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Abstract

Model transformations are a crucial part of Model-Driven Engineering (MDE)
technologies but are usually hard to specify and maintain for many engineers.
Most current approaches use meta-model-driven transformation specification
via textual scripting languages. These are often hard to specify, understand
and maintain. We present a novel approach that instead allows domain
experts to discover and specify transformation correspondences using con-
crete visualizations of example source and target models. From these exam-
ple model correspondences, complex model transformation implementations
are automatically generated. We also introduce a recommender system that
helps domain experts and novice users find possible correspondences between
large source and target model visualization elements. Correspondences are
then specified by directly interacting with suggested recommendations or
drag and drop of visual notational elements of source and target visualiza-
tions. We have implemented this approach in our prototype tool-set, CON-
VErT, and applied it to a variety of model transformation examples. Our
evaluation of this approach includes a detailed user study of our tool and a
quantitative analysis of the recommender system.
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1. Introduction

Model transformation plays a significant role in the realization of Model
Driven Engineering (MDE). Current MDE approaches require specifying cor-
respondences between source and target models using textual scripting lan-
guages and the abstract representations of meta-modeling languages. Al-
though these abstractions provide better generalization, and hence code re-
duction, they introduce di�culties for many potential transformation speci-
fication users. This is because in order to e↵ectively use them, users have to
possess in-depth knowledge of transformation languages and meta-modeling
language syntax. These are often very far removed from the actual concrete
model syntax for the target domain. Moreover, taking into account large
models being used in today’s software systems, many transformation spec-
ifications are very complex and challenging to specify and then maintain,
even for experienced transformation script and meta-model users [1, 2, 3].
Although some approaches have been developed to mitigate these prob-
lems, such as by using visual abstractions [4, 5], by-example transforma-
tions [3, 6, 7], graph transformations [8, 9, 10, 11], automatic inference of
bi-directional transformations [12, 13], and automated assistance for map-
ping correspondence deduction [14], none of these fully address the problems
nor do so in an integrated, visual, human-centric and highly extensible way.

We introduce a new approach that helps to better incorporate user’s do-
main knowledge by providing them with familiar concrete model visualiza-
tions for use during model visualization and transformation generation. This
approach follows the three principles of direct manipulation [15], i.e. (1) it
provides support for generating concrete visualizations of example source and
target models; (2) these visualizations allow user interaction in the form of
drag and drop of their concrete visual notation elements; and (3) interactions
are automatically translated into transformation code and hence direct cod-
ing in complex transformation scripting languages is avoided. In addition, to
better aid users in finding correspondences in large model visualizations, an
automatic recommender system is introduced that provides suggestions for
possible correspondences between source and target model elements. Com-
plex model transformation code is automatically generated from the user’s
interaction with concrete visual notations and suggested recommendations.

This paper is organized as follows: Section 2 gives a motivating example,
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our key research questions and the requirements being addressed by the re-
search reported in this paper. Section 3 briefly discusses key related work.
Section 4 outlines our approach to model transformation generation followed
by a usage example in section 5. Section 6 describes the architecture and im-
plementation of our approach in CONcrete Visual assistEd Transformation
(CONVErT) framework. Section 7 describes our evaluation and user-study
setup and is followed by a discussion in section 8. Finally section 9 concludes
the paper with a summary.

2. Motivation

Assume Tom, a software developer, is working in an MDE-using team
and has received a system analysis report for an application. Being an ex-
pert in UML diagram interpretation and a Java coder, he is familiar with
concrete syntax of the diagrams and Java code. He is interested in transform-
ing specific parts of UML diagrams provided by the analysis directly to his
programming code, to increase team productivity, code quality and to ease
software evolution. For example, he wants to create a model to code transla-
tor in order to transform specific features and parts in the analysis diagrams
to specific Java code templates. For Tom, as an expert in the domain, corre-
sponding elements in the UML diagram and in his Java code are obvious. He
can clearly spot and relate classes, methods, and even statement snippets in
both program code and class diagram. For example, he can easily relate an
attribute in a class diagram to a property in Java code and their fine-grained
elements (i.e. types, names and access identifiers). Some such model element
correspondences are depicted by Figure 1., using concrete visualizations of
the UML model (a class diagram) and code model (Java textual syntax).

As another example, consider Jerry, an urban planner, who is preparing
a report on tra�c congestion in part of a city. He is used to viewing volumes
of vehicles crossing intersections on screen using a geo-spatial visualization.
An Example of this visualization is shown on the left side of Figure 2. Here,
the volume of vehicles are represented on a map using bubbles. In his report,
he would like to reflect the volume of vehicles passing set of intersections in
a particular time instance by a pie chart. Being an expert in this domain, he
has a solid understanding of this map-based visualization and pie charts and
therefore their corresponding relationships are obvious to him. He would like
to relate the number reflected to each bubble to a pie piece in a pie chart
and generate new visualizations for his report as shown by Figure 2.
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Figure 1: Example of correspondence relations between a Class Diagram and Java code.
Dashed arrows show more fine-grained correspondences.

Figure 2: Example of correspondence relations between geo-located bubbles and pie pieces
in a pie chart.

Given that Tom and Jerry may not have experience or knowledge of
transformation languages, meta-modeling, and data processing, specifying
correspondences is better understood by them using one or more example vi-
sualizations (e.g class diagrams and corresponding code examples, as shown
in Figure 1). However, using current approaches to create such transfor-
mations they have to work with the complex syntax of model abstractions
(e.g. UML and Java meta-models, etc.) and the low-level textual syntax and
semantics of transformation languages, such as XSLT, ATLAS Transforma-
tion Language (ATL)1 and Query/View/Transformation (QVT). Addition-
ally, with these approaches, maintaining the transformations if the source
or target models need to change is time-consuming and error-prone. While

1http://www.eclipse.org/atl/atlTransformations
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a transformation expert may be able to do this, novices can easily make
mistakes or find di�culties. If the source and target models are large, map-
ping is even more di�cult and time-consuming, even with good tool support,
such as Altova2. Such issues make current transformation specifications hard
to perform, understand and evolve (e.g. adding or changing new transfor-
mation rules). This problem exists in many other transformation domains,
for example, model to model transformations (e.g. UML to RDBMS), model
refactoring, graph based transformations, and most information visualization
domains.

In earlier work we developed prototype solutions to some of these prob-
lems, but for specific domains and addressing only limited parts of the prob-
lem domain. For example, the EDI message mapper using abstract EDI struc-
ture [16], the form-based mapper using a concrete business form metaphor
[17], and mapping agents for large meta-model mapping problems [14]. Key
research questions we wanted to answer in the work described in this paper
include:

1. Can we generalize the use of such concrete source-to-target mapping
metaphors to a wide range of model transformation problems?

2. Can we generate e�cient and e↵ective complex model transformation
scripting code from these visual by-example specifications?

3. Can we provide e↵ective guidance to users with visual representations
and recommendations for large model mapping problems?

