
Supporting Multi-View Development for Mobile

Applications

Scott Barnetta, Iman Avazpoura, Rajesh Vasaa, John Grundyb

aDeakin Software and Technology Innovation Lab (DSTIL), School of Information
Technology, Faculty of Science, Engineering and Built Environment, Deakin University,

Burwood, Victoria 3125, Australia
bFaculty of Information Technology, Monash University, Monash, Victoria 3800,

Australia

Abstract

Interest in mobile application development has significantly increased. The
need for rapid, iterative development coupled with the diversity of platforms,
technologies and frameworks impacts on the productivity of developers. In
this paper we propose a new approach and tool support, Rapid APPlication
Tool (RAPPT), that enables rapid development of mobile applications. It
employs Domain Specific Visual Languages and Modeling techniques to help
developers define the characteristics of their applications using high level
visual notations. Our approach also provides multiple views of the applica-
tion to help developers have a better understanding of the different aspects
of their application. Our user evaluation of RAPPT demonstrates positive
feedback ranging from expert to novice developers.

Keywords: Visual Notation, Mobile App Development, Domain Specific
Languages, Code Generation

1. Introduction

Mobile application (app) development has exploded. In 2014 the Google
Play Store doubled its number of apps1 and in December 2014 over 40000

Email addresses: scott.barnett@deakin.edu.au (Scott Barnett),
iman.avazpour@deakin.edu.au (Iman Avazpour), rajesh.vasa@deakin.edu.au
(Rajesh Vasa), john.grundy@monash.edu (John Grundy)

1http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/

Preprint accepted to JVLC Feb 2019 December 23, 2018



apps were submitted to the iTunes App Store2. Despite the popularity, app
development is a tedious process as it requires copious amounts of code to be
written using tools that lack support for high level abstractions. Modeling
techniques such as Domain Specific Visual Languages (DSVL) simplify de-
velopment of mobile apps by abstracting away the details, hence improving
developer productivity. On the other hand, downsides from using modeling
techniques consist of rigidity in the generated output and the lack of flexi-
bility for specifying custom functionality. Mobile app development follows
a user-centered design process where real-world human experience is central
to the design process [1]. Hence, developers must focus on building a great
user experience and cannot afford to be limited by the restrictions of a model
based tool.

Typically an IDE consists of a code view and a designer for specifying the
UI components of a screen. From these views developers cannot easily grasp
the navigation flow of the app, identify where the resources provided by a
single API are used, or clearly analyze the event handling for a single screen.
The information for each of these concerns is embedded in the source code
requiring developers to browse through the code. This lack of transparency
restricts communication as not all stakeholders understand code.

Early high fidelity prototyping helps with communication of ideas. Due to
the user centered aspect of mobile app development many developers choose
to prototype. These prototypes often focus on the visual aspects of the mobile
app striving to resemble the final app as closely as possible. Once the visual
aspects of an app have been agreed upon these prototypes are discarded
requiring developers to replicate the prototype in code. Prototyping other
non-visual aspects of an app is rarely done due to the cost.

To aide professional app developers, this paper presents our approach in
Rapid APPlication Tool (RAPPT) [2], a framework for multi-view develop-
ment of mobile apps. RAPPT leverages model driven techniques to bootstrap
mobile app development through use of a Domain Specific Textual Language
(DSTL) and a Domain Specific Visual Language. It provides multiple views
to developers ranging from detailed view (code) to abstract view (e.g. page
navigation). These multiple views help developers implement mobile app
concepts at different levels of abstraction improving the customizability of

2http://www.statista.com/statistics/258160/number-of-new-apps-submitted-to-the-
itunes-store-per-month/

2



the app. These multiple views also improve communication between stake-
holders by presenting a snapshot of the application for a specific concern.
Key contributions of this paper are:

• A classification of the different levels of abstraction present for mobile
app development.

• A multi view system is introduced that enables developers to work on
different abstraction levels synchronously.

• We provide tool support for the fast development of mobile app proto-
types using a multi-view modeling approach.

This paper is organized as follows: Section 2 provides a motivating sce-
nario for this work. Next, we present the related work in Section 3. In
Section 4 we provide background information on the different abstractions
used in the development of mobile apps. Section 5 describes our approach
including the various elements of the framework and concepts in the DSVL.
Following that is an overview on our tool implementation RAPPT in Section
6. Section 7 provides details of our user evaluation and experiment setup and
finally Section 8 concludes the paper and provides avenues of future work.

2. Motivation

Our primary motivation for this research comes from experience with
developing mobile apps. In particular, dealing with the inadequate tools
provided to professional developers when starting a new app. As a way to
illustrate the mobile app development process and the tools used we present
a motivating example for the development of a data-intensive mobile app,
MovieDBApp. A data-intensive mobile app is an app that is predominantly
focused on fetching, formatting and rendering data retrieved from a webser-
vice.

