
A Generalised Event Handling Framework
Karen Li, John Hosking, John Grundy

Departments of Computer Science and Electrical and Computer Engineering,
University of Auckland,

Private Bag 92019, Auckland, New Zealand
{Karen, john, john-g}@cs.auckland.ac.nz

ABSTRACT
In earlier work we have developed three domain specific visual
approaches for event-based system specification. The first,
ViTABaL-WS, uses the Tool Abstraction (TA) metaphor to
support specification of web services composition via higher level
data and control flows and generation of BPEL4WS code. The
second, Kaitiaki, uses an Event-Query-Filter-Action (EQFA)
metaphor to allow visual primitives composition and java code
generation for diagramming tool event handlers. The third,
MaramaTatau, uses a spreadsheet-like metaphor to construct
meta-model formulae visually to specify structural dependencies
and constraints to be realised at runtime. We propose an
integrated visual approach that is generalised from these three
explored exemplar approaches to specify event handling
behaviours. We derive a canonical event handling model which
enables interoperability between these exemplar event models,
with also the support for synthesised runtime visualisation. This
paper discusses the requirements and design of the resulting
general purpose event handling framework, its evaluation and
some key future directions.

1. INTRODUCTION
The event-driven paradigm is widely used in a range of
application domains due to its flexibility for constructing dynamic
system interactions. Visual approaches, compared to custom code
writing, have shown their advantages in minimising design and
implementation effort and improving understandability of
programs [1, 2, 4, 6, 10]. This suggests that a visual language that
supports event integration specification is likely to be a positive
approach for the design and construction of a complex event-
based system. Visualisation support (tool support) for the event
propagations in a running system is also necessary in order to
allow users to track and control the system execution behaviour
[5, 9]. Using different high-level visual metaphors for event-
handling support and providing backend processing tool support
for event integration specification were our main objectives in the
work presented here. Based on in-depth research on current event
handling techniques including custom scripting, constraint-based
programming models and meta-model tool event handling
metaphors, our initial goal was to develop three exemplar domain-
specific visual languages to examine event handler specification
issues in different domains at different level of abstractions. We
have previously described each of these exemplars [13-15].
ViTABaL-WS was developed for the event-based web services
composition domain to provide a high-level visual language for
the design and construction of Tool Abstraction action-event-
based architecture. Kaitiaki was developed for diagramming-based
design tools event handling domain to provide an intermediate
level extensible Event-Query-Filter-Action language for
responding to propagated events. MaramaTatau was developed to

look at visual declarative constraint specifications that map to
meta-model elements using OCL with a simple spreadsheet-like
interface, and it has an implementation level abstraction. The
subsequent goal was to generalise from them to a visual metaphor
and an environment for specifying general event handling
integration. In achieving this our aim was that the general visual
metaphor should be able to adapt the event-based communication
model to a wide range of application domains, and also support
complex and interactive system design and implementation.

Roberts and Johnson proposed a set of patterns that are used
together as a pattern language for developing and evolving object-
oriented frameworks [18]. The leading pattern is Three Examples,
which denotes that abstractions can be well developed by
generalising from concrete examples. The pattern suggests that
three examples should be initially used, in either succession or
parallel, to establish a framework by identifying common,
reusable abstractions, and more examples are to be explored to
make the framework more general. This is used as our basis for
generalising our event handling frameworks.

The EASY (Event Abstraction SYstem) framework [8] was a prior
attempt to generalise a unified event-based software architecture
from the synthesis of a set of event handling elements defined in
Change Propagation and Response Graphs (CPRGs) [7],
ViTABaL [5] and Serendipity [6]. CPRGs can effectively describe
state-change events and the structural aspects of event-based
software architectures. ViTABaL supports visual representation of
propagations of action events between software components.
Serendipity allows event filtering and response mechanisms to be
specified in a graphical way. EASY unifies the handling of
CPRGs’ state-change events and ViTABaL’s action events by
incorporating Serendipity’s event response abilities. The
advantages of the three visual languages, including their visual
description capabilities for both structural aspects and dynamic
behaviours of event-based architectures, are combined to provide
a more general architecture description language that supports
wider-ranging event-based architecture design and
implementation. Figure 1 shows an EASY example, which has
CPRGs’ components and relationships as the backbone,
ViTABaL’s specification of data and toolie interconnectivity, and
Serendipity’s specification of event handling using filters and
actions.

We aimed to generalise our event integration framework using the
Evolving Framework Pattern Language approach [18] and
following the EASY [8] framework as an example. In this paper,
we begin by revisiting the three exemplars to introduce some
context for the following discussion. We then describe the
requirements and our high level approach before examining the
details of generalisation. We then describe our evaluation
techniques and conclude with a reiteration of current research
directions.

jgrundy
KISS Workshop, Workshop at 2009 IEEE/ACM Automated Software Engineering Conference, Auckland, New Zealand, 17 Nov 2009.

jgrundy

Figure 1. Merging CPRGs organization, ViTABaL event propagation and Serendipity event filtering/action. [8]

2. THE THREE EXAMPLES
Our three examples looked at visual metaphoric specifications of
event handling behaviours in the areas of web services and
business process composition, GUI event handling, and
constraint-based meta-modelling. We briefly review the event
propagation model features and the building blocks defined for
each of ViTABaL-WS, Kaitiaki and MaramaTatau, to introduce
some context before we illustrate our design of generalising them
to a common set of primitives and abstractions.

