
Node-Read: A Visually Accessible Low-Code Software
Development Extension

Lachlan Anderson
Monash University

Clayton, Victoria, Australia

Briana Barker
Monash University

Clayton, Victoria, Australia

Alice Reid
Monash University

Clayton, Victoria, Australia

Kaijie Lin
Monash University

Clayton, Victoria, Australia

Hourieh Khalajzadeh
Deakin University

Burwood, Victoria, Australia

John Grundy
Monash University

Clayton, Victoria, Australia

ABSTRACT
Low-code software development environments are reliant on spa-
tial and graphical user interfaces. As a result, many of these tools are
in some way inaccessible to the visually impaired, and very few of
these tools are built with visual accessibility in mind. In this paper,
we evaluate the accessibility of existing low-code Integrated Devel-
opment Environments (IDEs), for persons with partial or distorted
vision. The aim of this study is to motivate making citizen/end-user
software development accessible for users who are reliant on screen
readers. We conducted a preliminary review of several low-code de-
velopment environments which were open source and had a large
existing user base, and identified that browser-based low-code IDEs
did not integrate well with screen reader software. An extension of
an open-source software, Node-RED, was created, as it was found
to be suitable to our selection criteria. The extension, referred to
as “Node-Read”, focuses on improving compatibility with JAWS
and NVDA screen readers. Node-Read’s keyboard shortcuts, along
with their inclusion in critical user documentation, were reported
by study participants to be helpful in the basic operation of the
software.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Human-centered computing → Accessibility systems
and tools.

ACM Reference Format:
Lachlan Anderson, Briana Barker, Alice Reid, Kaijie Lin, Hourieh Khala-
jzadeh, and John Grundy. 2022. Node-Read: A Visually Accessible Low-Code
Software Development Extension. In ACM/IEEE 25th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS ’22
Companion), October 23–28, 2022, Montreal, QC, Canada. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3550356.3561591

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9467-3/22/10. . . $15.00
https://doi.org/10.1145/3550356.3561591

1 INTRODUCTION
There exists the underlying assumption that software developers
are sighted [11]. As such, standard development practices rely heav-
ily on the visual presentation of code within an IDE [11] and when
IDEs do contain accessibility tools, visually impaired developers are
often unaware of them [17]. Fewer developers with vision impair-
ments are entering the field due to accessibility issues faced when
attempting to learn and practice programming skills [3, 11, 29].
Those who are building software solutions frequently fall short of
the accessibility needs of their users [13] meaning that they are not
actively building systems to be compatible with critical assistive
technologies like screen readers [17]. Providing visual accessibility
involves making a platform navigable and usable for people with
visual impairments [13]. However, there are a large number of dif-
ferent types of visual impairments, and their resulting functional
impacts can vary drastically [31]. There exists a set of modern web
content accessibility guidelines (WCAG) [30] that developers are
encouraged to follow in order to create universally accessible and
inclusive experiences [13]. However, these guidelines still fail to
bridge the accessibility gap, and cannot be used as a standalone
checklist to ensure accessibility for visually impaired users [21].

With the rise of the citizen developer, there is a growing demand
to make software development more accessible for those without a
technical background [1, 10, 25]. A key roadblock to the entry of
many into the field is that of coding [25]. The issue predominantly
lies in the intricacies of learning new coding languages and prac-
tices. A solution is to abstract away the details of the underlying
source code through the use of low-code integrated development
environments [15]. Such platforms often use graphical models to
represent underlying code, in a more technically accessible format
[11]. This is often achieved with simple visuals, with functions
represented as shapes that can be connected to form larger systems
[12, 24, 26]. When developing within low-code environments, users
can think less about how something is achieved and focus more on
what they want their system to do [1]. In order to ensure that users
are able to benefit from the abstraction that low-code IDEs provide,
these platforms must provide a level of visual accessibility. Previ-
ous studies which explore visual accessibility for IDEs generally
keep within the confines of full-code platforms [6]. There is lim-
ited research that explores both visual accessibility and low-code
IDEs with a focus on improving the usability for those with visual
impairments, especially those requiring screen readers. This paper
explores how an existing low-code IDE can be extended to improve
its accessibility for those who rely on screen readers.

https://doi.org/10.1145/3550356.3561591
https://doi.org/10.1145/3550356.3561591

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Anderson et al.

