
Knowledge Management via Human-centric,

Domain-Specific Visual Languages for Data-
intensive Software Systems

John Grundy∗, Hourieh Khalajzadeh∗, Andrew J. Simmons†, Humphrey Obie∗, Mohamed
Abdelrazek†, John Hosking‡, Qiang He§

∗Faculty of Information Technology, Monash University, Melbourne, Australia
{john.grundy, hourieh.khalajzadeh, humphrey.obie}@monash.edu

†Faculty of Science, Engineering, and Built Environment, Deakin University, Melbourne, Australia
{a.simmons, mohamed.abdelrazek}@deakin.edu.au

‡Faculty of Science, University of Auckland, Auckland, New Zealand
j.hosking@auckland.ac.nz

§School of Software and Electrical Engineering, Swinburne University, Melbourne, Australia
qhe@swin.edu.au

Abstract—We describe the use of a suite of human-centric,

domain-specific visual languages to manage knowledge for data-
intensive systems. We use two exemplar system case studies – a
smart home to support ageing people and a set of smart city
technologies – to motivate the need for such an approach. We then
describe aspects of these two example systems from abstract
requirements to specific data analysis, implementation and
deployment choices using our BiDaML representation. We discuss the
strengths and limitations of the approach, and key directions for
further work in this area.

Index Terms—data-intensive systems; knowledge management
smart homes; smart cities; internet of things; human factors; domain-
specific visual languages

I. INTRODUCTION

Smart living applications are increasingly in demand. These
range from smart homes – for general-purpose use or specific
tasks e.g. supporting aged care, disability or rehabilitation;
smart transport systems; smart grid and other utility-oriented
systems; autonomous vehicles; ‘smart living’ robotics;
industry 4.0-supporting applications; smart hospitals and
schools; and smart buildings in general [1]–[3].

For example, Figure 1 shows two exemplar smart living
solutions, a smart home to support ageing people living in
their homes, and a smart urban environment. Both are
composed of a number of sensors and interactors. Both have
a range of diverse end users with diverse end user
requirements. The sensors generate significant amounts of
heterogeneous data that needs to be stored, processed, and
presented. Some of the data processing is done “on the edge”
[4]. Other is uploaded and done “on the cloud” [5]. These lead
to a need for careful algorithm selection for the data
processing, choice of deployment of algorithms, and

management of security, privacy, reliability, performance and
robustness constraints.

Fig. 1. Two smart living solution examples

Such systems come with a number of serious challenges in
the engineering of the system. By their very nature, they need
to incorporate a wide range of users and use cases, leading to
challenging requirements engineering tasks. This includes

John Grundy
Chapter in Knowledge Management in Development of Data-intensive Software Systems, CRC Press/Taylor & Francis, Dec 2020

determining the high-level requirements of the system, key
processes it needs to support, key data sources, data storage
and data processing, and required system and user
interactions [6]. Architecting such systems is challenging [7],
given the wide range of hardware and application software
platforms needed. Many design decisions relate to the data-
intensive nature of the system: how to obtain, wrangle,
transform, integrate, harmonise and store diverse data; choice
of machine learning techniques to process and extract key
information from the data; and appropriate large scale data
visualisation techniques needed to support diverse decision-
making.

We have developed a suite of domain-specific visual
languages to assist in supporting the development of such
data-intensive systems, BiDaML [8]. BiDaML provides a set of
visual languages to capture high level to detailed
requirements, data-oriented design decisions, deployment
scenarios, and detailed data representation and processing
formats and algorithms. In this chapter, we illustrate the use
of our BiDaML approach to support the development of two
exemplar smart living systems.

II. MOTIVATION

Consider the example from Figure 1 of a ‘smart home’ to
assist ageing people. Such a smart living solution aims to
provide ageing people with support for physical and mental
challenges as they age, but want to stay in their own home
longer and be safe and secure [9]. Key features of this system
– with a focus on the data-intensive system aspects – include,
but are not limited to:

• Sensors that detect the ageing person’s movements
throughout the smart home – data generated needs to
be stored, processed to determine regular behaviour
patterns; deviation from these can alert carers that the
elderly person is unwell, has a fall, etc.

