
Managing Technical Debt in a Multidisciplinary Data Intensive Software Team: an
Observational Case Study

Ulrike M. Graetscha,∗, Rashina Hodaa, Hourieh Khalazjadehb, Mojtaba Shahinc, John Grundya

aFaculty of Information Technology, Monash University, Wellington Road, CLAYTON, 3800, Victoria, Australia
bSchool of Information Technology, Deakin University, 221 Burwood Highway, BURWOOD, 3125, Victoria, Australia
cSchool of Computing Technologies, RMIT University, 124 La Trobe Street, MELBOURNE, 3000, Victoria, Australia

Abstract

Context: There is an increase in the investment and development of data-intensive (DI) solutions – systems that collect, manipulate
and visualise large amounts of data. Without careful management, this growing investment will also grow associated technical debt.
Delivery of DI solutions requires a multidisciplinary skill set, but there is limited knowledge about how multidisciplinary teams
develop DI systems and manage technical debt.
Objective: Contribute empirical, practice based insights about multidisciplinary DI team technical debt management practices.
Method: Exploratory observation case study. We use socio-technical grounded theory to develop concepts and categories that
articulate technical debt and technical debt management practices.
Results: We identify technical debt that the DI team deals with, in particular technical data debt and pipeline debt. We explain how
the team manages the technical debt, assesses technical debt based on the context in which it is identified, what treatment types
they consider and how they implement technical debt treatments to fit sprint capacity constraints.
Conclusion: We discuss implications of the findings and highlight the need for technical debt treatment implementation patterns
as well as tool support for multidisciplinary DI teams.

Keywords: Technical Debt, Data-Intensive systems, Data Visualisation, Data Pipelines, Agile Data Delivery, Multidisciplinary
teams, Observation Case Study, Socio-Technical Grounded Theory

1. Introduction

Data intensive (DI) solutions are systems that analyse and
manipulate data to provide predictions and insights. These sys-
tems are becoming pervasive. The big data and business analyt-
ics market was valued at US$215.7B in 2021 (Kenyon, 2021)
and is projected to be $924B by 2032 (Fortune, 2023). De-
livery of DI solutions involves expertise and skills from mul-
tidisciplinary teams (Graetsch et al., 2023). DI systems rely
on data, not just algorithms or programs to deliver an outcome
or result. Examples of DI systems include enterprise data an-
alytics solutions, imaging diagnostic systems, and real estate
price predictors. The development of DI systems requires the
combination of different disciplines including substantial do-
main knowledge, software engineering, data science and cloud
computing. Traditionally, teams are characterised as multidis-
ciplinary teams because team members present with different
bodies of knowledge, research communities, ways of working,
education and career pathways. (Choi and Pak, 2006). Within

∗Corresponding author
Email addresses: ulrike.graetsch@monash.edu (Ulrike M.

Graetsch), rashina.hoda@monash.edu (Rashina Hoda),
hkhalajzadeh@deakin.edu.au (Hourieh Khalazjadeh),
mojtaba.shahin@rmit.edu.au (Mojtaba Shahin),
john.grundy@monash.edu (John Grundy)

DI systems delivery, cross-skilling between team members of
different disciplines is valued, but difficult to achieve (Graetsch
et al., 2023). There is growing recognition of the critical role
these teams will play in the success of future digital transforma-
tion (Gupta, 2022), yet there is limited empirical research in the
software engineering domain with focus on these teams, their
team members or their ways of working. Research to build this
understanding can be challenging. It involves people – often
professional practitioners and dealing with organisations that
have goals other than research, and requires adherence to ethics
processes. Consequently, it is carried out less frequently than
other empirical research (Storey et al., 2020).

In parallel with the explosive DI systems growth, there is
a growing awareness of the potential for the associated techni-
cal debt to grow. Technical debt, first articulated by Cunning-
ham in 1992 (Cunningham, 1992) is a metaphor for describing
the ‘debt’ or effort that is incurred when shortcuts to quality
are taken to achieve delivery goals. Technical debt has been
a mainstay in software engineering for some time. However,
the extension of technical debt to DI systems has been much
slower – with the first references by Weber et al. (Weber et al.,
2014) and Anice et al.(Aniche et al., 2014) in 2014. A body of
research is slowly building including work to characterise and
define DI technical debt (Weber et al., 2014; Foidl et al., 2019;
Sculley et al., 2015), measuring DI technical debt (Sklavenitis

Preprint submitted to The Journal of Systems and Software June 19, 2025

and Kalles, 2024) and managing DI debt (Albarak and Bah-
soon, 2016, 2018; Albarak et al., 2020; Muse et al., 2022b,a;
Kleinwaks et al., 2023; Waltersdorfer et al., 2020).

This research builds knowledge to contribute and extend
knowledge about DI technical debt and its management and
builds on our prior research into the challenges that multidis-
ciplinary DI teams face and how they deal with data challenges
(Graetsch et al., 2023). We aim to deepen understanding of
multidisciplinary DI team data practices through detailed ob-
servations, including their practices relating to technical debt.
We designed an exploratory observation case study to observe
a 12 member agile data analytics delivery team in a large organ-
isation. We observed the team for 6 weeks and collected data
for analysis, including rich descriptions of the case context. We
applied socio-technical-grounded-theory method (Hoda, 2024)
for data analysis to develop concepts and categories about tech-
nical debt and its management and present these in our find-
ings. We discuss the findings in the context of related literature.
Key findings of the study include details about the technical
debt that DI teams discuss, and the team’s practices such as as-
sessing technical debt and structuring work to address technical
debt during agile scrum ceremonies. The team balances their
desire for holistic solutions with the reality of limited capac-
ity, using splitting strategies to achieve treatment of technical
debt so they can deliver within the boundaries of their sprint ca-
pacity. We highlight the need for new patterns to pay down or
treat technical debt that can be adapted to multidisciplinary DI
system delivery.

This research makes the following key contributions:

• We present a detailed observational case study that pro-
vides descriptions and contextual information about mul-
tidisciplinary team member work practices in an agile
data-analytics team.

• We conceptualise technical debt related discussions in a
multidisciplinary data-analytics team, including the con-
texts in which technical debt is identified and assessed,
how it assessed and treatment approaches considered.

• We provide a set of recommendations for practitioners
and key future work directions for researchers.

The rest of this paper is organised as follows: We present
related works in Section 2. Section 3 provides an overview of
our research method. We present our study findings in Section 4
and discuss our findings in terms of the related works in Section
5 where we also present key implications and recommendations
for both practitioners and researchers. Section 6 considers the
threats and limitations of our study and Section 7 provides a
concluding summary.

2. Background and Motivation

2.1. Technical Debt and Technical Debt Management
Technical debt, first articulated by Cunningham in 1992 (Cun-

ningham, 1992) is a metaphor for describing the ‘debt’ or effort

that is incurred when shortcuts to quality are taken to achieve
delivery goals. The resulting growth in empirical research led
to systematic reviews and early conceptualisations of technical
debt (Li et al., 2015; Tom et al., 2013). The Dagstuhl Seminar
16162 (Avgeriou et al., 2016) developed a research roadmap
to develop two view points of describing technical debt for
software-intensive systems; firstly to explore technical debt prop-
erties, artifacts and elements, and secondly, to explore the man-
agement of technical debt encompassing the process related ac-
tivities or different states the debt may go through (Avgeriou
et al., 2016).

Technical debt and technical debt management have been
systematically analysed from the perspective of traditional soft-
ware engineering (Li et al., 2015; Alves et al., 2016; Rios et al.,
2018; Tom et al., 2013), with Rios et al. synthesising the prior
research through their tertiary study (Rios et al., 2018). They
also assessed activities, tools and strategies to support tech-
nical debt management activities and categorised these into 4
macro TDM activities: prevention, identification, monitoring,
and payment. A case study by Guo et al. (2016) studied the
effects of implementing a technical debt management approach
to better understand the cost and benefit of explicitly manag-
ing technical debt, to contribute to the development of a the-
ory about technical debt management (Seaman and Guo, 2011).
More recently, Freire et al. (2023) conducted a survey study
of software practitioners gained insights in the technical debt
payment methods and reasons for not repaying technical debt.
They identified that technical debt management is complex and
involves a combination of managerial and technical practices,
making it important for managers and technical team members
to be involved in technical debt repayment (Freire et al., 2023).
These foundational works and more recent works were focused
on software intensive systems and did not include technical debt
considerations for data-intensive systems.

2.2. Data-intensive Software System Technical Debt
Two of the earliest data related technical debt challenges

were about missing referential integrity constraints at the database
level (Weber et al., 2014) and placing Data Access Object meth-
ods into the wrong class (Aniche et al., 2014). The articulation
of specific technical data debt was followed by development of
a taxonomy of database design related technical debt (Albarak
and Bahsoon, 2016).

Sculley et al. raised the concept of specialised technical
debt in machine learning systems, specifically due to their data-
intensive nature. They identified debt at the system level, as
well as data debt in machine learning systems (Sculley et al.,
2015). A conceptual model to articulate where data-intensive
technical debt can emerge was articulated by Foidl et al. (Foidl
et al., 2019). The model shows that within a Data Intensive
Software System (DISS), technical debt emerges due to soft-
ware architecture or software implementation decisions, as well
as Data Model or Data Storage constructs, and/or through data -
specifically data quality issues (Foidl et al., 2019). One impor-
tant implication of including data quality as a factor is that the
technical debt of 2 implementations of the same DISS can be
different, if their data is different, and identifying and treatment

2

of technical debt in DISS needs to consider the underlying data
and its criticality (Weber et al., 2014).

Muse et al. investigated data access related technical debt
and performance anti-patterns in a selection of SQL and NoSQL
databases (Muse et al., 2022b,a). They investigated and cate-
gorised the self admitted technical debt (SATD) in data access
related source code commits and proposed an ‘data access’ ex-
tension to Albarak and Bahsoon’s taxonomy and downstream
technical debt identification tools (Muse et al., 2022b).

The systems engineering discipline is also only beginning
to apply and research the technical debt metaphor (Kleinwaks
et al., 2023). The need to address data model debt in the sys-
tems engineering discipline was identified by Waltersdorfer et
al. who developed a Production System framework that iden-
tified causes and mitigation approaches for new technical debt
types. They incorporated a multidisciplinary perspective and
developed a framework covering data model debt, knowledge
representation debt and exchange process debt (Waltersdorfer
et al., 2020).

2.3. Data-Intensive Technical Debt Management

Research on managing data intensive technical debt and how
it differs from traditional technical debt management is still
emerging. Muse et al. considered the time it takes to address
SATD in data-intensive systems compared to traditional tech-
nical debt, and found that SATD remains active twice as long
compared to traditional technical debt. They also found that
bug fixing and refactoring were the main reasons for introduc-
ing SATD and that removal of data access SATDs was mostly
associated with feature enhancements, new feature introduction
and bug fixing, but not refactoring (Muse et al., 2022b). Tang
et al. studied refactoring in open-source ML systems and cre-
ated a Hierarchical ML specific refactoring taxonomy (Tang
et al., 2021). The need to consider and balance data quality,
refactoring and associated data migration costs motivated Al-
barak et al’s development of a multi attribute decision analy-
sis framework for prioritising database normalisation debt (Al-
barak et al., 2020; Albarak and Bahsoon, 2018). Sklavenitis and
Kalles have proposed a methodology for quantification techni-
cal debt within competitive AI platforms. They consolidated
and categorised existing technical debt research studies into
technical debt types and factors relevant for measuring the tech-
nical debt type. Where possible they also identified mitigating
strategies. Their methodology is under evaluation (Sklavenitis
and Kalles, 2024).

2.4. Consideration of Practitioner Perspectives

Whilst empirical research about technical debt in DI sys-
tems is an active area of research (Tang et al., 2021; Muse et al.,
2022b,a; Albarak et al., 2020; Waltersdorfer et al., 2020; Recu-
pito et al., 2024), there is limited research on the practitioner
perspective (Recupito et al., 2024). Some studies involved eval-
uations with developers (Aniche et al., 2014; Weber et al., 2014;
Albarak et al., 2020), or wider set of participants (Waltersdor-
fer et al., 2020), whereas Recupito et al provide the first insights
into state of the art practitioner perspectives on technical debt

in the context of artificial intelligence systems (AITD). They
selected a subset of hidden technical debt scenarios first artic-
ulated by Sculley at al. (Sculley et al., 2015) nearly 10 years
ago. Surprisingly, Recupito et al found a low prevalence of
AITD issues identified by practitioners, indicating that the state
of practice of technical debt management for AI enabled sys-
tems is at a preliminary state and participants are not able to
recognise issues in their systems (Recupito et al., 2024). Prac-
titioners perspectives have been considered in software specific
technical debt management practices (Freire et al., 2023; Guo
et al., 2016; Xavier et al., 2023), but the extension of this work
to multidisciplinary data-intensive software teams remains un-
der researched.

