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ABSTRACT
Software defect prediction recommends the most defect-prone software modules for optimization of
the test resource allocation. The limitation of the extensively-studied supervised defect prediction
methods is that they require labeled software modules which are not always available. An alterna-
tive solution is to apply clustering-based unsupervised models to the unlabeled defect data, called
Clustering-basedUnsupervisedDefect Prediction (CUDP). However, there are few studies to explore
the impacts of clustering-based models on defect prediction performance. In this work, we performed
a large-scale empirical study on 40 unsupervised models to fill this gap. We chose an open-source
dataset including 27 project versions with 3 types of features. The experimental results show that (1)
different clustering-based models have significant performance differences and the performance of
models in the instance-violation-score-based clustering family is obviously superior to that of models
in hierarchy-based, density-based, grid-based, sequence-based, and hybrid-based clustering families;
(2) the models in the instance-violation-score-based clustering family achieves competitive perfor-
mance compared with typical supervised models; (3) the impacts of feature types on the performance
of the models are related to the indicators used; and (4)the clustering-based unsupervised models do
not always achieve better performance on defect data with the combination of the 3 types of features.

1. Introduction
The defects hidden in software modules threaten the se-

curity and decrease the reliability of the software product.
Therefore, it is essential to fix the defective modules before
delivering the product.

Defect fixing is a complex and time-consuming task, and
limited testing resources are usually unaffordable for sup-
porting thorough code reviews [1]. This requests a prioriti-
zation to better analyze the software product. In other words,
developers and testers should reasonably allocate the limited
resources to test the modules that have a high probability to
contain defects. To seek for such prioritization, Software
Defect Prediction (SDP) is proposed to identify the most
defect-prone modules for priority inspection. The most ac-
tive SDP methods are supervised models which first train
a classifier on labeled modules and then use it to determine
whether or not the unlabeled modules contain defects. How-
ever, the supervised SDP models need the labeled modules
of historical data of the current project or external projects
which are not always available.

In order to conduct defect prediction on unlabeled data,
Unsupervised Defect Prediction (UDP) models are possi-
ble for this task. As UDP models do not need any labeled
data, they have attracted many researchers’ attention in re-
cent years. There are 2 types of UDP models: Clustering-
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basedUnsupervisedDefectPrediction (CUDP) methods (such
as the studies [2, 3, 4]) and Ranking-based Unsupervised
Defect Prediction (RUDP) methods (such as the studies [5,
6, 7, 8]). RUDP methods select one feature to rank mod-
ules based on the corresponding values. The rationale be-
hind this type of method is based on the assumption that the
feature values and the defect-proneness of the modules have
a direct or inverse proportional relationship [5]. However,
such a relationship does not exist in all features, which leads
to inconsistent conclusions in previous studies. For exam-
ple, Yang et al. [5] found that RUDP methods performed
significantly better than supervised models on change-level
just-in-time defect data, but Yan et al. [7] found that the
conclusion in [5] does not hold on a file-level benchmark
dataset. Thus, more work is needed to investigate and ver-
ify the generalization of RUDP on different defect data. In
addition, RUDP methods need a threshold (such as the pro-
portion of the top-ranked modules) to divide the modules
into two groups for calculating some performance indica-
tors, such as F-measure. However, this threshold is not easy
to be determined. Unlike RUDP methods, CUDP methods
do not rely on the relationship between a specific feature and
the defect label to rank the modules, thus avoiding the above
contradictory conclusions. CUDP methods divide the mod-
ules into different groups based on a specific rule without
relying on a threshold. In this work, we focused on CUDP
methods and their performance on defect data with different
feature sets.

The general process of CUDP methods consists of the
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following 2 steps: (1) leveraging a similarity metric to clus-
ter unlabeled modules into different groups where the mod-
ules in the same group are more similar to each other com-
pared with those in other groups. This step is based on the
information found in the data that describes the relationships
among the modules; (2) applying a specific strategy to an-
notate each group as defective or non-defective. In previ-
ous studies, researchers have applied some clustering-based
methods to unlabeled defect data. For example, in early stud-
ies, researchers employed classic clustering methods like K-
means algorithm [2] and self-organizing maps algorithm [9]
to group themodules. Inmore recent studies, researchers de-
signed specific methods to cluster the modules, such as clus-
tering and label method [10], and average clustering method
[11].
1.1. Motivation

There are several limitations in existingCUDP approaches:
(1) there are few studies conducting a systematic literature
review towards CUDP articles; (2) all previous studies fo-
cus on using existing methods or developing new methods
to cluster unlabeled modules for SDP, but few studies have
explored the performance differences of various clustering-
based methods for UDP; (3) previous studies have shown
that different feature types have impacts on the SDP perfor-
mance of supervised models [12, 13, 14, 15], but to our best
knowledge, there is no study explored the impacts of feature
types on the SDP performance of the clustering-based meth-
ods (i.e., the CUDP performance); and (4) all previous stud-
ies evaluated the CUDP performance with traditional indica-
tors that do not consider the inspecting efforts for modules,
but no study has employed the more practical effort-aware
indicators.