• Sensors that detect device usage and activity e.g. stove,
lights, tap, fridge, etc – as above, this data is integrated,
possibly with movement data, to help build the
occupant’s behaviour profile. It may also be used to
support health-related reminders e.g. “Have you had a
glass of water
recently?”

• Health-related data capture via e.g. Bluetooth enabled
scales, blood pressure monitor, wearable, augmented
medicine container, etc – these can check the elderly
person is e.g. taking medication, there are no serious
outlier health indicators, and data can be shared with
remote clinician.

• Communication devices to connect to family, carer and
community, such as tablets, smart TVs, etc – these also
may provide important behaviour monitoring, but also
support connectedness and combat loneliness and
anxiety especially of living alone. – Smart home features

such as heating, lighting, windows, doors, etc., – these
support environment management especially for
physically challenged individuals.

Other smart living devices may be added or removed or
reconfigured. Other data analysis may be carried out with
multiple data input sources. Data privacy, physical and
electronic security, and reliability are all critical requirements
in this domain.

Smart cities have become a greatly increasing area of
research but also of practice [10]-[12]. Consider the example
from Figure 1 of a smart city solution which includes diverse
data feeds to assist urban precinct operation and strategic
planning. A local government instruments a wide variety of its
artefacts to assist in providing services and in overall planning
and management of services. These might include but are not
limited to:

• Smart parking – parking spaces and parking buildings
indicate free/occupied spaces. These may be used to
provide real-time parking space availability to users,
overstaying vehicles to traffic wardens, and over time
large scale parking usage statistics for urban planners.

• Smart lighting – which adapts to both ambient light and
weather conditions to save power, but also usage
information to reduce lighting when unused or increase
on demand as pedestrian movement is detected.

• Smart rubbish bins – these proactively monitor rubbish
bin space usage, smells, liquids and ask for collection
when needed. They also can give long term indications of
space usage for planning purposes.

• Space usage sensors – these detect pedestrian and
vehicular traffic and can be used to inform different
usage patterns according to date, time, correlation to
events etc.

• Traffic flow monitoring and control – these provide very
detailed information about road usage, and may provide
highly localised and adaptive control of vehicle traffic
lights and pedestrian crossings.

• Pedestrian activity including movement, density, use of
communal tables, chairs, benches, etc – these allow low
level monitoring and even proactive intervention e.g. to
help enforce social distancing for COVID-19, along with
larger-scale data analysis for the usage of footpaths,
crossings, communal facilities, blockages etc.

• Building usage and control – these provide the ability to
optimise building utility usage to reduce costs and
environment impact, and larger-scale data on usage,
access needs etc.

• Park management including smart watering systems
• Smart utility management

Local government is continually looking for ways to better
manage complex resources and balance demands of retailers,
pedestrians, vehicle users, manufacturers, householders etc.

Smart living solutions such as the above provide both low-
level, on-the-spot ways to monitor and control government
facilities, but also larger scale over time and distance analysis
of usage patterns and demand [13]. Unlike the smart home
scenario, the users are very large in number and very diverse.
The technologies are also more diverse, needing a wider range
and scale of platforms and networks to achieve. Privacy and
security issues still present but are both individual and group
challenges. Scaling to thousands of devices with very large
data capture, storage and processing become major
challenges.

In both of these systems, a range of stakeholders and
developers are needed to develop, deploy and maintain the
solution. These range from customers and end users,
managers, data scientists, software engineers and edge- and
cloud-platform engineers. Sometimes a very wide range of
these stakeholders are needed producing a wide variety of
heterogeneous devices, servers, networks, dashboards,
interfaces, etc. A critical need is for a knowledge management
approach that can support this diverse team.

