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Abstract—We describe the use of a suite of human-centric, 

domain-specific visual languages to manage knowledge for data-
intensive systems. We use two exemplar system case studies – a 
smart home to support ageing people and a set of smart city 
technologies – to motivate the need for such an approach. We then 
describe aspects of these two example systems from abstract 
requirements to specific data analysis, implementation and 
deployment choices using our BiDaML representation. We discuss the 
strengths and limitations of the approach, and key directions for 
further work in this area. 

Index Terms—data-intensive systems; knowledge management 
smart homes; smart cities; internet of things; human factors; domain-
specific visual languages 

I. INTRODUCTION 

Smart living applications are increasingly in demand. These 
range from smart homes – for general-purpose use or specific 
tasks e.g. supporting aged care, disability or rehabilitation; 
smart transport systems; smart grid and other utility-oriented 
systems; autonomous vehicles; ‘smart living’ robotics; 
industry 4.0-supporting applications; smart hospitals and 
schools; and smart buildings in general [1]–[3]. 

For example, Figure 1 shows two exemplar smart living 
solutions, a smart home to support ageing people living in 
their homes, and a smart urban environment. Both are 
composed of a number of sensors and interactors. Both have 
a range of diverse end users with diverse end user 
requirements. The sensors generate significant amounts of 
heterogeneous data that needs to be stored, processed, and 
presented. Some of the data processing is done “on the edge” 
[4]. Other is uploaded and done “on the cloud” [5]. These lead 
to a need for careful algorithm selection for the data 
processing, choice of deployment of algorithms, and 

management of security, privacy, reliability, performance and 
robustness constraints.  

 
Fig. 1. Two smart living solution examples 

Such systems come with a number of serious challenges in 
the engineering of the system. By their very nature, they need 
to incorporate a wide range of users and use cases, leading to 
challenging requirements engineering tasks. This includes 
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determining the high-level requirements of the system, key 
processes it needs to support, key data sources, data storage 
and data processing, and required system and user 
interactions [6]. Architecting such systems is challenging [7], 
given the wide range of hardware and application software 
platforms needed. Many design decisions relate to the data-
intensive nature of the system: how to obtain, wrangle, 
transform, integrate, harmonise and store diverse data; choice 
of machine learning techniques to process and extract key 
information from the data; and appropriate large scale data 
visualisation techniques needed to support diverse decision-
making. 

We have developed a suite of domain-specific visual 
languages to assist in supporting the development of such 
data-intensive systems, BiDaML [8]. BiDaML provides a set of 
visual languages to capture high level to detailed 
requirements, data-oriented design decisions, deployment 
scenarios, and detailed data representation and processing 
formats and algorithms. In this chapter, we illustrate the use 
of our BiDaML approach to support the development of two 
exemplar smart living systems. 

II. MOTIVATION 

Consider the example from Figure 1 of a ‘smart home’ to 
assist ageing people. Such a smart living solution aims to 
provide ageing people with support for physical and mental 
challenges as they age, but want to stay in their own home 
longer and be safe and secure [9]. Key features of this system 
– with a focus on the data-intensive system aspects – include, 
but are not limited to: 

• Sensors that detect the ageing person’s movements 
throughout the smart home – data generated needs to 
be stored, processed to determine regular behaviour 
patterns; deviation from these can alert carers that the 
elderly person is unwell, has a fall, etc. 

• Sensors that detect device usage and activity e.g. stove, 
lights, tap, fridge, etc – as above, this data is integrated, 
possibly with movement data, to help build the 
occupant’s behaviour profile. It may also be used to 
support health-related reminders e.g. “Have you had a 
glass of water 
recently?” 

• Health-related data capture via e.g. Bluetooth enabled 
scales, blood pressure monitor, wearable, augmented 
medicine container, etc – these can check the elderly 
person is e.g. taking medication, there are no serious 
outlier health indicators, and data can be shared with 
remote clinician. 

• Communication devices to connect to family, carer and 
community, such as tablets, smart TVs, etc – these also 
may provide important behaviour monitoring, but also 
support connectedness and combat loneliness and 
anxiety especially of living alone. – Smart home features 

such as heating, lighting, windows, doors, etc., – these 
support environment management especially for 
physically challenged individuals. 