Motivated by these limitations, in this workwe conducted
a large-scale empirical study to analyze the performance dif-
ferences of 40 clustering-based unsupervisedmodels (aswell
as 6 supervised models for comparison) on a public bench-
mark dataset. This dataset consists of 14 projects with a
total of 27 versions in which 3 kinds of features are col-
lected for each project. We evaluated thesemethodswith one
traditional and 2 effort-aware indicators. The experimen-
tal results show that (1) there exist significant performance
differences among these methods, and the hierarchy-based,
density-based, grid-based, sequence-based, and hybrid-based
clusteringmodels perform significantlyworse for CUDP task
in most cases; (2) some clustering-based unsupervised mod-
els, such as the instance-violation-score-based clusteringmeth-
ods, can achieve even better performance than the typical
supervised models; (3) the CUDP performance of the meth-
ods on different indicators is affected by the feature types of
the defect data; (4) the supervised models usually perform
better on defect data with multiple feature types, while the
phenomenon does not conform to the clustering-based un-
supervised models.
1.2. Contribution

The main contributions of this study include:

(1) We retrieved and analyzed existing SDP studies involv-
ing clustering methods from different perspectives, such
as the used datasets, feature types, performance indica-
tors, clustering methods, and labeling schemes. To the
best of our knowledge, this is the first work to conduct
such a detailed analysis for CUDP studies.

(2) We applied 40 clustering-based models from 9 cluster-
ing families to 27 project versions who have 3 types of
features. In addition, we employed both traditional and
effort-aware indicators to evaluate the performance of
these methods. To our best knowledge, we were among
the first to conduct such a wide-ranging empirical study
for investigating the impacts of feature types on the CUDP
performance and use both kinds of indicators for syn-
thetically evaluating the CUDP performance.

(3) We designed and implemented an experimental frame-
work which integrates 40 clustering-based unsupervised
SDP models from multiple libraries. We further made
the framework public available and encouraged our fel-
low researchers to integrate their state-of-the-art clus-
tering models to this framework for further comparative
studies.
The remainder of the paper is organized as follows: Sec-

tion 2 introduces the studied 40 clustering-based unsuper-
vised models and summaries the existing studies related to
CUDP. Section 3 describes the design of our empirical study.
Section 4 reports our experimental results. Section 5 dis-
cusses the implications from the experimental results and the
potential validity threats. Section 6 presents different types
of empirical studies in SDP domain. Section 7 concludes
this paper and draws potential future directions.

2. Taxonomy and Literature Review
2.1. Taxonomy for Clustering-Based Unsupervised

Models
As clustering-based unsupervisedmodels identify defec-

tive software modules without requiring the participation of
labeled modules, it is meaningful to seek models that can
achieve similar or better performance than supervised mod-
els for defect prediction. We briefly introduced our studied
40 unsupervised models from 9 clustering families.
2.1.1. Partition-Based Clustering (PBC) Family

Given a dataset D with n instances (i.e., the software
modules), a predefined cluster number k, and an objection
function F , PBC methods first construct k(k ≤ n) partitions
of the data where each partition represents a cluster. Note
that 2 conditions need to be satisfied: (1) each cluster must
contain at least one instance and each instance must belong
to exactly one cluster. Then PBC methods utilize the itera-
tive relocation technique to optimize the object function F
by moving instances from one group to another [16]. The
aim is to make the instances in the same cluster close to each
other, whereas modules in distinct clusters are far apart. The
object function F is usually defined as the distances between
each instance to its center instance point.
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The typical processingmethod followed by the PBC fam-
ily is: first, it randomly selects k instances as the initial cen-
ter points and assigns each remaining instance to a cluster
whose center point is nearest to that instance. Then, it up-
dates the center instance of each cluster and relocates the
clusters of other instances. This process iterates until meet-
ing a predetermined condition, such as the center points of
the clusters remain unchanged.

In this work, we studied 13 methods in PBC family, in-
cludingK-Means [17],CascadeK-Means(CM) [18], Canopy
[19], X-Means [20], K-Medoids [21], Partitioning Around
Medoids (PAM) [22], Mini Batch K-Means (MBM) [23],
Fuzzy C-Means (FCM) [24], Fuzzy C-Shell (FCS) [25],
Hard C-Means (HCM) [26], K-Modes [27], FarthesFirst
(FF) [28], Clustering LARge Applications (CLARA) [22].
These methods are basically the variations of K-means.
2.1.2. Hierarchy-Based Clustering (HBC) Family

HBC methods recursively create a hierarchical decom-
position of the data. According to the direction of the de-
composition, HBC methods can be classified as either ag-
glomerative hierarchical clustering methods (i.e, bottom-up
decomposition) or divisive hierarchical clustering methods
(i.e., top-down decomposition). The former treats each in-
stance as a separate cluster at the beginning and successively
merges the closest cluster into a larger one, until all instances
are merged into one cluster or a predefined condition meets.
The latter treats all instances as an initial cluster at the begin-
ning and then successively splits the cluster into smaller ones
until each instance belongs to one cluster or a predefined
condition meets. The condition can be the desired cluster
number or the inconsistency coefficient [29].

In this work, we studied 6 methods in HBC family, in-
cludingAgglomerativeHierarchicalClustering (AHC) [30],
Divisive Analysis Cluster (DAC) [30], RObust Clustering
using linKs (ROCK) [31], Learning Vector Quantization
(LVQ) [32],ClusteringUsingREpresentatives (CURE) [33],
Balanced iterative reducing and clustering using hierarchies
(Birch) [34] .
2.1.3. Density-Based Clustering (DBC) Family

Methods in PBC family usually divide instances based
on distance information, and thus work well on finding clus-
ters of spherical shape rather than arbitrary shape [16]. The
methods in the DBC family alleviate this limitation by us-
ing the notion of data distribution density. Given a radius r
and a density threshold p for each instance, if its spherical
region (the circular region in a two-dimensional plane) with
radius r contains at least p instances, then all these instances
construct a cluster.