2.5. Motivation for Our Study
Our previous exploratory interview study developed a the-

ory about multidisciplinary data-intensive development teams
having to deal with data challenges and identified strategies
and approaches that teams use to address these (Graetsch et al.,
2023). Whilst the findings of that study motivate the need for
and chart directions for possible solutions, they lack detail about
the actual work context on the practices of multidisciplinary
data-intensive teams. The study did not capture (i) how key
data-related challenge issues emerge in data-intensive software,
(ii) how multidisciplinary teams identify, evaluate and resolve
such issues, and (iii) what role their respective development
tools and workflows play during team member interactions.

We wanted to take a human-centred approach to design-
ing and developing solutions, but had insufficient information
to drive use cases for solution development. A wide search of
the literature about data practices/tools/multidisciplinary teams
did not yield adequate detailed information. To address this, we
developed a research agenda with the aim of filling this current
gap in knowledge about multidisciplinary, data-intensive sys-
tem teams and how they work, with a human-centred lens to
focus on data work practices to:

• Contextualise and drive understanding of data-intensive
delivery work practices

• Understand how experts in a multidisciplinary team work
together on data scenarios

• Understand how they use their tools when working to-
gether

To achieve this aim we decided to adopt a fieldwork based
case study approach in the form of a participant observation
study using socio-technical grounded theory (Hoda, 2022) to
analyse our data (See Section 3). We chose this approach over
surveys and interviews to gain a greater depth of understand-
ing of how a team works together on a project than is achiev-
able through interviews or repository mining studies. Whilst
conducting this 6 week observational field study, it became ap-
parent that there were patterns of discussions and work by the
team focused on identifying and managing data-related techni-
cal debt. Through our analysis, it became clear that this data-
related technical debt was an important category of work done

3

by the team – a sizable portion i.e. more than 30% of the ob-
served interactions referred to or discussed one or more techni-
cal debt or technical debt management concepts. We therefore
wanted, in this paper, to analyse this large observational field
study dataset to answer the following key research questions
around the team’s discussions and interactions about technical
debt:

• RQ1: What does a multidisciplinary, data-intensive sys-
tem engineering team discuss about technical debt?

• RQ2: How does the team identify and assess technical
debt?

• RQ3: What does such as team discuss about technical
debt treatment?

• RQ4: How does the team decide the treatment it will ap-
ply to the technical debt?

3. Research Method

3.1. Software Engineering Case Study

We selected the Case study research method as it supports
empirical enquiry in real-life contexts; in particular, this method
enables researchers to draw on multiple sources of evidence to
investigate an instance of a “contemporary software engineer-
ing phenomenon within its real-life context, especially when
the boundary between phenomenon and context cannot be clearly
specified” (Runeson et al., 2012). Runeson et al.’s Case Study
method and guidelines have been specifically targeted to soft-
ware engineering (Runeson et al., 2012; Wohlin, 2021). More
recently, Wohlin suggested refinements to the definition of case
study to focus on using multiple data collection methods, study-
ing a contemporary (not historical) phenomenon in real-life (with
people) context, with the investigator not taking an active role
(Wohlin, 2021). Case Studies are most suited to answering
questions of an exploratory nature and need to accept that the
researcher has a low level of control over the study situation, in
return for realism (Runeson et al., 2012).

Our aim was to study the phenomenon of a multidisciplinary
data-intensive software team in situ, seeking a strong element
of realism and detail, and the researcher was taking an obser-
vational role and not taking an active role in the study. Our re-
search aim also aligned with Wohlin’s more nuanced definition
as we sought to investigate and develop an understanding of the
practitioners’ perspective and work practices i.e. how a multi-
disciplinary team of experts work together in a data-intensive
software team.

3.2. Case Study Design

We followed the guidance of Runeson et al. regarding the
elements of case research design. Based on the rationale and
purpose set out in Section 2 above, we defined the object, or
case, to be studied as an “exploration of a team of professional
practitioners delivering a data-intensive solution”, specifically

the observable practices of the team members and how they
inter-relate. This requires a broad perspective and as such we
determined that a holistic design, where the case is the unit of
analysis, would be most appropriate. Under this design, the
context of the case consists of both the organisational context
and the co-ordination (i.e. agile scrum) ceremonies.

The case study was designed such that the researcher should
take an observational role only, with participants being fully
informed and aware of the observations at all times. The re-
searcher was seen as having the role of a researcher, and was
not part of the delivery team. The aim was to observe the team
members without interrupting their normal flow and to observe
what actually happens.

The agile scrum ceremonies were key units of observation
i.e. the researcher planned to attend as many team ceremonies
as possible during the duration of the case study to observe team
interactions. The design of our timeline had to balance our de-
sire to observe end to end delivery, provide opportunity to ob-
serve reflective team meetings resulting in changes to practices
(Dittrich et al., 2020) and respect the commercial realities of
operating a team under a research environment. We estimated
a timeline of 6 weeks based on the assumption that if the ob-
served team worked in an agile delivery environment with 2-
week sprints, it would allow observation of 3 sprints to provide
observation opportunities for end to end delivery of features as
well as provide insights into team reflection, continuous im-
provement efforts and in addition, the first author also planned
to attend deep dive sessions to observe detailed interactions be-
tween team members. Whilst we planned to take an observer
role only, we also planned for questions that may arise during
observations about the context and practices and hence included
clarification sessions with individual team members where we
could ask questions in our case protocol.

Whilst observations were the main data source, we also
planned to collect data about work items that the team members
worked on, and interactions or messages that the team members
exchanged. The case was designed for this data to be collected
through observation notes, video recording interactions and ac-
cess to messages being connected to the team collaboration sys-
tem. To prepare and plan the observations, the first author re-
viewed literature about ethnographic observations (Sharp and
Robinson, 2004; Sharp et al., 2016; Shah et al., 2014; Fetter-
man, 2019) and created templates and procedures for data col-
lection (Spradley, 2016). She also completed self-paced obser-
vation exercises that focus on different aspects of observations
to improve observation skills(Nippert-Eng, 2015).

3.2.1. Human Ethics, Privacy and Confidentiality
Whilst the need for more field work based case studies with

human subjects in Software Engineering has been raised (Storey
et al., 2020), these studies come with additional requirements
regarding data collection and management. Entering the natu-
ral settings of participants, for a lengthy period of time, requires
careful consideration of how to manage the interactions and any
obligations that arise, and how to ensure reciprocity (Hammers-
ley, 2020). These considerations need to be addressed through-
out the research study, but come to fore first during the ethics

4

process. We followed the guidelines by Runeson et al. (Rune-
son et al., 2012) and our planned case study protocol was re-
viewed and approved by the Monash University Human Re-
search and Ethics Committee (MUHREC).

The involvement of practitioners working in an organisa-
tion carries the additional requirement to protect commercially
sensitive information. As we planned to video record and tran-
scribe observations, we developed a protocol to collect data us-
ing the organisation’s Zoom platform, and transfer the record-
ings to our university Google Drive. We committed to ‘blur-
ring’ faces in the video recordings to protect participants’ pri-
vacy, and blurring commercially sensitive data or information.
We planned to have the voice recordings transcribed using Ot-
ter.ai and committed to removing the recordings from the plat-
form at completion. We also committed to anonymising the
Otter.ai transcripts. At conclusion of the data collection phase,
all data would be stored in our secure university Google Drive,
and our stored video recordings were blurred and our transcripts
anonymised.

We developed recruitment fliers and emails. To support the
requirement for ‘informed consent’, we prepared materials for
different types of audiences. The case study protocol, including
the data management protocol were summarised into a general
‘recruitment presentation’ and then more formally into separate
Explanatory Statements for the organisation, team member par-
ticipants and stakeholders that may attend meetings. We devel-
oped a pro-forma permission letter for the organisation, consent
forms for team members and consent forms for stakeholders.
We also created a “Zoom background” slide to be used by the
researcher when attending Zoom calls. The background slide
served to alert attendees that an observation was in progress
and provided a QR code with links to the explanatory materi-
als. We also created a ‘flyer’ for meeting room doors to inform
any attendees who physically attend that the observation study
was being conducted. We also committed to verbally notifying
attendees that a recording would be taking place and seeking
consent from all attendees prior to each meeting.

All materials were reviewed and approved by MUHREC.
The aim of these materials and communications was to ensure
that any attendee at the meeting was informed about the study
and had the opportunity to provide consent prior to each obser-
vation and to request stopping the recording at any point. Fur-
ther, our process had to ensure that we collected one formally
completed consent form from each participant (team member
or stakeholder) who participated in one or more observation
meetings. We make these materials available for reference in
supplementary materials.

3.2.2. Recruitment
The authors posted advertisements on LinkedIn as we wanted

to attract professional industry participants, and also reached
out to professional networks. We received a number of in-
quiries which proceeded to presenting our overview slides, of
which one proceeded to engagement with the executive level
of an education organisation. The first author was invited to
present the study proposal to Data Capability Leads at the or-
ganisation. The Capability Leads then organised for the first

author to present the study overview to the Date Engineering
Group (DEG) executive committee. The executives had ques-
tions mainly pertaining to confidentiality and privacy and the
first author articulated the elements in the protocol pertaining
to privacy including anonymisation and data storage protocol.
Subsequently, the first author was referred to the ‘Star Squad’1

project leaders - Iteration Manager and Product Manager to
present the study overview and discuss the study and protocol
in more detail.

3.2.3. Obtaining Consent
The project leaders raised the proposed study with team

members without the presence of anybody from the research
team to see whether the team members would be interested
and whether they had any objections. The team members were
interested in finding out more. The first author was then in-
vited to present the overview of the study to the project team
and provided the team members with copies of the Explanatory
Statement and Consent Forms forwarded through the Iteration
Manager. The team members had a number of questions about
confidentiality and privacy - which were addressed through the
data protocol and regular consent processes.

The first author was only provided with the names of team
members and contact details as part of their completed consent
form. Once all team members had provided their consent, the
observation study was set to commence on January 30, 2024.
The total recruitment duration for this study, from advertise-
ment to commencement was 5 months. The duration from first
contact with the organisation representative, including the var-
ious presentations and gathering of consent, until study com-
mencement, was 3 months.

During the study, there were a number of observation meet-
ings involving stakeholders. The sessions were recorded on
Zoom as part of normal proceedings (as it was the Sprint Re-
view), and once stakeholders had provided their formal consent,
the recording was released to the first author.

Meeting Type Observations Duration (hrs)
Team Kick Off 1 3.0
Sprint Planning 4 10.0
Backlog Refinement 5 6.0
Daily StandUp 29 9.0
After Party 18 6.0
Deep Dive Session 11 5.5
Sprint Review 4 3.5
Sprint Retro 4 4.0
Clarification Session 15 7.5
Reflective Workshop 1 1.0
UAT Workshop 1 1.0

Total 93 56.0

Table 1: Summary of observation data

1Team and organisation name anonymousised at request

5

Observation Transcript Extract Open Code Memo Extract Concept

“Probably for consideration here...if we're looking
at (removing) some of these non Lakehouse
ones, we will need to have a close look at the
direct workspace access as well because people
with access to the workspace could be utilising
reports that aren't published in the app." (P2)
NOTE: P3 updates the JIRA card and inserts a "for
consideration" section, "Direct workspace
access").
During Backlog Refinement

Considering impact of
treatment work on
production users

The team members, particularly Manager,
considers the impact on end-user -
regardless of whether they are operating
outside of standard access paths for
reports or whether that impact is in
production or other environments such as
UAT/QA.

The team members have expert knowledge
about whether components are used in
production i.e. they understand the
technical components.

There are different impacts considered -
how it impacts the usability, how it impacts
their access. Also, a treatment may be
done over a number of sprints - but then it
could impact usability multiple times.

The analyst frequently, but not always,
keeps information in the JIRA tickets
updated with information that is
considered when the work-item is
discussed during Backlog refinement and
Sprint Planning. (NOTE to self: Potentially
an area for recommendation to develop
assistance or guide for capturing
information ?)

Considering
impact

of treatment
work

on end users

“There are like 1,2,3 or 5 live objects that are
involved on that one, but they are not being
used at the moment, so that's probably very low
impact on the production side."(P9)
During Sprint Planning

"But the other one (potential obsolete report) is
that we need to retain that one in QA because
there is a use of that." (P2)
During Backlog Refinement

Considering impact of
removal on performing
User Acceptance
Testing

This spelling change would break anyone's
existing bookmarks. To me, we might as well
time this sort of thing, that if we're doing the
more substantial change, we do this at the
same time and then it's just one impact to end
users."(P2")
During Sprint Planning

Considering the impact
of repeated changes on
end users

Considering the impact
on end user usability

Figure 1: Applying STGT for data analysis: Example of open coding and memoing to develop a concept

3.3. Data Collection
The first author was ‘onboarded’ to the ‘Star Squad’ by be-

ing invited to all ceremonies - Sprint Planning, Backlog review,
Daily Standup (and associated After Parties), Sprint Review
and Sprint Retro. She was also included in the team’s Slack
2 channel to be part of the day-to-day team collaboration mes-
sages. The initial data collection plan included an initial Work-
shop to capture context information. However, as the team had
just recently been formed by merging 3 partial teams in an or-
ganisational restructure, the ‘Star Squad’ held a Team Kick-off
workshop, facilitated by the Iteration Manager, and the first au-
thor proceeded to observe this meeting instead.