Other smart living devices may be added or removed or 
reconfigured. Other data analysis may be carried out with 
multiple data input sources. Data privacy, physical and 
electronic security, and reliability are all critical requirements 
in this domain. 

Smart cities have become a greatly increasing area of 
research but also of practice [10]-[12]. Consider the example 
from Figure 1 of a smart city solution which includes diverse 
data feeds to assist urban precinct operation and strategic 
planning. A local government instruments a wide variety of its 
artefacts to assist in providing services and in overall planning 
and management of services. These might include but are not 
limited to: 

• Smart parking – parking spaces and parking buildings 
indicate free/occupied spaces. These may be used to 
provide real-time parking space availability to users, 
overstaying vehicles to traffic wardens, and over time 
large scale parking usage statistics for urban planners. 

• Smart lighting – which adapts to both ambient light and 
weather conditions to save power, but also usage 
information to reduce lighting when unused or increase 
on demand as pedestrian movement is detected. 

• Smart rubbish bins – these proactively monitor rubbish 
bin space usage, smells, liquids and ask for collection 
when needed. They also can give long term indications of 
space usage for planning purposes. 

• Space usage sensors – these detect pedestrian and 
vehicular traffic and can be used to inform different 
usage patterns according to date, time, correlation to 
events etc. 

• Traffic flow monitoring and control – these provide very 
detailed information about road usage, and may provide 
highly localised and adaptive control of vehicle traffic 
lights and pedestrian crossings. 

• Pedestrian activity including movement, density, use of 
communal tables, chairs, benches, etc – these allow low 
level monitoring and even proactive intervention e.g. to 
help enforce social distancing for COVID-19, along with 
larger-scale data analysis for the usage of footpaths, 
crossings, communal facilities, blockages etc. 

• Building usage and control – these provide the ability to 
optimise building utility usage to reduce costs and 
environment impact, and larger-scale data on usage, 
access needs etc. 

• Park management including smart watering systems 
• Smart utility management 

Local government is continually looking for ways to better 
manage complex resources and balance demands of retailers, 
pedestrians, vehicle users, manufacturers, householders etc. 



Smart living solutions such as the above provide both low-
level, on-the-spot ways to monitor and control government 
facilities, but also larger scale over time and distance analysis 
of usage patterns and demand [13]. Unlike the smart home 
scenario, the users are very large in number and very diverse. 
The technologies are also more diverse, needing a wider range 
and scale of platforms and networks to achieve. Privacy and 
security issues still present but are both individual and group 
challenges. Scaling to thousands of devices with very large 
data capture, storage and processing become major 
challenges. 

In both of these systems, a range of stakeholders and 
developers are needed to develop, deploy and maintain the 
solution. These range from customers and end users, 
managers, data scientists, software engineers and edge- and 
cloud-platform engineers. Sometimes a very wide range of 
these stakeholders are needed producing a wide variety of 
heterogeneous devices, servers, networks, dashboards, 
interfaces, etc. A critical need is for a knowledge management 
approach that can support this diverse team. 

III. APPROACH 

To design data-intensive systems such as those above, we 
developed the BiDaML suite of visual languages to model key 
knowledge required [8]. BiDaML provides a set of domain-
specific visual languages using five diagram types at different 
levels of abstraction to support key aspects of big data 
analytics. These five diagram types cover the whole data 
analytics software development life cycle from higher-level 
requirement analysis and problem definition through the low-
level deployment of the final product. These five diagrammatic 
types are: 

• Brainstorming diagram provides an overview of a data 
analytics project and all the tasks and sub-tasks that are 
involved in designing the solution at a very high level. 
Users can include comments and extra information for 
the other stakeholders; 

• Process diagrams specify the key analytics 
processes/steps including key details related to the 
participants (individuals and organisations), operations, 
and conditions in a data analytics project capturing 
details from a high-level to a lower-level; 

• Technique diagrams show the step by step procedures 
and processes for each sub-task in the brainstorming and 
process diagrams at a low level of abstraction. They show 
what techniques have been used or are planned to be 
used and whether they were successful or there were any 
issues; 

• Data diagrams document the data and artifacts that are 
produced in each of the above diagrams at a low level, i.e. 
the technical AI-based layer. They also define in detail the 
outputs associated with different tasks, e.g. output 

information, reports, results, visualisations, and 
outcomes; 

• Deployment diagrams depict the run-time configuration, 
i.e. the system hardware, the software installed on it, and 
the middleware connecting different machines to each 
other for development related tasks. 