In this work, we studied 3 methods in DBC family, in-
cluding Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [35], Ordering Points To Identify
Clustering Structure (OPTICS) [36], andMean Shift (MS)
[37].

2.1.4. Grid-Based Clustering (GBC) Family
Themethods inGBC family are based on the space-driven

concept, which quantizes the feature space into a finite num-
ber of grid cells. These cells are independent of the distri-
bution of input instances and form a grid structure. Each
instance falls into a grid cell, which means that the feature
space of the grid cell contains that instance. All the cluster-
ing operations are carried out on the grid structure.

In this work, we studied one method in GBC family, i.e.,
CLustering In QUEst (CLIQUE) [38].
2.1.5. Model-Based Clustering (MBC) Family

The methods in MBC family assume a model for each
cluster and seek instances that can best match the model.
They obtain the clusters by constructing the density func-
tion of the spatial distribution of the instances. The most
frequently-assumed model is the probability model and the
division is based on the form of probability. These lead to
the unified probability distribution of instances within the
same cluster.

In this work, we studied 7 methods in MBC family, in-
cluding Neural-Gas (NG) [39], Expectation Maximization
(EM) [40], Cobweb [41], Self-OrganizingMap (SOM) [42],
SOM for SimpleClustering (SOMSC) [43], SYNChronized
SOM (SYNCSOM) [44], on-line update method (i.e., Hard
Competitive Learning (HCL)) [45].
2.1.6. Graph-Theory-Based Clustering (GTBC)

Family
The methods in GTBC family first construct a weighted

graph where each node represents an instance and the weight
of the edge denotes the similarity measure of its two nodes.
Then, they divide the graph into several subgraphs. As the
division process is usually based on the local dependencies
of the graph, GTBC methods can maintain the local connec-
tivity on the data.

In this work, we studied 2 methods in the GTBC fam-
ily, including Affinity Propagation (AP) [46] and Spectral
Clustering (SC) [47].
2.1.7. Sequence-Based Clustering (SBC) Family

The methods in SBC family use the feature vectors once
or multiple times to generate compact and hyper-ellipsoidal
clusters. Their performance usually depends on the order in
which the vectors are presented to the methods [48].

In this work, we studied 2 methods in SBC family, in-
cluding Basic Sequential Algorithmic Scheme (BSAS) and
Modified BSAS (MBSAS) [49]. BASA considers each in-
stance only once while MBSAS runs twice through each in-
stance.
2.1.8. Instance-Violation-Score-Based Clustering

(IVSBC) Family
The notation of IVS is derived from previous studies [10,

11] that designed a specific clustering criterion for software
modules in the context of SDP. Here, we used a simple ex-
ample to describe the calculation process of this criterion.
Given a defect data with 5 software modules (i.e.,M1 −M5)
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Figure 1: An example of calculation process for IVS.

and 4 features (i.e., F1 − F4) in Figure 1, we further defined
an initial violation matrix V whose elements are all 0. First,
for each feature, we calculate one statistic value as the cutoff
threshold. Here, we assumed the statistic value as the me-
dian value [10]. Thus, the threshold vector of the 4 features
is [3, 3, 4, 4]. Then, for each module, if its ith feature value
is larger than the corresponding threshold, the value of its
corresponding position in matrix V changes to 1. For ex-
ample, comparing module M1 with feature vector [4, 2, 2, 5]
and the corresponding threshold vector [3, 3, 4, 4], the val-
ues of the first entry and the fourth entry in the first row of
matrix V are changed to 1 as showed in Figure 1 with gray
background. This process was repeated for all modules. Af-
ter obtaining the final violation matrix V, the sum of each
row is treated as the IVS of the corresponding module. Note
that the threshold vector is defined as the Median value of
the Feature (MF) in [10] and as the Half Average value of
the Feature (HAF) in [11] as showed at the bottom of the
left part in Table 1. From the figure, we could observe that
different choices of the threshold vector will result in differ-
ent IVSs which are used as the measurement to divide the
modules into distinct clusters.

In this work, we studied 4 methods in IVSBC family, in-
cludingClustering andLAbel (CLA) [10], its improved ver-
sionClustering andLAbel withMetric selection and Instance
selection (CLAMI) [10] , Average Clustering (AC) [11],
and Cluster Ensembles (CE) [50].
2.1.9. Hybrid Clustering (HC) Family

Formethods that combinemultiple clustering techniques,
we classify them as in the HC family.

In this work, we studied 2 methods in HC family, in-
cluding Hierarchical K-Means Clustering (HMC) [51] and
Hierarchical Clustering on Principal Components (HCPC)
[52]. Both of them combine hierarchical clustering method
and K-means clustering method.

The concise descriptions for the 40methods are presented
in Table 1.
2.2. Literature Analysis

In this section, we conducted a literature analysis of all
existing studies related to CUDP.