By reviewing multiple commercially used and open source low-
code IDEs, and attempting to complete their respective tutorials
while using a screen reader, we identified that browser based low-
code IDEs were often incompatible with common screen reader
software, as some keyboard shortcuts would be intercepted prior to
reaching the IDE. We selected to extend Node-RED, a widely used
open source browser based Low-Code development environment.
We used NVDA and JAWS screen readers to evaluate accessibility
within these development environments as they are widely used
within the visually impaired community. We found that our ex-
tension, Node-Read, improved participants ability to interpret the
system output, including audio feedback and text labels. Partici-
pants reported that keyboard shortcuts made the processes such
as adding a node easier, and that Node-Read key-board shortcuts
were helpful to the process.

2 RELATEDWORK
The largest hurdle for blind developers is the inaccessibility of de-
buggers and IDEs [17], formulating high-level overviews of the
code, finding targeted information and interpreting visual elements.
Several studies identified that the debugging process is a major
hurdle for visually impaired developers [2]. Wicked Audio Debug-
ger (WAD) [28] and CodeTalk [20], are plugins for Visual Studio,
which replace the existing debugging process of the IDE. In WAD’s
study, participants were able to comprehend 86% of a program’s
behaviour through audio alone, which suggests audio based soft-
ware development is not only possible, but can enable visually
impaired developers to operate at a similar level to sighted devel-
opers when implemented correctly. Struct-Jumper [6] found that
relationships present in Object-Oriented programming languages
were frequently represented spatially, and were therefore difficult
to interpret through screen readers alone [17]. Therefore, Struct-
Jumper attempts to better visualise a Java class as a tree view to
allow screen reader users to understand how various methods re-
late with an easier to interpret representation [6]. While there are
many examples of tools aimed at helping screen reader users in-
terpret coding specific elements, keyboard input is predominant.
Spoken Java [7] has attempted to provide alternatives, for code-
writing speech input. This sparks potential direction of develop-
ment towards speech based interaction, which can be used by both
sighted and visually impaired developers. As software development
is largely team based, common software and development tech-
niques make collaboration, and by extension development itself,
easier [9]. Audio Programming Language [27] is a programming
language designed by and for blind users. Unlike similar tools, this
research intends to develop an environment independent of a vi-
sual user interface. Their study suggests that languages can be
constructed to fit the mental models of blind learners to help them
to enter to the programming world.

Milne et al. [18] identified key accessibility barriers for visually
impaired children when using existing blocks-based environments.
Through interviewing a teacher of the visually impaired and for-
mative studies on a touchscreen blocks-based environment, they
explored options and distilled their findings on usable touchscreen
interactions into guidelines for designers of blocks-based environ-
ments. However, we found no research conducted on evaluating

the accessibility of low-code development environments and un-
derstanding how they can be improved for screen reader users. The
minimal overlap we found in the two topics of visual accessibility in
development and low/no code development, suggested there may
be a significant gap in the types of research currently being con-
ducted. The creation of development tools for people who require
screen readers is still an afterthought in many circumstances [8].

3 APPROACH
The goal of our study is to allow more people with visual impair-
ments to use software development tools. Currently, those with
visual impairments use screen readers to read code aloud [5]. When
using these tools on applicable IDEs, visually impaired program-
mers have been shown to comprehend code to the same degree as
their sighted peers [4]. However, there appears no evidence to show
that low-code development environments allow screen reader users
to comprehend software development. Our overarching research
question is:

RQ: Canwe extend a low-code IDE tomeet the accessibility
needs of people requiring screen readers?

