security engineering from design time to runtime by externalizing
security engineering activities including capturing objectives, requirements controls, and realization from
the target system implementation. This permits both security to be enforced and critical points to secure to
evolve at runtime (supporting adaptive security at runtime). Using a common security interface helps
integrating different security controls without a need to develop new system-security control connectors.
Moreover, a key benefit reaped from MDSE@R approach is to the support model-based security
management. Enterprise-wide security requirements, architecture and controls are maintained and enforced
through a centralized security specification model instead of low level scattered configurations and code
that lack consistency and are difficult to modify. Thus any update to the enterprise security model will be
reflected on all IT systems that use our security- engineering platform. This is another key issue in
environments where multiple applications must enforce the same security requirements. Having one place
to manage security reduces the probability of errors, delays, and inconsistencies. Moreover, automating the
propagation of security changes to underlying systems simplifies the enterprise security management
process.

One may argue that MDSE@R may lead to a more vulnerable system as we did not consider security
engineering during design time. Our argument is that at design time we need to think more about
building secure systems. However, given that we continue to discover a lot of vulnerabilities in
systems even those with design time security consideration, we have supported our approach with
both continuous vulnerability analysis and mitigation. The vulnerability analysis component is based on
formal vulnerability definition schema that includes vulnerability signature and mitigation actions. Using
abstract representation instead of source code helps to generalize/abstract our analysis from programming
language and platform details. It also helps to make the approach more scalable for larger applications.

Aspect-oriented programming (AOP) is always suspected as a source of potential security attacks [49]
given that a malicious user might be able to plug vulnerable aspect code that can alter the innovation
parameter, redirect the request or discard it completely. Moreover, using AOP to integrate security aspects
as a cross cutting concern is also questionable given that these security aspects could lead to inconsistent
update of system properties. However, the authors did not stop using AOP to develop their permission
model, they have suggested a set of recommendations when using AOP such as dealing woven code,
define appropriate language extension, and analyse weaver components for potential flaws. To avoid such
issues, we disable the write permission on the interceptor document and security handlers. Thus only our
platform will have write access to these documents.

Security adaptation of existing software systems: the security engineering of existing services
(extending system security capabilities) has three possible scenarios: (i) systems that already have their
SDMs, we can use MDSE@R directly to specify and enforce security at runtime; (ii) systems without
SDMs, we reverse engineer parts of system models (specifically the class diagram) using MDSE@R.
Then we can use MDSE@R to engineer required system security. Finally, systems with built-in security,
in this case we can use MDSE@R to add new security capabilities only. MDSE cannot help modifying
or disabling existing security. We have built another tool (re-aspects) to leave out existing built-in
security methods and partial code using modified AOP techniques.
Security and performance trade-off: The selection of the level of details to apply security on depends
on the criticality of the system. In some situations like web applications, we may intercept calls to the
presentation layer only (webserver) while considering the other layers secured by default (not publicly
accessible). In other cases, such as integration with a certain web service or using third party
component, we may need to have security enforced at the method level (for certain methods only).
Security and performance trade-off is another dilemma to consider. The more security validations and
checks the more resources required. MDSE@R enables adding security only whenever needed. Thus,
when we believe that the system operational environment we can reduce the security controls required
which improves system performance and vice-versa. So the trade-off between performance and security is
now at the hand of system/security admins.