2.2.1. Search Process
To understand the research progress in CUDP, we con-

ducted a search for the related articles that should satisfy the
following 3 criteria: (1) the article applied clustering-based
unsupervised learning methods to software defect data; (2)
the article was written in English; (3) the full text of the arti-
cle was available online. We used the combined terms "de-
fect prediction"+"clustering", "fault prediction"+"clustering",
"quality prediction"+"clustering" as well as "defect predic-
tion"+"unsupervised", "quality prediction"+"unsupervised",
"fault prediction"+"unsupervised" to search the related arti-
cles. As a result, we retrieved a total of 34 articles. Through
carefully reading these papers, we found that 7 articles [53,
5, 6, 7, 8, 54, 55] do not satisfy the first selection criterion.
In addition, article [56] just simply introduced 4 clustering-
based methods without conducting any qualitative and quan-
titative analysis on software defect data. Therefore, we re-
moved the 8 articles and focused on the analysis of the re-
maining 26 articles as listed in the first column in Table 3.
In addition, to verify the completeness of our search, we fol-
lowed previous work [57] to conduct a forward snowballing
search. Note that we searched the articles published from
2000 because we found that the earliest articles using the
clustering algorithm to analyze the defect data were pub-
lished after that year. More specifically, we first searched and
inspected the articles having cited the these articles through
Google Scholar, then filtered out the unrelated articles. In
this work, we followed the previous work [57] to use Google
Scholar as themain digital library, and also searched the arti-
cles in the ACMDigital Library, IEEE Xplore, Elsevier Sci-
enceDirect, and SpringerLink to check if any articles have
been omitted. We repeated this process on all the reserved
articles. Table 2 reports the statistic information of the re-
served papers based on the type and year.
2.2.2. Existing Unsupervised Methods for SDP

Table 3 summaries the information of the used datasets
and performance indicators of the 26 selected articles includ-
ing the published year, the number of used projects (Proj.),
the corresponding development languages, the number and
type of the corresponding features, the availability of the
used dataset, the performance indicators, and the citations
(Cit.). Note that the citations are counted from the Google
Scholar on July 24, 2020.

From Table 3, we have the following observations: (1)
In the articles published before 2015, the researchers con-
ducted experiments on a small number of projects with fewer
features and the corresponding feature type only consists of
the code complexity metrics; (2) the used projects in these
articles are mainly developed with Java, C++, and C; (3) In
the articles published after 2012, most researchers employed
the defect data that are available online as their studied cor-
pora which is helpful for others to reproduce their experi-
mental results. Note that the entries with gray background
in the 7th column indicate that the authors had provided a
link to the dataset, but the link to the web page fails at the
moment; (4) the frequently-used performance indicators are
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Table 1
A Summary of the Studied Unsupervised Learning Methods

Fam. Method Brief Description No.

PBC

K-means A representative-based clustering by selecting the average values of the instances in the cluster as the centers 1

K-medoids Improving K-means by selecting the instances in the cluster as the centers 2

CM An improvement of K-means with automatic selection of K using the Calinski and Harabasz criterion 3

X-means An extension of K-means with efficiently searching the space of cluster locations and number 4

MBM A variant of K-means by using mini-batches to reduce the computation time 5

PAM An extension of K-means by finding a sequence of medoids that are centrally located in clusters 6

FCM The simplest fuzzy clustering algorithm which is a variant of K-means by allowing a instance to belong to more than one cluster 7

FCS A generalization of fuzzy clustering to shell like clusters, i.e. detecting clusters that lie in nonlinear subspaces 8

HCM An extension of basic K-means based on classical set theory requiring that a instance either does or does not belong to a cluster 9

K-modes An extension of K-means by replacing distances with dissimilarities and means with modes 10

FF A variant of K-means by replacing each cluster center in turn with the instance furthest from the existing cluster centers 11

Canopy Speeding up clustering operations on large datasets 12

CLARA Using sampling to handle large datasets with PAM 13

HBC

AHC Building a larger cluster by merging two smaller clusters in a bottom-up fashion 14

DAC Splitting a cluster into two smaller ones in a top-down fashion 15

Birch Using clustering feature and the corresponding tree to improve clustering speed and scalability, especially on large datasets 16

LVQ Combining vector quantization and nearest-neighbor classification to update the cluster centers in an incremental manner 17

CURE Using instance variants from a constant number of well scattered instances after shrinking as the cluster representative for large
datasets, even with non-spherical shapes and wide variances in size

18

ROCK Considering the number of common neighbors for a pair of instances during clustering 19

DBC

DBSCAN Grouping together instances that have many nearby neighbors and marking outliers whose nearby neighbors are too far away 20

OPTICS Detecting meaningful clusters in spatial data of varying density 21

MS Iteratively shifting each instance in the dataset until the top of its kernel density estimation surface reaches a nearest peak 22

GBC CLIQUE Constructing static grids to perform a bottom-up subspace clustering and using a prior method to reduce the search space 23

MBC

NG An artificial neural network for finding optimal data representations based on feature vectors 24

EM Iteratively performing an expectation (E) step, which creates a function for the expectation of the log-likelihood, and a maximization
(M) step, which computes parameters by maximizing the log-likelihood

25

Cobweb Traversing a classification tree top-down starting from the root node to find the best inserting position of a new instance by
calculating a category utility function

26

SOM A competitive learning network that uses a neighborhood function to preserve the topological properties of the input space 27

SOMSC An adaptation of SOM for cluster analysis in simple way by using amount of cluster that should be allocated as amount of neurons
in the SOM

28

SYNCSOM A bio-inspired algorithm that is based on oscillatory network that uses SOM as the first layer 29

HCL A winner-take-all algorithm comprising methods where each input instance only determines the adaptation of one unit, i.e., the
winner

30

GTBC

SC Using the similarity matrix of the input data to construct a connected graph and treating the data clustering as a graph partitioning
problem