To answer these questions, we seek to meet the following key require-
ments in our approach and associated tool-set: (i) provide users with fa-
miliar concrete visualizations of source and target models in order to lever-
age their domain knowledge in transformation specification; (ii) allow users
to specify complex model element mappings between concrete visual nota-
tional elements using interactive drag-and-drop and reusable, spreadsheet-
like mapping formula; (iii) help users find, explore and decide possible model
correspondences by providing automated recommendations using an inter-
active recommender system; (iv) allow users to cut corners in specification
of transformation correspondences by choosing among suggestions; (v) auto-
matically create high-level abstractions for transformation generation from
the concrete visualizations; and (vi) generate reusable model transformation
implementations from these visually specified, by-example model mappings.

2http://www.altova.com/

5



This paper presents our approach for supporting these tasks in a proof-of-
concept visualization and model transformation specification and generation
tool. In the following sections, we show the practicality of our transformation
approach for generating transformers for a variety of domains.

3. Related Work

Complexity of model transformation specification is due to both the di�-
culty inherent in specifying large, complex inter-model correspondences using
the complex syntax of model transformation languages [17, 18], and the use
of meta-models [19]. Most model transformation approaches rely on knowl-
edge of multiple, often large and complicated meta-models, along with ex-
pert knowledge of transformation scripting languages and tools (e.g. Eclipse
Modelling Framework project [20]). While these provide powerful platforms,
they are also time-consuming to maintain, hard to understand and error-
prone to write [2, 3]. Multiple approaches have been proposed to address
the complexity of transformation specification by eliminating the need for
learning transformation languages and dealing with meta-models. These ap-
proaches can be grouped into Model Transformation By Example (MTBE),
Model Transformation By Demonstration (MTBD) and model and meta-
model matching.

The key principle with the MTBE approach is to derive high level model
transformation rules from an initial prototypical set of interrelated source
and target models. This concept was first used by Varro et al. incorporat-
ing graph transformations [6]. The idea is to provide multiple source and
target model pairs, and ask a user (domain expert) to specify source and tar-
get model element correspondences. The system then uses these correspon-
dences to derive transformation rules [1, 3, 6, 7].Model matching approaches
are very similar to MTBE, i.e. they try to find possible correspondences
between source and target models. These techniques try to find an align-
ment for relating two or more models. This alignment can then be used to
semi-automatically generate transformations between two models [21, 22, 23].
These generated transformations can then be adopted and validated by an
expert as a set of transformation rules. Both MTBE and model matching ap-
proaches usually require multiple source and target model examples to exist,
ideally representing the same underlying data, to produce accurate trans-
formation rules. Moreover, they often require users to modify derived rules
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to be executable and to match their intention which are often harder than
writing the rules from scratch [18].

MTBD approaches on the other hand are based on an expert performing
transformation tasks and recording of the process steps by a recorder. Using
the recorded history, the system generalizes the tasks to form abstract trans-
formations [2, 24]. MTBD approaches are more suited for transformation of
models conforming to the same meta-model and as a result, are more di�cult
to use for di↵erent model transformation applications [1].

Kappel et al.[1] and Li et al. [17] have separately argued that to spec-
ify model transformations, an approach that involves concrete notations is
required. Kandel et al. mentioned that analysts could benefit from interac-
tive tools that simplify the specification of data transformations [25]. They
asked whether transformations can be communicated unambiguously via sim-
ple interactive gestures over visualized data or if relevant operations can be
inferred and suggested [25]. Multiple approaches have been used in that
direction, leveraging concrete model notations for the specification and de-
velopment of transformation rules and data mappings [26, 27]. However, they
are usually hard coded for specific problem domains or use fixed visualiza-
tions [17]. In addition, they mostly require users to specify correspondences
on meta-models rather than concrete visualizations [10, 28, 29, 16, 4]. This
is also true for graph based transformations, where source and target models
are represented using abstract graphs [8, 9, 10, 11]. There has been works
on using graphical representations on graph-based transformation languages.
For example a graphical representation of model transformations for Triple
Graph Grammar (TGG) was provided by Grunske et al. [30]. Concrete
syntax-based Graph Transformation (CGT) was introduced by Gronomo et
al. [31]. It was suggested that due to use of graphical concrete syntax, CGT
is more concise and requires considerably less e↵ort from the modeler than
, ATL and Attributed Graph Grammar (AGG) which use textual abstract
syntax [31]. CGT uses a default concrete syntax similar to Business Process
Modeling (BPM) and therefore the syntax is familiar for the modeler’s do-
main knowledge. However, this concrete syntax does not have a flexibility of
adapting to arbitrary visualizations.

In contrast, the approach presented in this paper uses concrete visualiza-
tions and can be adopted for variety of domains. Also, it uses model match-
ing concepts and provides a recommender system that specifically focuses
on concrete visual model representations to guide users in specifying their
transformation rules. We demonstrate our approach using MDE case study
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of transforming class diagrams to Java code snippets. This case study and
automatic model transformation and code generation in general has been
an active field of research in software engineering for many years and is a
necessity for MDE [32, 33, 34, 35, 36, 37]. These and other model transfor-
mations in MDE has been practiced for many years with graphical or textual
languages (e.g. Henshin [33] or ATL). However, the biggest barrier for de-
veloping such code generators and transformers lies with the complexity of
the model transformations and the capability of users to correctly specify the
transformation rules. Previous approaches to code generation used template
generators [14, 17], patterns [38], and textual and/or visual meta-models
[16, 39]. We hope that by using concrete visualizations, we can provide facil-
ities to model transformation users to better integrate their domain knowl-
edge in transformation rule generation. Our approach generalizes to many
other domains and we have applied it to several diverse data migration, data
aggregation and complex information visualization problems.

4. Our CONVErT approach

Our approach to model transformation generation in CONVErT relies on
example concrete visualizations of input source and target models. These
specifically generated visualizations enable use of drag and drop of nota-
tions to perform model transformations and specify correspondences between
source and target model visualizations. Consecutively, this concrete, by-
example approach for model transformation has three key steps: (1) The
user - the domain expert - provides source and target model examples and
specifies (or reuses) a concrete visualization for each of the provided examples
(a model to visualization transformation). These source and target model
visualizations may be very di↵erent from one another e.g. a UML class dia-
gram visualization and Java code visualization,or a map visualization and a
chart visualization. (2) Using these example model visualizations, the user
interactively specifies mapping correspondences between source and target
visualization elements (visualization to visualization transformation). (3)
We generate reusable model transformation script code from the specifica-
tions. This reusable script can be applied to any source model conforming to
the example source model(s) used to specify the transformations, to produce
a target model. In the following we describe each step of our approach in
more detail. Then we provide a usage example of our approach being used
to specify and generate model transformations.
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Figure 3: CONVErT’s transformation approach.