Hybrid vulnerability analysis: From our experience in developing signatures of the OWASP Top10
vulnerabilities (most frequently reported vulnerabilities) we determined that: (i) the accuracy of our
vulnerability analysis depends heavily on the accuracy of the specified vulnerability signatures; (ii) it
is better to use dynamic analysis tools with certain vulnerabilities, such as Cross site reference forgery
(CSRF), because these vulnerabilities can be handled by the web server. This means static analysis may
result in high FP, if used; (iii) some vulnerabilities can be easily identified and located by static analysis
such as SQLI and XSS vulnerabilities; (iv) some vulnerabilities such as DOM-based SQL and XSS
vulnerabilities need a collaborating static and dynamic analysis to locate them. We believe that
combining static and dynamic analysis is needed to increase the precision and recall rates. Static analysis
approaches usually result in high false positives as they work on source code level – i.e. the
vulnerability may be addressed on the component or the application level. Employing dynamic
vulnerability analysis can solve this problem. However, dynamic vulnerability analysis approaches cannot
help locating specific code snippets where vulnerabilities exist. Moreover, they do not help testing code
coverage by generating all possible test cases.
Virtual patching trade-off: From our experiments in the mitigation actions and security controls
integrations, we found that although the use of web application firewalls is a straightforward solution, it is
not always feasible to use WAF to block all discovered vulnerabilities. The selection of the entity level to
apply security controls on (application, component, method, etc.) impacts the application performance –
i.e. instead of securing only vulnerable methods, we intercept and secure (add more calls) the whole
component requests. A key point that worth mentioning is that the administration of security controls
should be managed by the service/cloud provider admins. We focus on integrating controls within
vulnerable entities. Our vulnerability mitigation component works online without a need for manual
integration with the applications/services under its management. The overhead added by the mitigation
action can be easily saved if the service developers worked out a new service patch. In this case, the
vulnerability analysis component will not report such vulnerability. Thus, the mitigation component will
not inject security controls.
Pros & cons: The key benefits of our adaptation approach are: (i) we support both manual security
adaptation and rule-based adaptation. Most of the existing efforts either focus on engineering systems to
support adaptive-ness with either intensive development required, or limiting the approach to specific
security properties – e.g. access control; (ii) Our approach also takes into consideration different sources of
adaptation including: new security requirements, current system status (using security monitors), and/or
reported security vulnerabilities. Most of the existing efforts consider only one source: either new security
requirements or monitored system status but not reported vulnerabilities; and (iii) we adopt security

externalization and MDE techniques, which make it easier to change system security capabilities whenever
needed and at system, component, an method levels based on user experience and needs. The security
model itself can be shared between different systems. Thus, an enterprise security model can be easily
managed.
	

7 Chapter Summary

In this chapter we discussed our adaptive security engineering approach, which enable adapting software
security capabilities at runtime based on the new security objectives, risks/threats, requirements as well as
the newly reported vulnerabilities. We categorize the source of adaptation in terms of manual
adaptation (managed by end users), and automated adaption (automatically triggered by the platform).
The platform makes use of the formal vulnerability definition schema, the formal signature-based
security analysis, externalization of security engineering using aspect-oriented programming (AOP), and
model-driven engineering techniques.

Appendix A – Platform Implementation

The architecture of our approach is aggregate of two key components: the security engineering at runtime
(MDSE@R) and the security vulnerability analysis. Both of them are end-user oriented – i.e. both depend
on end user specifications in terms of security objectives, requirements, controls, properties, vulnerabilities
and mitigation action. Both components are discussed below in more details.

MDSE@R: Model-driven Security Engineering At Runtime

The architecture of the MDSE@R platform is shown in Figure 12. It consists of a system description
modelling tool (1), a security specification modelling tool (2), a repository for the system and security
models (3), a library of registered security controls and extensible security patterns that can be used by
security engineers in enforcing their security needs (4), a system container that manages system execution
and intercepts requests and function calls for system entry points at runtime (5), and a security test case
generator (6) that is used to test the integration of configured application with required security controls.

The System description modeller (1) was developed as an extension of Microsoft VS 2010 modeller with
an UML profile to enable system engineers modelling their systems’ details with different perspectives
including system features, components, deployment, and classes. The UML profile defines stereotypes
and attributes to maintain the track back and foreword relations between entities from different models.
Moreover, a set of security attributes to maintain the security concepts (objectives, requirements and
controls) mapped to system entities. The minimum level of details expected from the system provider is
the system deployment model. MDSE@R uses this model to reverse engineer system classes using .Net
Reflections.