3.1 Selecting an Extendible IDE
Tools developed through research are at risk of not being main-
tained once the associated research concludes. For example CodeTalk
was listed as pre-release in 2017, and has not yet been published
[20], nor has it been updated to be compatible with IDEs following
Visual Studio Code 2017. As such, we further investigated the qual-
ity of low-code IDEs in the market, evaluating both open source
and commercial solutions, to create and test a low-code IDE that
was accessible for those who are reliant on screen readers. This
presented two options: Find 1) a commercially available low-code
IDE and create a system that translates the users screen-reader
input into normal navigation actions; 2) an open source low-code
IDE with exposed code that we could directly edit to make more
compatible with screen readers.

While some commercial products seemed promising, finding
APIs that would allow the kind of interactivity we were looking for
required much more information than we could find. Additionally
the basic system sat behind a paywall and there would be minimal,
if any, support to build a compatible extension. Thus, we decided to
opt for the open-source approach for the straightforwardness and
lower bar of entry. In order to find the best suited tool from a limited
pool of selection, the open source repositories were evaluated based
on their usage, maintainability, ability for accessibility improvement
and how active the development community is.

Many platforms were evaluated, most notably: App inventor [12]
(Git Stars = N/A), a visual programming environment for building
apps for Android and iOS devices, includes a simplified GUI, pri-
marily targeting young students. Rintagi [26] (Git Stars = 213), a
low-code enterprise application builder focuses on mobile apps
which utilises complex tools to allow users to quickly build applica-
tions. Node-RED [24] (Git Stars = 13,200), an open-source low-code
browser-based programming platform for event-driven applica-
tions, uses a GUI consisting of inter-connectable nodes. Node-RED

Node-Read: A Visually Accessible Low-Code Software Development Extension MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 1: An example of Node-RED in use

was a stand out for several reasons, including known accessibil-
ity issues that could be improved through the implementation of
WAI-ARIA guidelines. Figure 1 shows an example of Node-RED in
use. Additionally, while complex platforms such as Rintagi and App
inventor can be exceptionally useful, they are used by significantly
fewer people, and have a higher technical barrier to entry, which
reduces the potential impact which research in this area could have.
Node-RED has a large body of both users and contributors and if
merged into the main repository, the extension can be actively main-
tained after the research concludes, potentially benefiting future
visually impaired users.

3.2 Design
Through evaluating Node-RED against the WCAG [30], as well
as testing the program using a screen reader, we identified areas
which may be difficult for screen reader users. Key functional issues
highlighted in the analysis included:

Keyboard Shortcuts: We found that keyboard shortcuts were
being intercepted by the screen reader, making them have no effect
on the Node-RED work space. Through evaluation and testing, we
mapped out alternatives for some of the keyboard shortcuts which
were being intercepted. The scope of the changes was limited to
only include shortcuts which could be used within the ‘First Flow’
tutorial [32].

Labels: Descriptive labels for some of the buttons appeared
when the cursor hovered over the button. However, they do not
persist when the user tries to hover over the label itself in order to

get the screen reader to read it. Therefore, the value those labels
provides is lost due to inaccessibility.

Wiring Nodes: The process of wiring nodes together could only
be completed through the use of a mouse/touch-pad. Additionally,
there were no indications as to whether the user had begun creating
a wire and whether or not the wire creation was successful. There
was also no auditory indication or confirmation of which nodes
were just connected.

Workspace navigation: The workspace on Node-RED is ex-
pansive, and changes size dynamically as the user scrolled around.
If the user was not keeping track of the relative position of the
nodes they had already placed in the workspace, a few accidental
scrolls could remove the nodes from the screen view, thus making
it difficult to continue to add nodes to the current process or make
edits.

Node information: When hovering over added nodes in the
workspace, only the text on top of each node is provided to the
screen reader. This is not always helpful in quickly identifying
the nodes. For example, the default text on an ‘inject node’ reads
‘timestamp’, which, to the unfamiliar, would not indicate that this
was an inject node. Additionally, nodes have input and/or output
terminals and there is no way for the screen reader to identify which
type of terminal a node has and whether or not it is connected to
anything.

3.3 Feasibility Analysis
We forked the Node-RED GitHub repository [24] to test the feasi-
bility of an extension and gain an understanding of the code base.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Anderson et al.