CONVErT’s approach is outlined in Figure 3. In step one, a user provides
at least one example of source and target models. Our proof of concept im-
plementation of the approach uses XML or Comma Separated Value (CSV)
files as input examples and can be further expanded to allow other types
of input. Using these example inputs a concrete visualization needs to be
specified and generated for both source and target examples (or reused, if
concrete visualizations have previously been specified for other example mod-
els of these types). To do this, users map elements of the source and target
examples to available visual notations provided by our tool framework and
specify their correspondences (see 1 in Figure 3).

Because models to transform are usually very large, a recommender sys-
tem, a “Suggester”, analyses the provided examples and available notations
and generates a list of possible transformation correspondences to be pre-
sented to the user (see 5 in Figure 3). Our suggester uses multiple similarity
heuristics, including model element name, value, structure and neighborhood
similarities. It aggregates the results returned by each heuristic to generate
a model element correspondence suggestion list. To specify input example
to visual notation mapping correspondences, users can either drag and drop
elements of input examples on visual notation elements or select from recom-
mended correspondences (see 4 in Figure 3). When specified, users compose
these visual notations to create a complete concrete visualization for models
of each of the source and target types (2 in Figure 3). These mappings result
in generation of model transformation code that transforms model elements
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to concrete visualizations. Note that this visualization step can be specified
separately by other users or be reused from previous visualizations.

Using the generated visualizations, users specify transformations between
elements in the source model and elements in the target model using the con-
crete visualizations (see 3 in Figure 3). These visualization to visualization
mappings are similarly done by dragging and dropping elements of source
visualizations on elements of target visualizations or selecting from provided
suggestions. For example, a pie piece in a pie chart can be dragged and
dropped on a bar in a bar chart to specify a mapping correspondence; Hence
the process of model transformation can use user’s domain knowledge.

Correspondences between model elements include 1 to 1, 1 to many, many
to 1 and many to many element correspondences. Often these transforma-
tions are quite complex. To achieve these, a variety of model transforma-
tion functions, such as collection summation, merging, subtraction, textual
parsing and conditional mapping, are provided to users. In keeping with
our visual, by-example transformation specification metaphor, these are also
applied to example concrete visual element(s) and are composed together
visually. These enable tool users to specify potentially very complex model
transformation rules. If required, users can also define new functions using
provided templates.

The visually, by-example defined model correspondences are then trans-
lated into low-level model transformation rules, currently implemented in
XSLT. Once all required transformation rules are defined, the system gener-
ates a full source model to target model transformation script. This transfor-
mation code can be applied to any source model examples conforming to the
meta-model of the example(s) used in the specification to produce a target
model.

5. Use Case

Assume Tom, a software engineer, intends to create an automatic code
generator to transform specific parts of a UML class diagram model to Java
code. While various IDEs and template generators support generic code
generation, Tom may want to specify particular pattern implementations be
used, particular code snippets be used, particular code formatting, comment-
ing and layout, use of particular APIs be used in particular ways within the
generated code base, and may want particular coding approaches be imple-
mented. Let us further assume that he has example XML representations of
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both class diagrams and target Java code examples.Tom will provide these
examples to CONVErT. Note that it is not required for him to possess mul-
tiple examples; instead, one comprehensive example would su�ce to support
the transformation generation procedure. However, having more examples
will help the suggestion mechanism calculate more accurate recommendations
and will help CONVErT generalize from the examples to a more complete
generated translator. Specifying using several, smaller examples can also be
easier for users to work with than one large example source and target model.

If meta-models are available for these example models, then CONVErT
can use these for validating its input and generated target models, constrain-
ing rules and improving transformation code generation. Otherwise, CON-
VErT will automatically reverse engineer a meta-model from the provided
example models. This meta-model is used in transformation rule templates
and the suggester system.

5.1. Specifying Concrete Model visualizations

The model visualization procedure (Step 1) involves creating a visual
notation for each distinct part of input model once and composing them to-
gether to form a complete visualization. For example, to visualize an exam-
ple Java code XML, Tom needs to define a visual notation for Java package,
Classes, attributes, methods and method parameters. To do that, he has to
specify correspondence links between elements of the notation and his input.
Visual notations are provided by framework users or designers and are avail-
able in framework’s notation repository for reuse. Available visual designs
can be imported in the framework and registered as notations by providing
a notation to data mapping (See [40] for more information on CONVErT’s
support for specifying and generating reusable visual notations).

For example, using CONVErT to generate a visualization for a Java class,
he has to drop a previously defined or reused Java class notation onto the
CONVErT designer canvas (see (1) in Figure 4(a)). He then drags and drops
the class element of the source example model on the notation as shown by
solid black arrow in Figure 4(a). This interaction will trigger the creation of
a transformation rule for transforming that portion of the source model (the
class element in the source XML document) to the host notation’s model.
Each notation may have internal elements which are accessible through a
pop-up window. For example, our class notation here has an access identifier,
a name, a placeholder for properties and a place holder for methods as its
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(a) Defining Java class notation. (b) Defining UML class notation.

Figure 4: Mapping example elements to notational elements to define visual notations for
a) Java class and b) UML class. Arrows depict drag and drop.

model (see (2) in Figure 4(a)). These placeholders specify where other visual
notation elements are going to be included.

Tom defines correspondences between the source model element(s) and
target concrete visualization element(s) by drag and dropping elements or
choosing from automatically-generated “suggestions” (see (3) in Figure 4(a)).
In this example, Tom drags and drops the input class’s name and access to
name and identifier of the notation (dashed arrows in Figure 4(a)). These
correspondences will be included in the transformation template that has
been triggered. Attributes and methods are defined by other model to visual
notation mappings, and are specified in the same way. Thus we do not need
to map them to these place holders at this stage. Once done, he will save the
notation and continue creating other required notations. The same procedure
is then followed for other notational elements and their visualizations. For
example, a UML class diagram’s Class notation is shown in Figure 4(b).

Complex 1-to-many, many-to-1 and many-to-many element correspon-
dences can be specified. To facilitate this and other complex mapping tasks,
a range of “mapping functions” are available in CONVErT. For example, if
Tom wanted to alter the name of the Java classes by appending a “ Class”
to their name, he could use a string merging function (marked by A in Figure
5(a)). These mapping functions are used in a similar way to the notation ele-
ments, i.e. Tom drops the required function on the designer canvas, and links
desired input elements to internal elements of the function (i.e. function’s
input arguments) by drag and drop, and drags the output of the function to

12



his desired element in the notation (see arrows in Figure 5). This forms a
data-driven functional visual language transforming the source model data
to the target visualization elements in potentially very complex ways.

(a) Using string merge function (b) Using summation function.

Figure 5: Using functions for input to notational element mapping. a) string merge, and
b) summation function. Arrows depict drag and drop.