The security specification modeller tool (2) is a Visual Studio 2010 plug-in. It enables application
customers, represented by their security engineers, to specify the security attributes and capabilities that
must be enforced on the system and/or its operational environment. The security modeller delivers a set of
security DSVLs. The security-objectives DSVL captures customer’s security objectives and the
relationships between them. Each objective has a criticality level and the defence strategy to be followed:
preventive, detective or recovery. The Security requirements DSVL captures customer’s security
requirements and relationships between requirements including composition and referencing relations. The
Security Architecture DSVL captures security architectures and designs of the customer operational
environment in terms of security zones and security level for each zone; security objectives, requirements
and controls to be enforced in each layer; components and systems to be hosted in each layer; security
services, mechanisms and standards to be deployed in each layer or referenced from other layers. The

security controls DSVL captures details of security controls that are registered and deployed in the
customer environment and relationships between these and the security requirements they cover. The
system models, security models, interception documents, and security specification documents are
maintained under one repository (3). We use Visual Studio T4 Templates and code generation language to
generate these documents from the software and security specification models and mapping between both
sets of models. T4 templates are a mixture of text blocks and control logic that can generate a text file. The
control logic is written as program code in C#.

Figure 12. MDSE@R architecture

The Security Controls Database is a library of available and registered security patterns and controls. It
can be extended by the system providers or by a third party security provider. Security controls
implement certain APIs as defined by the security enforcement point in order to be able to integrate with
target security control systems. Having a single enforcement point with a predefined interface for each
security control category enables security providers to integrate with systems without having to redevelop
adopters for every system. We adopted the OWASP Enterprise Security API (ESAPI) library as a part of
MDSE@R security controls database.

To support run-time security enforcement, MDSE@R uses a combined interceptor and AOP approach.
Whenever a client or application component makes request to any system component method, this
request is intercepted by the system container. The system container supports wrapping of both new
developments and existing systems. For new development, Swinsoft system engineers should use the Unity
application block delivered by Microsoft PnP team to intercept calls to registered classes. This is a .NET-
based implementation of the dependency injection design pattern. It supports dynamic runtime
injection of interception points on methods, attributes and class constructors. For existing systems we
adopted Yiihaw AOP for C#, where we can modify application binaries (dll and exe files) to add security
aspects at any arbitrary method (in our implementation we add a call to our security enforcement point).

The Security Test Case Generator (6) uses the NUnit testing framework to partially automate
security controls and system integration testing. We developed a test case generator library that generates a
set of security test cases for authentication, authorization, input validation, and cryptography for every
enforcement point defined in the interceptors’ document. MDSE@R uses NUnit library to fire the
generated test cases and notifies security engineers via test case execution result logs. At runtime,
whenever a request for a system resource is received (7), the system container checks for the requested

method in the live interceptors’ document. If a matching found, the system delegates this request with the
given parameters to the default interception handler - security enforcement point (8).

public	IMethodReturn	Invoke(IMethodInvocation	input,	GetNextHandlerDelegate	getNext)			{
EntitySecurity	entity	=	LoadMethodSecurityAttributes(…);
if	(entity	==	null	||	entity.HasSecurityRequirements()	==	false)	{

return	getNext().Invoke(input,	getNext);
}
//logging	Before	Call
this.source.TraceInformation("Invoking	{0}",	input.Arguments[0].ToString());
//Check	for	Authentication
if	(entity.GetAuthenticationMethod()	!=	AuthenticationMethod.None)	{

.	.	.
}
//Check	for	Authorization
if	(entity.GetAuthorizationMethod()	!=	AuthorizationMethod.None)		{

.	.	.
}

}

.	.	.
<systemlevel>
<Entitylevel>1</Entitylevel>
.	.	.
<componentlevel>
<objectname>
.	.	.

<classlevel>
<objectname>
.	.	.

<methodlevel>
.	.	.
<	ObjectName>	GetCustomers </ObjectName>
<Authentication_Method>Forms</Authentication_Method>
<Authorization_Method>RBAC_Impersonate</Authorization_Method>
.	.	.