Consider Peter, a mobile application developer, who is tasked with the
development of MovieDBApp. MovieDBApp shows a list of popular movies
that when selected enable a user to navigate to a screen showing the details
of that movie. This app consists of three screens a Popular Movies screen for
displaying the list of popular movies, an About screen to display copyright
information, and a Movie Detail screen to display the details of a selected
movie. Screenshots for these screens are shown in Figure 1. The content to

3



Figure 1: The Popular Movies, About, and Details screens for MovieDB, an app based on
the MovieDB API.

be displayed by this app will be provided by the freely accessible MovieDB
API3. Peter’s app includes the following requirements:

1. A tabbar for navigation between the Popular Movies and About screens.
Tabbar is a Mobile UI Pattern that displays tabs near the top of the
screen for navigation (see Figure 1). The user can also swipe the screen
to navigate between tabs.

2. Authentication for connecting to the Movie DB API e.g specify an
authentication key.

3. Display a list of the popular movies from the Movie DB API on the
Popular Movies screen.

4. Navigate to the Details screen from the Popular Movies screen by se-
lecting a list item.

5. Pass the identifier for a movie when clicking on a list item in the Popular
Movies screen and pass it to the Details screen so the details for the
correct movie can be fetched.

3http://docs.themoviedb.apiary.io/

4



6. Fetch the details for a selected movie from the MovieDB API and render
the results to the screen on the Details screen.

7. Display a copyright message on the About screen.

To build this app, Peter needs to write the code for the tabbar specifying
the tabs for each screen, configure the navigation for each tab, handle navi-
gation to the tab screen and create the animation for swiping between tabs.
In order to connect to the MovieDB API and handle authentication, he must
write code for the API requests, model the data returned by API calls, handle
errors, check network connectivity, authenticate with the MovieDB API and
ensure best practices for concurrency on a mobile platform. For the Popular
Movies screen, Peter needs to create the following: layout files for the UI,
connection between data returned from API call and the UI components,
event handlers for selecting a list item to navigate to the Details screen, and
implement navigation pattern tabbar. The Details screen needs to accept
the parameters passed from the Popular Movies screen, pass that parameter
to an API call to fetch that data for the selected movie and render the movie
details to the screen. The About screen needs to display a static message
to the user. In addition to these tasks Peter needs to configure the build
system, adding any dependencies, add logging code, create styles, debug, fol-
low software engineering best practices such as ensuring maintainability and
performance, while meeting stringent deadlines.

3. Related Work

Many of the current tools are aimed at inexperienced developers or non-
technical experts [3, 4, 5, 6, 7, 8]. These approaches hide many of the im-
plementation details described above from the end users [9] enabling them
to focus on higher level constructs. While this makes programming more
palatable, end users cannot customize how these apps address the intricate
concerns of developing mobile apps [10, 11, 12, 13]. For example, Peter has
specific requirements about where to fetch data from (i.e. the MovieDB
API) and how to authenticate the app with the API using an API key. As
such these approaches are not suited for use by a professional mobile app
developer.

Multiple Model Driven Development (MDD) approaches for building mo-
bile apps have been developed [9, 14, 15, 16, 17, 18]. These approaches
commonly focus on MDD as a cross-platform approach to mobile app de-
velopment. A common emphasis of these cross-platform approaches is on

5



modeling a common subset of features that can then generate code for mul-
tiple target platforms. The modeling approaches often present a single way
of modeling a mobile app and do not provide multiple views of a mobile app
as in our proposed solution. For example, describe every aspect of an app
by using a DSL [14]. In addition these MDD approaches tradeoff flexibility
for productivity by abstracting away many of the implementation details.
Data-intensive mobile apps share a lot of functionality yet have very unique
UI and interactions. To support building unique apps a tool should support
a high degree of customization. Recent work has also focused on using MDD
for building context aware applications [19, 20]. These approaches focus on
a subset of the functionality available for mobile apps where as RAPPT is
designed around building data intensive applications.

Typically the app development process begins by designing the UI and
User Experience with the client before these ideas are refined into mock-
ups by a designer. Tools for prototyping [21, 22, 23] can greatly help with
the evaluation of ideas especially concerning the navigation flow through
an app. Once this process has been done developers have to start from
scratch to implement the agreed upon navigation flow – current tools produce
throwaway prototypes. In addition, implementing a prototype that can be
reused by developers is a time intensive and costly process. What is needed
is a tool that can be used for rapid prototyping but generates apps that can
be built upon by developers when realizing the final app.

User Experience plays a crucial role in the development of mobile apps
due to the influence of user reviews and rankings of the app store. Designers
and developers need to pay careful attention to the usability of their apps.
Modeling different components of an app such as the navigation flow is well
suited to and frequently represented as a graphical visualization. Developers
often spend a lot of time programming using text and is so more familiar to
them for describing event handlers, data flows and UI bindings. Researchers
have found multi-view approaches to be beneficial for addressing multiple
concerns when building multiagent systems [24], in embedded systems engi-
neering [25], and in the design of cyber-physical systems [26]. This shows
that a multi-view approach is suitable for addressing the specific concerns of
mobile app development [11, 12].