To get a sense of range of supported model transformations and di↵erent
domains, assume analyst Carrie is generating a bar chart visualization for
her sales report in a business analysis visualization domain. Each bar in this
bar chart is to represent a record of annual sales. Further assume the report
being handed to her includes six monthly sales amounts instead of annual
sales (marked by B in Figure 5(b)). She can use a summation function (C
in Figure 5(b)) to add those two amounts and map the result to Bar’s value.

The defined notations represent a model element-to-visual notation trans-
formation rule. To have a complete transformation script, the prepared col-
lection of transformation rules in notations need to be scheduled for pro-
cessing on source models according to their call sequence. Usually this is
achieved by asking users to write code for this script, similar to procedural
programming, and by providing meta-models. In our approach the assump-
tion is that there is no user provided meta-model available and the user is
not willing to write complex transformation code. Therefore, by using com-
position of notations our approach generates call sequencing of the embedded
transformation rules.

To compose the defined notations in our example, Tom links all nota-
tions he has created according to their specific place holders as depicted by
Figure 6(a). By linking a notation to a placeholder element of another, the
host notation knows the transformation rule embedded in the notation being
dragged should be called at this placeholder. This is in order to a↵ect the
embedded model element-to-visual notation mapping. This linking results in
the scheduling of model element-to-visual notation transformation rules and
thereby creates the model to visualization transformation script.

A Start element in Figure 6 defines where the transformation specifica-
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(a) Java code notation composition.

(b) Class diagram notation composition.

Figure 6: Notation composition to generate visualizations for a) Java code and b) class
diagram. Arrows are provided by the framework for better tracking of the composition.

tion will start and thus tells the transformation scheduler to start generating
transformation code from the transformation rule embedded in the notation
linked to this start element. For example in Figure 6(a), the transformation
rule in package notation (marked by 1 ) is the first rule to be called to trans-
form a Java package model element to a package notation. It then calls the
class transformation rule, and the scheduling continues accordingly for other
linked notations.

Each notation composition results in the automatic generation of a trans-
formation specification, currently implemented as XSLT transformation script
that generates Windows Presentation Foundation (WPF) visual elements.
For example, by using the compositions specified in Figure 6(b), a complete
XSLT script to generate concrete visualizations of UML class models will be
generated for rendering class model examples to visualizations of the form in
Figure 1. Note that this generated XSLT transformation script can be reused
and applied to all Java code and class diagram model files conforming to the
examples used to specify the visualizations, to provide an automatic concrete
visual notation renderer. These generated concrete class visualizations are
implemented as WPF elements and allow interaction with their composing
notations. The individual elements of a concrete visualization can thus be
dragged, dropped on other elements, and right clicking on them reveals their
internal elements.
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5.2. Specifying Model Mappings using Concrete Visualizations

Once visualizations of both source and target are available, Tom can
drag and drop elements of these visualizations to create transformation rules
between these visualizations. An alternative to this approach is to select
from provided suggestions (see B in Figure 7). Figure 7 shows an example
of creating a transformation rule for a UML attribute to a field in Java code.
To create this rule, Tom needs to drag a UML attribute to a Java field, as
depicted by solid black arrow, and match their internal elements, as shown
by dashed black arrows (or select them in suggested recommendations). Note
that the two visualizations do not need to represent same data, as in Figure 7
where the class diagram represents an organization system but the Java code
is representation of a Bank system package. Although consistency checking
was not our concern with this prototype implementation, selective checks
can be provided in each visualization. For example, the package name of the
Java code knows that its name should not consist of white spaces, or Java
attributes use default multiplicity of 1 when not specified and when blank
is provided it is assume to be n. These checks can be provided depending
on the application during notation design. An alternative is to use functions
and conditions when specifying the transformations.

Figure 7: Mapping A UML attribute to Java property. Arrows depict drag and drop
directions.

Given that transformation rules are defined using concrete notations, each
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rule is also represented by the source and target notations it is representing.
This provides better visual representation of transformation rules. For in-
stance in Tom’s example above, the visual representation of the rule trans-
forming a UML class to a Java class is marked by A in Figure 7.

Similar to step two of specifying a concrete visualization for a model,
mapping functions are available to create more complex transformation rules
between the concrete visual model mappings. For example, when mapping
associations to a Java field property, an association might have multiplicity
defined by “*”, whereas a Java field property might have either a number
or void as its multiplicity. To specify such a correspondence, Tom can use a
condition mapping function.

By dragging a UML attribute to a Java field (or any notational element to
another) their default notations will be shown on a di↵erent canvas to better
provide space for using functions. In this example, Tom can navigate to
that canvas and specify conditions as depicted by Figure 8(a). The condition
function in the figure tests whether Multiplicity of the association is equal
to ’*’. If so, it passes a blank character as output; otherwise it copies the
Multiplicity provided by the association to the output. Since conditions
do not have specific output, (unlike arithmetic and processing functions),
instead of dragging the output he drags the condition itself on the element
of the target (in this case Java field’s multiplicity) as depicted by arrows in
Figure 8(a). He can continue specifying other correspondences (Associations
Name to Java field Name and EndClass to Type) here or on the actual
visualizations. The transformation code generated from these interactions is
shown in Figure 8(b).

5.3. Recommending correspondences

In our experience, real-world source and target models are often very
large [14]. To assist the user, model correspondence recommendations are
provided by a group of Suggesters, or correspondence recommenders, which
analyze source and target models according to a variety of value and struc-
tural similarity heuristics. Since analyzing the whole input models and vi-
sualizations was costly for our automatic correspondence recommender, our
suggester system uses the abstract graph lattices (used in reverse engineering
meta-models) as input to calculate similarities.

Three types of similarity heuristics are used as correspondence recom-
menders of the suggester system. (1) Static similarity recommenders check
name tag and type of elements in source and target elements. (2) Structural
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(a) Mapping UML Associations to Java field (b) Generated XSLT script

Figure 8: Using conditions in visual notation mapping, a) a condition to map UML asso-
ciation to Java field, arrows depict drag and drop. b) The resulting XSLT script.

similarity recommenders consider source and target as graphs and check simi-
larities based on structure of this graph that elements reside in, i.e. checking
the inbound or outbound nodes of each element, and checking the neigh-
borhood of each source and target element. (3) Propagated similarity (like
structure similarity recommenders) considers input source and target models
as graphs and calculates similarity of elements according to recursive anal-
ysis of their neighboring elements. With this similarity measure, similarity
of two nodes in a graph is defined by similarity of their neighborhood topol-
ogy. As a result, using propagated similarity, two nodes are similar if their
neighbors are similar and the neighbors of their neighbors are similar and
so on. We have adopted IsoRank as our measure for propagated similarity
recommender [41].