By identifying where and how keyboard shortcuts were being man-
aged, we discovered that the in-built web-browser functionalities
of the screen reader were blocking several Node-RED keyboard
shortcuts as they overlapped with web standard keys. This was a
result of web-standard key combinations that remained reserved for
higher level navigation. We also discovered that not all keyboard
shortcuts listed within the code were easily discoverable for users
on the Node-RED website, suggesting that some existing shortcut
combinations are not being utilised to their full capacity. As such,
we built Node-Read [23], an extension that focuses predominantly
on improving keyboard shortcut accessibility. The key focus of the
extension was to surface existing shortcuts to the user that would
work with the NVDA screen reader. As the screen reader blocked
some common keyboard combinations, we found there were unique
key combinations that would not be intercepted. Therefore, some
existing shortcut functionalities were translated into different short-
cut combinations in order to bypass the interception issue. Some
additional shortcuts were also added to assist in navigating nodes.
Shortcuts were not added for wiring nodes together or opening
their property panes.

3.4 ‘First Flow’ Tutorial Expansion
The Node-RED ‘first flow’ tutorial [32] accurately represents the
first process a new user would undertake while learning the soft-
ware. We duplicated and amended the tutorial to include references
to the new keyboard shortcuts. As the initially available tutorial
does not indicate which keyboard shortcuts can be used throughout
the process, the tutorial was re-written to include these options.
This change included both the addition of existing keyboard short-
cuts to the tutorial, as well as the addition of keyboard shortcuts
added in Node-Read.

4 EVALUATION
As we wanted to understand how visually impaired users new to
Node-RED would interact with the system, we analysed the ‘first
flow’ tutorial. A user’s first interaction with a product generally
determines how likely they are to use it again [22]. A negative first
experience would be a potential deterrent from using the software
in the future. Hence, studying the accessibility of this tutorial is
critical to understanding the barriers in placewhich prevent visually
impaired developers from learning to use this technology. The
tutorial relies heavily on visual interaction, using a combination
of clicking, dragging and pasting to complete tasks. It walks users
through seven key interactions: 1) Adding a node to the workspace;
2) Wiring two nodes together; 3) Deploying a process; 4) Deleting
a wire; 5) Navigating between nodes; 6) Adding code to a node; 7)
Finding output in the debug panel. The instructions for the Node
Read tutorial were revised to use a variety of keyboard shortcuts,
both pre-existing and newly added combinations, to navigate the
tutorial flow.

Our study involved walking participants through both the origi-
nal and amended versions of the tutorial on Node-RED and Node-
Read respectively. Participants filled in a questionnaire after each
run-through and their feedback was collated and analysed. We ran-
domised participants (1:1) to group A and group B, with group A
using the Node-Read software first, while group B used Node-RED

first. Sighted participants completed the study with a visual overlay
to obscure the screen, as shown in Figure 2. The participants were
given an opportunity to familiarise themselves with the screen
reader interactivity if needed and were then guided through the
tutorials, moving at their own pace. If participants struggled to
navigate to the correct area of the screen, the researcher suggested
areas to move towards so as to ensure that participants were not
hindered by an inability to operate the screen reader effectively.

Participants were instructed on how to perform the tasks, using
the instructions from the existing and amended ‘first flow’ tutorial.
Once the participants had completed the full set of tasks, they filled
out a questionnaire about their experience using the software and
then repeated this process for the other software version, complet-
ing the same set of tasks using different methods.The questionnaire
was designed to gather an understanding of the usability and over-
all experience of using Node-RED and Node-Read while completing
the tutorial. The participants were asked: (1) Whether they found
each functional step of the tutorial easy; (2) Whether they would
be able to do the tutorial unguided afterwards; (3) How helpful,
intuitive and memorable were the shortcuts used in Node-Read;
(4) What (if any) roadblocks did they face while completing the
tutorial; (5) How functionally complete the system felt; (6) Were
there any parts of the application they found difficult to navigate
to in particular; and (7) Whether there were any surprisingly help-
ful elements of the system. The gathered data was de-identified
by transcribing any recordings before deletion, and removing any
identifiable details. Data was then analysed to identify key findings
and areas of improvement.