Figure 2 shows an overview of our BiDaML framework in the 
left side and its notations on the right side. Users including 
domain experts, business owner, data scientists, and software 
engineers brainstorm, design and analyse the problem and 
requirements by defining tasks through visual-based drag-
anddrop of the notations through a brainstorming diagram. 
Business owners and business analysts with the help of the 
other users would then create a process diagram by specifying 
the details related to the organisations and participants 
involved in the project. Users can generate reports and iterate 
through the different aspects of the projects in order to come 
up with a plan for the project. Data analysts and data scientists 
will then focus on data, feature and model engineering parts 
of the project by further breaking down the tasks to more 
detailed tasks and connecting them to the data items and 
techniques. Data analysts and data scientists can generate 
Python code or connect to the ML tools’ APIs in this step. They 
can embed their Python code to reuse in future projects in this 
step. Once models are created and finalised, data analysts and 
data scientists can work with the software engineers to walk 
them through the models, how they work, the input and 
outputs of the models and the requirements to access the 
models. 

In the following sections, we use the two representative 
data-intensive system examples above to show how BiDaML is 
used to capture and represent key knowledge needed to 
successfully build each of the systems. 

IV. HIGH-LEVEL REQUIREMENTS CAPTURE 

A. Brainstorming 

A brainstorming diagram is used to capture the key goals of 
a data-intensive system expressed at a high-level. There are no 
rules as to how abstractly or explicitly a context is expanded. 
The diagram overviews a system in terms of the specific 
problem it is associated with, and the tasks and subtasks to 
solve the specific problem. It supports interactive 
brainstorming and collaboration between interdisciplinary 
team members to identify key aspects of a system such as its 
requirements implications, analytical methodologies, and 
specific tasks. Figure 3 shows the brainstorming diagram for 
the smart city system. 

In Figure 3, the root node, illustrated as a red hexagon, 
represents the data analytics problem the project aims to 
address, i.e. the smart city project. High-level tasks are 
illustrated as orange ellipses with fixed pins to highlight their 
importance. These include nodes labelled Define objectives, 



Data collection, Data fusion, etc. All other tasks, which are 
children of high-level tasks, are called low-level tasks. These 
are drawn using yellow ellipses, such as KPIs for evaluation and 
Collect data. A task (both high- or low-level) may be labelled 
with useful information such as input files or comments for 
carrying out the requisite tasks. For instance, the low-level 
task Collect data is labelled by the input file input.csv. 
Comments are illustrated as dialogue boxes with a broken 
border. 

Figure 4 shows the brainstorming diagram for the smart 
home system. A red hexagon icon represents the Smart Home 
system and the orange ellipses show the five key to-do tasks 
with which the problem is associated. High-level tasks 
connected directly to the problem are automatically changed 
to bright orange notes with fixed pins to highlight their 
importance. In this example, Monitor Activity is one of the key 
high-level tasks which is further broken down to Sensor Data, 
Appliance Data, and Health Data capture and processing tasks 
as lower-level to-do tasks to achieve this. An input icon 
representing the Activity Data is shown to be produced by this 
Monitor Activity feature. Other key tasks that make up this 
example smart home include Health Monitoring, support for 
Anxiety Monitoring, supporting Connectedness to family, 
friends and carers, and providing Alerts e.g. if collected and 
processed behaviour data indicates the elderly person is 
unwell.  

These brainstorming diagrams provide a high-level 
conceptual model of the overall system requirements. We drill 
down from the tasks, subtasks and datasets to define more 
details of the solution. 

Process Definition 

B. Process Definition 

A high-level process diagram for our smart city use case is 
shown in Figure 5. In this diagram type, we use an adapted 
BPMN process diagram representation that captures (i) key 
organisations as “pools” (blue boxes); (ii) key stakeholders 
involved as “swimlanes” (white boxes); (iii) key process tasks 
as yellow ovals; (iv) process start (green circle) and stop (red 
circle) points ; (v) decision points (diamonds) ; (vi) and process 
task flows links. The idea is to capture a range of high level, key 
data processing steps in the system. 