Figure 9 shows sample list of recommendations produced by our suggester
for the motivating example of UML class diagram to Java code visualization.
In this figure for example, a name similarity recommender has assigned high
scores to UML class Name to name of a Java class and UML class’s Access
to Java class’s access as they represent similar name tags. UMLClass and
class-declaration have high similarity score according to IsoRank similarity
as their neighbors (children and parents) are similar (e.g. UMLClass children
include Name and Access, Java class declaration also has name and access
as it’s children and so on). As a result they have been returned in the final
list of recommendations. Note that other recommenders might have also
contributed to these recommendations. For example, both Name elements
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on either side have values that are string and the type similarity recommender
will also return these pairs as high score correspondence candidates.

Figure 9: Sample of resulting suggested correspondences between UML class diagram and
Java code visualization.

The scores calculated from the similarity recommenders of each group are
returned as a normalized similarity matrix. Similarity matrices are sent to
the Suggester system and a final similarity score is calculated based on the
confidence weights assigned to each recommender in the suggester’s recom-
mendation ensemble. Similarity scores returned by suggesters are multiplied
by their confidence weights and the resulted scores are summed up in a final
similarity matrix that is the basis for calculation of recommended correspon-
dences. The suggester system selects from the returned suggestions and pre-
pares a recommendation list similar to Figure 9. Once all recommendations
are available, our ensemble configuration filters the recommendation list by
the stable marriage algorithm [42]. This will result in a selection of recom-
mendations that possess the highest overall recommendation score per pair.
The stable marriage algorithm can be configured to return arbitrary number
of results per pair. By default this value is set to one. If users accept or
reject any of the recommended correspondences a feedback analyzer updates
the confidence weights associated with the suggesters and thus improves the
learning mechanism.

The suggester system can be configured to use one, all or a selection of
these di↵erent suggesters by provided option settings. For example, users
can configure the suggester system to ignore a particular recommender by
setting its usage flag to false. Also, it is possible to alter weights manually (or
as part of an optimization mechanism) by setting each recommender’s con-
fidence weights and disabling the learning mechanism (automatic alteration
of confidence weights).

To provide a more interactive and hence useful representation of recom-
mendations, the suggester system incorporates a filtering mechanism similar
to the guide and filter approach proposed by Hernández del Olmo et al. [43].
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In their proposal, a guide provides answer to when and how each recommen-
dation must be shown to the user, while the filter must answer which of the
items are useful/interesting candidates to become recommended items.

Figure 10: Adaption of guide and filter for interaction with suggested correspondences.
Selecting (accepting) a UML class to Java class correspondence (1) updates the recom-
mendation list to show possible internal element correspondences (2). Rejecting the cor-
respondence will not update the list but will result in updating the recommender weights.

In our adaptation of that proposal, the results of final similarity matrix
are filtered by the stable marriage and sent to the guide system for represen-
tation. Some correspondences will result in transformation rules, and others
will define internal rule correspondences. The guide system chooses among
recommendations according to the task that the user is about to perform,
e.g. when user provides source and target visualization to perform map-
pings, the guide system first represents the recommendations that will result
in transformation rule templates. That is because a rule between two nota-
tions must be defined first, and its internal rule correspondences are to be
defined later. Therefore, when users define a rule correspondence by drag and
drop or selecting from the suggesters, the system accordingly updates the list
of suggested correspondences to provide suggestions related to that rule and
hence better guide users with targeted recommendations. For example, if
Tom defines a UML class to a Java class rule by accepting its recommended
suggestion (as in Figure 10 A) or alternatively by drag and drop of their
visual notations, the suggestion list will be updated to demonstrate how in-
ternal elements of classes (like name, access, attributes, etc.) can be linked
(See B in Figure 10). This intelligent assistance was incorporated after our
user study indicated the need for more interactive and targeted visualization
of recommended correspondences.
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5.4. Generating Model Transformation Scripts

Once the required rules for transforming all parts of source and target
visualizations are defined, a transformation code generator generates XSLT
scripts for each transformation rule in the form of an XSLT template similar
to the transformation script of Figure 8(b). As stated before, it is possible to
generate scripts for other transformation languages with some modifications
in the transformation code generator. These modifications would specify how
a correspondence from an element a in source to an element b in target should
be written for that specific transformation language. In current configura-
tion, depending on what the correspondences specify (an element to element
mapping, a notation to notation mapping, etc.) these correspondences are
translated to XSLT value fetches (value-of and select statement) or template
snippets.

Figure 11: Sample resulting Java visualization.

Although the model to visual notation transformation rules of the visu-
alization step had to be explicitly scheduled, in visualization to visualization
transformation generation the rules are declaratively executed. This is due to
the fact that a visualization example of both source and target are available
and their meta-model can be reverse engineered. Therefore, it is possible to
decide the starting rule for the transformation script. Other transformation
rules following the starting rule are then declaratively called. As a result,
once required transformation rules are defined, the system will generate the
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Figure 12: Using CONVErT to transform CAD drawings to tree-based layout.

transformation script automatically. Applying this script to source visual-
izations will transform the data represented by source to visualization of the
target. For example, in Tom’s example, applying the full transformation
script on the source of Figure 7 will result in the visualization of Figure 11.
Note that Tom can very easily modify the Java example visualization and
mappings to: rearrange attributes and methods; generate di↵erently-named
classes, methods and/or attributes; to reformat their concrete appearance;
to add particular design pattern, API usage, code formatting, layout, and
partial code templates; could apply filtering to the source UML model map-
pings to only generate code for selected portions of the UML model; and so
on.
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5.5. A CAD Model Transformation Example

To illustrate the range of model transformation domains to which our
CONVErT approach can be applied to, consider Computer Aided Design
(CAD) applications that need to exchange complex models [44]. Consider
the scenario where architect Carrie might want to create an organization’s
building structure chart based on the design she had created earlier. Assume
that visualization transformations for both models have been provided be-
forehand (they can be created using the same approach as in the previous
example), where the design model is visualized with a 2D building layout and
the structure chart model via its diagrammatic representation. Carrie can
specify a transformation between elements of her source design to elements
of the target structure chart. As she is an architect and not a software en-
gineer, and the fact that CAD designs can become very large and complex,
she can view both visualizations side by side and get help from suggested
correspondences.

Figure 12 shows an example of mapping parts of a detailed building de-
sign to a detailed structure chart. Carrie can specify elements of the chart
structure to be created based on elements in her design. For example, she
can drag and drop a room on a corresponding room node in the tree and
specify their internal elements. The color of tree node can be specified using
functions and based on type of the room. She uses CONVErT in the same
manner as described in the previous section, making use of suggestions, as
each of these model structures is large and each example visualized is also
large. Carrie can use examples of part of the building model to specify her
transformation to a corresponding part of the structure chart. CONVErT
then generates a model-to-model translator that can be applied to complete
building design models to generate a complete structure chart.

6. Architecture

Our new approach to concrete visualization generation and model map-
ping generation as presented in this paper has been implemented as a proof of
concept in our CONVErT framework [45]. A high-level architecture and key
parts of CONVErT are depicted in Figure 13. In the following paragraphs,
we briefly describe the implementation of key mechanisms provided by this
framework.