From our motivating example and review of associated literature we have
identified the following key requirements for a tool to assist mobile app de-
velopers that should:

6



• R1. Automate generation of the boilerplate code required for data-
intensive mobile apps.

• R2. Design a tool for professional mobile app developers.

• R3. Generate apps that provide the full capabilities of the underlying
platform i.e. provide flexibility in the generated apps.

• R4. Enable rapid prototyping of a fully functioning mobile app.

• R5. Produce prototypes that can be refined into the final app.

• R6. Provide multiple abstraction levels for modeling the different con-
cerns of a mobile app i.e. navigation flow and UI composition.

4. Mobile App Concepts

App development involves different levels of abstractions that build upon
the previous level and allow developers to reason about different aspects of
a mobile app. Building tools at the appropriate level of abstraction requires
making trade-offs between flexibility and productivity as the higher levels
are harder to modify. Each level of abstraction is discussed below from the
lowest level to the highest.

• Low Level Platform APIs. This is the lowest level of abstraction pro-
vided by a mobile platform. Being the lowest level, it permits the
maximum flexibility as developers can modify every aspect of the plat-
form. Typically the rest of the platform’s APIs are implemented using
this low level API.

• Base Components and APIs. Platform vendors provide components
from which app developers build their apps such as buttons, classes
for creating screens and fetching data from webservices or for interact-
ing with platform features such as sensors. The majority of a mobile
app is currently developed at this level of abstraction as it strikes the
appropriate trade-off between flexibility and productivity.

• High Level App Concepts. These are the concepts that non-developers
can reason about or end users can experience. Implementing these con-
cepts needs significant development work, requiring the use of multiple

7



lower level APIs. Example concepts at this level are screen, call to
webservice, maps etc. Current literature on DSLs for the mobile app
domain focus on capturing the abstractions present at this level but
lack the capabilities for the lower level abstractions prohibiting flexi-
bility in created apps, or fail to provide higher level views of the entire
app to developers. The concepts at this level can often be mapped
across platforms.

• App Concerns. This is the highest level of abstraction and is focused on
viewing and manipulating app wide concerns such as navigation flow
and data modeling. Model driven engineering approaches to mobile
app development often work at this level of abstraction.

Mobile app developers have to address all four levels of abstraction and
work in a rapidly changing environment where high level abstractions have
yet to be defined for new app features – new features do not have stable or
well defined abstractions suitable for model driven approaches. For example,
mobile platform vendors frequently update their design guidelines but may
not update their APIs at the same time requiring developers to build custom
components from scratch. Consider the example of using a UML tool (App
Concerns) [27] to model a data-intensive mobile app which includes a new
UI navigation pattern such as a Drawer 4. Implementing a Drawer requires
using High Level App Concept of a list, Base Components and APIs for
displaying text and images, and Low Level Platform APIs to handle custom
animation and styles. Developers cannot always wait for the platform to
implement a feature they need or for a 3rd party library to become available.
Essentially all 4 levels of abstraction have to be considered as first class
citizens when building a model driven tool for the mobile app domain due a
rapidly changing environment.

5. Our Approach

Our approach RAPPT is a tool that provides multiple views for specifying
the concepts of a mobile app and generates working prototypes that form the
scaffolding of the final app. The focus of our work has been on building a
tool that targets professional app developers and assists them in the early

4https://www.google.com/design/spec/patterns/navigation-drawer.html

8



stages of development by providing them with a DSVL to specify high level
app features and then add extra details using a DSTL. After the specification
has been completed RAPPT generates the source code for a single platform,
a working Android app, to which the developer adds the final polish. The
major steps involved in using RAPPT to generate a new project are shown
in Figure 2. The core aspects of our approach Generate an App for a Single
Platform, use an Empirically Derived Meta-model and use Multiple Views
with Overlapping Abstraction Levels will be described in detail below.

5.1. How RAPPT Works

This section outlines how developers use RAPPT to build a mobile app
and the numbers below map to Figure 2.

App Model

High-level App 
Modelling with 

DSVL

Enrich App
Model with DSTL

Model-to-model 
transformation Android Model Code Generation

Source CodeFinal development

1.

2.

3.

4. 5. 6. 7.

9. 8.

Developer tasks

RAPPT tasks

RAPPT models and output

Key

Process flow

Figure 2: RAPPT assists software developers by generating the initial architecture for
their app.

1. Developers start using RAPPT by describing the high level structure of
an app using the DSVL. This includes specifying the number of screens
in the app, the navigation flow between screens and major features per
screen such as Google maps.

2. Developers can then switch to using the DSTL to provide additional
details to the mobile app that are not provided by the DSVL. These
features include specifying details about a web service for fetching data,

9



defining the data schema, specifying and configuring authentication,
and specifying the information to display in specific UI elements such
as rows in a list.

3. Both the DSVL and DSTL update an App Model permitting developers
to switch between the interfaces as they proceed through the modelling
process. Developers can also view the source code that will be generated
from their model.