For this example, the smart city project starts when the 
team leaders from the city council share domain knowledge 
and the existing solutions as well as the parking data with the 
other stakeholders (top pool/swimlane). The project ends 
when the engineering team (bottom pool/swimlane), as the 
technology stakeholders, implement the required sensing 
technologies. These diagrams clarify the different 
responsibilities of stakeholders. In this example, the team 
working with the council and technology stakeholders is made 
up of several individuals with different responsibilities on the 
project. This includes Platform design, Platform integration, 
etc tasks. A decision point is modelled shown by diamonds 
with Y/N connectors specifying different conditions that can 
change the order and priority of the tasks performed. In this 
example, whether the platform is ready based on the results 
of the Testing task. 

Fig. 2. BiDaML Overview and notations 



For a different usage of these process diagrams, Figure 6 
shows a process diagram for part of the smart home scenario. 
Here, the clinician identifies a need for a smart home    
configuration for the elderly person. A “care plan” is set up for 
them which defines the monitoring to be undertaken, the 
devices to be used, and key tasks used to realise the 

monitoring. The smart home provider engineers do 
appropriate installations, configurations and device log 
monitoring. The elderly user – possibly with assistance – may 
set some preferences around the devices used, data captured, 
and give consent. Devices capture appropriate data and store 
it. Family and friends communicate with the elderly person via 

Fig. 3. Smart city brainstorming diagram 

Fig. 4. Smart home brainstorming diagram 



appropriate device(s). Some alerts are modelled - the clinician 
is alerted to health data parameters indicating a possible  
health issue. Engineers are informed of device malfunction. 
Friends are alerted when an elderly person misses a requested 
or scheduled connection. Some of the tasks are ongoing, such 
as Monitor Health and Monitor Logs and therefore, only have 
an ’N’ arrow, or are actually intermediate start/end events 
such as Initiate Talk Request and Accept Talk Request. 

Multiple process diagrams can be defined and can capture 
different perspectives on data-intensive system requirements. 
Some process diagrams may be very high-level, while others 
focus on more detailed processes and tasks within the system. 

V. DESIGN 

A. Data Management 
Data is a critical component of all data-intensive systems. 

Data is sourced, typically from a wide range of other systems, 

devices, users, and existing datasets. New data is synthesised 
when wrangling, integrating and harmonising diverse data 
sets. New data is also synthesised when applying data 
processing algorithms within the system. A BiDaML data 
diagram extends a task notation from the process or 
brainstorming diagrams with additional attributes or labels 
about data. This can include sources of data, algorithms used 
to manage data, and the key producers and consumers of 
specific data within the data-intensive system. 

A sample data diagram for our smart city project is shown in 
Figure 7. The task icon is reused from the brainstorming and 
process diagrams to show key producers/consumers of data. 
Data is represented as green dashed icons, models/code as 
blue icons, and reports as “clipboard” icons. In this data 
diagram, we focus on the algorithms associated with the smart 
parking subsystem. Here the task node titled 

Fig. 5. Smart city process diagram 



“Modelling/algorithms development” represents a project  
task relating to several models that need to be produced to 
support smart parking facilities. This task generates different 
models such as Parking occupancy model, Short term 
availability model, Long term availability model, and Turnover 
rate model. These models are then fed to the 
Prototype/deploy App task, which uses them to generate the 
corresponding data and reports to show on a smart parking 
app. 

 
Fig. 7. Smart city data diagram 

A data diagram used to model the movement monitoring 
aspect of the smart home is shown in Figure 8. Here we use 
the data captured from the movement and appliance sensors 
installed in the smart home to formulate a “behaviour model” 
over time of the elderly person. This behaviour model is then 

used by the alerting subsystem to determine anomalous 
situations that may require informing the elderly people 
themselves e.g. missed a meal or medication; their friends and 
family e.g. less movement than expected, missed meal or 
delayed activity indicating perhaps anxious or unwell; and 
carer or emergency services e.g. had a fall, no movement at 
all, in darkness but not gone to bed etc. 