The reverse engineering and model abstraction mechanism of CONVErT
(Figure 13 (1)) uses a graph lattice as meta-model to be used in transforma-
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Figure 13: CONVErT’s architecture.

tion rules and for scheduling. Once source and target examples are provided,
a crawler traverses the examples and fills the lattice with new element struc-
tures that it faces. This way the structure of source and target are known
to the system. Each transformation rule (Figure 13 (2)) will be initially cre-
ated by considering a portion of this structure that represents the element
being dragged or dropped as a template. As a result, once an element is
being dragged, the abstract structure of the input example it represents is
also dragged with it. The specified source to target correspondences will
be inserted in these templates. Once all correspondences are specified, the
transformation code generator (Figure 13 (5)) uses these correspondences
and forms XSLT snippets that will be inserted in the template. The altered
template will then be used by transformation code generator to generate
a transformation rule in XSLT. If an alternative transformation language
is needed, translation of these templates to the target languages should be
provided to the system.

Each visual notation in CONVErT has a view created and provided by
XAML and a Model which is an XML description of the internal elements. A
direct mapping is provided to transform notation’s model XML to the XAML
representation. Since the generated concrete visual notations need to provide
interaction (drag and drop) capabilities and host transformation templates,
the Renderer mechanism of CONVErT (Figure 13 (4)) wraps each notation
in interaction logic provided by an instance of a Visual Element (VE) class. A
VE provides a container for the notations and other VEs and is implemented
using XAML and C#. This architecture allows our framework to let users
interact with composing elements of a model visualization regardless of the
embedding hierarchy of the notation.
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Our prototype implementation of CONVErT was done using Microsoft
Visual Studio and C#. The rendering of XAML based visualizations is na-
tive in Windows Presentation Foundation (WPF), available in Visual Studio.
Updated versions of CONVErT can be downloaded on-line3.

7. Evaluation

We have used CONVErT to specify a wide range of complex model trans-
formation and information visualization problems. These include several
MDE problems using UML source models and code and script targets; CAD
tool integration using 2D and tree structure source and target visualizations;
and various business analysis problems, including a Minard’s Map visual-
ization. Details can be found on CONVErT’s website3 including example
videos of specifying CONVErT transformations using concrete, by-example
visualizations. This section describes our evaluations of CONVErT, which
consist of a user study and evaluation of the suggester system.

7.1. User Evaluation

We wanted to get detailed target end user feedback on the CONVErT
approach and our prototype concrete, by-example model transformation tool.
To do this we designed a user study where users performed a number of model
transformation and comprehension tasks with CONVErT.

7.1.1. Participants and Tasks

For our user study, we recruited 19 users (including 4 controls for instru-
ment testing) in two groups from software engineering sta↵ and students at
Swinburne University of Technology. Participants were introduced to CON-
VErT through a 10 minute screen-cast which described the user interface,
visualizations and transformation generation procedure. They were then
asked to perform a set of given model visualization and mapping tasks and
were asked to use a think-aloud approach. The experimental setup com-
prised a laptop with an attached mouse. Screen captures were taken during
the process and a matching questionnaire with 58 questions was handed to
each participant at the end of the experiment with 5 point Likert scale (rang-
ing from strongly disagree to strongly agree) and dedicated spaces to leave
comments and optional feedback.

3https://sites.google.com/site/swinmosaic/projects/convert
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The tasks assigned to each group were to create a visualization with
CONVErT and then use it as source and generate a transformation from the
example visualization to a provided visualization. Both groups had the same
settings but used di↵erent input examples and target visualization. The first
group were given a model representing business sales data and were asked to
create a bar chart visualization of their sales data (task 1). They were then
asked to transform that bar chart visualization to a pie chart visualization
(task 2). The second group were given a class diagram data (XML) and
asked to generate a class diagram visualization (task 1). For Task 2 they were
asked to transform that class diagram visualization to a provided Java code
visualization (similar to usage example of Section 5). Task description hard
copies which were handed to the participants did not describe instructional
steps. Instead, they included the input file names and their locations, and a
snapshot of the desired final visualization and transformation results. Users
had to come up with steps required to get similar results. They were allowed
to ask questions from the instructor if they had trouble understanding those
steps.

Our first group consisted of 10 participants (8 male, 2 female). Sec-
ond group consisted of 5 participants (3 male, 2 female). In response to
demographic questions D.3:“How familiar are you with model transforma-
tion and modeling in general?” and D.4:“How familiar are you with data
visualization?”, the participant had following options: VF: Very familiar,
SF: Somewhat familiar, HH: Had heard of it, and NF: Not familiar. The
frequency of responses are provided in Table 1.

Table 1: Partial demographics of participants (%)

Question NF HH SF VF

D.3 13 33 47 7

D.4 13 20 53 13

7.1.2. Results

Table 2 shows a selection of eight questions from our questionnaire. We
have assigned scores of 1 (for perfect negative) to 5 (perfect positive) to
each Likert point and calculated the Median, Mode and Frequency of re-
sponses. The responses to sample questions based on these arrangements are
also summarized in Table 2. Full results can be found on CONVErT’s web-
site3. It took participants on average 29 minutes to accomplish both tasks
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successfully. Section 8 provides a discussion of these results. We also asked
open ended questions about the use of the tool on these examples, sugges-
tions for improvements, and overall impression of the approach for model
transformation problems.

Table 2: Sample questions of the questionnaire.

Question Frequency (%)

1 2 3 4 5

Q.1 I found it easy to visualize the given

data as a bar chart/class diagram. 0 0 20 7 73

Q.2 I learned to use the tool quickly. 0 0 13 27 60

Q.3 Visual diagrams help me better

understand the relationships between

source and target drawings. 0 0 0 20 80

Q.4 I found it easy to specify the relations

between left hand side and right hand

side visualizations. 7 0 7 20 67

Q.5 In general I found the tool to be easy

for transformation between visualizations. 7 0 0 40 53

Q.6 Recommendations helped me better

understand relations between source and

target visualizations. 7 0 33 27 33

Q.7 I used recommendations at least once. 7 7 27 20 40

Q.8 I was satisfied with the way

recommendations were presented. 7 7 27 13 47

As Table 2 indicates, the majority of participants agree on ease of use of
the tool for generating visualizations. This is reflected in their responses to
questions Q.1. Similarly, the responses indicates that the participants found
it easy to learn the tool (see their response to question Q.2, 60% strongly
agree and 27% agree). As can be seen from results of Table2, users positively
responded to having visualizations in better understanding of relationships
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between source and target (Q.3 with 80% strongly agree and 20% agree).
These responses demonstrate users’ perception of the approach is in accor-
dance to our motivating scenario on usefulness of concrete visual by example
approach for generation of mappings. In terms of ease of use, the responses
are fairly consistent and indicate general acceptance of the approach and
tool-set (see responses to questions Q.4 and Q.5). In response to Q.4, total
of 87% of the users have agreed that it was easy to specify the relations be-
tween left hand side and right hand side visualizations which complements
responses to question Q.3. Similarly 93% of the users have agreed that the
approach provided by the tool for specifying transformation using visualiza-
tions was easy (Q.5).