.	.	.
<extension	type="Interception"	/>
<register	type="PresentationLayer.CustomerBLL,	PresentationLayer	">
.	.	.
<interception>
<policy	name="PolicyCustomersBLL">
<matchingRule	name="MatchingRuleCustomersBLL“	
Type="MemberNameMatchingRule">
<constructor>
<param	name="nameToMatch"	value="GetCustomers"	/>
<param	name="nameToMatch"	value="GetCustomerByName"	/>
.	.	.

<callHandler	name="callhandlerCustBLL"t
Type="SecurityKernel.SecurityCallHandler,	SecurityKernel">

.	.	.

1

2

3

Figure 13. Examples of MDSE@R weaved system interceptors and security specification files

The Security Enforcement Point (9) is a class library that we developed to act as the default interception
handler and the mediator between the system and the security controls. Whenever a request for a target
application operation is received, it checks the system security specification document to enforce the
particular system security controls required. It then invokes such security controls through APIs published
in the security control database (4). The security enforcement point validates a request via the appropriate
security control(s) configured and specified, e.g. imposes authentication, authorization, encryption or
decryption of message contents. The validated request is then propagated to the method for execution (10).

Both system and security modelling tools are based on VS 2010 Modelling SDK that enables
developing DSVLs integrated with VS IDE. To develop each DSVL, we developed a meta-model for the
DSL domain and specified the corresponding shapes that visualize each domain model concept. Then we
specified the mapping between the domain concepts’ attributes and the shape compartments. Finally we
developed code generation templates that generate the system live interceptors’ document and the security
specification document from the system and security models. Our modelling tools use a repository to
maintain models developed either by the system engineers or by the security engineers. It also maintains
the system live interceptors’ document and security specification document. Examples of these documents
are shown in Figure 13. Examples of MDSE@R weaved system interceptors and security specification
files. This example shows a sample of the Galactic interceptors’ document generated from the specified
security-system mapping. It informs the system container to intercept GetCustomers and
GetCustomerByName methods (1); a sample of Swinburne security specification file defining the security
controls to be enforced on every intercepted point (2); and a sample of the security enforcement point API
that injects the necessary security control calls before and after application code is run (3).

Vulnerability Analysis and Mitigation

We developed a GUI, as shown in Figure 14, to assist security experts in capturing vulnerability
signatures’ in OCL. This provides vulnerability signature editing, validity checking, and testing these
signatures’ specifications on simple target applications. We use an existing OCL parser to parse and
validate signatures against our system description meta- model. Once validated, the vulnerability signature
is stored in our weakness signatures database. To parse the given program source code and generate a

system abstract model, we use NReFactory .NET parser Library [27], which parses source code and
generates its corresponding AST (it supports VB.Net and C#. We are currently working on parsers for PhP
and Java). Applications without source code - i.e. only binaries are available – are decompiled using
ILSPY. This is currently supported for C# and VB.NET. We developed a class library to transform the
generated AST into a more abstract (summarized) representation that conforms to our system description
model. Our signature locator has an OCL translator that translates a given OCL signature into a
corresponding C# class with a signature matching method that checks the passed in system entity looking
for matches to specified signatures. The OCL functions library maintains a set of functions that extend
the system description meta- model entities capabilities and can be used during the vulnerability analysis
phase. This includes control- flow analysis (CFA), data-flow analysis (DFA), and tainted-data analysis.
These functions can be extended with further analysis functions based on future vulnerability analysis
needs. The OCL to C# transformer performs a transformation for these functions as well as new OCL
signatures once defined. Program slicing and taint analysis techniques (core techniques in program and
security analysis area) can be easily captured in OCL. Platforms’ profiles are specified in XML
documents that contain information about specific platforms’ details. It is used to set the context of the
signature locator according to the software.
	