III. APPROACH

To design data-intensive systems such as those above, we
developed the BiDaML suite of visual languages to model key
knowledge required [8]. BiDaML provides a set of domain-
specific visual languages using five diagram types at different
levels of abstraction to support key aspects of big data
analytics. These five diagram types cover the whole data
analytics software development life cycle from higher-level
requirement analysis and problem definition through the low-
level deployment of the final product. These five diagrammatic
types are:

• Brainstorming diagram provides an overview of a data
analytics project and all the tasks and sub-tasks that are
involved in designing the solution at a very high level.
Users can include comments and extra information for
the other stakeholders;

• Process diagrams specify the key analytics
processes/steps including key details related to the
participants (individuals and organisations), operations,
and conditions in a data analytics project capturing
details from a high-level to a lower-level;

• Technique diagrams show the step by step procedures
and processes for each sub-task in the brainstorming and
process diagrams at a low level of abstraction. They show
what techniques have been used or are planned to be
used and whether they were successful or there were any
issues;

• Data diagrams document the data and artifacts that are
produced in each of the above diagrams at a low level, i.e.
the technical AI-based layer. They also define in detail the
outputs associated with different tasks, e.g. output

information, reports, results, visualisations, and
outcomes;

• Deployment diagrams depict the run-time configuration,
i.e. the system hardware, the software installed on it, and
the middleware connecting different machines to each
other for development related tasks.

Figure 2 shows an overview of our BiDaML framework in the
left side and its notations on the right side. Users including
domain experts, business owner, data scientists, and software
engineers brainstorm, design and analyse the problem and
requirements by defining tasks through visual-based drag-
anddrop of the notations through a brainstorming diagram.
Business owners and business analysts with the help of the
other users would then create a process diagram by specifying
the details related to the organisations and participants
involved in the project. Users can generate reports and iterate
through the different aspects of the projects in order to come
up with a plan for the project. Data analysts and data scientists
will then focus on data, feature and model engineering parts
of the project by further breaking down the tasks to more
detailed tasks and connecting them to the data items and
techniques. Data analysts and data scientists can generate
Python code or connect to the ML tools’ APIs in this step. They
can embed their Python code to reuse in future projects in this
step. Once models are created and finalised, data analysts and
data scientists can work with the software engineers to walk
them through the models, how they work, the input and
outputs of the models and the requirements to access the
models.

In the following sections, we use the two representative
data-intensive system examples above to show how BiDaML is
used to capture and represent key knowledge needed to
successfully build each of the systems.

IV. HIGH-LEVEL REQUIREMENTS CAPTURE

A. Brainstorming

A brainstorming diagram is used to capture the key goals of
a data-intensive system expressed at a high-level. There are no
rules as to how abstractly or explicitly a context is expanded.
The diagram overviews a system in terms of the specific
problem it is associated with, and the tasks and subtasks to
solve the specific problem. It supports interactive
brainstorming and collaboration between interdisciplinary
team members to identify key aspects of a system such as its
requirements implications, analytical methodologies, and
specific tasks. Figure 3 shows the brainstorming diagram for
the smart city system.

In Figure 3, the root node, illustrated as a red hexagon,
represents the data analytics problem the project aims to
address, i.e. the smart city project. High-level tasks are
illustrated as orange ellipses with fixed pins to highlight their
importance. These include nodes labelled Define objectives,

Data collection, Data fusion, etc. All other tasks, which are
children of high-level tasks, are called low-level tasks. These
are drawn using yellow ellipses, such as KPIs for evaluation and
Collect data. A task (both high- or low-level) may be labelled
with useful information such as input files or comments for
carrying out the requisite tasks. For instance, the low-level
task Collect data is labelled by the input file input.csv.
Comments are illustrated as dialogue boxes with a broken
border.

Figure 4 shows the brainstorming diagram for the smart
home system. A red hexagon icon represents the Smart Home
system and the orange ellipses show the five key to-do tasks
with which the problem is associated. High-level tasks
connected directly to the problem are automatically changed
to bright orange notes with fixed pins to highlight their
importance. In this example, Monitor Activity is one of the key
high-level tasks which is further broken down to Sensor Data,
Appliance Data, and Health Data capture and processing tasks
as lower-level to-do tasks to achieve this. An input icon
representing the Activity Data is shown to be produced by this
Monitor Activity feature. Other key tasks that make up this
example smart home include Health Monitoring, support for
Anxiety Monitoring, supporting Connectedness to family,
friends and carers, and providing Alerts e.g. if collected and
processed behaviour data indicates the elderly person is
unwell.