The results of Table2 shows potential points of improvement to the ap-
proach and specifically to they way recommendations are represented and
used. For example, when we asked whether provided recommendations helped
users understand relations between source and target visualizations (Q.6)
only 60% of the users have responded agree and strongly agree. Similarly in
question Q.7, 60% of participants have agreed that they have used recom-
mendations at least once. In terms of recommendations representation, we
have also received 60% satisfaction (in response to Q.8) which could be a
clue to why users did not use the recommendations and preferred drag and
drop to specify correspondences. For example, a participant did not realize
that by selecting from suggestions, it is possible to specify correspondences
and therefore did not use them at all.

We should also point out that the guide and filter mechanism described
in section 5.3 was not implemented in the version of the tool used for eval-
uation. Users were provided with a list of recommendations instead and to
select a recommendation they had to traverse the list to find correspondences.
This proved to be problematic and motivated us for implementation of the
guide and filter mechanism. We still believe that better representation of
recommendations (perhaps by highlighting them in the visualizations) helps
improve accessibility and usability of recommendations.

7.2. Recommender evaluation

We wanted to evaluate our CONVErT suggester to see how well it per-
forms in suggesting possible correspondences for large example models. There-
fore, we slightly altered its design for this task to be able to evaluate it as a
batch model matcher. This modification includes separation of the suggester
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Table 3: Categorisation of possible recommendations.

Recommended Not Recommended

Relevant True-Positive (TP) False-Negative (FN)
Irrelevant False-Positive (FP) True-Negative (TN)

system from CONVErT’s GUI and disabling the guide and filter representa-
tion mechanism, so that source and target model examples can be processed
as a whole. This way, we would be able to evaluate how accurate are the
recommended correspondences using a set of available source and target ex-
amples and against a benchmark. For this task the suggester was used to
check source and a target model examples and provide recommendations for
possible correspondences between all elements of the examples. The sug-
gester was used in its initial default setting, i.e. it was configured to give one
recommendation per pair and all recommender confidence weights were set
to neutral (one in this case) for each set of source/target examples.

We used model and schema matching examples from the Illinois Semantic
Integration Archive4 to test our CONVErT suggester. We have chosen the
house listing information from real estate websites. This selection has been
based on availability of examples in the dataset and their intended applica-
tion, i.e. for testing schema matching techniques. The provided dataset in
the archive represent house listings for di↵erent websites (e.g. Yahoo and
Home Seeker). Each dataset includes set of house listings that are formated
according to the specific website requirements. The datasets do not represent
same information, rather each provides a di↵erent set of house listings.

To test these examples with CONVErT’s suggester, a correspondence
benchmark was developed including all correct correspondences of the exam-
ples. Table 3 shows possible categories of recommendations. Using this table,
a Relevant correspondence is a correspondence available in the benchmark. If
this correspondence is recommended, then it is considered as a True-Positive

correspondence recommendation. If the correspondence is not recommended,
it will count as a False-Negative correspondence recommendation and so on.

Using the categories of Table 3 and Equations 1 to 3, we calculated Pre-
cision (Prec.), Recall (Rec.) and F-Measure (F-M). These metrics were used
as they represent most common metrics for evaluating recommender systems

4http://pages.cs.wisc.edu/⇠anhai/wisc-si-archive/
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[46]. We have applied our suggester system to multiple di↵erent combinations
of the datasets. For example, suggester system was applied to the problem
of matching examples of Yahoo house listings to Home Seeker’s house list-
ings. Table 4 provides results of some of these example evaluations. Other
combination of these examples are available on-line3.

Precision =
TP

TP + FP

(1)

Recall (True Positive Rate) =
TP

TP + FN

(2)

F-Measure = 2 · Precision ·Recall

Precision+Recall

(3)

Table 4: Evaluation results of the Suggester system.

Example Default Optimized

Prec. Rec. F-M. Prec. Rec. F-M.

NKY - Texas 0.3 0.78 0.44 0.94 0.7 0.8

Yahoo - NKY 0.34 0.73 0.47 0.81 0.6 0.7

Yahoo - Home Seeker 0.44 0.74 0.55 0.92 0.63 0.75

Home Seeker - NKY 0.51 0.86 0.64 0.9 0.81 0.85

Based on Table 4, our Suggester has performed relatively poor on the
default setting and for the first calculation of recommendations. For example,
the NKY to Texas matching example has achieved precision of 0.3 and recall
of 0.78. This indicates that the majority of true recommendations have
not been produced. This is due to use of di↵erent example-specific naming
convention, typing, structure and sizes for the source target example pairs.
Also, it was not possible to provide correspondences for certain source and
target pairs as in numerous occasions the models did not have corresponding
elements. For example, the NKY dataset provides dimensions (given as X
⇥ Y) for each listing whereas Texas provides lot size in square meters. Or
the NKY includes an element for basement whereas other examples do not
provide such elements. Since the suggester gives a correspondence for all
pairs, it has had e↵ects on our results.
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However, it is possible to configure the suggester system to use certain
recommender(s) by using the provided configurations, i.e. users can alter
the suggester to use di↵erent combination of certain recommenders. Using
these configurations and di↵erent combinations, it is possible to design an
optimization mechanism for the suggester system to optimize its recommen-
dations for better precision and recall. Consecutively possible combinations
of recommenders were considered as the search space and the resulted recom-
mendations of di↵erent recommender combinations were examined against
the benchmarks. The best result was reported as optimized combination
configuration. The optimized results are also available in Table 4 and show
significant improvements. For example, the precision of NKY to Texas ex-
ample has improved from 0.3 to 0.94 and its recall has been slightly improved
from 0.78 to 0.7. This shows that if previous knowledge or benchmarks of the
examples are available, users can customize the suggester system to provide
more improved recommendations for certain metrics, e.g. precision.

This optimization is time consuming and may not suit the purpose of our
recommender. Also, it may be beneficial to use fuzzy configurations using
confidence weights rather than the provided configuration settings, i.e. give
a certain recommender less importance (e.g. setting the confidence weight to
0.2) and giving another more credit (e.g. by setting the confidence weight to
0.8). Although this can be achieved by altering the optimization to provide
fuzzy confidence values, our experience with CONVErT showed that after
continues usage of the recommender (accepting/rejecting) on similar exam-
ples, its learning mechanism automatically converges the confidence scores to
close to optimized configuration. For example, for the class diagram to Java
code example we could achieve Precision of 1.0 after five usage iterations.