Figure 14. Snapshot of the vulnerability analysis tool

References

[1]	 R.	Barnett,	"WAF	Virtual	Patching	Challenge:	Securing	WebGoat	with	ModSecurity,"	2009.	
[2]	 B.	 Fabian,	 S.	 Gürses,	 M.	 Heisel,	 T.	 Santen,	 and	 H.	 Schmidt,	 "A	 comparison	 of	 security	 requirements	

engineering	methods,"	Requirements	Engineering,	vol.	15,	pp.	7-40,	2010.	
[3]	 R.	Anderson,	Security	Engineering:	A	Guide	to	Building	Dependable	Distributed	Systems:	John	Wiley	and	Sons,	

2001.	
[4]	 A.	 Dardenne,	 A.	 v.	 Lamsweerde,	 and	 S.	 Fickas,	 "Goal-directed	 requirements	 acquisition,"	 presented	 at	 the	

Selected	Papers	of	the	Sixth	International	Workshop	on	Software	Specification	and	Design,	1993.	
[5]	 H.	 S.	 F.	 Al-Subaie	 and	 T.	 S.	 E.	 Maibaum,	 "Evaluating	 the	 Effectiveness	 of	 a	 Goal-Oriented	 Requirements	

Engineering	Method,"	2006.	
[6]	 A.	Lamsweerde,	S.	Brohez,	and	e.	al,	"System	Goals	to	Intruder	Anti-Goals:	Attack	Generation	and	Resolution	

for	Security	Requirements	Engineering,"	in	Proc.	of	the	RE’03	Workshop	on	Requirements	for	High	Assurance	
Systems,	Monterey,	2003,	pp.	49-56.	

[7]	 L.	Liu,	E.	Yu,	and	J.	Mylopoulos,	"Secure	¡*	 :	Engineering	Secure	Software	Systems	through	Social	Analysis,"	
International	Journal	of	Software	and	Informatics,	vol.	Vol.3,	pp.	89-120,	2009.	

[8]	 L.	 Liu,	 E.	 Yu,	 and	 J.	 Mylopoulos,	 "Security	 and	 Privacy	 Requirements	 Analysis	 within	 a	 Social	 Setting,"	
presented	at	the	Requirements	Engineering,	2003.	

[9]	 H.	Mouratidis,	 and	P.	Giorgini,	 "Secure	Tropos:	A	 security-oriented	Extension	of	 the	Tropos	Methodology,"	
International	Journal	of	Software	Engineering	and	knowledge	Engineering,	2007.	

[10]	 H.	 Mouratidis	 and	 J.	 Jurjens,	 "From	 goal-driven	 security	 requirements	 engineering	 to	 secure	 design,"	
International	Journal	of	Intelligent	Systems,	vol.	25,	pp.	813-840,	2010.	

[11]	 R.	Matulevičius,	N.	Mayer,	H.	Mouratidis,	E.	Dubois,	P.	Heymans,	and	N.	Genon,	"Adapting	Secure	Tropos	for	
Security	 Risk	Management	 in	 the	 Early	 Phases	 of	 Information	 Systems	Development,"	 in	Proc.	 of	 the	 20th	
international	conference	on	Advanced	Information	Systems	Engineering,	2008,	pp.	541-555.	

[12]	 G.	Sindre,	and	A.	Opdahl,	"Eliciting	security	requirements	with	misuse	cases,"	Requir.	Eng.,	vol.	10,	pp.	34-44,	
2005.	

[13]	 D.	G.	 Firesmith,	 "Security	Use	Cases,"	 JOURNAL	OF	OBJECT	TECHNOLOGY,	vol.	Vol.	 2,	No.	3,	pp.	pp.	53-64,	
2003.	

[14]	 J.	Jürjens,	"Towards	Development	of	Secure	Systems	Using	UMLsec,"	in	Fundamental	Approaches	to	Software	
Engineering.	vol.	2029,	ed:	Springer	Berlin	Heidelberg,	2001,	pp.	187-200.	