 
Fig. 8. Smart home monitoring data diagram 

With brainstorming and process diagrams, we can define 
data diagrams at varying levels of detail, define multiple data 
diagrams for different aspects of the system, and drill down 
further into processes in terms of the way the data is obtained, 
wrangled, processed, stored etc. 

B. Data Processing 
We define a number of technique diagrams to specify the 

details of how data is processed using BiDaML. Technique 

Fig. 6. Smart home process diagram 



diagrams capture the choice of data transformation, 
wrangling, harmonisation, integration and processing 
approaches used in a data-intensive system. This includes the 
choice of feature selection, outlier identification, data 
preparation for input into a third-party library or package, 
post-processing extraction of data items, and choice of data 
analysis algorithms. Yellow ovals again represent tasks from 
brainstorming, process and/or data diagrams. Green hexagons 
represent technique choices and how these are chained 
together to implement the data processing required. 
Occasionally, techniques used produce errors, which are 
flagged by suitable alerts. 

Figure 9 shows a technique diagram for the smart city 
system again focusing on the smart parking aspects. In this 
diagram, Average parking duration, Bay occupancy, and 
Turnover rate are some example analyses used to realise the 
data analysis. The alert and tick icons attached to the 
techniques show whether these methods were useful or there 
were any issues in adopting them. We can create such 
diagrams for every task and sub-task in the brainstorming and 
process diagrams as needed. The techniques can be further 
broken down into sub-techniques used. 

 
Fig. 9. Smart city technique diagram 

 
Fig. 10. Smart home behaviour model technique diagram 

Figure 10 shows a technique diagram describing how the 
behaviour model will be built up from sensor and appliance 
usage information. In this technique implementation, we build 
up a movement event history model and correlate this with 

appliance usage and key locale information from within the 
smart home e.g. kitchen area, bathroom(s), bedroom(s), living 
room etc. We then use a Markov model to predict behavioural 
event sequences, durations and locations. This model is used 
to check if observed behaviour e.g. movement (or lack of), 
appliance usage (or lack of), etc do not correspond to the 
prediction of the model. 

VI. DEPLOYMENT 

We adapt the UML deployment diagram concept to 
describe how our data-intensive system components will be 
deployed in the field. We use BiDaML data, report and task 
icons to illustrate key locations in the deployment scenario. 
Devices, servers, networks etc can be modelled. Multiple 
deployment diagrams can be used to define complex systems 
from different perspectives. 

Figure 11 shows a part of the deployment diagram for the 
smart city project. Vertical stacking denotes layering of 
infrastructure nodes that describe the technology stack, e.g. a 
general computing infrastructure is used to run scheduler and 
workflow monitor that supports the Jupyter notebook server. 
Horizontal linkages, such as the Restful API/ODBC edge 
between the Service and Browser or Mobile, allow interactions 
between different technology stacks. Task nodes and 
attributes from other diagrams are mapped to infrastructure 
nodes that host them. For instance, the task node “Train 
models” and the attribute “Parking data” have incoming edges 
from the service node. 

Figure 12 shows an example deployment diagram for part 
of the smart home system. A smart home “edge server” – 
represented as a blue box – is used to communicate with the 
variety of sensors and interactors in the home. This also hosts 
several applications – represented as rounded rectangles e.g. 
Behaviour Modelling, Person Reminders. Data and models are 
stored on the edge server e.g. the synthesised behaviour 
model and raw activity, health and interaction data. A 
personal care plan for the elderly person is kept, developed by 
their clinician via their Care Plan Client application. A provider 
server hosts various servers and also holds obfuscated data 
about activities and health, used for population analysis 
purposes. Data from electronic medical records is obtained 
from e.g. an EPIC system. 