8. Discussion

Our user study demonstrated that on average users positively liked the
idea of concrete visual transformation. See for example their answers to
question Q.3 in Table 2 where all users highly rated (4 or 5) the use of visual
diagrams in understanding the source-to-target relationships and question
Q.4 where 87% of the users rated the ease of use of the approach high
or very high (67% very high and 20% high). However, certain drawbacks
of the used version of prototype tool a↵ected user experience. Specifically,
some users could not di↵erentiate model elements and placeholders as they
were represented similarly for each visual notation by earlier versions of the
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framework. This resulted in confusion, and a user had to ask the instructor
after a mistake was made in notation composition. Out tool support for
CONVErT was updated to reflect this and show place holders and notation
elements separately (see for example compositions of Figure 6).

In comparison, our suggester mechanism achieved a lower user accep-
tance than the visualization and transformation specification. This has been
reflected in users responses to questions Q.7 and Q.8 in Table 2. Hence,
our third research question - ”Can we provide guidance to users with visual
representations and recommendations for large model mapping problems?” -
is not completely addressed. We believe this is due to the above mentioned
representation of recommendations and the fact that the given examples
were su�ciently simple; therefore users already knew most of the correspon-
dences, and thus did not need to utilize its potential most of the time. For
example a participant stated that the mapping correspondences were “easy
to find and specify” and therefore felt no need to use them. Provided that
the visualizations were more complex, it would have evaluated e↵ects of the
suggestion much better. One participant did not realize that by selecting
from suggestions, it is possible to specify correspondences and therefore did
not use the recommendations. Also, the way recommendations are currently
presented was not well received by users and some users found it hard to find
the presented recommendations in visualizations and accordingly accept or
reject them. This is potentially due to current use of element hierarchy in
representation of left hand side and right hand side elements. For example a
UML class would be represented as ClassDiagram/Class/UMLClass. As a re-
sult better representation of recommendations is being considered for future
CONVErT versions using interactive highlighting in visualizations [14].

While writing transformation code, a transformation designer might par-
tition the code into several modules (e.g. transformation rules) or might write
the transformation as one module. It is a common software engineering prac-
tice to modularize the code to help better readability and easier maintenance.
Although readability of the automatically generated transformation code in
our approach was not considered in the design, it demonstrates an acceptable
modular structure, i.e. the code is divided into separate transformation rules
(in this case XSLT templates). This is due to the fact that each notation-to-
notation mapping is considered as one transformation rule template. As a
result, if need be to reuse the generated code outside framework, it exhibits
acceptable readability specially for large transformations.
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8.1. Threats to validity

Internal: Four of our participants mentioned the e↵ect of learning during
the experiments. They admitted that since the drag and drop tasks ware
being repeated for tasks one and two, they could perform the second task
easier. This might have had e↵ects on better acceptance of the approach
for task two. Some participants may have been reluctant to ask questions
regarding the items being asked in the questionnaire and therefore responded
based on their understanding of the questions.

Our suggester system uses the results returned by name similarity recom-
mender when deciding which neighbors are similar. As a result accuracy of
structural and propagated similarity recommenders are dependent on name
similarity. This can have e↵ects on their accuracy in situation where names
of source and target elements are not similar.

External: The users whom participated in the evaluation were mostly
chosen among sta↵ and students of Swinburne University of Technology (18
out of 19). This represents a bias and will a↵ect generalization of our claims.
Also 47 percent of the participants shared a common background in Software
Engineering and 40 percent shared a background in computer science. As a
result, their background could have introduced bias in terms of their famil-
iarity with software tools. However, given our target end user community is
predominantly such engineers and technical experts, some generalization is
reasonable.

The examples used for evaluating our suggester system were from schema
matching test cases and therefore were not completely serving the purpose
of evaluating a recommender system for model transformation domain. This
could have a↵ected our suggester system evaluation.

Construct: Due to simplicity of the experiment for one group, performing
bar chart to pie chart transformation, five participants did not use the rec-
ommendations. These have had e↵ects on evaluation of the recommendation
system. Also, some instructions made to the participants by the instruc-
tor during experiment may have a↵ected the participants’ experience. The
instructor was asked not to give any instructions unless asked by the partic-
ipants. Our observation of the responses and the recordings, demonstrated
that the participants who requested more instructions had accordingly men-
tioned this need in their responses.

With regards to our suggester evaluation and as stated with external va-
lidity, the nature of the tested examples might have a↵ected the construct
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validity of our suggester evaluation. We will keep looking and designing
experiments and examples to be able to better evaluate the use of recom-
mendations in model and visualization transformation domain.

Statistical: It is possible that the inferences we have made from our results
are due to limited number of participants. The statistics we have used are
calculated having non-parametric characteristics of the responses in mind.
We do not reject the possibility of changes in the inferences when the number
of users increases.

The precision, recall and F-Measure metrics used in evaluating the sug-
gester system are very much dependent on the benchmark they are being
tested against. This benchmark was generated based on all available corre-
spondences. In some cases, there are multiple correct suggestions for exam-
ple when referring to size of a room as height and width vs. Square meters,
both height and width can be considered as correct correspondences for size.
Given that the Suggester system provides only one suggestion per pair by
default, lots of such multi possibilities are not considered. This has resulted
in lower number of true-positive choices and higher number of false-negatives
and consecutively lower precision and recall.

8.2. Future work

Although model mappings indicated by correspondences are often bidi-
rectional i.e. mapping information from the target back to the source, it is
not always possible to achieve bi-directionality. For example, when using a
function to add two values and dragging the output onto an element, it is
not possible to directly generate the values in reverse unless at least one of
the original values are saved. We call these“Lossy”transformations as the in-
formation for creating the forward transformation is lost during the process.
Addressing such transformations defines part of our future work.

Our main goal in designing the CONVErT approach was to provide a con-
crete visual approach to specify model transformations, rather than ensuring
the completeness and correctness of transformations (e.g. see [47]). It is pos-
sible to check the correctness of the resulted target visually (by checking how
the target is rendered), adding constraint checks to notations, or by using
meta-models to check conformance of the generated targets. The correctness
of the generated transformation still remains an open future avenue in this
visual by example approach. Other areas of key future work include applying
the CONVErT approach to other model-based domains including informa-
tion visualization, tool integration, and EDI and XML message translation,
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further user studies of the approach perhaps by practitioners, di↵erent vi-
sualization implementation (e.g. SVG) and di↵erent target transformation
language generation (e.g. ALT or QVT vs. XSLT).

9. Summary

We have presented a new approach for transformation generation using fa-
miliar concrete visualizations of source and target model examples. Through
use of these visual notations, the required knowledge and skill for performing
model transformation specification is reduced. The system presented in this
paper provides abstractions by reverse engineering model examples and gives
users the capability to specify correspondences on familiar notations or use
correspondences suggested by the system. This approach is capable of gen-
erating comprehensive model transformers for a wide variety of applications.
We have evaluated our approach and its tool support in a user study and the
results provide general acceptance of the approach in using drag and drop ap-
proach for visualization and use of concrete visualizations for transformation
between two visualizations.
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