These brainstorming diagrams provide a high-level
conceptual model of the overall system requirements. We drill
down from the tasks, subtasks and datasets to define more
details of the solution.

Process Definition

B. Process Definition

A high-level process diagram for our smart city use case is
shown in Figure 5. In this diagram type, we use an adapted
BPMN process diagram representation that captures (i) key
organisations as “pools” (blue boxes); (ii) key stakeholders
involved as “swimlanes” (white boxes); (iii) key process tasks
as yellow ovals; (iv) process start (green circle) and stop (red
circle) points ; (v) decision points (diamonds) ; (vi) and process
task flows links. The idea is to capture a range of high level, key
data processing steps in the system.

For this example, the smart city project starts when the
team leaders from the city council share domain knowledge
and the existing solutions as well as the parking data with the
other stakeholders (top pool/swimlane). The project ends
when the engineering team (bottom pool/swimlane), as the
technology stakeholders, implement the required sensing
technologies. These diagrams clarify the different
responsibilities of stakeholders. In this example, the team
working with the council and technology stakeholders is made
up of several individuals with different responsibilities on the
project. This includes Platform design, Platform integration,
etc tasks. A decision point is modelled shown by diamonds
with Y/N connectors specifying different conditions that can
change the order and priority of the tasks performed. In this
example, whether the platform is ready based on the results
of the Testing task.

Fig. 2. BiDaML Overview and notations

For a different usage of these process diagrams, Figure 6
shows a process diagram for part of the smart home scenario.
Here, the clinician identifies a need for a smart home
configuration for the elderly person. A “care plan” is set up for
them which defines the monitoring to be undertaken, the
devices to be used, and key tasks used to realise the

monitoring. The smart home provider engineers do
appropriate installations, configurations and device log
monitoring. The elderly user – possibly with assistance – may
set some preferences around the devices used, data captured,
and give consent. Devices capture appropriate data and store
it. Family and friends communicate with the elderly person via

Fig. 3. Smart city brainstorming diagram

Fig. 4. Smart home brainstorming diagram

appropriate device(s). Some alerts are modelled - the clinician
is alerted to health data parameters indicating a possible
health issue. Engineers are informed of device malfunction.
Friends are alerted when an elderly person misses a requested
or scheduled connection. Some of the tasks are ongoing, such
as Monitor Health and Monitor Logs and therefore, only have
an ’N’ arrow, or are actually intermediate start/end events
such as Initiate Talk Request and Accept Talk Request.

Multiple process diagrams can be defined and can capture
different perspectives on data-intensive system requirements.
Some process diagrams may be very high-level, while others
focus on more detailed processes and tasks within the system.

V. DESIGN

A. Data Management
Data is a critical component of all data-intensive systems.

Data is sourced, typically from a wide range of other systems,

devices, users, and existing datasets. New data is synthesised
when wrangling, integrating and harmonising diverse data
sets. New data is also synthesised when applying data
processing algorithms within the system. A BiDaML data
diagram extends a task notation from the process or
brainstorming diagrams with additional attributes or labels
about data. This can include sources of data, algorithms used
to manage data, and the key producers and consumers of
specific data within the data-intensive system.

A sample data diagram for our smart city project is shown in
Figure 7. The task icon is reused from the brainstorming and
process diagrams to show key producers/consumers of data.
Data is represented as green dashed icons, models/code as
blue icons, and reports as “clipboard” icons. In this data
diagram, we focus on the algorithms associated with the smart
parking subsystem. Here the task node titled

Fig. 5. Smart city process diagram

“Modelling/algorithms development” represents a project
task relating to several models that need to be produced to
support smart parking facilities. This task generates different
models such as Parking occupancy model, Short term
availability model, Long term availability model, and Turnover
rate model. These models are then fed to the
Prototype/deploy App task, which uses them to generate the
corresponding data and reports to show on a smart parking
app.