4. RAPPT then performs a model-to-model transformation to convert the
App Model to an Android Model. This process fills in additional details
about the Android app to ensure that the generated app closely resem-
bles that of written by a developer. These features include adding the
correct permissions, selecting the correct classes from the Android SDK
i.e. Fragment vs Activity, externalising strings for internationalisation
and adding the appropriate dependencies to the project.

5. The Android Model contains all of the information required for gen-
erating the source code. Future work can explore using this model
to identify violations of mobile app development best practices. The
Android Model also contained fields that were not to be used in the
generated code such as the directory structure following Android con-
ventions.

6. Next, RAPPT maps code templates to the Android Model and gener-
ates source code.

7. The generated source code from RAPPT contains the scaffolding for
the mobile app that is ready to be run on the device. This code can be
compiled and tested immediately after generation.

8. Developers are needed to finish off the generated app by adding business
logic and styling.

5.2. Generate an App for a Single Platform

One of the key motivations of our approach is requirement R3. Gen-
erate apps that provide the full capabilities of the underlying platform i.e.
provide flexibility in the generated apps. To achieve this we focused on gen-
erating code for a single platform which meant we did not need to handle
discrepancies between platforms and could generate code that adhered to the

10



platform’s UI guidelines. We designed our code generator to produce mobile
apps that could be compiled and deployed to a device without modification
satisfying the requirement of R4. Enable rapid prototyping of a fully func-
tioning mobile app. This enables developers to produce the first prototype
quickly and can gather feedback on the navigation flow for the app during the
initial client meeting. As mentioned above app development begins with the
UI and UX and then moves onto the development tasks. To enable a smooth
transition from the prototyping stage and to ensure there is no wasted effort
we designed the generated apps in a way that it forms the scaffolding for the
final app. Once the initial prototyping stage was complete developers take
the generated app and build the rest of the app on top of what was generated
enabling RAPPT to satisfy requirement R5. Produce prototypes that can be
refined into the final app.

5.3. Empirically Derived Meta-model

Our approach leverages techniques from Model Driven Development (MDD)
especially the field of Domain Specific Languages in the generation of mo-
bile apps. MDD’s use of models to abstract away implementation details is
well suited to address the requirement R1. Automate the boilerplate code
required for data-intensive mobile apps. Underpinning both our DSVL and
DSTL is a shared meta-model, shown in Figure 3, for data-intensive mobile
apps that contains the core concepts required to model and generate a work-
ing mobile app. It is the shared meta-model that enables the user to switch
between editing the DSVL and the DSTL, and that provides developers with
the productivity boost by providing them with high level abstractions.

There are two main reasons why we decided to derive a meta-model. First,
we wanted to identify the smallest number of concepts that can be mapped to
source code that addresses the technical domain concerns of mobile apps [13].
Second, our focus was on identifying concepts used frequently in real apps
rather than assuming all concepts offered by a mobile app SDK are essential
for rapid generation.

All of the abstractions are available in the DSTL but only some of the
concepts are available in the DSVL as they are not all needed to specify the
high level concerns of a mobile app. As shown in Figure 3, the concepts of
web services, data fields and the data model can only be specified by the
DSTL due to the requirement to accept input from the user i.e the URL
for the web service requires text input. The requirement R2. Design a tool

11



aimed at professional mobile app developers, meant that the meta-model also
had to include concepts that developers use to describe mobile apps.

App

Web Services

Data Fields Model

Screen

Instructions

UI Components

DSTL only

DSTL and DSVL

DSTL and DSVL (partially)

1 1

1 1

1

1

1

1

0..*

1..*

1..*

0..* 0..*

* * *

*

*
*

*

Key

Associated concepts

Figure 3: RAPPT’s meta-model underpinning the DSVL and DSTL. Coloured boxes show
which concepts are available in the DSVL and DSTL.

Each app has specific settings unique to that app such as the first screen
is to be shown when the app launches. These concerns are captured in
our meta-model by the concept of App. In order for an App to be able to
model data-intensive mobile apps, it should include two major concepts Web
Services which provide the contents for the app, and Screens that display the
data to the end user. Data Fields represent the data that is returned from a
Web Service and forms the data model of the mobile app. The data model
for an app Model captures the structure of the data and what is shown to the
user. Screens are made up of UI Components that display parts of the data
model and both may trigger an Event. Events may be fired from a button or
be triggered with the screen loads and contain Instructions which perform
a task; most commonly a call to a web service to fetch data to display or
render to the screen.

To create the meta-model we analyzed 30 data-intensive mobile apps and

12



from these extracted the core concepts. A data-intensive app was considered
an app that 1) primarily relied on data to provide its functionality, 2) was
a complete app rather than a live widget running on the home screen and
3) was not categorized as Games. Studying these apps, we built a primitive
version of the meta-model which we used to generate new apps. When we
identified concepts that the tool could not generate we added the concepts to
the meta-model and then extended RAPPT. In this manner, we were able to
follow an iterative process to build the meta-model. These concepts formed
the basis for the concepts in our DSTL that we have described previously [2]
and informed the design of our DSVL. List of the studied apps is available
online5.