ViTABaL-WS uses a Tool Abstraction [5] metaphor for
describing relationships between service definitions in multiple
views. It supports modelling of complex interactions between web
service components, plus code generation and visualisation of
running systems.

ViTABaL-WS model views describe the interconnections between
toolies and abstract data structures (ADSs). These
interconnections can be annotated with different type of data flow,
control flow, and event flow connections. Different kinds of
subscribe-notify event propagations including one way broadcast,
request-response, listen-before and listen-after can be used
between the connected toolies and ADSs. Toolies encapsulate
behaviour in that they respond to events to carry out some system
function. ADSs encapsulate data and respond to events to store,
retrieve or modify data [5, 13].

Modified toolies or ADSs broadcast to all their inter-connected
components about the change. Receiving components interpret the
change descriptions and modify their state or execute actions
accordingly with possible further change descriptions to be
generated [5]. ViTABaL provides an architecture description
language for the event-based Tool Abstraction paradigm.
ViTABaL-WS includes a few more building blocks to control
event-based behaviour by specifying roles, sequences, decisions,
type transformations, iterations, and transactions. Figure 2 shows
an exemplar ViTABaL-WS event propagation view (generated in
Marama [10]) that specifies a set of subscribe-notify event
propagations between toolies (Marama library functions) and
ADSs (Marama shared data structures).

Figure 2. ViTABaL-WS event propagation specification.

Kaitiaki provides end users ways to express event handling
mechanisms via visual specifications. It uses an “Event-Query-
Filter-Action” metaphor for describing behaviours for
diagramming-based design tools and multiple-views of data flow
in a modelled process. Kaitiaki supports building up complex
event handlers in parts, providing the representation of:

 key “building blocks” of state query, data filtering and state
modification,

 event objects and their attributes,
 data propagation between event, query, filter and action

representations, and
 iteration and conditional data flow

While ViTABaL-WS visually describes only the event-based
inter-connections between abstract components with the lack of
event responses, Kaitiaki’s events, filters, queries and actions
provide a visual design level notation for specifying event
handling mechanisms.

Kaitiaki provides graphical views for specifying handling of both
built-in and customised state-change and action events via
queries, filters and actions. Queries select data from a common

model repository. Filters apply pattern-matching to incoming data,
passing matching data to other queries/filters/actions. Actions
execute operations which may modify incoming data, display
information, or generate new events. Concrete end user domain
icons can be added to mitigate the abstraction and make the
specification more readable. Figure 3 shows an exemplar Kaitiaki
event handler specification (generated in Marama) for aligning
diagram shapes (a) and its runtime execution effect (b). The
handler responds to a “shapeAdded” event, filters out the
“TableShape”, and then aligns the newly added “TableShape”
with the existing ones that are queried from the diagram.

(a)

(b)

Figure 3. Kaitiaki event handler specification (a) and its
runtime execution effect (b).

The Marama framework [10] provides Eclipse-based editors for
Pounamu [19] generated domain-specific modelling
environments. It contains a set of classes, attributes, methods,
relationships and events. The framework is packaged into three
major parts: model, editor and reusable handlers, in the style of a
model-view-controller based separation of implementation
concerns. These reusable framework elements support easy
creation, modification and extension for building domain-specific
modelling environments.

Marama provides a rich structural notation for specifying tool
architecture/meta-model via an entity-relationship mechanism.
MaramaTatau is used to specify value dependencies and
modelling constraints upon these Marama structural
specifications. Though was initially designed for constraining
entity-relationship based meta-models, MaramaTatau has evolved
to be usable with any Marama view type specifications.

MaramaTatau uses a declarative spreadsheet-like approach to
construct meta-model formulae to extend behaviour specification
of visual design tools including the specification of property-
change event handling and executable query/action constraints.
Value dependencies and modelling constraints are state-change
events to be handled in MaramaTatau via a uni-directional
change-propagation with side-effect extensions to dependent
components. A formula is constructed visually by clicking on
entity-relationship meta-model elements (i.e. entity type,
association type, and attribute) and a list of library provided OCL-
based functions. Dependency links are added to annotate
explicitly the relationships of inter-dependent elements. Formula
construction is similar to a spreadsheet but expressed at a type
rather than an instance level. The visually specified values at
meta-model level are propagated from sources to dependent
targets and interpreted at runtime in selected model views. Figure
4 demonstrates its use in specifying an entity invariant constraint.

self.requests->size()<>0

(a)

(b)

Figure 4. MaramaTatau constrain specification (a) and its
runtime execution effect (b).

In Figure 4 (a) we have extended a service-oriented architecture
model with a constraint specifying that every service instance
must serve at least one service request. This is expressed as a
constraint on the Service entity, with OCL expression
“self.requests->size()<>0”, shown in the overlay.
When this formula evaluates false for a service in a model
instance, e.g. the “cancelBooking” service of the
“bookingService” remote object in Figure 4 (b), a constraint
violation error is generated, with a problem marker representation
appeared in the Eclipse Problems view (shown below) to provide
the user details of the violated constraint. In this case, to solve the
identified error, the user needs to add a Request entity for the

identified service. When this is done, the constraint evaluates to
true and the constraint error is removed from the Problems view.