The team operated in hybrid mode and one or more team
members were off-site for each meeting. Meetings were con-
ducted as Zoom sessions. The first author ‘attended’ the Zoom
meeting with her ‘Zoom background’ slide. Once participants
provided consent, the Iteration Manager delegated control to
manage recording to the first author (except for Sprint Review
sessions). In addition to the scheduled ceremonies, the first au-
thor also attended additional Deep Dive sessions. These were
selected based on discussions during daily stand-ups and cov-
ered a selection of analysis review discussions and release pipeline
discussions. She made observational field notes during each
observation, including information about the attendees at the
session and any questions or issues arising out of discussions.
She used these notes to formulate clarifying questions to be ad-
dressed with participants in subsequent Clarification Sessions,
which were also recorded. The Clarification Sessions also pro-
vided an opportunity to capture education discipline and career

2https://slack.com

background information from each participant. The observa-
tions commenced mid-sprint, with a Backlog Refinement ses-
sion on January 30, 2024, and concluded with a Sprint Retro-
spective on March 20, 2024. The final reflective workshop was
conducted on 22nd May 2024. We observed 93 sessions with
a total duration of 56 hrs. A summary of the types, number of
sessions and total duration of the observations is provided in
Table 1.

3.4. Data Analysis using Socio-Technical Grounded Theory

Socio-Technical Grounded Theory (STGT) (Hoda, 2022) is
an inductive, qualitative research method with guidelines that
adapts traditional Grounded Theory methods from the sociol-
ogy domain (Glaser and Strauss, 2017; Corbin, 2008; Charmaz,
2014) to the software engineering domain. STGT is specifically
suited to socio-technical phenomena such as our exploration of
a multidisciplinary data-intensive software team. STGT expects
researchers to have a socio-technical focus and ability to under-
stand the language and general technical domain. Our research
team are experts in software engineering and have skills and in-
terest in human-centric research. Further, the first author is an
experienced industry project practitioner. The researchers had
a good grasp of the observed team’s technologies and domain
and were able to understand the domain language, technology
and processes that the participants referred to.

STGT caters for the analysis of data from a variety of sources
such as observations, images and logs. It provides an iterative
approach to collect, analyse and structure data into concepts,
categories and theories. STGT starts with a broad topic and nar-
rows analysis down to key phenomenon (in case of exploratory
studies with no specific focus) or key categories. STGT has two

6

Concept Memo Extract Subcategory Category

Considering impact of
treatment work on end
users

When the team plans work to implement technical debt
treatments they assess the complexity to deliver and effort
of the delivery. The team also considers the impact or
potential impact of the treatment work on a broad range of
end users and end user activity.
This is done within the context of the planning oriented
ceremonies.

Assessing
technical

debt
treatment

Technical Debt
Treatment

Implementation

Assessing complexity to
delivery

Effort of delivery

Considering
dependencies

When planning work, the team considers the downstream
dependencies of the components to be treated….

The team focuses on creating work that can be delivered in
a particular sprint. At the end of the sprint the work may
still be shifted to another sprint because of capacity
constraints - but the goal of sprint planning is to ensure
that the treatment work can be delivered within the scope
of a sprint. They apply splitting strategies to achieve this….

If the treatment has the potential to impact end users
negatively, they discuss bundling it with an enhancement
to make up for the inconvenience.

Technical
debt

treatment
work

breakdown

Splitting Strategies

Group with
Enhancements

Figure 2: Applying STGT for data analysis: Examples of categorising concepts into subcategories and category

stages: a basic stage for basic data collection and analysis, and
an advanced stage for mature theory development. It allows for
limited application of the basic stage such as to analyse data
collected using various methods. For this study, we used a lim-
ited application of STGT i.e. STGT for data analysis to anal-
yse the data collected through the case study construct. During
data analysis it became apparent that managing technical debt
in a multidisciplinary DI software team was one of the key phe-
nomenon of interest. Concepts and categories conceptualising
the types and properties of technical debt, types of treatments,
and work planning to treat technical debt emerged early in the
analysis. We continued to focus our analysis on this phenom-
ena by aiming to answer the research questions outlined in the
motivation section.

The STGT method does not prescribe a singular research
paradigm such as positivism, instead, it expects the researchers
to articulate their perspective. The first author, who conducted
the data collection, clarifying interviews and analysis, has ex-
tensive industry project delivery experience. We wish to ac-
knowledge the adoption of a subjective, context specific, con-
structivist research paradigm needs to be acknowledged in con-
structing questions, interpretation of answers, formulation of
concepts and categories and their interrelationships.

3.4.1. Preparing and Filtering the Data
Data preparation is “the process of converting the raw data

into formats (typically text-based) where qualitative analysis
can be performed efficiently” (Hoda, 2024, Chapter 9). Data
preparation for analysis involved converting each Zoom record-
ing into an annotated, anonymised transcript. We used Otter.ai3

3https://otterai.com

to transcribe the Zoom recording, converting it into text. We
anonymised the transcript by replacing team member names,
and references to named stakeholders and organisations, and
we annotated the transcript with key references to the video,
including the Jira4 ticket that the discussion referred to, or de-
scriptions about how participants interacted with tools as part
of a discussion or demonstration. The aim was to ensure that
key visual information from the observation was connected to
the transcript to provide context during the analysis.

Per our agreement with the organisation, we also anonymised
the video recordings. We downloaded the Zoom recordings
to Adobe Premiere Pro5, blurred identifying and commercially
sensitive information and re-encoded the blurred video. We
deleted the original. From the anonymised videos, we extracted
relevant screenshots of Jira tickets (work items), Miro6 boards,
and Documents that had been shared and discussed during cere-
monies per our case study design to enrich the analysis. We also
extracted the team slack messages, ensuring that we captured
each message and associated replies, at the end of each week
into a spreadsheet. Per our agreement with the organisation,
the anonymised videos and transcripts were made available to
the participants (only the participants involved in the respective
sessions), for a 2 week review period to provide participants the
opportunity to raise any concerns, specifically regarding com-
mercial sensitivity. Two participants provided feedback, thank-
ing us for the opportunity to review.

One issue to highlight about data collection and anonymi-
sation was the manual effort required. Whilst we used an au-

4https://www.atlassian.com/software/jira
5https://www.adobe.com/au/creativecloud.html
6https://miro.com/

7

tomated transcription service, the associated manual effort was
much higher than we anticipated and involved numerous cor-
rections in addition to anonymisation. The meetings contained
technical terminology, multiple speakers and a number of par-
ticipants were not native English speakers. Every 1 hour of
meeting required 2 hours of additional manual effort to correct
and anonymise. Blurring of videos was also manually intensive,
but necessary due to the privacy and commercial sensitivity of
the material. Each hour of video required at least 1 - 2 hours of
effort to anonymise, followed by encoding.

We imported the anonymised transcriptions and slacklogs
into NVivo7 for data filtering. Data filtering is “the process
of identifying the key information, contextual information, and
noise in the raw data” (Hoda, 2024, Chapter 9), to streamline
later analysis of the data, decided that grouping by “work” was
relevant information and so we elected to perform filtering with
grouping. The first author reviewed the transcripts and used
‘annotations’ in NVivo to identify relevant segments, clarify
meaning of passages and incorporate information from obser-
vation notes and Jira tickets, Miro board and Documents. We
also commenced memo writing to capture reflections about key
information - including organisational context information, data
work practices, technical debt work and pipeline issues. We
took screenshots of the Jira ticket from the anonymised video
along with additional screenshots of document contents, dia-
grams or tool interactions. We created NVivo CASE records
for each identified Jira ticket and linked annotated transcript
segments and screenshots to the respective CASE record to fa-
cilitate a ‘work based’ case view, as well as a ‘ceremony’ file-
based view. Segments filtered out included various discussions
about team social activities and personal matters.

3.4.2. Data Analysis
To analyse the data we open-coded the technical debt re-

lated data consisting of filtered, annotated transcripts, screen-
shots and slack logs. We used the coding feature in NVivo
(Hutchison et al., 2010; Soliman and Kan, 2004). Our analy-
sis quickly identified that the observations of team ceremonies
provided a rich dataset to surface technical debt characteristics
and activities relating to how the technical debt was identified,
and how solutions were selected and planned for implementa-
tion. We therefore established the key category of ‘Managing
Technical Debt in a Multidisciplinary Data-Intensive Software
Team’ to provide a focal point for our analysis.

We demonstrate the application of STGT basic data anal-
ysis with a worked example in Figures 1 and 2. When open
coding, the first author sought to understand what was happen-
ing, what actions were taking place, and how those actions re-
lated to the key information identified during the filtering pro-
cess. Additional segments were added to memos to capture
reflections relating the codes to each other into concepts. A
worked example of how open codes are assigned to build con-
cepts through basic memos is shown in Figure 1. More con-
ceptual memos where then developed to structure codes into

7https://lumivero.com/mylumivero/

subcategories and categories, as demonstrated in Figure 2. Di-
agramming was then used to visualise and further structure the
categories and concepts. The first author regularly met with
the others to discuss the analysis approach and review coding
examples and progress. The results of the analysis in terms of
identified concepts and categories are presented in the form of a
theoretical framework shown in Figure 5 which shows the con-
cepts, subcategories and categories identified within the overall
case context. We also identify a concept called evolution on
the boundaries between the case context and case to indicate
signify ongoing and evolving impacts from the context to the
unit of analysis. The case context and detailed conceptual find-
ings (including the concept of evolution) is explained in the next
Section.

4. Findings

4.1. Case Study Context

4.1.1. Organisation Structures
The observed ‘Star Squad’ was responsible for the delivery

and support of the Enterprise Reporting system. The observed
team belonged to the Data Engineering Group (DEG) in the or-
ganisation’s broader IT Group. The observed team was one of
8 teams in DEG, and there were 12 team members out of a total
of 73 across the 8 teams. The observed team members and roles
are outlined in Table 2. Team members were allocated to capa-
bility groups and community of practices (COPs) aligned with
their roles and interests. For example, analysts in the observed
team members belonged to one of the Analytics and Design,
Data Engineering, or Ingestion capability groups. Within the
Analytics and Design, there were three COPs - Data Analytics
and Design, Visualisation, and Advanced Analytics. The op-
eration of the other teams, COPs, and Capability groups were
not included in the observed scope, but are included for context.
See Figure 3 for an overview of the organisation structure.

…

Data Engineering Group (DEG)

Star
Squad

Squad
2

Squad
3

Squad
8

Analytics and Design Capability Group

Data Engineering Capability Group

Ingestion Capability Group

COPs: Analytics & Design, Visualisation,
 Advanced Analytics

COPs…

COPs…

Figure 3: Context: Star Squad Organisation Context

4.1.2. Product and Stakeholders
The enterprise reporting end product consisted of a num-

ber of PowerBI8 dashboards deployed through workspaces, as
well as access to the underlying datasets (available to power
users) and personalisations (available to all PowerBI users. The

8https://www.microsoft.com/en-us/power-platform/products/power-bi

8

Dimensional Information
Model (DIM) Tier

Business Information
Model (BIM) Tier

Persistent Storage Area
(PSA) Tier

Raw Tier

Source Tier

PowerBI

User focused
Subject agnostic
BYO Dashboard

Domain language
Domain benchmarks
Organisation agnostic

Data science
Legacy reporting
Data lineage
Time agnostic

Limited access
Offline storage
1:1 source system
Technology agnostic

Source Systems including:
SAP, Salesforce, Elsevier,
Allocate, etc

D
at

a
 G

ov
er

na
nc

e
D

at
a

C
at

al
og

ue
D

om
ai

n
G

lo
ss

ar
y

Figure 4: Context: (Anonymised) Overview of Organisation Datawarehouse
Architecture Tiers

end user community was made up of data analysts as well as
senior management and executive stakeholders. Data analysts
who had different levels of analytical skills had access to the
dashboards and datasets, whereas management level stakehold-
ers generally had access to dashboards and perhaps personali-
sation features. End users, mainly data analyst end users, were
connected to the observed team through COPs and also engaged
as ‘domain experts’ in specialised groups for consultation and
user acceptance testing. The team also regularly engaged with
a data governor.