VII. TOOL SUPPORT 

BiDaML is equipped with an integrated design environment 
for creating its five diagrams. BiDaML tool support aims to 
provide a platform for efficiently producing BiDaML visual 
models and to facilitate their creation, display, editing, 
storage, code generation and integration with other tools. 
Once all the diagrams are created and connected, users can 
obtain outputs and share them with other stakeholders. There 
are currently two sets of outputs generated from the 
diagrams. First, a hierarchy of the graphs can be exported to 



Word and HTML from any of the diagrams. However, since all 
the subgraphs are connected together in the overview 
diagram, the most comprehensive report can be generated 
and exported to Word/HTML through the overview diagram. 
The second set of outputs are Python code/BigML API, and 
reports that are embedded in the tool and can be traced back. 

An example of the tool used for creating the brainstorming 
diagram for the smart city project as well as a template code 
generated for this example is shown in Figure 13. In this figure, 
users can (a) drag and drop notations, (b) double-click on the 
notations to rename or modify them, and finally (c) generate 
template Python code. Another example of the tool used for 
generating a report from the high-level diagram including all 
the diagrams created and how they are connected for the 
smart city project is shown in Figure 14. A report generated for 
this example is also shown in the right side. In this figure, users 
can (a) click on the “Generate” option, (b) choose “Export 
Graph Hierarchy to Word/HTML” to get a comprehensive 

report of all the diagrams and their explanations in 
Word/HTML format. 

VIII. DISCUSSION 

A. Experience to Date 
BiDaML has been applied to some other real-world, 

largescale applications as well, such as a property price 
prediction website for home buyers, a traffic analysis project, 
and in different health-related projects. Our aim was to 
evaluate and gain experience with applying our knowledge 
management method to conduct requirements analysis and 
modelling part of complex data analytics applications. We 
found that BiDaML successfully supports complex data-
intensive software systems in industrial settings and it has 
been practical to a variety of real-world large-scale 
applications. It helped communication and collaboration 
between team members from different backgrounds by 
providing a common platform with mutual language. 

Fig. 11. Smart city deployment diagram 

Fig. 12. Smart home deployment diagram 



Moreover, it helped identify and make agreements on details 
in the early stages and therefore, could potentially help reduce 
the cost and improve the speed of business understanding and 
requirement analysis stages. BiDaML Provides automatic 
documentation that can be re-used for retraining and 
updating of the models. Based on one of our users’ 
experience: “As the frequency of multidisciplinary, 
collaborative projects is increasing, there is a clear benefit with 
the use of (The tool) as a tool for designing data analytics 
processes. Furthermore, the automatic code generation 
capabilities of (The tool) would greatly aid those who do not 
have experience in large-scale data analysis. We do see use of 

(The tool) in this specific project and would be interested in 
seeing its results.” 

Based on our two smart home and smart city examples, 
users have the freedom to design BiDaML diagrams in 
different ways. For example, the smart city process diagram 
describes the design of the whole solution, whereas the smart 
home process diagram describes just the participant 
onboarding/monitoring process (e.g. there is no Software 
Engineer or Data Scientist involved). Process diagrams were 
initially designed in a way to cover all the steps and processes 
within all the organisations and participants, however, our 

Fig. 13. BiDaML Tool Support - Template Code Generation 

Fig. 14. BiDaML Tool Support - Report Generation 



experiences with these use cases showed that process 
diagram can be used in either manner (i.e. for development of 
the whole system, or just for documenting a process). 
Moreover, in developing the smart home brainstorming 
diagram, we had the issue of tasks that are ongoing (Monitor 
Health, Monitor Logs) so only have an ’N’ arrow, or are actually 
intermediate start/end events (Initiate Talk Request, Accept 
Talk Request). Therefore, in order to reduce the number of 
symbols needed in BiDaML, informal usage of the 
intermediate events allows different users to use and specify 
diagrams based on the preferences (i.e. unlike BPMN we just 
have start/end/alert rather than a full notation for formally 
specifying all the different kinds of intermediate events). 