5 RESULTS
Participants: Twelve participants with varying technical back-
grounds participated in our study. Participants’ technical skills
ranged from completely non-technical to software developer. One
participant had a visual impairment which required the use of a
screen reader for their development work. The sighted participants
had never used a screen reader before and were not visually im-
paired. Small number of participants is typical in studies involving
individuals with specific impairments [14, 16, 19]. None of the
participants had used Node-RED prior to the study. Half the par-
ticipants were randomly selected to complete the first tutorial on
Node-Read and the other half began with Node-RED.

Simulation of Visual Impairments: Sighted participants com-
pleted the study with an translucent white visual overlay, calibrated
to make reading text not possible, yet still provide the visual input
to recognise shapes and distinctive colours. This effect was created
using Screen Dragons 2, which allows this visual overlay to be cali-
brated quickly and clicked through. When configured in this way,
the Node-Read or Node-RED instance was viewed through the over-
lay, while the mouse was not affected. This replicates the NVDA
screen readers ability to provide audio feedback of the mouse icon
when the icon changes.

Set Up: The study was conducted remotely, with the researcher
hosting local versions of both Node-RED and Node-Read for the
participants to interact with using Zoom’s ‘screen sharing’ and
‘remote control’ functionalities. The research environment was set
up to use the NVDA screen reader for all experiments to ensure

Node-Read: A Visually Accessible Low-Code Software Development Extension MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 2: Node-RED with a visual overlay

that the research environment was consistent and replicable. Re-
searchers watched and recorded participants through the tasks.
Participants were not given access to Node-read prior to the study.
One participant requested to use their own machine and installa-
tion of NVDA, as they used it regularly for their vision impairment.
They ran both Node-RED and Node-Read directly from their own
environment, and were not instructed to utilise any simulators. As
with other participants, they were observed using ‘screen sharing’
and were verbally guided through the tasks.

Questionnaires: After each completed attempt of the introduc-
tory Node-RED tutorial ‘first flow’ with Node-Read and once with
Node-RED, they were asked to complete a questionnaire about
their experience. Participants rated each version of the application
immediately after they had used it.

Observations: We observed that the participants who were
unable to complete a section of the tutorial in a given amount of
time were offered hints, or additional information that they would
not normally be able to access while completing the tutorial in a
practical environment. Overall, only one task was not able to be
completed without manual researcher intervention. This task was
to open the debug pane, for which the button was represented as an
unlabeled link, thus entirely incompatible with the screen reader.

5.1 Analysis of Results
More participants stated that they could easily interpret system out-
put, including audio feedback or text labels in Node-Read (50%) than
Node-RED (33%). Similarly, participants found Node-Read (58.3%)

to be more functionally complete than Node-RED (41.7%). How-
ever, participants indicated that Node-RED (50%) remained easier
to navigate than Node-Read (41.7%). Each application appeared to
be equally pleasant to use overall, however participants felt more
strongly about Node-Read, and strongly agreed or disagreed in
higher numbers, as shown in Figure 3. Fewer participants indi-
cated that they could repeat the tutorial without guidance in future
attempts when using Node-Read (41%) comparing to Node-RED
(58.3%). Participants found that the deployment process was more
straightforward using Node-RED (75%) than Node-Read (66.7%), as
shown in Figure 4. The addition of keyboard shortcuts in Node-Read
resulted in more information to memorise thus lowering partici-
pants confidence that they could repeat the process without assis-
tance. However, participants consistently stated that Node-Read
keyboard shortcuts were helpful to the process (91.7%), as shown
in Figure 5.

5.2 Discussions
The results appear to in some way indicate that the Node-Read ex-
tension provided more visually accessible approaches to the tasks
within the first flow tutorial. However, there is no clear indication
that the participants had a more positive experience with Node-
Read over Node-RED, and in some cases had a worse experience.
Future research is required to understand why this may have oc-
curred.