31

AP Based on the concept of "message passing" between instances and selecting the real instances as the cluster centers for K-medoids 32

SBC

BSAS Setting the cluster’s representative as only a single vector and favoring the creation of compact clusters in which vectors are
presented only once

33

MBSAS A modification to BSAS which runs twice through the instances 34

IVSBC

CLA First clustering the modules and ranking the clusters based on the violation scores, then labeling the clusters in the top half as
defective

35

CLAMI After the same process as CLA, then selecting the modules with metric selection and instance selection to build a supervised model 36

ACL Calculating the violation scores of all modules, then the modules whose scores are higher than a threshold are labeled as defective 37

CE Using clustering algorithm ACL on generated multiple data partitions and combining the multiple clusters into a single better one 38

HC
HMC First computing the cluster centers with hierarchical clustering, then using the k-means with these centers as initial cluster centers 39

HCPC First performing hierarchical clustering on the selected principal components to obtain initial partitioning by cutting the hierarchical
tree, then using k-means to refine the initial partition

40

Table 2
Statistic information of research papers published by type and year.

Year 2000 2001 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2018 Total

Conference 2 1 1 1 1 1 1 1 0 0 2 1 1 2 2 17
Journal 0 1 1 0 0 0 0 2 1 2 0 2 0 0 0 9

Total 2 2 2 1 1 1 1 3 1 2 2 3 1 2 2 26
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Table 3
A Summary of Previous Studies Related to CUDP

Study Year
Dataset characteristics

Performance indicators Cit.Proj. Language Feature number Feature type Available?

Yuan et al. [58] 2000 1 / 10 Process No Absolute error, Relative error 131

Guo et al. [59] 2000 1 Pascal, FORTRAN 11 Complexity No Type I, II error 41

Pedrycz et al. [60] 2001 10 Java, C++ 8 Complexity No No indicator 20

Pedrycz et al. [61] 2001 1 Java 7 Complexity No No indicator 18

Zhong et al. [2] 2004 1 C++ 13 Complexity No Error, FPR, FNR 123

Zhong et al. [62] 2004 2 C++ 13 Complexity No Mean squared error, pure 9

Yang et al. [53] 2006 2 Both C 12, 11 Complexity No Accuracy 8

Mahaweerawat et al. [63] 2007 1 Not mentioned 11 Complexity No Accuracy, absolute residual 22

Yang et al. [64] 2008 2 C, Pascal, FORTRAN 10, 7 Complexity No Accuracy, Type I, II error 16

Catal et al. [65] 2009 3 C 29 Complexity Yes Error, FPR, FNR 93

Catal et al. [66] 2010 3 C 29 Complexity Yes Error, FPR, FNR 19

Sandhu et al. [67] 2010 1 Java 8 Complexity No Accuracy, FPR, FNR 10

Kaur et al. [68] 2010 3 C++, C 8, 22 Complexity, Requirement No FPR, Recall 10

Kaur et al. [69] 2011 1 Java 39 Complexity No Accuracy 4

Bishnu et al. [3] 2012 3 C 29 Complexity Yes Error, FPR, FNR 160

Gupta et al. [70] 2012 3 C 4 Complexity No Meansquare error 2

Abaei et al. [9] 2013 3 C 29 Complexity Yes Error, FPR, FNR 22

Gupta et al. [71] 2013 2 C++ / Complexity No Objective Function, Purity 5

Park et al. [72] 2014 3 C 29 Complexity Yes Accuracy, Error, FPR, FNR 18

Coelho et al. [73] 2014 3 C++, C 21 Complexity Yes Accuracy 9

Pushpavathi et al. [74] 2014 1 C 21 Complexity No Accuracy, RMSE, MAE, Reliability 1

Nam et al. [10] 2015 7 Java 465,26 (for 4,3 projects)
Network and change genealogy,

Yes Precision Recall, F-measure, AUC 103Complexity

Yang et al. [11] 2016 16 Java 26,61,20 (for 3,5,8 projects)
Complexity, Process,

Yes Precision, Recall, and F-measure 7previous-defect and entropy

Zhang et al. [4] 2016 26 Java, C++, C 61,20 (for 5,21 projects) The same as above Yes AUC 137

Yang et al. [50] 2018 15 Java 26,61,20 (for 3,5,7 projects) The same as above Yes Precision, Recall, and F-measure 1

Jothi [75] 2018 5 C 29 Complexity Yes Error, FPR, FNR 1

classification accuracy, error, False Positive Rate (FPR),
and Fault Negative Rate (FNR) for articles published be-
fore 2015, while the recent articles usually used the compre-
hensive indicators, such as F-measure and AUC. However,
no studies have investigated the performance of effort-aware
indicators for their used clustering-basedmethods; (5) the ci-
tations of most studies are less than 50 and only five articles
[2, 3, 4, 10, 58] has more than 100 citations. This statistic in-
dicates that, from the current situation, the CUDP topic has
not attracted widespread attentions from the researchers.

Table 4 presents an overview of information about the
unsupervised models used in these articles, including the
specific clustering-basedmethods (the column 2-6), the num-
ber of the clusters (the column 7), and the used cluster label-
ing scheme (LS) (the column 8).