3. REQUIREMENTS AND APPROACH
The generalisation of the integrated event handling framework
requires a variety of specialised modules to contribute to the
framework capability and complexity. We have identified
similarities in our three examples, and these include a set of event
handling modules and the representations of data flows and event
dependencies among their visual building blocks. The similarities
can be generalised to a common model representation to allow
better reuse and easier extension. Some event handlers can be
specified in multiple ways using ViTABaL-WS, Kaitiaki or
MaramaTatau. Users may choose to use their favoured metaphor
and may also combine their specifications in multiple ways.
Multiple tools are useful for developers in that they provide
abstractions for separately and progressively modelling a software
system using different views and representations. The developers
can specify the structure and behaviour of a model in parts then
integrate them to generate dynamic environments with various
constraints enforced.

A general purpose event handling framework should provide
reusable design and implementation for a wide-range of event-
based applications. From our previous work, we have identified
common issues in our current event handling specification and
visualisation techniques. From this, we elaborate a set of
requirements for the generalisation of our event handling
integration framework:

 The generalised framework should incorporate compositional
primitives as building blocks and different communication
relationships between them. It also should contain
mapping/integration schemes as a crossover between
ViTABaL-WS, Kaitiaki and MaramaTatau, and possibly
other limited-domain event handling models in the future.

 The common model representation needs to be identified
from the specialised modules from ViTABaL-WS, Kaitiaki
and MaramaTatau. The relationships among the modules
need to be established so that the modules can collaborate
with one another. Duplications need to be removed so that
the common model is redundancy free.

 The generalised framework needs to offer graphical notations
in the style of the three metaphoric exemplars, together with
additional textual notations to allow users to escape to code
when specifying complex custom behaviours such as code
generation.

 The generalised integrated framework must contain reusable
designs to allow users to initialise their system and should
allow users to specify customised event types, event
generators, event receivers and event handling building
blocks to enhance the extensibility and flexibility of the
framework.

 Multiple views of data, event and behaviour representations
must be kept consistent at both the model and user interface
levels to ensure the correctness of generated environments.

 The generalised framework should support further tool
integration via a canonical data/event model extension and
consistent user interfaces.

 The generalised framework should provide mechanisms to
allow easy navigation from one view of the specification to
another.

 Though visual languages are more self descriptive than
textual languages, the framework should still provide support
for detailed documentation of modelling elements.

 The generalised framework should allow event propagations
to be traced and event handling results to be visualised in
running systems based on a user interactive visual debugging
model.

Our generalisation approach employs the Evolving Frameworks
Pattern Language [18]. By abstracting from the three earlier,
limited-domain exemplars, a general meta-model representation
that combines atomic primitives (either shared or non-shared)
extended by the three visual languages is defined. This common
model supports multiple metaphoric views in the style of the three
exemplars and will support generation to a range of underlying
implementation technologies for execution or interpretation.

Kaitiaki

ViTABaL-WS

MaramaTatau
.
.
.

.

.

.

R
el

at
io

ns
hi

p

OCL (exec by Eclipse OCL)

BPEL4WS (exec by BPWS4J)

RuleML (exec by RuleML)

RuleML (exec by
RuleML)

.

.

.

.

.

.

Generalise Adapted to

Visual domain
models/dependencies

A General Purpose
Event Handling Framework

Domain model languages

Stylesheet

Canonical
event model

Figure 5. A general purpose event handling framework.
The generalisation method that we exploit can be illustrated in
Figure 5. The three visual domain models ViTABaL-WS, Kaitiaki
and MaramaTatau on the left of Figure 5 can be integrated based
on their metaphorical supplement and their common abstraction
and dependency relationships. ViTABaL-WS’s Tool Abstraction
metaphor is used to define high-level abstract data and functions
and their coordination, where abstract data is further constrained
using MaramaTatau’s spreadsheet metaphor, and abstract
functions are further refined via Kaitiaki’s Event-Query-Filter-
Action metaphor. The integration of the three metaphors is
analogous to the desktop Windowing metaphor that is associated
to the both Folder and Tree metaphors. Similar data could be
represented in different ways (e.g. Folder and Tree), but
maintained in the same highly abstract umbrella representation
(e.g. Windows). As a consequence, they can generalise to a
common event model representation (as seen in the middle of
Figure 5). The canonical event model can then be mapped or
adapted to a range of domain model implementation languages to
be executed (e.g. IBM’s BPEL4WS, OMG’s OCL, and RuleML
[16] and stylesheet as seen on the right of Figure 5) using
appropriate domain engines. The object-oriented framework is
readily extensible so more event-based domain models and their
dependencies can be added in the future. Our immediate next
example being planned is the OMG’s Business Process Modelling
Notation (BPMN) in the enterprise modelling domain. The new
models to integrate can reuse the canonical model’s components
through inheritance or composition, and can add more features
and support to evolve the framework.

In order to derive a suitable common model we need to be able to
represent all of the concepts from the three examples. We also

need a way to map between related concepts in each metaphor.
This common model supports multiple metaphoric views in the
style of the three exemplars and thus is in multiple paradigms.