[15]	 J.	Jurjens,	J.	Schreck,	and	Y.	Yu,	"Automated	Analysis	of	Permission-Based	Security	using	UMLsec,"	in	Proc.	of	
11th	international	conference	on	Fundamental	approaches	to	software	engineering	2008,	pp.	pp.	292	-	295.	

[16]	 J.	 Jürjens,	 "UMLsec:	 Extending	 UML	 for	 Secure	 Systems	 Development,"	 presented	 at	 the	 Proc.	 of	 the	 5th	
International	Conference	on	The	Unified	Modeling	Language,	2002.	

[17]	 L.	 Montrieux,	 J.	 Jurjens,	 C.	 B.	 Haley,	 Y.	 Yu,	 P.-Y.	 Schobbens,	 and	 H.	 Toussaint,	 "Tool	 support	 for	 code	
generation	from	a	UMLsec	property,"	presented	at	the	Proc.	of	The	2010	IEEE/ACM	international	conference	
on	Automated	software	engineering,	Antwerp,	Belgium,	2010.	

[18]	 T.	 Lodderstedt,	 D.	 Basin,	 and	 J.	 Doser,	 "SecureUML:	 A	 UML-Based	 Modeling	 Language	 for	 Model-Driven	
Security,"	in	Proc.	of	The	5th	International	Conference	on	The	Unified	Modeling	Language,	Dresden,	Germany,	
2002,	pp.	426-441.	

[19]	 F.	Satoh,	Y.	Nakamura,	N.	K.	Mukhi,	M.	Tatsubori,	and	K.	Ono,	"Methodology	and	Tools	for	End-to-End	SOA	
Security	Configurations,"	in	Services	-	Part	I,	2008.	IEEE	Congress	on,	2008,	pp.	307-314.	

[20]	 Y.	Shiroma,	H.	Washizaki,	Y.	Fukazawa,	and	A.	Kubo,	 "Model-Driven	Security	Patterns	Application	Based	on	
Dependences	 among	 Patterns,"	 in	 Proc.	 of	 The	 International	 Conference	 on	 Availability,	 Reliability,	 and	
Security.	,	Krakow	2010,	pp.	555-559.	

[21]	 N.	A.	Delessy	and	E.	B.	Fernandez,	"A	Pattern-Driven	Security	Process	for	SOA	Applications,"	 in	Proc.	of	The	
Third	International	Conference	on	Availability,	Reliability	and	Security,	2008,	pp.	416-421.	

[22]	 M.	 Schnjakin,	 M.	 Menzel,	 and	 C.	 Meinel,	 "A	 pattern-driven	 security	 advisor	 for	 service-oriented	
architectures,"	presented	at	the	Proc.	of	2009	ACM	workshop	on	Secure	web	services,	Chicago,	Illinois,	USA,	
2009.	

[23]	 M.	Hafner,	M.	Memon,	and	R.	Breu,	"SeAAS	-	A	Reference	Architecture	for	Security	Services	in	SOA	"	Journal	
of	Universal	Computer	Science,	vol.	vol.	15,	pp.	2916-2936,	2009.	

[24]	 M.	 Alam,	 "Model	 Driven	 Security	 Engineering	 for	 the	 Realization	 of	 Dynamic	 Security	 Requirements	 in	
Collaborative	 Systems,"	 in	Models	 in	 Software	 Engineering.	 vol.	 4364,	 T.	 Kühne,	 Ed.,	 ed:	 Springer	 Berlin	 /	
Heidelberg,	2007,	pp.	278-287.	

[25]	 M.	 Alam,	 R.	 Breu,	 and	 M.	 Hafner,	 "Modeling	 permissions	 in	 a	 (U/X)ML	 world,"	 in	 Proc.	 of	 The	 First	
International	Conference	on	Availability,	Reliability	and	Security,	2006,	p.	8	pp.	