UnchangedTasks:Whilewiring nodes togetherwas unchanged
between the two versions, four of twelve participants reported that

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Anderson et al.

Figure 3: Frequency of feedback scores regarding the overall app experience, separated by app version

the task was more difficult in the Node-Read version, while only
two reported that the task was less difficult. The remaining six par-
ticipants reported no change to the difficulty of the task. We noted
that this may be a result of participants being unaware of their
previous questionnaire answer for this question, and that different
collection methods may produce different results in this area.

Trends: Participants who completed Node-RED first typically
found the shortcuts easier to remember. We observed the incre-
mental learning, first of the task, followed by the addition of the
keyboard shortcut on the following run-through, often aided par-
ticipants understanding of the process. Asking participants if they
felt that they could repeat the process without guidance revealed
that keyboard shortcuts created more actions to memorise, mak-
ing repeating the process more difficult. The presence of a visual
button provides users with a set of actions to take, however there
is no audio equivalent system which provides a quick overview
of potential actions for keyboard shortcuts. This leads to a higher
cognitive load on users when learning these shortcuts, and reduced
discoverability of potentially helpful actions. As the task which
required the participant to open the debug pane was entirely in-
accessible when using a screen reader, the tutorial, as a whole,
was therefore very difficult to complete without assistance. This
highlights the importance of ensuring that each section within the
system is accessible, as many common tasks require interaction

with multiple components. If a single component is inaccessible
in this manner, we observed that participants quickly became dis-
engaged. This resulted in an increased likelihood that they would
review the software negatively.

6 THREATS TO THE VALIDITY
The user study largely drew from a pool of participants who had
limited experience using screen readers. Restrictions on travel due
to COVID 19 further limited the methods which could be used to
gather data from participants.

External Threats: Due to the existing under-representation of
visually impaired people within development communities, few
participants with visual impairments could be found to participate
in the study. Having small number of participants in studies needing
participants with specific impairments is common [14, 16, 19]. In
place of genuine visual impairments, artificially simulated visually
impairments were applied to the software for sighted participants.
While this may replicate some of the visual impairments faced by
the visually impaired community, it is not a representative sample
of all visual impairments. Further, sighted participants had less prior
exposure to screen readers, making them not aware of commonly
known screen reader shortcuts and best practices. Additionally, the
limited sample size creates a higher margin of error within study
results. As participants had little time to adjust to the simulated

Node-Read: A Visually Accessible Low-Code Software Development Extension MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 4: Frequency of feedback scores regarding the specific tutorial steps taken, separated by app version

visual impairments they would use to complete the tasks with, they
in turn did not have the time to develop accommodating strategies
and learn how to use screen readers. Participants with more prior
experience or training in using screen readers may have been able
to complete the tutorials without any visual input, as opposed to
the reduced visual input used for the study.

Internal Threats: During instances in which the opaque screen
filter was not sufficient to obscure participant vision and required
re-calibration, participants may have been able to read text on the
page prior to the opacity adjustments. Therefore, these participants
may have been able to identify nodes in the pallet at a higher rate
than counterparts without this initial glimpse. Thus, participants
in this category are less representative persons with genuine visual
impairments. Some participants reported visual lag as a result of
screen sharing through Zoom. This effect potentially impacted the
time taken and perceived difficulty of tasks performed throughout
the affected period. Replication of these sessions in person could al-
leviate this source of error. In some instances, participants reported
forgetting what they had reported during their first run-through,
making comparisons between individual participants software ver-
sions and run-through orders less accurate.

7 CONCLUSION AND FUTURE DIRECTIONS
We created Node-Read, a Node-RED extension for developers who
require screen readers. We ran a user study with both visually im-
paired developers, and developers with artificially simulated visual
impairments. The user study determined that Node-Read’s key-
board shortcuts were helpful, however the system was less pleasant
to use, as a result of the additional complexity. Features which re-
duce this complexity either by increasing action discoverability or
by reducing cognitive load provide avenues for future research, and
the potential to make these changes will be strictly beneficial for
both visually impaired and sighted persons. Providing users with
an audio overview, or suggestions of the potential actions at a given
time may alleviate some of the reduced action discoverability for
screen reader users. Further research is required to validate both
impact and potential resolutions in this space.