Fig. 7. Smart city data diagram

A data diagram used to model the movement monitoring
aspect of the smart home is shown in Figure 8. Here we use
the data captured from the movement and appliance sensors
installed in the smart home to formulate a “behaviour model”
over time of the elderly person. This behaviour model is then

used by the alerting subsystem to determine anomalous
situations that may require informing the elderly people
themselves e.g. missed a meal or medication; their friends and
family e.g. less movement than expected, missed meal or
delayed activity indicating perhaps anxious or unwell; and
carer or emergency services e.g. had a fall, no movement at
all, in darkness but not gone to bed etc.

Fig. 8. Smart home monitoring data diagram

With brainstorming and process diagrams, we can define
data diagrams at varying levels of detail, define multiple data
diagrams for different aspects of the system, and drill down
further into processes in terms of the way the data is obtained,
wrangled, processed, stored etc.

B. Data Processing
We define a number of technique diagrams to specify the

details of how data is processed using BiDaML. Technique

Fig. 6. Smart home process diagram

diagrams capture the choice of data transformation,
wrangling, harmonisation, integration and processing
approaches used in a data-intensive system. This includes the
choice of feature selection, outlier identification, data
preparation for input into a third-party library or package,
post-processing extraction of data items, and choice of data
analysis algorithms. Yellow ovals again represent tasks from
brainstorming, process and/or data diagrams. Green hexagons
represent technique choices and how these are chained
together to implement the data processing required.
Occasionally, techniques used produce errors, which are
flagged by suitable alerts.

Figure 9 shows a technique diagram for the smart city
system again focusing on the smart parking aspects. In this
diagram, Average parking duration, Bay occupancy, and
Turnover rate are some example analyses used to realise the
data analysis. The alert and tick icons attached to the
techniques show whether these methods were useful or there
were any issues in adopting them. We can create such
diagrams for every task and sub-task in the brainstorming and
process diagrams as needed. The techniques can be further
broken down into sub-techniques used.

Fig. 9. Smart city technique diagram

Fig. 10. Smart home behaviour model technique diagram

Figure 10 shows a technique diagram describing how the
behaviour model will be built up from sensor and appliance
usage information. In this technique implementation, we build
up a movement event history model and correlate this with

appliance usage and key locale information from within the
smart home e.g. kitchen area, bathroom(s), bedroom(s), living
room etc. We then use a Markov model to predict behavioural
event sequences, durations and locations. This model is used
to check if observed behaviour e.g. movement (or lack of),
appliance usage (or lack of), etc do not correspond to the
prediction of the model.

VI. DEPLOYMENT

We adapt the UML deployment diagram concept to
describe how our data-intensive system components will be
deployed in the field. We use BiDaML data, report and task
icons to illustrate key locations in the deployment scenario.
Devices, servers, networks etc can be modelled. Multiple
deployment diagrams can be used to define complex systems
from different perspectives.

Figure 11 shows a part of the deployment diagram for the
smart city project. Vertical stacking denotes layering of
infrastructure nodes that describe the technology stack, e.g. a
general computing infrastructure is used to run scheduler and
workflow monitor that supports the Jupyter notebook server.
Horizontal linkages, such as the Restful API/ODBC edge
between the Service and Browser or Mobile, allow interactions
between different technology stacks. Task nodes and
attributes from other diagrams are mapped to infrastructure
nodes that host them. For instance, the task node “Train
models” and the attribute “Parking data” have incoming edges
from the service node.

Figure 12 shows an example deployment diagram for part
of the smart home system. A smart home “edge server” –
represented as a blue box – is used to communicate with the
variety of sensors and interactors in the home. This also hosts
several applications – represented as rounded rectangles e.g.
Behaviour Modelling, Person Reminders. Data and models are
stored on the edge server e.g. the synthesised behaviour
model and raw activity, health and interaction data. A
personal care plan for the elderly person is kept, developed by
their clinician via their Care Plan Client application. A provider
server hosts various servers and also holds obfuscated data
about activities and health, used for population analysis
purposes. Data from electronic medical records is obtained
from e.g. an EPIC system.