4.1.3. Technology, Architecture and Tools
The observed team works in a Business Intelligence En-

terprise Reporting Datawarehouse environment (Kimball et al.,
2008). DEG is in the process of implementing the Databricks9

Lakehouse Platform. This platform enables a tiered Data Ware-
house Architecture as shows in Figure 4, which connects mul-
tiple source systems through the base tiers responsible for pro-
cessing the raw data (Raw Tier) and separating out personally
identifiable information from other information into the Persis-
tent Storage Area (PSA Tier). These lower level tiers are out-
side the scope of our study as they are developed and main-
tained by other DEG teams. The Business Information Model
(BIM) Tier provides models set up in business language. It
feeds central dashboards, whereas the Dimensional Information
Model (DIM) provides the final Tier to support end user ac-
cessible dashboards and datasets accessible through Microsoft
PowerBI models and visualisations. The organisation has estab-
lished Data Governance processes as well as Data Catalogues
and Business Glossary. The details and operation of these pro-
cesses and structures were not included in the case study obser-
vation but are noted here for context.

The BIM and DIM layers in the Lakehouse Architecture
had been developed incrementally over a period of 18 months.

9https://www.databricks.com/

The development teams had recently been restructured into the
structure of 8 teams noted in Section 4.1.1, including the ‘Star
Squad’, which was the subject of observation.

We observed the ‘Star Squad’ members use several tools,
including Databricks Catalogues and Notebooks for SQL devel-
opment (BIM and DIM), Microsoft PowerBI for data visualisa-
tion and dashboard development, and Azure DevOps Pipelines10

for BIM and DIM workflow processing and release deploy-
ments. PowerBI Deployment pipelines are used for PowerBI
deployments. Importantly, the Azure DevOps Pipelines and
PowerBI pipelines were not yet integrated due to technical lim-
itations, which contributed to challenges elaborated in Section
4.2 below. The team used Lucidchart11 for data modeling and
Atlassian Confluence12 to document BIM designs. The team
used Atlassian JIRA13 to track, manage, and report work in
sprints. Outside of team ceremonies, day-to-day team collabo-
ration was done through Slack14, and team ceremonies were al-
ways in hybrid mode, conducted over Zoom15. At times, meet-
ings were facilitated through Miro and associated templates16.
The team also had access to Google Workspace tools17.

4.1.4. Team Members
The Star Squad was a multidisciplinary team, consisting of

8 data analysts, a product manager, iteration manager, busi-
ness analyst, and quality assurance expert, as shown in Table
2. The team members’ education discipline backgrounds are
shown in Table 3, and their career backgrounds are summarised
in Table 5. Some team members had education backgrounds in
more than one discipline. The discipline backgrounds span a
wide range of domains, including non technology related do-
mains, general information technology, engineering, data sci-
ence, computer science data analytics, and management. The
Product Manager, in particular, had established deep domain
knowledge in the organisations domain, with most of their pro-
fessional experienced gained working in similar organisations.
They also had a deep knowledge of the organisation’s legacy
application environment. Analyst team members were largely
aligned to tasks relating to visualisations, or backend data anal-
ysis and query development. The team had a balance of very
deep level of professional expertise and junior team members
(See Table 4). Note, the information in team members related
Tables 2, 3, 4, and 5, has been generalised and aggregated to
preserve team member privacy.

4.1.5. Ways of Working
Ceremonies: The 12 member team used agile scrum prac-

tices to manage their work. They held the following ceremonies
(with time ranges) fortnightly: a) backlog refinement (1hr -

10https://azure.microsoft.com/en-us/products/devops/pipelines/
11https://www.lucidchart.com/pages/
12https://www.atlassian.com/software/confluence
13https://www.atlassian.com/software/jira
14https://slack.com/intl/en-au/
15https://zoom.us/
16https://miro.com/
17https://workspace.google.com/intl/en-au/

9

➢ Pipeline debt
• Deployment pipeline
• Sideloading

➢ Process debt

➢ Technical data debt
• Layer misalignment
• Naming inconsistency
• Visualisation work arounds
• Obsolete components

➢ (Non-standard
documentation debt

➢ Data quality debt

Contextual Assessment of Technical Debt

➢ Known technical debt ➢ Anticipated technical debt ➢ Unanticipated technical debt

Technical Debt Treatments

• Consequence of inaction
• Urgency of fixing

• Effort to avoid
• Familiarity with type of debt
• Anticipated impact

• Time pressure
• Impact of technical debt

➢ Knowledge management strategies
• Tacit knowledge
• Documentation
• Organisation structure
• Knowledge sharing

➢ Environment enhancements

➢ Technical data debt
 treatments

• Refactoring
• Redevelopment
• Component removal

➢ Define/select treatment ➢ Assess treatment
• Effort to deliver
• Complexity
• Impact to end user

➢ Treatment debt treatment work
breakdown

• Consider dependencies
• Splitting Strategies
• Group with enhancements

Managing
Technical Debt

in a
Multidisciplinary

Data Intensive
Software Team

➢ Quality assurance of technical
data debt treatments

• Collaborative testing
• Multidisciplinary review

➢ Avoidance

Category ➢ Subcategory• ConceptLegend

Technical Debt Treatments

Technical Debt Types

Technical Debt Treatment Implementation

Case
Context

• Evolution

Figure 5: Theoretical framework of Managing Technical Debt in a Data-Intensive Software Team

ID Role (Focus Area)
P1 Manager
P2 Manager
P3 Analyst
P4 Data Analyst - Backend
P5 Data Analyst - Platform
P6 Data Analyst - Visualisation
P7 Data Analyst - Visualisation
P8 Data Analyst - Backend
P9 Data Analyst - Backend
P10 Data Analyst
P11 Analyst
P12 Data Analyst - Visualisation

Table 2: Participant Team Member Roles

1.5hrs) to scope out, estimate and prioritise work items, b) sprint
planning (3hrs) to close out the existing sprint or carry over
work from the prior sprint and finalise (scope, estimate and
prioritise) the items for the commencing sprint, c) sprint re-
view (30min-1hr) to review the previous sprint and showcase
deliverables within the team and to external stakeholders, and
d) sprint retrospective (1hr) to review sprint performance and
conduct reflection on how to improve. Every day, except on
sprint-planning days, the team held a stand-up (10min - 30min)
ceremony to discuss progress and, if required, raised the need
for an after-party (10min - 50min) ceremony to discuss issues,
next steps, or conduct reviews with each other and/or the prod-
uct manager. All ceremonies were attended by all team mem-
bers, except after-parties, which were held on most days and

Education Discipline No. of Team Members
Domain 2
Information Technology 2
Data Analytics 2
Engineering 3
Computer Science 2
Data Science 2
Training 1
Business Management 1

Table 3: Aggregated Participant Team Member Education Disciplines

Years of Experience No. of Team Members
< 2 2
2 - 4 0
5-10 5
>10 5

Table 4: Aggregated Participant Team Member Years Professional Experience

only attended by those team members involved in the discus-
sion.

Observed Data-Intensive Work: For the purpose of con-
textualising, we characterise the observed DI work performed
by team members as: a) data development, b) data visualisation
development, c) quality assurance, d) data deployment, and e)
Visualisation deployment work to deliver the enterprise busi-
ness intelligence product. For the purpose of this paper, we
define data development work as including the SQL and re-
lated coding work including the design, creation and updating
of Business Information Models (BIM) and Dimensional Data

10

Career Backgrounds No. of Team Members
Business Analysis 2
Data Engineering 5
Data Modeling 2
Data Reporting and Visualisation 3
IT Training and Support 2
Product/Project Management 3
Quality Assurance 1

Table 5: Aggregated Participant Team Member Career Backgrounds

Model (DIM) data tiers in the architecture. We define data
visualisation development work as the data modeling and vi-
sualisation development in PowerBI. Quality assurance work
activities included testing and review activities associated with
data development, data visualisation development and their in-
tegration. Data deployment work includes the maintenance and
continuous updating of workflows and pipelines to accommo-
date changes in the BIM and DIM data into the Development
(DEV), Quality Assurance (QA) and Production (PROD) en-
vironments. Visualisation deployment includes the deployment
of PowerBI dashboards and refreshing of data into the data vi-
sualisations in the DEV, QA and PROD environments.

Team members were observed to perform or discuss the per-
formances of DI work shown in Table 6.

Measured Work Types: DEG teams were measured through
various metrics discussed at leadership meetings (outside the
scope of the observation study). The metrics were collected
through Jira work item types, supplemented by highlight de-
scriptions provided by the product manager and iteration man-
ager. For the context of the findings related to technical debt,
relevant information includes that the measured ‘Work Item
Type’ and % range of work completed each month over the
prior 4 months included Break Fix: <5%, continuous Improve-
ment: 8% - 9% , discovery incl. analysis: 0 - 9% and value
work: 80%- 90% . Further, the amount of continuous improve-
ment work was kept relatively stable, ranging between 8% -
9.5% per month, closely related to and balanced with value
work. Continuous improvement included enhancement work
items as well as technical debt work items. The team was not
observed to have a formal register for maintaining technical
debt.

4.2. Managing Technical Debt in a Data-Intensive Software
Team

We conceptualised several categories and concepts around
our key category of Managing Technical Debt in a Data-
Intensive Software Team, which we present in this section.
The category Technical Debt Types is made up of sub-categories
that describe the Technical Debt Types. We identified 3 fur-
ther categories which conceptualise activities relating to techni-
cal debt management, namely Identify and Assess Technical
Debt, Technical Debt Treatments and Technical Debt Treat-
ment Work Breakdown.

Note: We deliberately omit the use of financial technical
debt language such as ‘debt repayment’, and ‘interest’ when

conceptualising. Instead we used language such as‘technical
debt treatment’ and ‘technical debt treatment implementation’
as we felt the observed concepts, grounded in observation data,
are broader than concepts such as ‘debt repayment’. This ap-
proach also serves to highlight that financial technical debt lan-
guage, beyond phrases such as ‘technical debt’ were not used
by the team during the observations.

For each category, we present related sub-categories and
concepts, some illustrated by sanitised quotes and conversa-
tional extracts. NOTE: We use –> in the following subsections
to indicate where a quote continues the conversation. Figure 5
provides a visualisation of this conceptualisation. We present
a summary at the end of each category in answer our research
questions.

4.2.1. Technical Debt Types
We observed several references and discussions relating to

technical debt that we separated into Technical Debt Types,
namely technical data debt, pipeline debt, process debt, data
quality debt and (non-standard) documentation debt sub-
categories.

Technical data debt encompasses debt relating to BIM,
DIM and PowerBI layer alignment where data is accessed di-
rectly from BIM structures (because the DIM layer has not been
created), or the data layers still contain references to legacy
components. The concept also includes naming inconsistency
covering inconsistent naming data fields or report naming con-
ventions, and DIM naming issues. For example:

7 “to be able to do this, we would be referencing BIM ta-
bles...and there is a need to assess the Tech Debt that we would
create, by doing this piece directly off the BIM” (P2, Manager).

We also include concepts such as obsolete components and
Power BI visualisation work arounds within this sub-category.
Visualisation workarounds included the need to implement mod-
ifications within PowerBI to achieve desired visuals due to un-
derlying data structure or layer issues. An important impact of
implementing modifications within the PowerBI visualisation
layer is that access restrictions may need to be placed on access
to the underlying dataset, impacting dataset access or personal-
isation by end users.

Within the sub-category of pipeline debt, we identified 2
main concepts - deployment pipeline and sideloading. Deploy-
ment pipeline related discussions centred mainly around issues
with the deployment pipelines and data refreshes for PowerBI,
which were not integrated with the Databricks Azure DevOps
deployment pipelines. Workflows to ‘build’ data constructs ran
on an automated schedule within the Azure DevOps environ-
ment, but PowerBI model refreshes were scheduled or executed
ad-hoc through the PowerBI Service. Due to technical platform
limitations, integration of these pipelines could not be auto-
mated, and running selective Azure Ops orchestrations without
PowerBI refresh caused downstream data alignment issues that
resulted in outdated ‘keys’ joining the FACT and DIM tables in
datasets, which in turn resulted in misaligned datasets and non-
sensical data flowing through to PowerBI dashboard visulisa-
tions. The team had implemented a manual co-ordination pro-

11

ID Data Development Data Visualisation Quality Assurance Data Deployment Visualisation Deployment
P2 � �

P4 � � �

P5 � �

P6 � � �

P7 � � � � �

P8 � � �

P9 � � �

P10 � � � �

P11 � � �

P12 � � �

Table 6: DI Work performance observed or discussed by team members

cess via the team slack channel to notify team members prior to
running Azure Workflows, and this would then alert team mem-
bers developing visualisations that they would need to refresh:

7 “I’m about to kick-off dev qa orchestration. Please let me
know if you have any concerns. Thanks!...Orchestration com-
pleted.” (P8, DA-Backend)

Over time, the approach to deployment pipelines for appli-
cations had changed, leaving different approaches for older ap-
plications.