4. GENERALISATION
In this section, we discuss the design of the resulting general
purpose event handling framework obtained by generalising from
the three exemplar approaches described in earlier work [13-15].
Synthesised program visualisation and framework evolution are
also described here to show the integrated runtime features and
framework extendibility.

4.1 The Generalised Event Handling Framework
To generalise our work on ViTABaL-WS, Kaitiaki, and
MaramaTatau, we have designed a set of Marama meta-tools to
provide a better platform and a vehicle for allowing us to explore
event-handling integration. Figure 6 illustrates the Marama meta-
tools approach, which is an add-on to the Marama framework that
includes five sub-tools: Meta-model Definer, Shape Designer,
View Type Definer, Event Propagation Definer and Visual Event
Handler Definer. The incorporative use of these sub-tools
facilitates easy event-based behavioural modelling and integration
that is unified with system structural modelling.

Entities, relationships, shapes, connectors and mappings form the
structural backbone of the meta-modelling framework in Marama
meta-tools. A sub-model for the event handling building blocks is
added on top of the Marama EMF model to support specifying
event-based manipulations of Marama structural model elements.
The behavioural sub-model contains the definition of all the
generalised canonical event model elements and provides a
structured way to query and update these element instances. The
behavioural sub-model is represented in different metaphoric

views in the style of ViTABaL-WS, Kaitiaki and MaramaTatau.
MaramaTatau specifies inter-dependency of Marama static
modelling components by adding formulae over both model and
view data structures. A one-way constraint system is exploited to
compute dependent values at runtime during tool usage.
ViTABaL-WS specifies event propagations and other inter-
connectivity of toolies (user or library functions) and their shared
ADS pool (Marama structural components). The event
representations are propagated to the listening toolies which
match them to the event patterns they respond to, and the response
is invoked [5]. Kaitiaki specifies detailed toolie responses via
event propagations through a set of library-defined pattern
matching queries, filters and actions.

Marama Application

Marama meta-tools
 Metamodel Definer (with MaramaTatau extension)

Visual Event Handler Definer (Kaitiaki)

Marama modelling tools

Modelling Views

Model Entity Instances

Event
Handlers

Tool Specifications
– XML documents

Tool specification
projects (XML)

Modelling
projects (XML)

Event Propagation Definer (ViTABaL-WS)

Shape Designer

View Type Definer (with MaramaTatau extension)

Figure 6. The Marama Meta-tools approach.

MaramaTatau

Kaitiaki

ViTABaL-WS

toolie formula

event

query filter

action

Figure 7. Unified event handling in MaramaTatau and ViTABaL-WS using Kaitiaki.

As in the EASY framework [8], Marama meta-tools also permit
MaramaTatau state-change events and ViTABaL-WS action
events to be handled in a unified manner, via event response
modelling capabilities of Kaitiaki as illustrated on the top of
Figure 7. A detailed example is also provided in Figure 7, where
in the ViTABaL-WS diagram on the lower left a “shapeAdded”
event propagates from the data structure “diagram” to the toolie
“processSubshapeAdded” which is an event handler further
defined in the Kaitiaki view on the lower right. MaramaTatau
state-change events can also be handled in this extensible manner,
via Kaitiaki specifications. This aims to maintain the advantage of
MaramaTatau of effective structural dependency and constraints
specification, and that of ViTABaL-WS and Kaitiaki of visual
representation of event propagation and response mechanisms,
while also providing user-defined behaviour extension of
MaramaTatau and integrating the three languages to provide
unified specifications.

Each of ViTABaL-WS, Kaitiaki and MaramaTatau has their own
strengths in handling events. They are mainly complementary to
one another instead of overlapping. However, there exists the
possibility to specify an event handler in multiple ways using
ViTABaL-WS, Kaitiaki or MaramaTatau, though one
specification may not be as efficient as the other, the required
event handling effect can still be achieved. The connectivity and
inter-changeability of the different metaphoric specifications can
facilitate mapping concepts in each metaphor and thus provide
effective demonstration and model checking. To allow one
specification to generate others with corresponding
implementation classes, a set of mapping schemas can be defined
in MaramaTorua [12] to provide interchanging mechanisms
between ViTABaL-WS, Kaitiaki and MaramaTatau specifications.
We are currently exploring the mapping specifications to be used
for such integration.

The canonical event handling model (behaviour sub-model of
Marama meta-tools) enables development of general purpose
event-based system specifications. The meta-model elements from
the three visual languages have been combined with redundancies
removed and some bridging elements added. An excerpt of the
component library of the event handling abstractions framework is
illustrated in Figure 8, where mappings of the model elements to
those used in the three visual languages are also indicated via
coloured and patterned boxes. The component library mainly
includes the relationships between event, event generator, event
service, event listener and event handler elements. The event
handler is further sub-typed including publish, subscribe-notify,
invoke activity, generate event, capture event and custom handler.
The connectivity types supported in the framework include
structural generalisation, association and composition, and
behavioural control, data and event flows. The CompoundActivity
interface may take multiple possible roles as event generator,
event listener or event handler, may contain the ViTABaL-WS,
Kaitiaki and MaramaTatau building blocks and may be involved
in a variety of data manipulation and dynamic connectivity
operations.