Many participants reported difficulty wiring nodes together,
which cannot be completed with a keyboard shortcut in either
software version. Further research into the visual accessibility of
Node-RED may benefit from the introduction of a keyboard based
method of connecting nodes. Additionally, our study has identified
the need for implementation of accessibility labels that provide

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Anderson et al.

Figure 5: Frequency of feedback scores on the keyboard short-
cuts, separated by app version

context, descriptions and state information for buttons and nodes
that are currently referred to in generic terms. In addition to the
technical changes, it is apparent that the tutorials provided are not
sufficiently accessible for the visually impaired. Further research
into this space may uncover changes which are not specific to Node-
RED, and instead can be generalised to provide a framework into
accessible supporting documentation.

ACKNOWLEDGMENTS
Support for this research from ARC Laureate Program FL190100035
is gratefully acknowledged.

REFERENCES
[1] Benjamin Adrian, Sven Hinrichsen, and Alexander Nikolenko. 2020. App Devel-

opment via Low-Code Programming as Part of Modern Industrial Engineering
Education. In International Conference on Applied Human Factors and Ergonomics.
Springer, 45–51.

[2] Khaled Albusays and Stephanie Ludi. 2016. Eliciting programming challenges
faced by developers with visual impairments: exploratory study. In Proceedings
of the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering. 82–85.

[3] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and
observation of blind software developers at work to understand code navigation
challenges. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility. 91–100.

[4] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2017. A comparison of
program comprehension strategies by blind and sighted programmers. IEEE
Transactions on Software Engineering 44, 8 (2017), 712–724.

[5] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. AudioHighlight:
Code skimming for blind programmers. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 206–216.

[6] Catherine M Baker, Lauren R Milne, and Richard E Ladner. 2015. Structjumper: A
tool to help blind programmers navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 3043–3052.

[7] Andrew Begel. 2004. Spoken language support for software development. In 2004
IEEE Symposium on Visual Languages-Human Centric Computing. IEEE, 271–272.

[8] Sheryl Burgstahler and Terrill Thompson. 2019. Accessible cyberlearning: A
community report of the current state and recommendations for the future.

Seattle: University of Washington. Retrieved January 1 (2019), 2021.
[9] Samer Faraj and Lee Sproull. 2000. Coordinating expertise in software develop-

ment teams. Management science 46, 12 (2000), 1554–1568.
[10] Anne Fisher. 2021. How Companies Are Developing More Apps With Fewer

Developers. https://fortune.com/2016/08/30/quickbase-coding-apps-developers/
[11] Filipe Del Nero Grillo, Renata Pontin de Mattos Fortes, and Daniel Lucrédio. 2012.

Towards collaboration between sighted and visually impaired developers in the
context of Model-Driven Engineering. In Joint Proceedings of Co-located Events at
the 8th European Conference on Modelling Foundations and Applications (ECMFA
2012), Lyngby. 241–251.

[12] App Inventor. [n.d.]. App Inventor. https://appinventor.mit.edu/
[13] Mukta Kulkarni. 2019. Digital accessibility: Challenges and opportunities. IIMB

Management Review 31, 1 (2019), 91–98.
[14] Andreas Kunz, Klaus Miesenberger, Max Mühlhäuser, Ali Alavi, Stephan Pölzer,

Daniel Pöll, Peter Heumader, and Dirk Schnelle-Walka. 2014. Accessibility of
brainstorming sessions for blind people. In International Conference on Computers
for Handicapped Persons. Springer, 237–244.

[15] Stephen W Liddle. 2011. Model-driven software development. In Handbook of
Conceptual Modeling. Springer, 17–54.

[16] Leandro Luque, Leônidas de Oliveira Brandão, Elisabeti Kira, Anarosa Alves,
and Franco Brandão. 2017. Inclusion in computing and engineering education:
Perceptions and learning in diagram-based e-learning classes with blind and
sighted learners. In 2017 IEEE Frontiers in Education Conference (FIE). IEEE, 1–8.