7 “Do we have deployment pipelines for those reports?”
(P2, Manager)
–>“Not consistent, that was something that we implemented
when we first started.” (P7, DA-Visualisation)
–>“In the release meeting (with the other teams) it was men-
tioned that when we release some of these reports, we don’t
have a pipeline.” (P12, DA-Visualisation)

Whilst most data consumed by the visualisations was sourced
through source systems, the Lakehouse architecture also sup-
ported sideloading of data files created through external (man-
ual processes) necessary to fill gaps in source systems. Side-
loading is a form of pipeline debt because the associated pipeline
was identified as not having support for roll-back or archiv-
ing. The reason for requiring sideloading is that historically,
the enterprise reporting team took on responsibility for man-
aging some reference data on behalf of business stakeholders
using Excel files, and those processes never progressed through
digital transformation:

7 “I had a look at reference sheet. You mentioned about
getting back to the ‘previous version’. So, if we have to get
back to a previous version, because it has multiple tabs, will it
be the case that we have to revert back all of those references
to the previous version.” (P8, DA - Backend)

As source systems are updated and their data is integrated
to the Lakehouse, effort needs to be expended to assess whether
the sideloading can be replaced with direct access:

7 “So rather than us manually uploading that as a .csv file
into our platform, like we used to do, we might be able to source
this from < source system > instead.” (P2, Manager)

The team had practices for incorporating documentation for
analysis, design and testing. However, there was missing docu-
mentation for some non-standard, legacy applications and pipelines

i.e. (non-standard) documentation debt was identified and
needed to be addressed when one of the team members an-
nounced they were leaving to take up a new job opportunity.
Process debt related discussions were observed regarding pro-
cesses and features for managing communication to end user
stakeholders about data related issues:

7 “We’ve taken a few different approaches with some of the
dashboards (for communicating with end users), there’s differ-
ent levels. There’s removing access to the dashboard and re-
placing it with the Service Desk message. Then we’ve got that
‘news box’ on the landing page (for one of the dashboards),
and on the (other dashboard) we just put text directly on to that
landing page to communicate things previously as well. So we
don’t have a real consistency with our production workspaces
at this point.” (P1, Manager)

The team also discussed data quality debt, mainly in rela-
tion to historical data from older systems.

Summary

RQ1: What does a multidisciplinary, data-intensive
system engineering team discuss about technical debt?
We identified discussions about technical data debt,
data quality debt pipeline debt, process debt and
(non standard) documentation debt sub-categories of
technical debt. The team members articulated that pro-
cess debt, and (non standard documentation debt re-
sulted from shortcuts taken during development. How-
ever technical data debt, pipeline and data quality
debt were experienced due to the nature of data, or
combination of data and technology. Pipeline debt
in particular was discussed in terms of, and managed
through, manual processes.

4.2.2. Identify and Assess Technical Debt
As part of their work delivery and planning, we observed

that the team regularly identified, discussed and assessed tech-
nical debt. We established 3 subcategories based on the level of
awareness or anticipation of technical debt, specifically known
technical debt (to represent debt technical debt that had been
identified and was known to the team - either documented as a
work item or tacit knowledge), anticipated technical debt and
unanticipated technical debt. Assessment of known tech-

12

nical debt and anticipated technical debt occurred mainly
during fortnightly sprint planning and backlog refinement cere-
monies, whereas assessment of unanticipated technical debt
occurred during the sprint delivery in either daily stand-ups,
after-parties or other deep dive sessions.

When the team assessed known technical debt they con-
sidered urgency, specifically how urgent it would be to treat the
debt to achieve the current release, or to remove links to legacy
components that were planned for decommissioning. The team
members considered dependencies of other components, and
urgency in terms of short term consequences.

7“With regards to that ‘universal day’ (Item identified for
removal). We might need to just understand if there has been
used elsewhere as well, before we do anything with it. Like we
have used date dimensions in everything. So if they’re all using
this, and I mean if it is legacy, then we’ll need to make sure
that we address all of that before we go on remove that kind of
thing.” (P7, DA - Visualisation)
–>“ leaving it there as it is, like, doing nothing. There’s no risks
in the short term.” (P2, Manager)

When assessing anticipated technical debt, the team mem-
bers were observed providing their respective expertise and dis-
cussing and balancing factors including familiarity with the type
of debt, anticipated impact if the debt was incurred, such as an-
ticipated impact on system performance:

7“We would be referencing the BIM tables and there’s an
assessment around the Tech Debt that we would create by doing
this piece of work directly off the BIM. Once we do eventually
create the DIM layer, we would ideally look to refactor that to
be consistent and point to the DIM. Particularly this BIM is
more like a FACT table already... It’s not the same as a collec-
tion of raw tables that we’re bringing together for the BIM. P9,
I’m looking to you for feedback about what you needed to do
previously, was that relatively straightforward to use the BIM
directly for that?” (P2, Manager)

–>“I don’t see any difference between the logic that we al-
ready developed. The only drawback with this one is that we
have to maintain the same filter on this work as well, because
we don’t have like a single component which filters out criteria,
if that makes sense.” (P9, DA-Backend)

In general, at conclusion of a discussion, the Manager sum-
marised and articulated the decision, seeking to balance the an-
ticipated impact of the technical debt against the estimated ef-
fort to avoid the technical debt and anticipated impact on sprint
goals and effort to apply future treatment given familiarity with
the type of debt:

7“If we wait to fully develop out the dimensional layer...it
would add quite a large dependency or prerequisite, before be-
ing able to do our summarized measures. And initially, I’m
proposing what we take the same approach with this one. So
we’ve got that sort of equivalent, tech debt on both of those
solutions...and take the slightly more tactical approach, par-
ticularly because it’s just a simple flat table, and it is easy to
replumb to a different source later...my appetite is to not take
on too much of this within the one sprint.” (P2, Manager)

We also observed decisions about unanticipated techni-
cal debt during deep-dive sessions, prior to releasing the dash-
board. One decision was made under time pressure of release,
the other did not have pressure to release. Under this real time
pressure, the main factor voiced by the Manager in making the
decision was end user usability. Completion of the work in-
volved additional, but not extensive effort by the analyst team
member, but this was not considered a major concern:

7“The next things all really relate to fields names. And this
is sort of both what you see in the filter panel, but also when you
go to personalize visuals. It may end up being confusing (for
end users, so that would say to me that we probably should
put a prefix or a suffix on these names to make it clear.” (P2,
Manager)

7“What I’ve done (since yesterday), ...I have prefixed it
...in the Power BI. We made a backlog card to fix these(in the
VIEW).” (P12, DA - Visualisation)

–>“If that’s the pathway we need to go down in the shorter
term versus the VIEW, then ok.” (P2, Manager)

By comparison, where the team made an unanticipated iden-
tification of data and technical debt during a review session,
without strong release pressure, the assessment resulted in the
decision to refactor of the query (and carry work to the next
sprintto ensure the technical debt was addressed prior to release:

7“I think we’ll need to make a call at the end of the day.
And that if there’s still a bit of work, there’s no outward pressure
to get this one released. So if we need a bit more time...I think
the important step is to just remove that legacy query.” (P2)

Summary

RQ2: How does the team identify and assess technical
debt?
Identification and Assessment of Technical Debt is
contextual. In the case of known technical debt,
the team considered the consequence of inaction and
urgeny of fixing. However, if unanticipated techni-
cal debt is identified i.e., arises unexpectedly during a
sprint, then the team considered the impact of the tech-
nical debt and the time pressure of delivery. They dis-
tinguished between ‘real’ delivery time pressures com-
pared to ‘sprint’ imposed performance time pressures.
The team chose to ‘carry over’ scope to fix technical
debt when there were no real perceived time pressures.
Finally, during planning, the team identified potential
or anticipated technical debt and considered their fa-
miliarity of the type of debt, the effort to avoid and an-
ticipated impact of the technical debt.

4.2.3. Technical Debt Treatment
Our observations identified the application and considera-

tion of different types of Technical Debt Treatments, as well
as the emergence or evolution of treatments. The Technical
Debt Treatments category includes the technical data debt
treatments sub-category with refactoring, redevelopment, and

13

component removal concepts. We also identified an associ-
ated technical data debt treatment quality assurance sub-
category which includes quality assurance concepts such as col-
laborative testing, multidisciplinary reviews and regression test-
ing to ensure that the technical data debt treatments are car-
ried out as expected without adverse or unexpected impacts.

When discussing refactoring, the team considered updating
field names, BIM and Report names, refactoring SQL Queries
to reference newly created BIMs. Component removal treat-
ment activities included the removal of obsolete SQL notebooks,
PowerBI dashboards and PowerBI workspaces no longer re-
quired. We identified a relationship between component re-
moval, refactoring and treatment quality assurance because
refactoring activities that touch obsolete components need to
be completed before component removal followed by collabo-
rative testing:

7 “We identified some refactoring might be required. So
in terms of like the actual removal of the BIM and DIMs is
probably not complex, but the refactoring before and regres-
sion testing after - ensuring that we still produce what we are
expecting.” (P8, DA - Backend)

We observed discussions about redevelopment to treat tech-
nical debt. The reasons for redevelopment (for 2 of the com-
ponents) were that their existing implementations could not be
extended to accommodate new requirements. The other rede-
velopment was planned to consolidate a number of different ap-
proaches that had been implemented on dashboards to commu-
nicate with end-users:

7“I’ve asked P3 to raise an item in the backlog, to look for
a more effective ways to raise the service messages, that reduce
some of the overhead.” (P1, Manager)

–>“This work is coming under our continuous improvement
area.” (P2, Manager)

The team discussed and was observed performing techni-
cal data debt quality assurance, including collaborative test-
ing and multidisciplinary reviews. Team members incorporated
acceptance testing criteria when planning technical data debt
treatment work. They performed collaborative testing where
technical data debt treatments spanned multiple layers of a
solution. For example, regression testing performed by P9 after
the removal of obsolete notebooks required refresh of down-
stream PowerBI models by team members responsible for data
visualisation, within the testing environment to verify that there
was no impact. Different team members responsible for each
of the PowerBI visualisations performed the tests. Refactoring
updates to BIM/DIMs, performed by backend data experts also
required refreshes and collaborative testing in the downstream
PowerBI model by visualisation experts:

7“I removed all the notebooks and tables or views that’s
not been used or are inactive....I tested in DEV and it looks all
good. I requested to P12 to refresh QA to make sure that there’s
no impact on the Power BI data set on (the dashboards P12 is
responsible for) and it looks okay. Now I need help from P6 to
refresh the dashboards (that P6 works on) just to make sure that
it’s not going to be impacting those two as well. And once that

is confirmed then I’ll get P11 to review if any further testing is
required.” (P9, DA - Backend)

The team used knowledge management strategies includ-
ing holding knowledge sharing sessions and documentation of
non-standard practices and implementation. This particular strat-
egy was implemented one of the team members was planning to
leave the organisation and resulted in knowledge being handed
over in several sessions to 2 team members:

Knowledge sharing in the form of creating, or updating con-
fluence documentation and hand-over meetings was used to ad-
dress gaps in team member knowledge as a result of one of the
team members taking up a new role with another organisation.
The team member had responsibility for supporting a number of
non-standard reports and pipelines and hence the team needed
to ensure that they could keep up with the continued support.
Whilst the team has some reservations about including this as
a ‘tech debt’ related activity, they chose to group it as such for
planning and reporting purposes:

7 “Basically on this one, I’m working on Confluence. One
page for each project or dashboard, including the one I am
working on at the moment...I am also updating existing doc-
umentation which is still, you know, referring to legacy.” (P6,
DA - Visualisation)

7“That’s the most sort of critical one, obviously, while
you’re here you know, capturing as much detail and those knowl-
edge sharing opportunities while you’re here.” (P2, Manager)

We also observed how organisation structure facilitated knowl-
edge sharing. P1 took on a Management role in another team
that provided platform services to the ’Star Squad’ and this fa-
cilitated knowledge sharing during that team’s ceremonies. P1
indicated that this was a key factor in facilitating common un-
derstanding and improvement of managing deployment pipeline
debt:

7“It was good to have me now also in the role of Man-
ager with the <(other) team> - it helps with the alignment. We
have ‘common language’ when we mention branches and re-
leases...I notice in stand ups, the language seems to just sit.
Now, when people talk about ‘feature branches’ we know ex-
actly what they’re talking about...so it seems to have landed
with everyone”. (P1, Manager)

Environment enhancements including process enhance-
ments were used to address deployment pipeline debt. How-
ever, the team was unable to fix the technical integration issues
relating to the underlying deployment pipeline, and instead im-
plemented process improvements to address the impact caused
by deployment pipeline. The team is also actively monitoring
availability of technology enhancements to address improve-
ments with the PowerBI pipeline:

7“One thing we’re doing extra now is a final QA master
branch orchestration power Power BI refresh. If it works, it’s
almost guaranteed success. And that’s something that has been
introduced over the last few weeks. So after our release meet-
ing, we gather up all of the disparate branches from all the

14

teams and we perform a review of the final branch. Then we
run the orchestration from start to finish and we do a Power BI
refresh. Then we can run a regression test.” (P11, Analyst)

We identified evolution as a relationship of the Technical
Debt Treatments category, which provides connection between
the treatments available to the team and the wider context of the
case. Treatments may evolve due to work (carried out by team
members and others) as part of data governance activities, Com-
munity of Practice activities, or may become available due to
wider organisational activities or vendor product releases. This
evolution operates at a different cadence to sprints:

7“There are multiple Communities of Practice...which run
with all team members from the DEG...and we look at naming
conventions, BIM and DIM data design practices, visualisa-
tion standards....The Community of Practice works at a differ-
ent speed as our ‘Star Squad’ and involves different people.”
(P9, DA - Backend)

The evolution of technical debt treatment is not under the
full-control of the team and needs to be evaluated. Once new
technology becomes available, the team needs to investigate
whether it could be useful and add value:

7“We should look at “Power BI files and Git repos - BIP
files.” (P7, DA - Visualisation)
–>“They make it easy to track changes (in PowerBI) so you
can avoid deploying something you don’t want to go.” (P11,
Analyst)

Finally, we also observed avoidance as a treatment approach
for anticipated technical debt as the team would try to find ways
to de-scope the cause of technical debt. For example, old data
quality debt from years prior to 2000 would be identified dur-
ing sprint-planning, and the team took decisions to actively de-
scope the data from the feature and avoid incurring the debt.