From Table 4, we have the following observations: (1)
the methods in PBC and MBC families are frequently used
for CUDP, but no methods in HBC, GBC, and HC families
have been used. This inspires us to further investigate the
impacts of these uninvestigated methods on CUDP; (2) half
of the articles clustered the software modules into 2 groups,
which is based on the fact that the defect data only contain 2
classes modules, i.e., the defective and non-defective mod-
ules. In addition, there were 6 articles that did not specify
the cluster number in advance;

2.2.3. Labelling Schemes
From the tables, we can find that there exist a total of 6

labeling schemes in previous studies (scheme 0 means that
the authors did not mention how to label each cluster):

• Scheme 1 denotes the expert inspection based labeling
strategy which invites experts to assign the label of
each cluster;

• Scheme 2 denotes metric thresholds based labeling.
This scheme defines 6 feature [Lines of Code, Cyclo-
matic Complexity, Unique Operator, Unique Operand,
Total Operator, Total Operand] as [65, 10, 25, 40, 125,
70] as the threshold vector, then compares the vector
with the feature of a representative module or the av-
erage feature values of each cluster. If at least one el-
ement in the threshold vector is lower, the cluster is
labeled as defective, otherwise as non-defective;

• Scheme 3 determines the label of each cluster based on
some criteria, such as the risk level of the project, the
defect number, the Bayesian rule, and module-order
modeling;

• Scheme 4 denotes the IVS-based labeling strategy. Af-
ter calculating the IVS values for all modules as stated
in Section 2.1.8, the modules with the same IVS val-
ues are grouped into one cluster. This scheme ranks
the clusters in descending order based on their IVS
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Table 4
A Summary of Previous Studies Related to CUDP

Previous Studies
The used unsupervised models

Cluster number LSPBC DBC MBC GTBC IVSBC

Yuan et al. [58] Subtractive clustering 2 3

Guo et al. [59] EM Determined by a criterion 3

Pedrycz et al. [60] SOM 2 0

Pedrycz et al. [61] SOM 2 0

Zhong et al. [2] K-means NG 20 1

Zhong et al. [62] K-means NG 20 or 30 2

Yang et al. [53] K-means, FCM GMM 2 or 3 2

Mahaweerawat et al. [63] SOM Determined by two parameters 1

Yang et al. [64] AP 2 1

Catal et al. [65] K-means 20 2

Catal et al. [66] X-means Determined by optimizing 3

Kaur et al. [68] Two variants of K-means 2 0

Kaur et al. [69] DBSCAN 2 0

Sandhu et al. [67] K-means 2 0

Bishnu et al. [3] Quad-tree K-means Heuristically determined 3

Gupta et al. [70] FCM Not mentioned 3

Abaei et al. [9] SOM 2 3

Gupta et al. [71] K-means, FCM 30, 15 0

Park et al. [72] X-means EM Determined by optimizing 1

Coelho et al. [73] K-means EM 2 0

Pushpavathi et al. [74] FCM and its variant 25 0

Nam et al. [10] CLA, CLAMI Based on IVS 4

Yang et al. [11] ACL 2 5

Zhang et al. [4] SC 2 6

Yang et al. [50] CEL 2 5

Jothi [75] K-means, FCM,Quad-tree K-means Not mentioned 0

values, then labels the half top clusters as defective
and others as non-defective. The process is described
in the blue rectangle in Figure 2;

• Scheme 5 denotes the defect-rate-based labeling strat-
egy. This scheme ranks the modules based on their
IVS values in descending order and calculates a thresh-
old based on the defect rate, then labels the modules
whose IVS values are greater than the threshold as de-
fective and other modules as non-defective. The pro-
cess is described in the purple rectangle in Figure 2;

• Scheme 6 denotes the SFM based labeling strategy.
This scheme clusters the modules into two groups and
calculates the Sum of Feature values of each Module
(SFM), then calculates theAverage value of the SFMs
(ASFM) for all modules in each cluster. The cluster
with larger ASFM is labeled as defective, and another
cluster is labeled as non-defective. The process is de-
picted in Figure 3.

The key differences between ourwork and the above stud-
ies are listed as follows: (1) we devoted to conduct a detailed
analysis towards the clustering-based methods for UDP; (2)
we used a larger-scale defect data as studied corpora; (3) our
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Figure 2: The process of labeling scheme 4 and 5.

work was the first study to use several unexplored clustering-
based methods (such as HCPC and HMC) to ensure that we
select methods from a variety of families; (4) wewere among
the first to employ both traditional and effort-aware indica-
tors to evaluate the performance of the CUDP methods; (5)
we made the first step to analyze the interaction between the
feature types and the performance of the CUDP methods.
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3. Empirical Study Design
3.1. Comparative Methods

To investigate if there exist any clustering based mod-
els that can outperform the supervised models for SDP, we
chose some representative supervised models for compari-
son. Although one previous study [76] has investigatedmore
than 30 supervised classification models for defect predic-
tion, it is not suitable for us to consider all these models.
As Hall et al. [77] stated that simple classification models
can also perform well on SDP task, in this work we just se-
lected 6 off-the-shelf supervised models for comparison, in-
cluding the probabilistic-based classifier Naive Bayes (NB),
the statistic-based classifier Logistic Regression (LR), the
instance-based classifier k-NearestNeighbor (kNN), the tree-
based classifierClassificationAndRegressionTrees (CART),
the rule-based classifier Repeated Incremental Pruning to
ProduceErrorReduction (RIPPER), and the ensemble-learning-
based classifier Random Forest (RF). The 6 models are typ-
ical and widely employed in previous SDP studies [10, 78,
79, 80] as the candidate of the basic classifiers and Zhang
et al. [4] compared their proposed unsupervised model with
4 out of the 6 supervised models. All these 6 models were
implemented with the third-party functions in Weka library
with the default parameters. The reasons are that: first, as
the 40 unsupervised models in our empirical study were im-
plemented using the default parameters without tuning the
parameters, thus, it would be more appropriate to use the
default values for the supervised model for a fair compar-
ison; second, the main goal of this paper is to investigate
the impacts of unsupervised models on the defect predic-
tion performance, not to explore the influence of parameter
tuning on the performance of supervised models, and pre-
vious studies have stated that parameter tuning is a time-
consuming process in the field of software engineering [81]
. Thus, in this work, we only reported the results of the su-
pervised models with the default parameters.
3.2. Implementation for Unsupervised Methods