VII. TOOL SUPPORT

BiDaML is equipped with an integrated design environment
for creating its five diagrams. BiDaML tool support aims to
provide a platform for efficiently producing BiDaML visual
models and to facilitate their creation, display, editing,
storage, code generation and integration with other tools.
Once all the diagrams are created and connected, users can
obtain outputs and share them with other stakeholders. There
are currently two sets of outputs generated from the
diagrams. First, a hierarchy of the graphs can be exported to

Word and HTML from any of the diagrams. However, since all
the subgraphs are connected together in the overview
diagram, the most comprehensive report can be generated
and exported to Word/HTML through the overview diagram.
The second set of outputs are Python code/BigML API, and
reports that are embedded in the tool and can be traced back.

An example of the tool used for creating the brainstorming
diagram for the smart city project as well as a template code
generated for this example is shown in Figure 13. In this figure,
users can (a) drag and drop notations, (b) double-click on the
notations to rename or modify them, and finally (c) generate
template Python code. Another example of the tool used for
generating a report from the high-level diagram including all
the diagrams created and how they are connected for the
smart city project is shown in Figure 14. A report generated for
this example is also shown in the right side. In this figure, users
can (a) click on the “Generate” option, (b) choose “Export
Graph Hierarchy to Word/HTML” to get a comprehensive

report of all the diagrams and their explanations in
Word/HTML format.

VIII. DISCUSSION

A. Experience to Date
BiDaML has been applied to some other real-world,

largescale applications as well, such as a property price
prediction website for home buyers, a traffic analysis project,
and in different health-related projects. Our aim was to
evaluate and gain experience with applying our knowledge
management method to conduct requirements analysis and
modelling part of complex data analytics applications. We
found that BiDaML successfully supports complex data-
intensive software systems in industrial settings and it has
been practical to a variety of real-world large-scale
applications. It helped communication and collaboration
between team members from different backgrounds by
providing a common platform with mutual language.

Fig. 11. Smart city deployment diagram

Fig. 12. Smart home deployment diagram

Moreover, it helped identify and make agreements on details
in the early stages and therefore, could potentially help reduce
the cost and improve the speed of business understanding and
requirement analysis stages. BiDaML Provides automatic
documentation that can be re-used for retraining and
updating of the models. Based on one of our users’
experience: “As the frequency of multidisciplinary,
collaborative projects is increasing, there is a clear benefit with
the use of (The tool) as a tool for designing data analytics
processes. Furthermore, the automatic code generation
capabilities of (The tool) would greatly aid those who do not
have experience in large-scale data analysis. We do see use of

(The tool) in this specific project and would be interested in
seeing its results.”

Based on our two smart home and smart city examples,
users have the freedom to design BiDaML diagrams in
different ways. For example, the smart city process diagram
describes the design of the whole solution, whereas the smart
home process diagram describes just the participant
onboarding/monitoring process (e.g. there is no Software
Engineer or Data Scientist involved). Process diagrams were
initially designed in a way to cover all the steps and processes
within all the organisations and participants, however, our

Fig. 13. BiDaML Tool Support - Template Code Generation

Fig. 14. BiDaML Tool Support - Report Generation

experiences with these use cases showed that process
diagram can be used in either manner (i.e. for development of
the whole system, or just for documenting a process).
Moreover, in developing the smart home brainstorming
diagram, we had the issue of tasks that are ongoing (Monitor
Health, Monitor Logs) so only have an ’N’ arrow, or are actually
intermediate start/end events (Initiate Talk Request, Accept
Talk Request). Therefore, in order to reduce the number of
symbols needed in BiDaML, informal usage of the
intermediate events allows different users to use and specify
diagrams based on the preferences (i.e. unlike BPMN we just
have start/end/alert rather than a full notation for formally
specifying all the different kinds of intermediate events).

There are some notable challenges we faced while working
with industrial partners on these data analytics requirement
engineering problems. 1) Our tool can be accessed by all the
stakeholders in different geographical locations. However, our
intervention has been required so far, as the current tool
depends on MetaEdit+ modelling development tool [14] and a
licence required to be purchased by users; 2) Users make
benefits of the early requirement engineering part, however,
they continue using existing tools or programming language to
develop the ML and application development parts once they
have completed the requirement analysis, modelling and
planning part of the project. To overcome the first challenge,
we are currently working on re-implementing the tool as a
stand-alone web-based tool that users can work on
individually without any help from us. To overcome the second
challenge, we aim to develop integration to popular existing
tools to encourage users to continue using our approach
through the entire development of the final product. We see
considerable scope for providing back end integration with
data analytics tools such as Azure ML Studio1, RapidMiner2,
KNIME3, etc. Our tool can be used at an abstract level during
requirements analysis and design, and then connect to
different tools at a low-level. Therefore, BiDaML DSVLs can be
used to design, implement and control a data analytics
solution [15].