Summary

RQ3:What does such as team discuss about technical
debt treatment?
We identified technical data debt treatments in-
cluding refactoring, redevelopment and component re-
moval as well as associated technical data debt treat-
ment quality assurance. Multidisciplinary teams rely
on collaborative testing and multidisciplinary reviews
where different team members are called to contribute
expert knowledge and perform technical data debt
treatment quality assurance. We also observed the
team discuss efforts to avoid technical debt, apply the
knowledge management strategies and make techni-
cal environment enhancements. Available treatments
evolve in line with the team’s internal improvement pro-
cesses, but are also facilitated and influenced by con-
nection with the team’s wider context such as COPs,
Data Governance and Vendors. External sources of evo-
lution do not align with cadence in agile sprints.

4.2.4. Technical Debt Treatment Implementation
We observed several discussions during the team’s sprint

planning and backlog refinement sessions in which the team

defined and refined the way that treatment should be imple-
mented. We conceptualised these findings into the Technical
Debt Treatment Implementation category, which is made up
of related sub-categories define treatment, assess treatment,
and technical debt treatment work breakdown.

Define treatment could be as simple as raising one or more
backlog tickets during review meetings to capture or identify
the Technical Debt Treatment. However, we also observed
discussion about the need to allocate time to think through and
design appropriate treatment solutions, or even decide whether
a treatment was possible:

7“So we do need to spend a bit of time to really understand
the requirements around all of this reference data configuration
data. And obviously, I talked about how we managed that in
Legacy, which was just in an Excel spreadsheet, where we then
exported each worksheet as a separate CSV file to load into the
platform. But it’ll be worthwhile for someone to have a look
through that and propose other options for how we might want
to manage that, obviously, it’s not ideal managing such critical
data in a in a sort of manual form like that, like mistakes can be
made. They can have significant impacts to the to the reports
and data. A review of what we need to manage in that space
will be worthwhile as well.” (P2, Manager)

The assess treatment category has an implied precondition
that there is a Technical Debt Treatment available i.e., that
define treatment work has been done. We observed the team
assess treatment for the purpose of planning implementation.
The team discussed the treatment and specifically considered
effort to deliver the treatment, complexity of the treatment and
potential impact to end users. With respect to impact on end
users, this included consideration of potential negative and crit-
ical impacts of the treatment, in particular the timing given the
current point in the business cycle:

7“And this is the stuff that was considered medium priority
last week. Should we just consider like how critical it is to do
these? I think (previous technical team member) would have
said, ‘it’s quite critical’, but P2-PM has a different viewpoint.
Especially with these particular FACT tables, I’ll be honest, I
don’t really want to mess with it midway through this critical
period (for end users) - I’m not saying ‘Get rid of it’. But some
of those other FACT tables, like, no one uses them, I reckon
that’s safe.” (P11, Analyst)

7“So if we only implement this spelling change, it will
break anyone’s existing bookmarks.” (P2)

We also observed the team breaking down technical debt
treatment work with the goal of ensuring that the treatment
could be delivered within the boundaries of the fortnightly sprint.
When scoping and structuring the work, we observed the team
consider dependencies and apply splitting strategies and group-
ing with enhancements:

7“So regarding the ...FACT, we do have the renaming of
the FACT included in the refactoring. I’m assuming that re-
naming is not part of this task, because then that will impact
the Power BI report?” (P12, DA - Visualisation)

15

The team used splitting strategies to structure the work for
delivery. Splitting strategies consider splitting by domain, de-
pendencies, complexity or work impact:

7“Potentially we can split by subject area, for example,
like we can do like the DIMs and FACT related to <domain
area> and the second one will be like the <domain area>.” (P8,
DA - Backend)

–>“If you look at it, there are 12 there, right? So if we
consider there is effort on this from a refactor regression. If
you lump it all in one, we could be sitting on it for quite some
time.”” (P1, Manager)

Summary

RQ4: How does the team decide the treatment it will
apply to the technical debt?
The team applied steps to select or define treatment
and then to assess the treatment in terms of effort to
deliver, complexity of treatment delivery and impacts
to end users. Treatment implementation tended to be
structured to align with sprint goals and timelines and
minimise negative or repeated impacts on end-users. To
achieve technical debt treatment work breakdown,
the team applyed splitting strategies and grouping with
enhancements.

5. Discussion, Implications and Recommendations

We discuss our key findings about technical debt manage-
ment in a data-intensive software team and triangulate these
with with related works. We derive insights about how the team
works and make some recommendations for practitioners and
researchers that could improve the experience of such multidis-
ciplinary teams and build relevant knowledge for the research
community.

5.1. Mapping practitioner discussions about Technical Debt Types
to research literature

Our study provides insight into the technical debt types ex-
perienced by a single data-intensive software team maintaining
and extending a complex enterprise reporting product over a
period of 6 weeks. We identified 5 sub-categories of techni-
cal debt types including: technical data debt, data quality
debt, pipeline debt, process debt and (non standard) doc-
umentation debt. Based on the established taxonomies by
(Rios et al., 2018; Li et al., 2015), our categories of process
debt, (non-standard) and documentation debt can be readily
aligned with their categories of Process Debt and Documenta-
tion Debt. We note that the pipeline debt - sideloading issues
have been articulated at a high level by Scully et al. (Sculley
et al., 2015), and recently explored by Foidl et al.’s review into
pipeline quality and architectures (Foidl et al., 2024). Whilst
data model debt type was articulated by Waltersdorfer (Wal-
tersdorfer et al., 2020), their categorisation was limited to data
model documentation and we note that further research is re-
quired to elaborate and generalise the categories of technical
data debt.

○ Implications and Recommendation #1: Much of the
current technical data debt literature is based on data reposi-
tory mining research. Whilst we are able to map some of our
observed technical debt types to the technical debt types identi-
fied in existing literature, there are gaps regarding our findings
pertaining to the technical data debt sub-category and deploy-
ment pipeline concept which also means that there is a lack of
research backed guidance that can be translated or mapped to
day to day work practices of data-intensive software teams.

We recommend that researchers further explore technical
data debt concepts as experienced by practitioners to incorpo-
rate and map those perspectives to the findings from repository
mining, so that practical solution anti-patterns, solution patterns
and guidelines can be developed for practitioners. We recom-
mend and urge practitioners to engage with and take an active
part in these studies with researchers.

5.2. Use of TD and TD Management terminology

Our findings describe the observations that led us to concep-
tualise Technical Debt Types, and Technical Debt Management
Categories including Technical Debt Treatment Work, Iden-
tify and Assess Technical Debt and Technical Debt Treat-
ment Work Breakdown. Whilst basic technical debt terminol-
ogy was used by team members, i.e. the use of phrases such
as ‘technical debt’, ‘refactor’, and ‘register of technical debt’,
we did not observe any use of advanced technical debt concepts
e.g. discussions referring to financial metaphors such as ‘re-
payment’, ‘interest’, ‘cost’ or ‘anti-patterns’. There were dis-
cussions about future refactoring efforts regarding when con-
sidering the potential to incur tech debt and ease of ‘replumb-
ing’ components. In general, the work was discussed within the
context of agile delivery and as such the language and focus are
on the type of technical work they will do and the overall value
it will deliver, such as ‘cleaning up’, ‘removing legacy refer-
ences’, implementing new technology or processes and ‘mak-
ing consistent’. Our prior research identified that one of the
characteristics of a multidisciplinary team is that maintaining
communication between team members is typically very strong.
Also, there is a lot of effort taken by team members to en-
sure understanding between team members that have different
backgrounds (Graetsch et al., 2023). Whilst use of financial
metaphors within the software engineering community may be
accepted, our observations of a multidisciplinary DI team with
several very experienced team members indicated that this has
not become standard terminology in the data-intensive system
space. Recently, Xavier et al. proposed and evaluated a lightweight
framework to manage technical debt in agile software teams,
where they incorporated an initial Technical Debt consensus
step to allow the team to discuss and agree on technical debt
definitions for their particular context (Xavier et al., 2023).

○ Implications and Recommendation #2: The introduc-
tion of technical debt focused language, and associated finan-
cial metaphors could make it easier for team members to con-
sider the longer term implications of taking on debt, or take ad-
vantage of downstream concepts such as anti-patterns to quickly
recognise and assess technical debt and design-patterns that can

16

offer solutions. However, given the nature and varied back-
grounds of multidisciplinary team members, care needs to be
taken when introducing this terminology. We recommend that
researchers and practitioners co-design technical debt concepts
and vocabulary so that it can be adopted by multidisciplinary
team members in a data-intensive environment. Given the ag-
ile delivery approach, the concepts and vocabulary need to be
related to agile delivery and contain links to operational data
work. A co-design based approach could be used to facilitate
the development of this guidance.

5.3. Technical Debt identification and explicit documentation
We did not observe use of special tooling or techniques re-

garding technical debt identification in our case study. How-
ever, we did observe that knowledge about known technical
debt was held in Jira tickets or attached documentation and sig-
nificant tacit knowledge was evident during discussion of an-
ticipated technical debt. Sometimes the discussions resulted
in new backlog item creation, but not consistently. Team mem-
bers in our study did express intent to document/collate techni-
cal debt i.e. make it explicit and the desire to hold broader dis-
cussions about technical debt i.e. with other teams. The team
did not use a formal technical debt register (other than the back-
log) and we did not observe any reference to agreed structures
specifically for technical debt user stories.

The potential structure of technical debt documentation has
been considered in software development focused literature such
as Li et al. (Li et al., 2015) and the preference to keep a sep-
arate ‘technical debt’ backlog was discussed by Xavier et al.
(Xavier et al., 2023). Whether and how well these approaches
could meet the needs of data-intensive software has not been
investigated. Authors of software development technical debt
management frameworks do consider the creating and mainte-
nance of a list of technical debt to be a foundational element of
these frameworks (Guo et al., 2016; Xavier et al., 2023). How-
ever, the creation and maintenance have to be balanced against
the effort of doing so (Guo et al., 2016).

○ Implications and Recommendation #3: The need for
a product manager to communicate about technical debt more
broadly implies that information about identified technical debt
needs to be shareable with broader audiences and technical debt
management can have broader stakeholders than the immedi-
ate team. We recommend that practitioners consider the estab-
lishment of a technical debt register as part of their practices.
Whilst further research is needed to clarify what information to
capture for optimal downstream management and exactly what
technical debt should be the focus - the need to have an explicit
list of technical debt is foundational and it would reduce the
risk of maintaining this knowledge tacitly. We recommend that
the research community conduct further research studies to de-
velop clear guidelines about what data intensive debt should be
registered and what information should be captured.

Knowledge management strategies such as documenta-
tion and knowledge sharing sessions were also used by the team
to address (non standard) documentation debt. Data-intensive
software engineering is recognised as a highly knowledge in-
tensive activity (Bruce and Mistrik, 2021) and there has been

considerable research about the use of intelligent techniques to
drive identification of software-intensive systems technical debt
from artifacts, as synthesised by (Albuquerque et al., 2023).
This research has not been extended to data-intensive systems
and it has also not yet extended to converting tacit knowledge
about technical debt to explicit knowledge.