[26]	 V.	Bertocci,	Programming	Windows	Identity	Foundation:	Microsoft	Press,	2010.	
[27]	 L.	 Peng	 and	 Y.	 Zhao-lin,	 "Analysis	 and	 extension	 of	 authentication	 and	 authorization	 of	 Acegi	 security	

framework	on	spring,"	Computer	Engineering	and	Design,	2007.	
[28]	 L.	 A.	 Abdulkarim	 and	 Z.	 Lukszo,	 "Information	 security	 implementation	 difficulties	 in	 critical	 infrastructures:	

Smart	metering	case,"	in	Proc.	of	The	International	Conference	on	Networking,	Sensing	and	Control,	2010,	pp.	
715-720.	

[29]	 M.	Hafiz	and	R.	E.	Johnson,	"Improving	perimeter	security	with	security-oriented	program	transformations,"	
in	ICSE	Workshop	on	Software	Engineering	for	Secure	Systems,	2009,	pp.	61-67.	

[30]	 M.	Hafiz	and	R.	E.	Johnson,	"Security-oriented	program	transformations,"	presented	at	the	Proceedings	of	the	
5th	 Annual	 Workshop	 on	 Cyber	 Security	 and	 Information	 Intelligence	 Research:	 Cyber	 Security	 and	
Information	Intelligence	Challenges	and	Strategies,	Oak	Ridge,	Tennessee,	2009.	

[31]	 V.	 Ganapathy,	 D.	 King,	 T.	 Jaeger,	 and	 S.	 Jha,	 "Mining	 Security-Sensitive	 Operations	 in	 Legacy	 Code	 Using	
Concept	 Analysis,"	 presented	 at	 the	 Proc.	 of	 the	 29th	 international	 conference	 on	 Software	 Engineering,	

2007.	
[32]	 P.	O’Sullivan,	K.	Anand,	A.	Kothan,	M.	Smithson,	R.	Barua,	and	A.	D.	Keromytis,	"Retrofitting	Security	in	COTS	

Software	with	Binary	Rewriting,"	presented	at	 the	Proc.	of	 the	26th	 IFIP	 International	 Information	Security	
Conference	(SEC),	Lucerne,	Switzerland.,	2011.	

[33]	 V.	Ganapathy,	T.	Jaeger,	and	S.	Jha,	"Retrofitting	legacy	code	for	authorization	policy	enforcement,"	in	2006	
IEEE	Symposium	on	Security	and	Privacy,	2006,	pp.	15	pp.-229.	

[34]	 I.	 S.	WELCH	and	R.	 J.	 STROUD,	 "Re-engineering	Security	as	a	Crosscutting	Concern,"	The	Computer	 Journal,	
vol.	46,	pp.	PP.	578-589,	2003.	

[35]	 A.	Elkhodary	and	J.	Whittle,	"A	Survey	of	Approaches	to	Adaptive	Application	Security,"	in	 Int.	Workshop	on	
Software	Engineering	for	Adaptive	and	Self-Managing	Systems,	2007,	pp.	1-16.	

[36]	 B.	 Hashii,	 S.	 Malabarba,	 R.	 Pandey,	 and	 e.	 al,	 "Supporting	 reconfigurable	 security	 policies	 for	 mobile	
programs,"	in	Proc.	of	the	9th	international	World	Wide	Web	conference	on	Computer	networks,	Amsterdam,	
The	Netherlands,	2000,	pp.	77-93.	

[37]	 K.	Scott,	N.	Kumar,	S.	Velusamy,	and	e.	al,	"Retargetable	and	reconfigurable	software	dynamic	translation,"	
presented	 at	 the	 Proceedings	 of	 the	 international	 symposium	 on	 Code	 generation	 and	 optimization,	 San	
Francisco,	California,	2003.	

[38]	 F.	 Sanchez-Cid,	 and	 A.	 Mana,	 "SERENITY	 Pattern-Based	 Software	 Development	 Life-Cycle,"	 in	 19th	
International	Workshop	on	Database	and	Expert	Systems	Application,	2008,	pp.	305-309.	

[39]	 F.	Sanchez-Cid	and	A.	Mana,	"Patterns	for	Automated	Management	of	Security	and	Dependability	Solutions,"	
presented	at	 the	Proc.	of	 the	18th	 International	Conference	on	Database	and	Expert	Systems	Applications,	
2007.	