Almost all elements in this common model are defined as
extensible. Particular hot spots, or places in the architecture where
adaptations for specific functionality should be made [18],
include:

 Event - The framework supports a set of system events
together with user-defined custom events to be added by
either specifying new event details or by sub-
typing/composing existing event types.

 Event handler - The framework supports a set of system
event handler building blocks together with user-defined
custom event handlers to be added by either specifying new
event handler details or by sub-typing/composing existing
event handler building blocks. For examples, the event
handler types of a GUI system can include additional
“UpdateUI” handler, “AutoLayout” handler,
“PromptMessage” handler etc.

 Control flows - Control flows can be stereotypes to specify
the transition time requirement (<<synch>> or
<<asynch>>), the transition sequence (<<1.1.2>>,
<<StartWith>>, <<EndWith>>), etc. Concurrent
transitions do not need to be explicitly modelled. When the
condition of a transition is met, the transition is invoked
immediately. So when an element is associated with multiple
transitions, the transitions are concurrent when their
conditions are satisfied at the same point of time.

Some bridging elements are introduced to the common event
handling model to facilitate abstraction inheritance and crossover
among the metaphoric building blocks. These typically include
Event Service, Event Listener, Event Handler, Connectivity,
Event, Object and Compound Activity (see Figure 8). The event
service, acting as a registrant, receives all notifications (e.g. entity
changed) and forwards them to any associated event behavioural
views – ViTABaL-WS, Kaitiaki or MaramaTatau. Inter-
communications of the three behavioural views are monitored by
the event service and automatically delegated to Marama
processing components.

This canonical model representation is used to instantiate
behaviour specifications in ViTABaL-WS, Kaitiaki and
MaramaTatau views such as those shown in Figure 2, Figure 3
and Figure 4, and interoperability is achieved via reference
relationship configurations (using the property sheet to select an
element to refer to) and navigations (double-clicking a referring
element in one view to navigate to the referred element in another
view) among behavioural elements and views. For instance, a
toolie in a ViTABaL-WS view can refer to a complete Kaitiaki
event handler specification or an individual query/filter/action in
the view; a Kaitiaki query/filter/action can refer to a MaramaTatau
formula and vice versa. The behaviour model instances are
analysed at specification time and are used to generate event
handler code to be executed at runtime. Such a canonical
representation of event handling specifications enables further
behavioural paradigms to be easily integrated into the framework.

4.2 Program Visualisation
The model-view-controller pattern is used in Marama meta-tools
to synthesise event-based behaviour from multiple views. The
three distinctive yet collaborative metaphoric views generalise to a
common model implemented in the event handling abstraction
framework which in turn accesses class libraries and then
interprets them to query and update Marama EMF model and view
representations. Visualisation of dynamic event handling
behaviour is achieved using a similar model-view-controller
approach, where runtime behaviour model states are used to

animate the associated diagram elements. The user has full control
of running the animation, stepping into the next invocation of a
building block and viewing query results or state changes.

Marama meta-tools allow users to visualise tool specifications and
their executions reusing their metaphoric modelling views, to
provide system information at the right abstraction level.

«interface»
View

«interface»
CompoundActivity

«interface»
Object

«interface»
Predicate

«interface»
EventService

«interface»
Event

«interface»
EventListener

«interface»
EventHandler

-Observer*

-Implementation

*

-Event

*

-Generator

*

-Object1

-Proposition*«interface»
Query

«interface»
Filter

«interface»
Action

«interface»
Toolie

«interface»
Process

«interface»
AbstractDataStructure

«interface»
AbstractDataType

«interface»
Formula

«interface»
Entity

«interface»
Relationship

«interface»
Attribute

1

*

-Listener

*

-Notifier

1

«interface»
Condition

*

*

*

*
«interface»

Connectivity

*

*

«interface»
DataStore

«interface»
Role

Synch/Asynch
event dispatching

«interface»
Publish

«interface»
SubscribeNotify

«interface»
InvokeActivity

«interface»
State

1

«interface»
ExceptionHandler

«interface»
Message

1

-Part *
«interface»

SystemTriggeringEvent

«interface»
UserTriggeringEvent

«interface»
CustomHandler

-Event*

-Generator*

«interface»
CustomEvent

**

1

*

«interface»
CompensationHandler

«interface»
FaultHandler

1

*

1

*
«interface»

Transformer

«interface»
Asignment

*

*

*

*

**

«interface»
StructuralConnectivity

«interface»
BehaviouralConnectivity

«interface»
ControlFlow

«interface»
DataFlow

«interface»
EventFlow

Figure 8. Common event handling model (for ViTABaL-WS Components; for Kaitiaki components; for
MaramaTatau components).

We exploit the debugging service instrumentation mechanism [13]
initially exploited in ViTABaL-WS to generate low-level tracing
events on modelling elements. The Marama meta-tools framework
handles those events by sending the event data to appropriate
modelling elements and annotates them with colours and state
information. Marama EMF is the common high-level
representation that glues different behavioural views, and supplies
dynamic state information to the Marama Visual Debugger. A
specialised debugging and inspection tool is used to allow
execution state of event-based systems to be queried, visualised
and dynamically modified. The debugger tool provides a common
user interface that connects the three metaphoric event
specification views with an underlying debug model based on the
model-view-controller pattern.