We implement 35 clustering methods with third-party
functions in Weka, Python, and R libraries. Note that for the
methods that are available in multiple libraries, we chose the
implementation following the priority: Weka → Python → R.
In addition, CLA and CLAMI in IVSBC family were imple-
mented using the source code released by the authors, while
ACL and CE methods in IVSBC family and SC method in
GTBC family were reproduced by us following the corre-
sponding descriptions in the original literatures.

3.3. Research Questions (RQs)
In this work, we studied the followingResearchQuestions

(RQ).
RQ1: How do these selected methods perform on defect

datasets with complexity features?
RQ2: How do these selected methods perform on defect

datasets with process features?
RQ3: How do these selected methods perform on defect

datasets with network features?
RQ4: How do these selected methods perform on defect

datasets with all the aforementioned three types of features?
RQ5: What are the impacts of different feature types on

the performance of the selected methods?
The first 3 questions explore the performance of clustering-

based unsupervised models on defect data with individual
feature types. The fourth question investigates the perfor-
mance of these methods on defect data with combined fea-
tures. The last question studies the impact of defect data with
different feature types on the performance of these methods.
3.4. Benchmark Dataset

As one goal of our empirical study is to investigate the
impacts of feature types on CUDP performance, we chose a
benchmark dataset released by Song et al. [82]. This bench-
mark dataset combines PROMISE dataset [83] and AEEEM
dataset [84] which have been widely used in previous de-
fect prediction studies [4, 57, 76, 78, 80, 85, 86]. More
specifically, this benchmark dataset includes 14 open-source
software projects (9 projects from PROMISE dataset and 5
projects from AEEEM dataset) with a total of 27 versions in
which 3 types of features are collected for each project ver-
sion. Thus, we had a total of 81 project defect data. Table
5 presents the basic information of the defect data of these
projects, including the link, the brief description, the version
number, the total Sum of the LineOf Code (SLOC), the to-
tal number of all modules (# Mod.), the number of defective
modules (# Def.), and the percentage of defective modules
(% Def.). The 3 types of features include 7 code complexity
features, 11 process features, and 24 network features. Ta-
ble 6 presents the brief definitions for these features. As all
the projects were developed with Java language which may
limit the generality of our work, more projects with other
languages need to be included in our studied corpora.
3.5. Empirical Study Framework

Figure 4 depicts the flow chart of our empirical study
framework. For each feature type of one project version,
we used the 1:1 stratified sampling technique to divide the
data into part 1 and part 2. The stratified sampling strategy
ensures that the defect ratios of the two parts are consistent
with that of the original data. This division strategy has been
used in previous defect prediction studies [87, 88, 79]. In
the first round, for supervised SDP, part 1 was fed into the
6 supervised models which were used to predict the labels
of the modules in part 2. For CUDP, the 40 unsupervised
models were only applied to part 2. In the second round, the
two parts were swapped to run these methods again. This

Zhou Xu et al.: Preprint submitted to Elsevier Page 8 of 24



A Comprehensive Comparative Study of Clustering-based Unsupervised Defect Prediction Models

Table 5
Description of the Benchmark Dataset.

Project Description Version SLOC # Mod. # Def. % Def.

ant
A Java-based, shell independent build tool

1.3 37699 125 20 16.00%
1.4 54195 178 40 22.47%

(http://ant.apache.org/)
1.5 87047 293 32 10.92%
1.6 113246 351 92 26.21%

camel
A integration framework based on Enterprise Integration Patterns

1.0 33721 339 13 3.83%
1.2 66302 608 216 35.53%

(http://camel.apache.org/)
1.4 98080 872 145 16.63%
1.6 113055 965 188 19.48%

ivy
A dependence manager focusing on flexibility and simplicity 2.0 87769 352 40 11.36%(http://ant.apache.org/ivy/)

jedit
A cross platform programmer’s text editor

3.2 128883 272 90 33.09%
4.0 144803 306 75 24.51%
4.1 153087 312 79 25.32%

(http://www.jedit.org/)
4.2 170683 367 48 13.08%
4.3 202363 492 11 2.24%

log4j
A logging package for printing log output 1.0 21549 135 34 25.19%(http://logging.apache.org/log4j/)

poi
Java API for Microsoft documents format 2.0 93171 314 37 11.78%(http://poi.apache.org/)

synapse
A lightweight and high-performance Enterprise Service Bus

1.0 28806 157 16 10.19%
1.1 42302 222 60 27.03%

(http://synapse.apache.org/) 1.2 53500 256 86 33.59%

velocity
A template language engine 1.6 57012 229 78 34.06%(http://velocity.apache.org/)

xerces
A Java-based XML parser

1.2 159254 440 71 16.14%
(http://xerces.apache.org/xerces-j/) 1.3 167095 453 69 15.23%