B. Evaluation
We have evaluated our BiDaML approach and toolset from

three perspectives:
• As above, we have applied the approach and toolset to

model several real-world industrial projects.
• A symbol-by-symbol evaluation of the cognitive

effectiveness of the visual notation against established
theoretical principles. This was performed using the
Physics of Notations framework [16].

1 https://studio.azureml.net/
2 https://rapidminer.com/
3 https://www.knime.com/

• Two user research studies with data analysts/scientists
and software engineers under controlled conditions.

Physics of Notations: The BiDaML notations reuse and adapt
concepts and notations from Statistics Design Language [17],
BPMN [18], and UML [19]. However, we adapted these
existing notations to ensure a consistent set of notations for
BiDaML that were suited to the needs of multi-disciplinary
teams of end users across multiple abstraction levels of
modelling. In particular, to facilitate cognitive integration of
the different diagrams, we reuse some of the same notational
elements across the different types of BiDaML diagrams when
they share a common concept.

Using the Physics of Notations framework [16] we analysed
each symbol in BiDaML to ensure it was visually distinct from
other symbols (e.g. different shape and colour), semantically
transparent (not likely to be misinterpreted), and represented
a distinct concept. After our first evaluation [15], we
performed a major revision of the notations and some of the
concepts used [8]. Major updates included a better definition
of concept meta-models, new improved notational elements
for clarity and consistency, simplification of some diagram
models and notations, and a variety of tool improvements.

User research studies: Our first evaluation [15] performed a
cognitive walkthrough with three data scientists and two
software engineers to perform three predefined modelling
tasks. Our second evaluation [8], performed using the revised
version of BiDaML presented in this chapter, asked 12 target
end-users to model a problem from their own domain. In this
second evaluation we asked users to create both a BiDaML
diagram, as well as a diagram using the notation (whether
formal, textual, or ad-hoc) of their choice. This allowed us to
contrast the strengths and limitations of BiDaML against other
techniques.

C. Strengths and Limitations
Key strengths of our BiDaML approach as evidenced by our

evaluations – trials on industry problems, controlled
experiments and Physics of Notations-based analysis - include:
suitability for a wide range of diverse data-intensive system
stakeholders and developers; facilitating communications and
collaborations between multidisciplinary team members;
usefulness as a high-level brainstorming and data-intensive
system requirements capture approach; assisting reuse of
data analytics solutions on new projects and problems; and
detailed knowledge capture from multiple perspectives of
complex data-intensive system domains.

Key limitations include: for some users, concepts and
notational representations take some time to understand and
use and terminology is different from their domain of

expertise; limitations with code recommendation and code
generation in the current toolset; limitations with supporting
distributed collaborative teamwork in the current toolset;
bridging the gap and supporting traceability between
abstraction model specifications and detailed code solutions;
keeping implementations consistent with BiDaML models; and
recommending the most suitable data analytics techniques or
similar solution implementations from BiDaML specification
models.

IX. SUMMARY

We have described two contemporary case studies
requiring data-intensive systems - a smart home to support
ageing people and a smart city solution. Both have many
challenges relating to data-intensive system knowledge
management. We have described the use of our BiDaML suite
of domain-specific visual languages to provide development
teams a variety of modelling techniques to address these
issues. We have discussed experience to date with BiDaML, its
strengths and limitations, and identified a range of key future
work directions to address these limitations.

ACKNOWLEDGMENT

Grundy and Khalajzadeh are supported by an Australian
Laureate Fellowship FL190100035, and parts of this work have
been supported by ARC Discovery Project DP170101932 and
ARC ITRH IH170100013.