The individual “debug and step into” visualisation of ViTABaL-
WS, Kaitiaki and MaramaTatau are combined to allow
cooperative invocation and step-by-step visualisation of execution
results at the point of execution of each building block in a
particular view. Figure 9 illustrates the visualisation of runtime
interpreted formulae (a) followed by an event handler (b) on a
Marama model. The Meta-model Definer view and the Visual
Event Handler Definer view with the respective formula and event

handler specifications are juxtaposed with the runtime Marama
model view. From the Visual Debugger, user has the control over
the execution of a behaviour building block interpretation. Once
the behaviour is interpreted, the affected runtime model element is
annotated (with the yellow background) to indicate the application
of the formula/handler, and meanwhile, the corresponding
formula/handler node and their dependency links defined in the
corresponding meta-model view are annotated in the same manner
to show the behaviour specification and its execution status.

Run-time monitoring of the Marama meta-tools for performance
analysis could be supported via the visual debugging sub-system.
The visual debugger could be further enhanced with “watch”
controls so that the user can choose to trace a certain event and its
response instead of debugging the entire behavioural
specification.

4.3 Framework Evolution
The event handling abstractions framework in Marama meta-tools
is both black-box and white-box. It provides reuse by both
inheritance and composition. Based on the evolving frameworks
pattern language [18], our framework will be evolved by

abstracting from additional examples to make it more general in
the future.

Subsequent exemplars are to be developed based on the white-box
framework. In generalising more of the event handling abstraction
framework by integrating a further exemplar, we will first
examine what abstractions from the canonical model’s component
library (as shown in Figure 8) can be reused (through either
inheritance or composition) by the new domain model, and then
examine what new features and support can be added to evolve
the framework.

The integration of MaramaTorua [12] can also provide another
view type, with event-driven mechanisms to allow translation of
one event handler view to another (e.g. generating the event
handlers/formulae to keep view/model consistent from
MaramaTorua specifications) to be specified internally and
automatically without the need to invoke it as an independent
non-event-driven third-party tool. Our generalised model should
support new metaphors/models to be further sub-typed or
composed.

Figure 9. Visual debugging MaramaTatau formulae (a)
followed by a Kaitiaki event handler (b).

5. EVALUATION
Following our initial prototype development, we have conducted
both developer-based and end user-based evaluations of the
Marama meta-tools in general to test their usability and
effectiveness for specifying event-based system integration with
the aim of identifying potential problems. The evaluation results
have been sufficiently positive for us to release the Marama meta-
tools as a publicly accessible toolset following a number of
enhancements to address tool stability.

It is not a straightforward task to evaluate a substantial
environment/toolset such as the Marama meta-tools, as it involves
multiple points of views of tool developer, end users of developed
tool, usability, utility, etc. [19]). Most formal usability evaluation
approaches are limited to understanding the effect of one or two
variables [3, 11]. Controlling for variability is an almost
impossible undertaking when assessing the usability of a large
environment. Formal evaluation for this type of system is hard.
This means we have had to adopt a variety of less formal, but
overlapping approaches to obtain usability and efficacy data.

We have evaluated Marama meta-tools at several levels and
through a variety of mechanisms in a similar way that evaluations
of our Pounamu metatool were conducted [19]. These include:

 We, the designers, conducted a cognitive dimensions [4]
evaluation focusing on the event handling specifications.
Cognitive dimensions allow us to understand usability
tradeoffs and hence where mitigations need to be placed.
Each of the three individual languages and environments
feature easy and effective specifications with some
dimensional tradeoffs where we have placed effort to provide
mitigations (e.g. to minimise hidden dependency issues in
MaramaTatau). The use of three distinct metaphors together
in the system has increased the abstraction gradient and the
initial learning curve of the Marama meta-tools, but provided
effective and consistent event handler specifications by
addressing identified concerns and allowing tool designers to
escape from writing conventional code.

 We, the designers, conducted an evaluation of the Marama
meta-tools along with the event handling abstraction
framework against the requirements elaborated in Section 2.
The requirements established in the research can be used as
the benchmark for evaluating the functional utility of the
Marama meta-tools. The generalised event abstraction
framework incorporates compositional primitives as event
handling building blocks and allows composition
relationships between them. The framework contains
reusable designs to allow users to initialise their system and
specify customised event types, event generators, event
receivers and event handling building blocks to enhance the
extensibility and flexibility of the framework. The framework
supports tool integration via a canonical data/event model
extension and consistent user interfaces. Graphical notations
are offered in the style of the three metaphoric exemplars, but
are of a common unified representation: Rectangles represent
data, Circles represent constraints, and Connections represent
relationships. Multiple views can be easily navigated from
one to another. Textual notations are also permitted so that
users can escape to conventional code when specifying
complex custom behaviours such as code generation.
Developing prototypes using Marama meta-tools takes

(a)

(b)

considerably less time than implementing them using a
programming language from scratch. The behavioural models
generate Java code which is executed as efficient as code
implementations.