5.4. Multiple Views with Overlapping Abstraction Levels

Software engineers utilize higher level abstractions to hide the unneces-
sary details and hence focus on the problems at hand. As such we needed to
ensure that RAPPT could satisfy requirement R6. Provide multiple abstrac-
tion levels for modeling the different concerns of a mobile app i.e. navigation
flow and UI composition.. For each of the views discussed in Section 4, dif-
ferent abstractions are needed. These abstractions could conflict with each
other. Navigation and UI layout views both need a screen but require dif-
ferent information. The navigation view is concerned with how a screen
is connected to other screens whereas the UI layout view provides precise
configuration of UI components.

High Level App Concepts

Base Components

App Concerns

Low Level Platform APIs

Level of 
Abstraction

DSTL

DSVL

Source code

Figure 4: Levels of abstraction in a mobile app.

5https://github.com/ScottyB/analysed-apps

13



Our approach provides three views for developing mobile apps consisting
of overlapping levels of abstraction to address these conflicting scenarios: A
DSVL for high level app functionality, a DSTL for providing additional de-
tails not available in the DSVL and access to the target platform for creating
custom app functionality. Figure 4 provides an over view of these abstraction
levels, their composing elements, and their relations.

Underpinning both the DSTL and the DSVL is a meta-model of an An-
droid app that is used to generate code once the initial modeling stage is
complete. The DSVL includes concepts for modeling the high level concepts
(App Concerns) of data-intensive apps such as navigation flow and the Data
Model. Included in the DSVL are a number abstractions that are catego-
rized as High Level App Concepts, and can be enhanced using the DSTL.
For example, the concept of a screen is a High Level App Concepts that is
present in the DSVL so that the navigation flow can be modeled but the
DSTL is required to specify what will be displayed on the screen or which
webservices it calls. A summary of the concepts present in the Visual Lan-
guage is shown in Table 1. The rational for choosing visual notations was
to choose the representations that closely relate to the concepts in the meta
model and the target platform (here Android operating system). Only a few
concepts have been added to the Visual Language as the focus of this paper
is on the multi-view approach to mobile app development, rather than the
complete visual app builder.

The DSTL also includes abstractions from the Base Components cate-
gory. These abstractions are added to enhance the specification for screens
and to be able to model webservices for fetching data to render to the screen.
Examples in the DSTL are input fields, images and keywords for specifying
webservices. For highly custom features and concepts that cannot be mod-
eled by any of the previous stages developers have to use the Low Level
Platform APIs in with the generated code. Once the developer has finished
modeling RAPPT generates code for the developer to modify which provides
maximum flexibility to the developer as they are only limited by what the
target platform provides.

6https://developers.google.com/maps/documentation/android/

14



Table 1: Example visual elements that make up RAPPT’s Visual Language

Concept Notation Description

Screen Represents a screen
displayed on a mobile
device as seen by the
end user.

Button Navigation Represents navigation
from one screen to
another by clicking
on the UI component
Button.

Map Displays a Google
Map6

Tabbar Represents the Mobile
navigation UI pattern,
Tabbar.

5.5. DSTL Grammar and Syntax

The grammar for the DSTL is derived from the meta-model and the full
definition is available online7. Both the app and screen concepts from the
meta-model have a direct mapping to concepts in the DSTL. All of the other
concepts in the meta-model represent an abstract instance of the entities in
the DSTL. For example, Web Services in the meta-model includes the follow-
ing abstractions api for specifying a datasource, api-key for authentication,
and GET,POST for making calls to a webservice. Example code from the
DSTL used in RAPPT can be seen in Figure 5.

6. Implementation

Developers interact with RAPPT through a web interface implemented
using standard web technologies (i.e. HTML 5, CSS and Javascript). The

7https://github.com/ScottyB/rappt/blob/master/grammar.g4

15



1
2

3

4

a

Figure 5: Sample DSTL code for loading data from an API and showing the results to the
screen: 1) an event handler for catching the on screen load event, 2) a call to an API with
parameters, 3) the landing page for the generated app and 4) definition of the API.p

App Model was implemented as a JSON object and was shared between
the server and the client. Using JSON as the model format meant that it
could easily be sent to and from the server as many web apps use JSON as
a data transmission format. The DSTL Processor was implemented using
the ANTLR compiler compiler which compiled the DSTL into an internal
representation of the App Model. Errors that were generated on the server
were sent to the client and displayed to the user. We implemented the server
side code in Java and the code templates using String Template. Additional
details about the tool implementation can be found online 8.

We made the decision to build RAPPT as a web based tool to simplify
the process of getting started i.e. there is nothing to download and setup to
use the tool. This also meant that the tool was available anywhere for rapid
prototyping. The DSTL Processor had to be developed on the serverside due
to the available libraries for a compiler compiler.