[17] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study of blind
software developers. In 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 71–74.

[18] Lauren R Milne and Richard E Ladner. 2018. Blocks4All: overcoming accessi-
bility barriers to blocks programming for children with visual impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–10.

[19] Francisco Oliveira, Heidi Cowan, Bing Fang, and Francis Quek. 2010. Enabling
multimodal discourse for the blind. In International Conference on Multimodal
Interfaces and the Workshop on Machine Learning for Multimodal Interaction. 1–8.

[20] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y Vidya, Manohar Swami-
nathan, and Gopal Srinivasa. 2018. Codetalk: Improving programming environ-
ment accessibility for visually impaired developers. In Proceedings of the 2018 chi
conference on human factors in computing systems. 1–11.

[21] Christopher Power, André Freire, Helen Petrie, and David Swallow. 2012. Guide-
lines are only half of the story: accessibility problems encountered by blind users
on the web. In Proceedings of the SIGCHI conference on human factors in computing
systems. 433–442.

[22] Matthew Rabin and Joel L Schrag. 1999. First impressions matter: A model of
confirmatory bias. The quarterly journal of economics 114, 1 (1999), 37–82.

[23] Node-Read GitHub Repository. 2021. Node-Read GitHub Repository. Removed-
for-blind-review

[24] Node-Red GitHub Repository. [n.d.]. Node-Red GitHub Repository. https:
//github.com/node-red/node-red

[25] Christoph Rieger and Herbert Kuchen. 2019. Towards Pluri-Platform Devel-
opment: Evaluating a Graphical Model-Driven Approach to App Development
Across Device Classes. In Towards Integrated Web, Mobile, and IoT Technology.
Springer, 36–66.

[26] Rintagi/Low-Code-Development-Platform. [n.d.]. Rintagi/Low-Code-
Development-Platform. https://github.com/Rintagi/Low-Code-Development-
Platform

[27] Jaime Sánchez and Fernando Aguayo. 2005. Blind learners programming through
audio. In CHI’05 extended abstracts on Human factors in computing systems. 1769–
1772.

[28] Andreas Stefik, Roger Alexander, Robert Patterson, and Jonathan Brown. 2007.
WAD: A feasibility study using the wicked audio debugger. In 15th IEEE Interna-
tional Conference on Program Comprehension (ICPC’07). IEEE, 69–80.

[29] Andreas M Stefik, Christopher Hundhausen, and Derrick Smith. 2011. On the
design of an educational infrastructure for the blind and visually impaired in com-
puter science. In Proceedings of the 42nd ACM technical symposium on Computer
science education. 571–576.

[30] Web Accessibility Initiative (WAI). [n.d.]. WCAG 2.1 at a Glance. https://www.
w3.org/WAI/standards-guidelines/wcag/glance/

[31] Annalyn Welp, R Brian Woodbury, Margaret A McCoy, Steven M Teutsch, En-
gineering National Academies of Sciences, Medicine, et al. 2016. The impact
of vision loss. In Making eye health a population health imperative: vision for
tomorrow. National Academies Press (US).

[32] First Flow Tutorial: Creating your first flow. [n.d.]. First Flow Tutorial: Creating
your first flow. https://nodered.org/docs/tutorials/first-flow

https://fortune.com/2016/08/30/quickbase-coding-apps-developers/
https://appinventor.mit.edu/
Removed-for-blind-review
Removed-for-blind-review
https://github.com/node-red/node-red
https://github.com/node-red/node-red
https://github.com/Rintagi/Low-Code-Development-Platform
https://github.com/Rintagi/Low-Code-Development-Platform
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://nodered.org/docs/tutorials/first-flow

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Selecting an Extendible IDE
	3.2 Design
	3.3 Feasibility Analysis
	3.4 `First Flow' Tutorial Expansion

	4 Evaluation
	5 Results
	5.1 Analysis of Results
	5.2 Discussions

	6 Threats to the Validity
	7 Conclusion and Future Directions
	Acknowledgments
	References