○ Implications and Recommendation #4: We recommend
that researchers extend intelligent technical-debt identification
studies to data-intensive debt and also consider research for
converting tacit knowledge from discussions into explicit technical-
debt documentation or registrations.

5.4. Multidisciplinary Data Development Tools support for TD
Management

The team had modern development and collaboration tools
(see Section 4.1.3), but there was no observed support in the
tools for identifying or managing technical debt. As we
did not observe individual team members perform their work
individually, we did not observe whether the tools provided
features to identify localised anti-patterns or remedy technical
debt. However, we did observe team members perform mul-
tidisciplinary review sessions where they reviewed dashboards
and SQL notebooks manually and identified naming inconsis-
tencies, inconsistent configuration of widgets, and access to
legacy components and we assumed that the tools either did
not have the features or were not set up to guide team members
to proactively flag errors.

Automated or context-sensitive tool-based support is highly
dependent on research into data-intensive technical debt anti-
patterns - which is still emerging. Muse et al. have identified
SQL access anti-patterns through repository mining based re-
search and planning to evaluate these findings with practition-
ers(Muse et al., 2022a).

○ Implications and Recommendation#5: Data engineer-
ing tools have an important role in improving the recognition or
warning about potential anti-patterns and inconsistencies and
hence, prevention of technical debt. We recommend that re-
searchers conduct further studies to articulate the appropriate,
detailed configuration elements for organisational and team-
based consistency rules to be incorporated into the tools and
evaluate prototypes of tools. We further recommend that when
developing the tools to identify technical debt, developers keep
in mind the communication needs of multidisciplinary teams
and their stakeholders so that any information produced is read-
ily understood by a range of stakeholders. We recommend that
tool developers enhance tools by incorporating features to allow
configuration of organisational and team based data intensive
consistency rules.

When team members were observed as they performed mul-
tidisciplinary reviews, one expert team member - usually the
team member that had created or updated the SQL or PowerBI
Dashboard, would ‘drive’ the tool in response to questions from
other team members. There were no features within the tools
to capture technical debt identification, enable collaboration, or
incorporate other technical debt related feedback.

○ Implications and Recommendation #6: The collabora-
tive nature of review sessions where team members other than

17

the ‘developer’ reviewed aspects of SQL or visualisation con-
figurations gives rise to the need for additional features in de-
velopment tools that support these interactions. We recommend
that researchers should evaluate whether collaborative review
features such as ability to raise actions, questions and make
comments that can be tracked by team members.

5.5. Technical Debt Treatment Work-Breakdown and Structur-
ing

From a sprint delivery perspective, work items relating pri-
marily to technical debt treatment in our case study were as-
signed to and measured as ‘continuous improvement work’. For
the prior 4 months, continuous improvement work was kept at
8% to 9% of sprint capacity, which equates to roughly 1 or 2
Jira tickets per sprint, depending on the story points assigned.

The identified technical debt treatment work which had been
captured in stories by individual team members was consid-
ered and scrutinised by different team members during Backlog
Refinement and Sprint Planning ceremonies. The multidisci-
plinary perspectives of the team members contributed to differ-
ent considerations and led to the identification of how compo-
nents inter-relate and impact. These discussions identified that
further refinement, splitting, or grouping were required to fit
within sprint capacity, risk parameters and value delivery pa-
rameters. In effect, the team structured the work to fit into the
parameters of the sprint. Whilst the action of splitting and re-
structuring the debt can be related to prioritisation of technical
debt, which has been studied both in the context of software-
engineering technical debt management (Besker et al., 2019)
and data-related technical debt (Albarak and Bahsoon, 2018),
prioritisation concepts and regimes only consider how to pri-
oritise identified technical-debt. They do not address how to
split and how to structure work, and are hence insufficient to
support these activities.

○ Implications and Recommendation #7: We recommend
further research to develop approaches and patterns to break
down or structure technical debt treatment work, in effect, to
develop technical debt repayment strategies for complex data-
intensive system evolution. This could include staged imple-
mentations, or ‘refinance strategies’ that replace highly risky
technical debt, with lower grade technical debt. The aim is to
provide options that can be accommodated based on meeting
sprint capacity. The strategies should also cater for the multi-
disciplinary nature of DI teams and allow staging and targeting
to available expertise.

6. Threats to Validity and Limitations

We discuss the major threats to the validity of our findings
arising out of both the Case Study approach, and our use of the
Socio-Technical Grounded Theory method for our data analy-
sis.

6.1. Case Study
We present key threats to validity for our study based on

the classification scheme proposed by (Yin, 2018), as recom-
mended by Runeson et al. (Runeson and Höst, 2009):

Construct validity in the context of a case study refers to
whether the case study identified the right operational measures
and right concepts being studied (Yin, 2018; Runeson and Höst,
2009). Our case study’s overarching goal was to study the
phenomena of a multidisciplinary team working together and
dealing with challenging data scenarios when delivering data-
intensive software. Given that the team used the Agile delivery,
attendance at ceremonies offered the appropriate starting point
for observations, followed by deep dives. During the inductive
analysis, our attention focused on building concepts about tech-
nical debt. We utilised a number of data sources - recorded ob-
servations (including Jira card extracts, documentation extracts
and tool screenshots), clarification discussions and team Slack
messages. We also made materials available to team members
at the conclusion of the observations, and provided a draft re-
port with findings to participants and offered presentations of
our findings. Five participants attended these presentations.

Internal validity in the context of a case studies refers to
causal relations examined and whether any factors not consid-
ered affect the investigated factor (Yin, 2018; Runeson and Höst,
2009). Our observations spanned many team interactions dur-
ing a 6 week period, but not all. There were a number of meet-
ings held that the team or team members attended outside their
dedicated Agile ceremonies and as such we need to recognise
that our observations were incomplete and could have missed
factors that shaped the discussions but were not overtly dis-
cussed.

Reliability is concerned with to what extent the data and the
analysis are dependent on the specific researchers and repeata-
bility of our (Yin, 2018; Runeson and Höst, 2009). Our results
are supported through the design, documentation and applica-
tion of our case study protocol and associated data management
process. Whilst the data collection was carried out by a single
researcher, it followed protocol and the protocol documentation
was reviewed by the project team and has been made available
in supplementary materials and could support the repeatabil-
ity of the case study in a different context. As the case study
was conducted within a ‘live’ environment, an identical study
cannot be repeated. Further, due to privacy and commercial
confidentiality, we are unable to make the data set available for
repeat analysis.

External validity is concerned with to what extent it is pos-
sible to generalise the findings (Yin, 2018; Runeson and Höst,
2009). Our single case study cannot make claims about gener-
alisation of results. Instead, this case study has aimed to explore
details of multidisciplinary team practices and build knowledge
to support contextualising work and we have provided signif-
icant contextual details to meet this aim. The case study was
motivated by our theory about multidisciplinary teams dealing
with data challenges (Graetsch et al., 2023) and structured to
better understand the context and domain of work practices of
multidisciplinary teams developing data-intensive software so-
lutions.

18

6.2. Socio-Technical Grounded Theory Method

The application of STGT method should be evaluated through
the demonstrating credibility and rigour (Hoda, 2022). We pro-
vide evidence of rigour by providing coding examples and sani-
tised quotes throughout our findings. We demonstrate credibil-
ity of method application by articulating how we collected and
filtered the data, and interleaved coding and memoing to derive
concepts.

Using a limited application of STGT for data analysis within
an observational case study, our findings represent an emerging
theoretical model. Guidelines for evaluating emerging findings
include the criteria of originality, relevance and density. Our
findings demonstrate originality because we conducted an orig-
inal research study and collected first hand data of a multidis-
ciplinary team discussing their data intensive software devel-
opment work. Our study is placed in an original context of a
multidisciplinary DI software team and offers an original per-
spective on DI technical debt and its management. Similar to
demonstrating the construct validity of the case study above,
one way to demonstrate relevance of the outcome of the analy-
sis is to receive feedback from participants that validate findings
(Hoda, 2022). We made materials available to team members
at conclusion of the observations, by providing a draft technical
report with findings to the project team members and organi-
sation contact and sought their feedback. The final evaluation
criteria, density is achieved when a category is supported by
multiple concepts and properties that capture a range of con-
texts and nuances. The descriptions of the categories should
include pertinent examples and evidence from underlying data
(Hoda, 2022). Our findings meet this criteria.

6.3. Other Limitations

Even though the participants were assured that they would
be anonymised, there is a threat that participants did not speak
freely during the observations or clarifying interviews. Also,
even though the participants are anonymised for readers who
did not partake in the study, they are still likely to be able
to identify each other and attribute quotes to each other from
the materials presented in the case study. As part of the in-
formed consent process, each participant was made aware that
they would be observed and that observation sessions would
be recorded. Prior to each observation session, the first author
made participants aware that the session would be recorded -
hence ensuring that participants had awareness of the record-
ing.

Further, the first author, who has extensive experience in
project delivery, conducted the observations and performed all
coding. This poses the risk of bias. The choice of STGT method
mitigates this risk because it allows for and expects researchers
to have some expertise to enable filtering of data and concep-
tualisation. Further, the risk was mitigated through extensive
discussions and reviews of codes and concepts with the other
authors.

7. Conclusion

We designed and conducted a 6-week observational case
study of a 12 team member multidisciplinary team that was
developing a data analytics system. We present detailed con-
textual descriptions of the case context including organisational
structures, product and stakeholder information, technology ar-
chitecture and tools, team member backgrounds, as well as a
summary of how the team works in terms of its ceremonies, the
work they perform and how the team’s work is measured from
an organisational perspective. We applied the Socio-Technical
Grounded Theory Method for data analysis to develop cate-
gories and concepts to categorise types of observed technical
debt and technical debt management. Our findings provide a
novel perspective on how a multidisciplinary Data-Intensive soft-
ware team manages technical debt.

We identified technical debt types that the team deals with,
including technical data debt, pipeline debt, process debt, data
quality debt and (non) standard document debt. We conceptu-
alised how the team manages technical debt, including through
identification and assessment of technical debt, technical debt
work, and technical debt treatment work breakdown. By tak-
ing this approach, we conceptualised that the team assesses
known, anticipated and unanticipated debt differently. We iden-
tified technical debt data treatments and related treatment qual-
ity assurance activities, which are part of technical debt treat-
ment work, a broader category than traditional debt repayment.
Technical debt treatments which includes techniques to avoid
technical debt, knowledge management strategies and environ-
ment enhancements. Technical debt treatments work evolves
and can be influenced by factors outside the team’s immedi-
ate control, such as organisational communities of practice and
technology vendors. We also identified insights into how mul-
tidisciplinary perspectives of the team members contribute to
grouping and splitting of technical debt treatment so that it can
fit within sprint parameters.

Our findings and consideration of the literature raise impor-
tant implications for the technical debt language used by teams,
how technical debt should be documented, tool requirements
and support requirements for structuring technical debt treat-
ment.

Acknowledgements

We acknowledge and thank the organisation executive lead-
ership and especially the participant team members for being
open and generous with access to their working lives. We also
thank the stakeholders who participated in ceremonies for grant-
ing us permission to conduct our observation study.

The first author would like to acknowledge Prof. Yvonne
Dittrich for the time taken to discuss and share insights on prac-
tice theory, conducting observations and data analysis.

Graetsch was supported by a Faculty of IT PhD scholarship.
Grundy is supported by ARC Laureate Fellowship FL190100035.

19

References

Albarak, M., Bahsoon, R., 2016. Database design debts through examining
schema evolution, in: 2016 IEEE 8th International Workshop on Managing
Technical Debt (MTD), pp. 17–23. doi:10.1109/MTD.2016.9.

Albarak, M., Bahsoon, R., 2018. Prioritizing technical debt in database nor-
malization using portfolio theory and data quality metrics, in: Proceedings
of the 2018 International Conference on Technical Debt, ACM, New York,
NY, USA. pp. 31–40. doi:https://doi.org/10.1145/3194164.3194170.

Albarak, M., Bahsoon, R., Ozkaya, I., Nord, R.L., 2020. Managing tech-
nical debt in database normalization. IEEE Trans. Softw. Eng. 48, 1–1.
doi:10.1109/TSE.2020.3001339.

Albuquerque, D., Guimarães, E., Tonin, G., Rodrı́guezs, P., Perkusich, M.,
Almeida, H., Perkusich, A., Chagas, F., 2023. Managing technical debt us-
ing intelligent techniques - a systematic mapping study. IEEE Trans. Softw.
Eng. 49, 2202–2220.

Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spı́nola, R.O., Shull,
F., Seaman, C., 2016. Identification and management of technical
debt: A systematic mapping study. Inf. Softw. Technol. 70, 100–121.
doi:https://doi.org/10.1016/j.infsof.2015.10.008.

Aniche, M.F., Oliva, G.A., Gerosa, M.A., 2014. Are the methods in your data
access objects (DAOs) in the right place? a preliminary study, in: 2014
Sixth International Workshop on Managing Technical Debt, IEEE. pp. 47–
50. doi:10.1109/MTD.2014.14.

Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016. Managing Technical
Debt in Software Engineering (Dagstuhl Seminar 16162). Dagstuhl Reports
6, 110–138. doi:https://doi.org/10.4230/DagRep.6.4.110.

Besker, T., Martini, A., Bosch, J., 2019. Technical debt triage
in backlog management, in: 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt), IEEE. pp. 13–22.
doi:https://doi.org/10.1109/TechDebt.2019.00010.

Bruce, R., Mistrik, B., 2021. Knowledge management in the development of
data-intensive systems. 1st edition ed., Auerbach, London, England.

Charmaz, K., 2014. Constructing grounded theory. Introducing qualitative
methods. 2nd edition ed., Sage.

Choi, B., Pak, A., 2006. Multidisciplinarity, interdisciplinarity and transdis-
ciplinarity in health research, services, education and policy: 1. definitions,
objectives, and evidence of effectiveness. Clin Invest Med 29, 351–364.

Corbin, J.M., 2008. Basics of qualitative research : techniques and procedures
for developing grounded theory. 3e [ed.] / juliet corbin, anselm strauss. ed.

Cunningham, W., 1992. The wycash portfolio management system. SIGPLAN
OOPS Mess. 4, 29–30. doi:https://doi.org/10.1145/157710.157715.

Dittrich, Y., Michelsen, C.B., Tell, P., Lous, P., Ebdrup, A., 2020. Ex-
ploring the evolution of software practices, in: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, As-
sociation for Computing Machinery, New York, NY, USA. p. 493–504.
doi:https://doi.org/10.1145/3368089.3409766.

Fetterman, D.M., 2019. Ethnography: Step-by-step. Sage publications.
Foidl, H., Felderer, M., Biffl, S., 2019. Technical debt in data-

intensive software systems, in: 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pp. 338–341.
doi:10.1109/SEAA.2019.00058.

Foidl, H., Golendukhina, V., Ramler, R., Felderer, M., 2024. Data pipeline
quality: Influencing factors, root causes of data-related issues, and process-
ing problem areas for developers. J. Syst. Softw. 207, 111855.

Fortune, 2023, 2023. Technology big data analyt-
ics market - market research report summary. URL:
https://www.fortunebusinessinsights.com/big-data-

analytics-market-106179. accessed on: 2024-07-28.
Freire, S., Rios, N., Pérez, B., Castellanos, C., Correal, D., Ramač, R., Mandić,

V., Taušan, N., López, G., Pacheco, A., Mendonça, M., Falessi, D., Izurieta,
C., Seaman, C., Spı́nola, R., 2023. Software practitioners’ point of view
on technical debt payment. Journal of Systems and Software 196, 111554.
doi:https://doi.org/10.1016/j.jss.2022.111554.

Glaser, B., Strauss, A.L., 2017. The discovery of grounded theory : strategies
for qualitative research. Sociology Press.

Graetsch, U.M., Khalajzadeh, H., Shahin, M., Hoda, R., Grundy, J., 2023.
Dealing with data challenges when delivering data-intensive software so-
lutions. IEEE Transactions on Software Engineering 49, 4349–4370.
doi:10.1109/TSE.2023.3291003.

Guo, Y., Spı́nola, R.O., Seaman, C., 2016. Exploring the costs of techni-
cal debt management – a case study. Empir. Softw. Eng. 21, 159–182.
doi:https://doi.org/10.1007/s10664-014-9351-7.

Gupta, A., 2022. Why fusion teams matter. Gartner. URL:
https://www.gartner.com/en/articles/why-fusion-teams-

matter. access: 2024-07-28.
Hammersley, M., 2020. Ethics of ethnography, in: Handbook of Research

Ethics and Scientific Integrity. Springer International Publishing, Cham, pp.
445–457.

Hoda, R., 2022. Socio-technical grounded theory for software engi-
neering. IEEE Transactions on Software Engineering 48, 3808–3832.
doi:https://doi.org/10.1109/TSE.2021.3106280.

Hoda, R., 2024. Qualitative Research with Socio-Technical Grounded Theory
- A Practical Guide to Qualitative Data Analysis and Theory Development
in the Digital World. Springer (Releasing 2024).

Hutchison, A.J., Johnston, L.H., Breckon, J.D., 2010. Using qsr-nvivo to facil-
itate the development of a grounded theory project: an account of a worked
example. International journal of social research methodology 13, 283–302.

Kenyon, T., 2021. Big data and business analytics to hit US $275B in 2022. AI
Magazine. URL: https://aimagazine.com/data-and-analytics/

big-data-and-business-analytics-hit-usdollar274bn-2022.
accessed on: 2024-07-28.

Kimball, R., Margy, R., Warren, T., Joy, M., Bob, B., 2008. The data warehouse
lifecycle toolkit. Second edition. ed., Wiley., Indianapolis, Ind.

Kleinwaks, H., Batchelor, A., Bradley, T.H., 2023. Technical debt in sys-
tems engineering—a systematic literature review. Syst. Eng. 26, 675–687.
doi:https://doi.org/10.1002/sys.21681.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on
technical debt and its management. J. Syst. Softw. 101, 193–220.
doi:https://doi.org/10.1016/j.jss.2014.12.027.

Muse, B.A., Nafi, K.W., Khomh, F., Antoniol, G., 2022a. Data-access
performance anti-patterns in data-intensive systems. arXiv [cs.SE]
doi:https://doi.org/10.48550/arXiv.2208.08918.

Muse, B.A., Nagy, C., Cleve, A., Khomh, F., Antoniol, G., 2022b. FIXME: syn-
chronize with database! an empirical study of data access self-admitted tech-
nical debt. Empir. Softw. Eng. 27, 1–42. doi:https://doi.org/10.1007/s10664-
022-10119-4.

Nippert-Eng, C., 2015. Watching closely: A guide to ethnographic observation.
Oxford University Press.

Recupito, G., Pecorelli, F., Catolino, G., Lenarduzzi, V., Taibi, D., Di
Nucci, D., Palomba, F., 2024. Technical debt in ai-enabled sys-
tems: On the prevalence, severity, impact, and management strategies for
code and architecture. Journal of Systems and Software 216, 112151.
doi:https://doi.org/10.1016/j.jss.2024.112151.

Rios, N., Mendonça Neto, M.G.d., Spı́nola, R.O., 2018. A tertiary study
on technical debt: Types, management strategies, research trends, and
base information for practitioners. Inf. Softw. Technol. 102, 117–145.
doi:https://doi.org/10.1016/j.infsof.2018.05.010.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples. 1. ed., Wiley, Newark.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering 14,
131–164. doi:https://doi.org/10.1007/s10664-008-9102-8.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaud-
hary, V., Young, M., Crespo, J.F., Dennison, D., 2015. Hidden technical debt
in machine learning systems. Neural Inf Process Syst , 2503–2511.

Seaman, C., Guo, Y., 2011. Chapter 2 - measuring and monitor-
ing technical debt, in: Zelkowitz, M.V. (Ed.), Advances in Com-
puters. Elsevier. volume 82 of Advances in Computers, pp. 25–46.
doi:https://doi.org/10.1016/B978-0-12-385512-1.00002-5.

Shah, H., Harrold, M.J., Sinha, S., 2014. Global software testing under deadline
pressure: Vendor-side experiences. Information and Software Technology
56, 6–19. doi:https://doi.org/10.1016/j.infsof.2013.04.005.

Sharp, H., Dittrich, Y., de Souza, C.R.B., 2016. The role of ethnographic stud-
ies in empirical software engineering. IEEE Transactions on Software En-
gineering 42, 786–804. doi:https://doi.org/10.1109/TSE.2016.2519887.

Sharp, H., Robinson, H., 2004. An ethnographic study of
xp practice. Empirical Software Engineering 9, 353–375.
doi:https://doi.org/10.1023/B:EMSE.0000039884.79385.54.

Sklavenitis, D., Kalles, D., 2024. Measuring technical debt in ai-based
competition platforms. URL: https://arxiv.org/abs/2405.11825,

20

arXiv:2405.11825.
Soliman, J., Kan, M., 2004. Grounded theory and nvivo: wars and wins, in:

International conference on qualitative research in IT & IT in Qualitative
Research, pp. 24–26.

Spradley, J.P., 2016. Participant observation. Waveland Press.
Storey, M.A., Ernst, N.A., Williams, C., Kalliamvakou, E., 2020. The who,

what, how of software engineering research: a socio-technical framework.
Empir. Softw. Eng. 25, 4097–4129. doi:https://doi.org/10.1007/s10664-020-
09858-z.

Tang, Y., Khatchadourian, R., Bagherzadeh, M., Singh, R., Stewart,
A., Raja, A., 2021. An empirical study of refactorings and techni-
cal debt in machine learning systems, in: 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE), pp. 238–250.
doi:https://doi.org/10.1109/icse43902.2021.00033.

Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J.
Syst. Softw. 86, 1498–1516. doi:https://doi.org/10.1016/j.jss.2012.12.052.

Waltersdorfer, L., Rinker, F., Kathrein, L., Biffl, S., 2020. Experiences with
technical debt and management strategies in production systems engineer-
ing, in: Proceedings of the 3rd International Conference on Technical Debt,
Association for Computing Machinery, New York, NY, USA. p. 41–50.
doi:https://doi.org/10.1145/3387906.3388627.

Weber, J.H., Cleve, A., Meurice, L., Bermudez Ruiz, F.J., 2014. Manag-
ing technical debt in database schemas of critical software, in: 2014 Sixth
International Workshop on Managing Technical Debt, IEEE. pp. 43–46.
doi:https://doi.org/10.1109/MTD.2014.17.

Wohlin, C., 2021. Case study research in software Engineering—It is a case,
and it is a study, but is it a case study? Inf. Softw. Technol. 133, 106514.
doi:https://doi.org/10.1016/j.infsof.2021.106514.

Xavier, L., dos Santos, R., Bessa, S., Tulio Valente, M., 2023. Agile technical
debt management using the LTD framework. Softw. Eng. Notes 49, 13–23.
doi:https://doi.org/10.1145/3635439.3635443.

Yin, R.K., 2018. Case study research and applications : design and methods.
Sixth edition. ed., SAGE Publications, Inc., Thousand Oaks, California.

Ulrike M. Graetsch is a PhD student at Monash Univer-
sity, Faculty of IT, Humanise Lab. She completed her
undergraduate and Masters of Computing at Monash
University. Since graduating, she gained over 20 years
of experience as a practitioner in IT Project Delivery.
She has a keen interest in data analytics software deliv-
ery and ensuring that multidisciplinary teams can work
effectively to develop solutions that meet the needs of
diverse end-users.

Rashina Hoda is a Professor in Software Engineering
at Monash University, Australia. Rashina specialises
in human-centered empirical software engineering and
has introduced “Socio-Technical Grounded Theory”
(STGT), as a modern variant of the traditional socio-
logical GT methods. She received an ACM SIGSOFT
Distinguished Paper Award (ICSE 2017) and Distin-
guished Reviewer Award (ICSE 2020). She serves as
an Associate Editor of the IEEE Transactions on Soft-
ware Engineering and the Workshops co-chair at ICSE
2024. Previously, she served on the IEEE Software Ad-
visory Board, as Associate Editor of Journal of Systems
and Software, SEIS PC co-chair at ICSE 2023, CHASE
2021 PC co–chair and XP2020 PC co–chair. More de-
tails on https://rashina.com.

Hourieh Khalajzadeh is a Senior Lecturer in the School
of Information Technology at Deakin University. Pre-
viously, she was a Research Fellow in the HumaniSE
Lab at Monash University. Hourieh’s research is situ-
ated at the intersection of software engineering and data
science. She is currently looking at the human-centric
issues in Software Engineering and is experienced in
designing domain specific visual languages for different
applications, including big data analytics development.

Mojtaba Shahin is a Lecturer in the School of Com-
puting Technologies at RMIT University, Melbourne.
Previously, he was a Research Fellow at Monash Uni-
versity. His research interests reside in Empirical Soft-
ware Engineering, Human and Social Aspects of Soft-
ware Engineering, and Secure Software Engineering.
He completed his PhD study at the University of Ade-
laide, Australia.

John Grundy is Australian Laureate Fellow and Pro-
fessor of Software Engineering at Monash University.
He leads the HumaniSE lab in the Faculty of Infor-
mation Technology, investigating “human-centric” is-
sues in software engineering. These include impact of
personality on software engineers and users; emotion-
oriented requirements engineering; impact of different
languages, cultures and belief sets on using and en-
gineering software; usability and accessibility of soft-
ware, particularly for ageing people and people with
physical and mental challenges; issues of gender, age,
socio-economic status and personal values on software,
software requirements, and software engineering teams.

21