8https://github.com/ScottyB/rappt/blob/master/rappt-tool-guide.pdf

16



7. User Evaluation

We have conducted a user evaluation of RAPPT for mobile application
development. Our primary aims in this user evaluation was to evaluate user
acceptance and examine how using RAPPT can speed up application devel-
opment for experienced software developers both with and without mobile
application development experience. All of the resources for the evaluation
task, survey questions and results are available online 9. The details of this
user study follows.

7.1. Experiment setup and tasks

Participants were first asked to complete a demographic survey before
starting the experiment. They then watched instructional videos demon-
strating how to use the online editor and visual model. These learning videos
also showed how to construct a small Android app using both the visual ed-
itor and AML. By using learning videos we were able to reduce bias and run
multiple sessions with different participants. On completion of the learning
videos participants were asked to fill out a survey to ascertain their confidence
level with building Android apps with RAPPT. The next stage involved an
evaluation task where participants were asked to build three screens for an
app that displayed data from the MovieDB API similar to the motivation
example of section 2. Participants used their own computers and accessed
RAPPT online.

Participants were encouraged to use the provided samples. Once partici-
pants felt that they had completed the task, their program was downloaded
and run on instructors’ machine. Apps created by the participants were then
installed on a device and run to ensure that there were no runtime issues
caused by the generated code. It would also allow participants to see the ap-
plication they have developed being instantly installed and used on a mobile
device.

Upon finishing the experiment, a matching questionnaire was handed to
each participant. This questionnaire was composed of 16 questions with 5
point Likert scale ranging from Strongly Disagree to Strongly Agree, and 9
open-ended questions capturing their experience of using RAPPT to build
Android apps. We followed the positive questionnaire design approach as

9https://github.com/ScottyB/rappt-eval/tree/master/user-eval

17



suggested by Sauro et al. [28]. This would help us analyze the results faster,
avoid accidental mistakes and have a more consistent set of questions.

7.2. Participants

The participants of this user evaluation were selected from software de-
velopers and researchers at Swinburne University of Technology (Australia).
Overall 20 participants were recruited (17 male, 3 female). Our demograph-
ics questionnaire included six questions to capture participants’ background
and their experience in mobile application development particularly expe-
rience developing apps for Android operating system. These demographics
questions and participant answers are provided by Figure 6.

(a) D1 - How many years experience do
you have in mobile app?

(b) D2 - How many apps have you
built?

(c) D3 - How familiar are you with the
Android Annotations library?

(d) D4 - What is your background?

(e) D5 - What is the highest qualifica-
tion you have?

(f) D6 - How would you rate your skills
to be able to build a simple data driven
mobile app?

Figure 6: User demographic questions and participants’ responses.

7.3. Results and discussion

Out of 20 participants, only one was not able to finish the experiment
successfully. This was due to the participant’s lack of interest in mobile app
development and has been reflected in the questionnaire responses. It took
the participants approximately 90 minutes on average to finish the tasks and

18



answer the questions. Table 2 presents a selection of questions from the
questionnaire. It also depicts the frequency of participant responses to each
question.

The overall response was positive with 80% of participants agreeing or
strongly agreeing to 7 out of the 9 questions. These results confirm that our
approach is suitable for use by professional developers

Q2 received the strongest result with 65% of participants Strongly Agree-
ing to the icons in the DSVL being easy to understand. This confirms our
current choice of icons for the concepts present in a data-intensive mobile
app. We are constantly updating the DSVL based on our feedbacks. This
includes updating the icons to match target platforms, and including more
meta model and fine grained concepts in the DSVL.

An interesting finding from the survey was the results to question Q4
on RAPPT enabling users avoid making mistakes. It demonstrates a close
to normal-distribution spread. The answers and comments on the ques-
tionnaire indicated needs for improving error handling mechanisms as most
participants had experience with major software development IDEs. Some
participants mentioned that they would have preferred a more real-time er-
ror handling mechanisms. A possible way to improve the error handling is
to move more concepts from the DSTL to the DSVL – visual languages are
not as susceptible to developer error as textual languages are. Improving
the overall robustness of the tool is another way to address the issue of poor
error reporting.

Answers to Q5 were also non-committal with 40% of participants being
neutral. The concepts in RAPPT cover the main concepts required for mod-
eling data-intensive apps but are not exhaustive. For example the concept of
a navigation pattern is present although not every navigation UI pattern is
supported. This is one reason why the results may not be strongly one way
or another. Clarifying the question by indicating data-intensive apps rather
than all mobile apps would have removed some confusion.

Participant responses to question Q6 indicate the overall acceptance of
the approach. 95% of the participants had positive views on the usefulness
of the approach (60% Strongly Agree and 35% Agree). Same is true for
responses to question Q8.

7.4. Threats to Validity

Although we have tried our best to reduce threats to validity for the
experiment, there are certain threats with regards to participant affiliations

19



Table 2: Sample questions of the questionnaire. Likert points have been given score of 1
to 5 representing Strongly Disagree to Strongly Agree.