 A large number of graduate-level student end users (novice
short-term research task-oriented users) were involved in an
extensive usability study. In the experiments, 122
participants constructed a domain specific visual language
tool of their choice, but with a minimum set of tool features
that had to be included in their tool, and were then surveyed.
The participants were allowed to work either individually, in
pairs, or in a team of 3-5. The aim of the experiment was to
provide a substantial, realistic tool development situation and
obtain qualitative information on user perceptions of the
toolset and quantitative task completion data (whether the
minimum feature set was in fact implemented). The
experiments evaluated whether end users found the Marama
meta-tools easy and effective for generating their chosen
domain specific visual language tool. We aimed to use the
end users’ feedback to improve the Marama meta-tools, and
significant enhancement was undertaken after the
experiments. The task completion data is positive showing
that tools with realistic level of complexity (usable tools with
both static and dynamic features) can be designed and
constructed using the Marama meta-tools in a short period of
time (three weeks working alongside other commitments).
General weaknesses emphasised in the survey included: the
steep learning curve of the Marama meta-tools; the lack of
API documentation (users need to have access to API
documentation for very complex event processing) and
comprehensive user manual; the stability and the ineffective
error handling in the prototype; the limited number of
reusable building blocks for behavioural specifications; and
the difficulty of defining complex formulae due to
unfamiliarity with OCL.

 A smaller number of developers (experienced long-term
research goal-oriented users) in our research team, who used
Marama meta-tools to develop more substantial applications,
provided qualitative feedback in the form of experience
reports. The advanced applications being developed or
integrated with Marama meta-tools include a generic
mapping tool, a health care visual modelling environment, a
business process integration tool, an architecture
modelling/mapping tool, and a design critiquing system.
These qualitative feedback reports were used to assess
whether our perceptions of the Marama meta-tools needed to
be altered for more experienced user groups, and whether
additional requirements were needed (e.g. more complex
back end integration requirements). While some event
handling building blocks can be used effectively to compose
event-based behaviour specifications, all the expert
developers needed to escape to code (i.e. use the original
custom code writing approach) to define complex backend
code generation and user interface extensions (particularly
for complex layouts). This indicates to us that the Marama
meta-tools need to be further generalised from more
examples so that it can provide support for a wider-range of
event-based system specifications.

Substantial efforts have been taken to improve the Marama meta-
tools based on these evaluation results. The Marama meta-tools

have been made more stable and more resistant to incorrect
specifications so that a generated DSVL tool can be error-free for
use.

A set of JUnit-based test suites are under development. They will
be used to perform automatic testing on the Marama meta-tools,
particularly the behaviour model. This will remove much of the
effort of the developers in undertaking white box, black box, unit,
integration and system testing, and allow more focus to be placed
on end user usability studies.

Our evaluation approach has demonstrated its effectiveness in
eliciting weaknesses of a software prototype, so we are reusing the
approach to conduct iterative evaluations on the Marama meta-
tools. However, from the previous evaluation results, we found
that the major barrier for users to effectively use the Marama
meta-tools was the initial steep learning curve. To remove this
barrier, we plan to provide the end users with more interactive,
story-telling examples in a video-format tutorial so that they learn
the Marama meta-tools in a more constructive way. We plan to
follow the set of guidelines for developing such videos suggested
by Plaisant and Shneiderman [17].

6. CONCLUSIONS
Our research has focussed on providing visual specification and
runtime visualisation support for the design and construction of
complex event-based systems. We have integrated three event
handling specification languages. They are in the domain of web
services and business process composition systems, graphical user
interfaces (GUI) systems, and constraint-based meta-modelling
systems respectively. A synergy of these languages and their
generalisation in the Marama meta-tools environment provide
wider-ranging support for event-based system design and
construction. The event handling abstraction framework provided
with Marama meta-tools contains a canonical meta-model
representation (generic model) of event handling specifications
that enables multiple behavioural paradigms to be easily
integrated into the framework. ViTABaL-WS, Kaitiaki and
MaramaTatau provide visual languages and tools for event
handling specification. ViTABaL-WS is used for high-level
conceptual modelling of event propagations among Marama
components; Kaitiaki is used for intermediate level design of
event propagations among a set of user or library defined queries,
filters and actions; MaramaTatau is used for implementation level
specification of model and view value dependencies and
constraints. The three distinctive behavioural modelling views are
wired together by their underlying model. The generic event
handling model generates Marama XML, EMF notifications and
Java event handlers to be interpreted by the Marama framework
for dynamic queries and updates of models and views.

The Marama meta-toolset along with its event handling
abstraction framework is still at the prototype stage. We aim to
continually develop it to be a robust open source software system
to be freely used by interested researchers and organisations. A
range of possible future work directions exist developing from
such a platform:

 More complete checking of behaviour models could catch
errors in the specification before code generation and
realisation.

 Users must currently manually layout both the structural and
behavioural model views. Automatic layout may be useful to
improve a user’s ability to show/hide/collapse parts of a
specification to manage size and complexity. Some layout
specifications have been implemented in a selection of
Marama related projects, and it is worth generalising a
common layout representation in the same way that we have
generalised the event handling abstraction framework.

 Programming by example extensions would be useful in
every view of the Marama meta-tools to allow users to
explore and instantiate from existing models.

 The visual debugger could be further enhanced with “watch”
controls for more efficient tracing and analysis of interested
events and their handling behaviours.