There are some notable challenges we faced while working 
with industrial partners on these data analytics requirement 
engineering problems. 1) Our tool can be accessed by all the 
stakeholders in different geographical locations. However, our 
intervention has been required so far, as the current tool 
depends on MetaEdit+ modelling development tool [14] and a 
licence required to be purchased by users; 2) Users make 
benefits of the early requirement engineering part, however, 
they continue using existing tools or programming language to 
develop the ML and application development parts once they 
have completed the requirement analysis, modelling and 
planning part of the project. To overcome the first challenge, 
we are currently working on re-implementing the tool as a 
stand-alone web-based tool that users can work on 
individually without any help from us. To overcome the second 
challenge, we aim to develop integration to popular existing 
tools to encourage users to continue using our approach 
through the entire development of the final product. We see 
considerable scope for providing back end integration with 
data analytics tools such as Azure ML Studio1, RapidMiner2, 
KNIME3, etc. Our tool can be used at an abstract level during 
requirements analysis and design, and then connect to 
different tools at a low-level. Therefore, BiDaML DSVLs can be 
used to design, implement and control a data analytics 
solution [15]. 

B. Evaluation 
We have evaluated our BiDaML approach and toolset from 

three perspectives: 
• As above, we have applied the approach and toolset to 

model several real-world industrial projects. 
• A symbol-by-symbol evaluation of the cognitive 

effectiveness of the visual notation against established 
theoretical principles. This was performed using the 
Physics of Notations framework [16]. 

 
1 https://studio.azureml.net/ 
2 https://rapidminer.com/ 
3 https://www.knime.com/ 

• Two user research studies with data analysts/scientists 
and software engineers under controlled conditions. 

Physics of Notations: The BiDaML notations reuse and adapt 
concepts and notations from Statistics Design Language [17], 
BPMN [18], and UML [19]. However, we adapted these 
existing notations to ensure a consistent set of notations for 
BiDaML that were suited to the needs of multi-disciplinary 
teams of end users across multiple abstraction levels of 
modelling. In particular, to facilitate cognitive integration of 
the different diagrams, we reuse some of the same notational 
elements across the different types of BiDaML diagrams when 
they share a common concept. 

Using the Physics of Notations framework [16] we analysed 
each symbol in BiDaML to ensure it was visually distinct from 
other symbols (e.g. different shape and colour), semantically 
transparent (not likely to be misinterpreted), and represented 
a distinct concept. After our first evaluation [15], we 
performed a major revision of the notations and some of the 
concepts used [8]. Major updates included a better definition 
of concept meta-models, new improved notational elements 
for clarity and consistency, simplification of some diagram 
models and notations, and a variety of tool improvements. 

User research studies: Our first evaluation [15] performed a 
cognitive walkthrough with three data scientists and two 
software engineers to perform three predefined modelling 
tasks. Our second evaluation [8], performed using the revised 
version of BiDaML presented in this chapter, asked 12 target 
end-users to model a problem from their own domain. In this 
second evaluation we asked users to create both a BiDaML 
diagram, as well as a diagram using the notation (whether 
formal, textual, or ad-hoc) of their choice. This allowed us to 
contrast the strengths and limitations of BiDaML against other 
techniques. 

C. Strengths and Limitations 
Key strengths of our BiDaML approach as evidenced by our 

evaluations – trials on industry problems, controlled 
experiments and Physics of Notations-based analysis - include: 
suitability for a wide range of diverse data-intensive system 
stakeholders and developers; facilitating communications and 
collaborations between multidisciplinary team members; 
usefulness as a high-level brainstorming and data-intensive 
system requirements capture approach; assisting reuse of 
data analytics solutions on new projects and problems; and 
detailed knowledge capture from multiple perspectives of 
complex data-intensive system domains. 

Key limitations include: for some users, concepts and 
notational representations take some time to understand and 
use and terminology is different from their domain of 

 
 

 



expertise; limitations with code recommendation and code 
generation in the current toolset; limitations with supporting 
distributed collaborative teamwork in the current toolset; 
bridging the gap and supporting traceability between 
abstraction model specifications and detailed code solutions; 
keeping implementations consistent with BiDaML models; and 
recommending the most suitable data analytics techniques or 
similar solution implementations from BiDaML specification 
models. 

IX. SUMMARY 

We have described two contemporary case studies 
requiring data-intensive systems - a smart home to support 
ageing people and a smart city solution. Both have many 
challenges relating to data-intensive system knowledge 
management. We have described the use of our BiDaML suite 
of domain-specific visual languages to provide development 
teams a variety of modelling techniques to address these 
issues. We have discussed experience to date with BiDaML, its 
strengths and limitations, and identified a range of key future 
work directions to address these limitations. 
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