No. Question Frequency (%)

1 2 3 4 5

Q.1 It was easy to use RAPPT. 0 5 15 50 30

Q.2 It is easy to understand what each

icon represents. 0 0 10 25 65

Q.3 It was easy to load data from an

API and render it to the screen. 0 0 15 55 30

Q.4 It is easy to avoid making errors

or mistakes. 5 20 35 30 10

Q.5 The concepts in RAPPT are -

sufficient for modelling a mobile app. 0 5 40 35 20

Q.6 RAPPT is useful for mobile app

development. 0 0 5 35 60

Q.7 Using RAPPT is more efficient than

starting with a raw Android project. 5 5 10 35 45

Q.8 You are satisfied with using RAPPT. 0 0 10 40 50

and background. In this section we outline some of these threats.
Internal Validity Our participants have been recruited from software

engineers and developers at Swinburne Software Innovation Laboratory. Their
affiliation may have introduced bias in their responses. Also some partici-
pants knew researchers which may have had effect on their responses to the
questionnaire. During the design of RAPPT, we have considered the needs of
expert as well as novice mobile app developers. The majority of our partici-
pants (18 out of 20) had less than three years experience developing mobile
apps, and 10 participants had less than one year developing mobile apps.
This may result in some bias towards novice app developers. However, de-
velopers or students first getting started with mobile app development can
benefit from a tool like RAPPT.

External Validity The User Evaluation involved 20 participants which

20



is sufficient for our purposes but not for statistical analysis. Evaluating
RAPPT with more developers on a wide range of applications would further
improve confidence that RAPPT is generally applicable for developers. An-
other threat to validity is best summed up with a comment from one of the
participants ... I need more time to play around with RAPPT... Participants
built one app taking approximately 1 hour to complete and are likely to give
different responses after using RAPPT extensively. It would be interesting
to see how the answers from the participants change after using RAPPT
for an extended period of time on multiple projects. The participants were
asked to complete one task. An improvement to the evaluation task would
involve selecting a range of apps with different functionality and purposes.
Evaluating RAPPT on additional apps would also help expose gaps in the
model and the language which could be used to inform the implementation.

Construct Validity In our evaluation we asked the participants to build
an app which the authors verified against a set criteria available online 10.
The participants were not asked to import the generated projects into an IDE
which would be necessary in a commercial environment. The simple task that
developers were asked to complete did not require the participants to modify
the generated code. Thus, not every step required for using RAPPT was
evaluated. Future work would require participants to download and extend
the generated output by adding an additional feature to the application.

8. Conclusion

We have introduced RAPPT, an approach and tool support for rapid de-
sign and prototyping of mobile applications. RAPPT provides a DSVL and
a DSTL for mobile application development. It also utilizes multiple views
and abstractions levels of mobile applications to help developers be more
efficient in prototyping various apps and at the same time, have maximized
customization ability. In addition, we have presented 4 levels of abstrac-
tion present when building mobile apps and cater for the different levels in
our approach. We have evaluated RAPPT using a user study involving 20
developers and researchers. The results of this evaluation demonstrated ac-
ceptance of the approach among software and mobile app developers. From
the responses to our user evaluation RAPPT can be used as a starting point

10https://github.com/ScottyB/rappt/blob/master/criteria.md

21



to get to the first version of the code base up and running rapidly. Although
we have not evaluated the time it took our users to develop the sample ap-
plication as opposed to manually implementing the features in the code, we
have received qualitative responses that confirm using RAPPT improves pro-
ductivity. Future work will look at quantifying how much of a productivity
boost RAPPT provides in comparison with implementing the feature from
scratch and using other model driven approaches. Another avenue of fu-
ture work would be to build up the DSVL to include more concepts and to
provide a constraint checking mechanism. Validating and verifying the visu-
alisations prior to code generation will also be an interesting area of future
work. Finally, addressing the issue of round trip engineering is another area
that would improve the current work.

References

[1] F. Bentley, E. Barrett, Building Mobile Experiences, The MIT Press,
2012.

[2] S. Barnett, R. Vasa, J. Grundy, Bootstrapping mobile app development,
in: Proceedings of the 2015 IEEE/ACM International Conference on
Software Engineering (ICSE 2015), IEEE, 2015, pp. 305–306.

[3] F. T. Balagtas-Fernandez, H. Hussmann, Model-driven development of
mobile applications, in: Automated Software Engineering, 2008. ASE
2008. 23rd IEEE/ACM International Conference on, IEEE, 2008, pp.
509–512.

[4] J. Danado, F. Paternò, A prototype for eud in touch-based mobile de-
vices, in: Visual Languages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on, IEEE, 2012, pp. 83–86.

[5] B. Athreya, F. Bahmani, A. Diede, C. Scaffidi, End-user programmers
on the loose: A study of programming on the phone for the phone,
in: Visual Languages and Human-Centric Computing (VL/HCC), 2012
IEEE Symposium on, IEEE, 2012, pp. 75–82.

[6] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.,
Scratch: programming for all, Communications of the ACM 52 (11)
(2009) 60–67.