[40]	 A.	 Benameur,	 S.	 Fenet,	 A.	 Saidane,	 and	 S.	 K.	 Sinha,	 "A	 Pattern-Based	 General	 Security	 Framework:	 An	
eBusiness	Case	Study,"	 in	Proc.	of	The	11th	 IEEE	 International	Conference	on	High	Performance	Computing	
and	Communications,	2009,	pp.	339-346.	

[41]	 B.	Morin,	 T.	Mouelhi,	 and	 F.	 Fleurey,	 "Security-driven	model-based	dynamic	 adaptation,"	 presented	 at	 the	
Proc.	 of	 the	 IEEE/ACM	 International	 Conference	 on	 Automated	 software	 engineering,	 Antwerp,	 Belgium,	
2010.	

[42]	 E.	 Yuan,	 N.	 Esfahani,	 and	 S.	 Malek,	 "A	 systematic	 survey	 of	 self-protecting	 software	 systems,"	 ACM	
Transactions	on	Autonomous	and	Adaptive	Systems	(TAAS),	vol.	8,	p.	17,	2014.	

[43]	 M.	 Almorsy,	 A.	 Ibrahim,	 and	 J.	 Grundy,	 "Adaptive	 Security	Management	 in	 SaaS	 Applications,"	 in	 Security,	
Privacy	and	Trust	in	Cloud	Systems,	S.	Nepal	and	M.	Pathan,	Eds.,	ed:	Springer	Berlin	Heidelberg,	2014,	pp.	73-
102.	

[44]	 M.	 Almorsy,	 J.	 Grundy,	 and	 A.	 S.	 Ibrahim,	 "MDSE@R:	 Model-Driven	 Security	 Engineering	 at	 Runtime,"	
presented	 at	 the	Proc.	 of	 the	 4th	 International	 Symposium	on	Cyberspace	 Safety	 and	 Security	Melbourne,	
Australia,	2012.	

[45]	 M.	 Almorsy	 and	 J.	 Grundy,	 "SecDSVL:	 	 A	 Domain-Specific	 Visual	 Language	 To	 Support	 Enterprise	 Security	
Modelling,"	presented	at	the	2014	Australian	Conference	on	Software	Engineering	Sydney,	2014.	

[46]	 M.	 Almorsy,	 J.	 Grundy,	 and	 A.	 S.	 Ibrahim,	 "Supporting	 automated	 vulnerability	 analysis	 using	 formalized	
vulnerability	 signatures,"	presented	at	 the	Proc.	of	27th	 IEEE/ACM	 International	Conference	on	Automated	
Software	Engineering,	Essen,	Germany,	2012.	

[47]	 M.	 Almorsy,	 J.	 Grundy,	 and	 A.	 S.	 Ibrahim,	 "Automated	 Software	 Architecture	 Security	 Risk	 Analysis	 Using	
Formalized	Signatures,"	in	Proc.	of	The	36th	International	Conference	of	Software	Engineering,	San	Francisco,	
2013,	pp.	300-309.	

[48]	 M.	Almorsy,	 J.	Grundy,	and	A.	 Ibrahim,	"VAM-aaS:	Online	Cloud	Services	Security	Vulnerability	Analysis	and	
Mitigation-as-a-Service,"	 in	Web	Information	Systems	Engineering	-	WISE	2012,	X.	S.	Wang,	 I.	Cruz,	A.	Delis,	
and	G.	Huang,	Eds.,	ed:	Springer	Berlin	Heidelberg,	2012,	pp.	411-425.	

[49]	 B.	D.	Win,	F.	Piessens,	and	W.	Joosen,	"How	secure	is	AOP	and	what	can	we	do	about	it?,"	presented	at	the	
Proceedings	 of	 the	 2006	 international	 workshop	 on	 Software	 engineering	 for	 secure	 systems,	 Shanghai,	
China,	2006.	