REFERENCES

[1] J. Al-Jaroodi and N. Mohamed, “Service-oriented architecture for big
data analytics in smart cities,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2018,
pp. 633–640.

[2] A. De Iasio, A. Futno, L. Goglia, and E. Zimeo, “A microservices platform
for monitoring and analysis of iot traffic data in smart cities,” in 2019
IEEE International Conference on Big Data (Big Data). IEEE, 2019, pp.
5223–5232.

[3] J. Grundy, K. Mouzakis, R. Vasa, A. Cain, M. Curumsing, M. Abdelrazek,
and N. Fernando, “Supporting diverse challenges of ageing with digital
enhanced living solutions,” in Global Telehealth Conference 2017. IOS
Press, 2018, pp. 75–90.

[4] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38–43, 2017.

[5] Y. Liu, C. Yang, L. Jiang, S. Xie, and Y. Zhang, “Intelligent edge computing
for iot-based energy management in smart cities,” IEEE Network, vol. 33,
no. 2, pp. 111–117, 2019.

[6] A. Cleve, T. Mens, and J.-L. Hainaut, “Data-intensive system evolution,”
Computer, no. 8, pp. 110–112, 2010.

[7] C. A. Mattmann, D. J. Crichton, S. Hughes, S. C. Kelly, and M. Paul,
“Software architecture for large-scale, distributed, data-intensive
systems,” in Proceedings. Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA 2004). IEEE, 2004, pp. 255–264.

[8] H. Khalajzadeh, A. Simmons, M. Abdelrazek, J. Grundy, J. Hosking, and
Q. He, “An end-to-end model-based approach to support big data
analytics development,” Journal of Computer Languages, p. 100964,
2020.

[9] M. K. Curumsing, N. Fernando, M. Abdelrazek, R. Vasa, K. Mouzakis, and
J. Grundy, “Understanding the impact of emotions on software: A case
study in requirements gathering and evaluation,” Journal of Systems and
Software, vol. 147, pp. 215–229, 2019.

[10] A. Fensel, D. K. Tomic, and A. Koller, “Contributing to appliances? energy
efficiency with internet of things, smart data and user engagement,”
Future Generation Computer Systems, vol. 76, pp. 329–338, 2017.

[11] L. Mora, R. Bolici, and M. Deakin, “The first two decades of smartcity
research: A bibliometric analysis,” Journal of Urban Technology, vol. 24,
no. 1, pp. 3–27, 2017.

[12] Z. Rashid, J. Melia-Segu` ́ ı, R. Pous, and E. Peig, “Using augmented reality
and internet of things to improve accessibility of people with motor
disabilities in the context of smart cities,” Future Generation Computer
Systems, vol. 76, pp. 248–261, 2017.

[13] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon, T.
A. Pardo, and H. J. Scholl, “Understanding smart cities: An integrative
framework,” in 2012 45th Hawaii international conference on system
sciences. IEEE, 2012, pp. 2289–2297.

[14] J.-P. Tolvanen, R. Pohjonen, and S. Kelly, “Advanced tooling for
domainspecific modeling: Metaedit+,” in Sprinkle, J., Gray, J., Rossi, M.,
Tolvanen, JP (eds.) The 7th OOPSLA Workshop on Domain-Specific
Modeling, Finland, 2007.

[15] H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He, “Bidaml:
A suite of visual languages for supporting end-user data analytics,” in
2019 IEEE International Congress on Big Data (BigDataCongress). IEEE,
2019, pp. 93–97.

[16] D. Moody, “The “physics” of notations: toward a scientific basis for
constructing visual notations in software engineering,” IEEE
Transactions on software engineering, vol. 35, no. 6, pp. 756–779, 2009.

[17] C. H. Kim, J. Grundy, and J. Hosking, “A suite of visual languages for
model-driven development of statistical surveys and services,” Journal
of Visual Languages & Computing, vol. 26, pp. 99–125, 2015.

[18] M. Chinosi and A. Trombetta, “Bpmn: An introduction to the standard,”
Computer Standards & Interfaces, vol. 34, no. 1, pp. 124–134, 2012.

[19] M. Fowler and U. Distilled, “A brief guide to the standard object
modeling language,” 2003.