22



[7] D. Wolber, App inventor and real-world motivation, in: Proceedings of
the 42nd ACM technical symposium on Computer science education,
ACM, 2011, pp. 601–606.

[8] R. Francese, M. Risi, G. Tortora, Iconic languages: Towards end-user
programming of mobile applications, Journal of Visual Languages &
Computing 38 (2017) 1–8.

[9] C. Rieger, Business apps with maml: a model-driven approach to
process-oriented mobile app development, in: Proceedings of the Sym-
posium on Applied Computing, ACM, 2017, pp. 1599–1606.

[10] M. Naab, S. Braun, T. Lenhart, S. Hess, A. Eitel, D. Magin, R. Carbon,
F. Kiefer, Why data needs more attention in architecture design - experi-
ences from prototyping a large-scale mobile app ecosystem, in: Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on,
2015, pp. 75–84. doi:10.1109/WICSA.2015.13.

[11] A. Shye, B. Scholbrock, G. Memik, Into the wild: studying real user ac-
tivity patterns to guide power optimizations for mobile architectures, in:
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, ACM, 2009, pp. 168–178.

[12] S. Barnett, R. Vasa, A. Tang, A conceptual model for archi-
tecting mobile applications, in: Software Architecture (WICSA),
2015 12th Working IEEE/IFIP Conference on, 2015, pp. 105–114.
doi:10.1109/WICSA.2015.28.

[13] S. Barnett, Extracting technical domain knowledge to improve software
architecture.

[14] D. Steiner, C. Ţurlea, C. Culea, S. Selinger, Model-driven development
of cloud-connected mobile applications using dsls with xtext, in: Com-
puter Aided Systems Theory-EUROCAST 2013, Springer, 2013, pp.
409–416.

[15] H. Heitkötter, T. A. Majchrzak, H. Kuchen, Cross-platform model-
driven development of mobile applications with md 2, in: Proceedings of
the 28th Annual ACM Symposium on Applied Computing, ACM, 2013,
pp. 526–533.

23



[16] O. Le Goaer, S. Waltham, Yet another dsl for cross-platforms mobile
development, in: Proceedings of the First Workshop on the Globaliza-
tion of Domain Specific Languages, GlobalDSL ’13, ACM, New York,
NY, USA, 2013, pp. 28–33. doi:10.1145/2489812.2489819.
URL http://doi.acm.org/10.1145/2489812.2489819

[17] H. Behrens, Mdsd for the iphone: developing a domain-specific language
and ide tooling to produce real world applications for mobile devices, in:
Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion,
ACM, 2010, pp. 123–128.

[18] I. Madari, L. Lengyel, T. Levendovszky, Modeling the user interface
of mobile devices with dsls, in: Proc. of the Computational Intelligence
and Informatics 8th International Symposium of Hungarian Researchers,
2007, pp. 583–589.

[19] X.-S. Li, X.-P. Tao, W. Song, K. Dong, Aocml: A domain-specific lan-
guage for model-driven development of activity-oriented context-aware
applications, Journal of Computer Science and Technology 33 (5) (2018)
900–917.

[20] G. Taentzer, S. Vaupel, Model-driven development of mobile applica-
tions: Towards context-aware apps of high quality., in: PNSE@ Petri
Nets, 2016, pp. 17–29.

[21] D. Bolchini, A. Faiola, The fusing of paper-in-screen: Reducing mobile
prototyping artificiality to increase emotional experience, in: Design,
User Experience, and Usability. Theory, Methods, Tools and Practice,
Springer, 2011, pp. 548–556.

[22] M. De Sá, L. Carriço, A mobile tool for in-situ prototyping, in: Pro-
ceedings of the 11th International Conference on Human-Computer In-
teraction with Mobile Devices and Services, ACM, 2009, p. 20.

[23] A. P. Jørgensen, M. Collard, C. Koch, Prototyping iphone apps: realistic
experiences on the device, in: Proceedings of the 6th Nordic Conference
on Human-Computer Interaction: Extending Boundaries, ACM, 2010,
pp. 687–690.

24



[24] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, T. Kosar,
On the use of a domain-specific modeling language in the development
of multiagent systems, Engineering Applications of Artificial Intelligence
28 (2014) 111–141.

[25] A. A. Shah, A. A. Kerzhner, D. Schaefer, C. J. Paredis, Multi-view
modeling to support embedded systems engineering in sysml, in: Graph
transformations and model-driven engineering, Springer, 2010, pp. 580–
601.

[26] H. Zhao, L. Apvrille, F. Mallet, Multi-view design for cyber-physical
systems, in: PhD Symposium at 13th International Conference on ICT
in Education, Research, and Industrial Applications, 2017, pp. 22–28.

[27] F. A. Kraemer, Engineering android applications based on uml activi-
ties, in: Model Driven Engineering Languages and Systems, Springer,
2011, pp. 183–197.

[28] J. Sauro, J. R. Lewis, When designing usability questionnaires, does
it hurt to be positive?, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, ACM, 2011, pp. 2215–
2224.

25