The event handling abstraction framework is to be evolved by
abstracting from more domain-specific examples. The abstraction
model can be specified in the MaramaTorua [12] mapping tool to
facilitate generation to a wide range of implementations for
interpretation. To allow one specification to generate others with
corresponding implementation classes, a set of mapping schemas
can be defined in MaramaTorua to provide interchanging
mechanisms between distinct domain specifications.
MaramaTorua is integrated with the Marama meta-tools and its
generated translators can be used directly within new Marama
tools to support model integration, translation, and code and script
generation.

Many other Marama extensions are being developed. These
include a distributed environment with thin client user interfaces
and web service back-end, collaborative support for concurrent
team work, sketch-based user interfaces and automatic translations
to formal Marama model and views. Once these extensions are
fully developed, we will integrate them into the Marama meta-
tools, generalising further the event abstraction model, and thus
making the framework more full-fledged.

7. REFERENCES
[1] Burnett, M., et al., Forms/3: A first-order visual language to

explore the boundaries of the spreadsheet paradigm. Journal of
Functional Programming, 2001. 11(2): p. 155-206.

[2] Cox, P.T., et al., Experiences with Visual Programming in a
Specific Domain - Visual Language Challenge ’96, in the 1997
IEEE Symposium on Visual Languages. 1997. p. 254-259.

[3] Dillon, A., Usability evaluation. W. Karwowski (ed.),
Encyclopedia of Human Factors and Ergonomics, 2001.

[4] Green, T.R.G. and M. Petre, Usability analysis of visual
programming environments: a 'cognitive dimensions'
framework. J. Visual Languages and Computing, 1996. 7: p.
131-174.

[5] Grundy, J.C. and J.G. Hosking, ViTABaL: A Visual Language
Supporting Design by Tool Abstraction, in the 1995 IEEE
Symposium on Visual Languages. 1995, IEEE CS Press:
Darmsdart, Germany. p. 53-60.

[6] Grundy, J.C. and J.G. Hosking, Serendipity: integrated
environment support for process modelling, enactment and
work coordination. Automated Software Engineering: Special
Issue on Process Technology, 1998. 5(1): p. 27-60.

[7] Grundy, J.C., J.G. Hosking, and W.B. Mugridge, Supporting
flexible consistency management via discrete change

description propagation. Software - Practice and Experience,
1996. 26(9): p. 1053 - 1083.

[8] Grundy, J.C., J.G. Hosking, and W.B. Mugridge, Towards a
unified event-based software architecture, in the SIGSOFT'96
Workshops, 1996 International Software Architecture
Workshop. 1996, ACM Press: San Francisco. p. 121-125.

[9] Grundy, J.C., J.G. Hosking, and W.B. Mugridge, Visualising
Event-based Software Systems: Issues and Experiences, in
SoftVis97. 1997: Adelaide, Australia.

[10] Grundy, J.C., et al., Generating Domain-Specific Visual
Language Editors from High-level Tool Specifications, in the
21st IEEE/ACM International Conference on Automated
Software Engineering. 2006: Tokyo, Japan. p. 25-36.

[11] Hartson, H.R., T.S. Andre, and R.C. Williges, Criteria for
evaluating usability evaluation methods. International Journal
of Human-Computer Interaction, 2003. 15(1): p. 145-181.

[12] Huh, J., et al., Integrated data mapping for a software meta-
tool, in the 20th Australian Software Engineering Conference.
2007: Gold Coast, Queensland, Australia

[13] Liu, N., J.C. Grundy, and J.G. Hosking, A visual language and
environment for composing web services, in the 2005
ACM/IEEE International Conference on Automated Software
Engineering. 2005, IEEE Press: Long Beach, California.

[14] Liu, N., J.C. Grundy, and J.G. Hosking, A visual language and
environment for specifying user interface event handling in
design tools, in The Eighth Australasian User Interface
Conference - AUIC 2007. 2007, CRPIT Press: Ballarat,
Australia.

[15] Liu, N., J.G. Hosking, and J.C. Grundy, MaramaTatau:
Extending a Domain Specific Visual Language Meta Tool with
a Declarative Constraint Mechanism, in the 2007 IEEE
Symposium on Visual Languages and Human-Centric
Computing. 2007: Coeur d'Alène, Idaho, USA.

[16] Paschke, A., ECA-LP / ECA-RuleML: A Homogeneous Event-
Condition-Action Logic Programming Language, in Int. Conf.
on Rules and Rule Markup Languages for the Semantic Web
(RuleML’06). 2006: Athens, Georgia, USA.

[17] Plaisant, C. and B. Shneiderman, Show me! Guidelines for
producing recorded demonstrations, in the 2005 IEEE
Symposium on Visual Languages and Human-Centric
Computing. 2005: Dallas, USA. p. 171-178.

[18] Roberts, D. and R. Johnson, Evolving Frameworks: A Pattern
Language for Developing Object-Oriented Frameworks, in the
Third Conference on Pattern Languages and Programming.
1996, Addison-Wesley.

[19] Zhu, N., et al., Pounamu: a meta-tool for exploratory domain-
specific visual language tool development. Journal of Systems
and Software, 2007. 80 (8).