Equinox framework
An implementation of the OSGi core framework specification 3.4 39534 324 129 39.81%(www.eclipse.org/equinox/)

Eclipse JDT Core
The Java infrastructure of the Java IDE 3.4 224055 997 206 20.66%(www.eclipse.org/jdt/core/)

Apache Lucene
A high-performance, full-featured text search engine library 2.4.0 73184 691 64 9.26%(lucene.apache.org)

Mylyn
A task and application lifecycle management framework for Eclipse 3.1 156102 1862 245 13.16%(www.eclipse.org/mylyn/)

Eclipse PDE UI Providing a set of tools to create, develop, test, debug and deploy
3.4.1 146952 1497 209 13.96%(www.eclipse.org/pde/pde-ui/) Eclipse plug-ins, fragments, features, update sites and RCP products
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Figure 4: Framework of our empirical study.

progress was repeated 50 times to alleviate the randomness
bias of the data division. As a result, we obtained a to-
tal of 100 values for each indicator on each defect data and
recorded the average values for performance analysis.
3.6. Labeling Scheme

For the 40 unsupervised models, we followed the label-
ing scheme in [4] (i.e., Scheme 6 in Section 2.2) to label
the clusters due to its simplicity and effectiveness. For the
methods with predefined cluster number as 2, the labeling
process is the same as that in [4], as depicted in Figure 3.
For the methods without predefined cluster numbers (i.e.,
multiple-cluster scenario), we used the labeling process in
Figure 5 to assign the labels to each cluster. More specif-
ically, we first calculated the ASFMs for all clusters and

the Mean values of these ASFMs (MASFM). Then, we la-
beled the clusters whose ASFMs are not less than MASFM
as defective (i.e., the cluster including module M4), and la-
bel other clusters (i.e., the cluster including module M1 and
M3, and the cluster including module M2 and M5) as non-
defective. In other words, we used the average values on all
features in each cluster to determine it class label. The mo-
tivation came from the heuristic rule of labeling two classes
following the scheme in the previous work [4] which sug-
gested that the cluster with higher average feature values
should be labeled as defective. This heuristic is based on
the findings that larger or more complex files are mores like
to contain defects than smaller files or the files with lower
complexity [10, 84, 89]. Here, we gave an end to end ex-
ample to explain the labeling process for the methods that
group the modules into 2 clusters: for one data partition of
ant-1.3 project with code complexity features, we first nor-
malized the date in one part, then used the typical K-means
method to group the normalized data into two clusters. The
results show that one cluster contains 18 modules and one
cluster contains 45 modules. The ASFM of the two clus-
ters are 0.869 and -0.348, respectively. As the former one is
larger than the latter one, we labeled all modules in the first

Zhou Xu et al.: Preprint submitted to Elsevier Page 9 of 24

http://ant.apache.org/
http://camel.apache.org/
http://ant.apache.org/ivy/
http://www.jedit.org/
http://logging.apache.org/log4j/
http://poi.apache.org/
http://synapse.apache.org/
http://velocity.apache.org/
http://xerces.apache.org/xerces-j/
www.eclipse.org/equinox/
www.eclipse.org/jdt/core/
lucene.apache.org
www.eclipse.org/mylyn/
www.eclipse.org/pde/pde-ui/


A Comprehensive Comparative Study of Clustering-based Unsupervised Defect Prediction Models

Table 6
The Brief Definitions of the 3 Types of Features

Feature Type Feature Name Brief Description

Code complexity

Weighted methods per class (WMC) the sum of the complexities of methods in a class
Depth of Inheritance Tree (DIT) the inheritance levels from the object hierarchy top for the class
Number of Children (NOC) the number of direct descendants of the class
Coupling between object classes (CBO) the number of classes coupled to a given class
Response for a Class (RFC) the number of different methods executed when an object receives a message
Lack of cohesion in methods (LCOM) the sets of methods not related through the sharing of some of the class’s fields
Lines of code (LOC) the number of the lines of codes of the class

Process

Revisions the number of revisions of a module
Authors the number of different authors that inspected a module
Loc_added total number of lines of code added to a module for all revisions
Max_loc_added the maximum number of lines of code added to a module for all revisions
Avg_loc_added the average number of lines of code added to a module per revision
Loc_deleted total number of lines of code deleted to a module for all revisions
Max_loc_deleted the maximum number of lines of code deleted to a module for all revisions
Avg_loc_deleted the average number of lines of code deleted to a module per revision
Codechurn total number of lines of code changed to a module for all revisions
Max_codechurn the maximum number of lines of code changed to a module for all revisions
Avg_codechurn the average number of lines of code changed to a module per revision

Network

Ego

Size the number of the nodes of the the ego network
Ties the number of the edges involving in the network
Pairs the maximal number of directed ties
Density the percentage of the ties are are actually presented
WeakComp the number of weak components in neighborhood
nWeakComp the normalized WeakComp by size
TwoStepReach the number of nodes within two directed steps of ego
ReachEfficiency the normalized TwoStepReach by Size
Brokerage the number of Pairs not directly connected
nBrokerage the normalized Brokerage by Pairs
EgoBetweenness the percentage of all geodesic paths among neighbors that pass through ego network
nEgoBetweenness the normalized EgoBetweenness by Size

Structure

Effective Size (EffSize) the number of alters connected to the ego minus the average degree of the alters
Efficiency the normalized EffSize by Size of the network
Constraint measuring to what extend the ego is constraint by its alters
Hierarchy measuring to what extent the constraint on ego is concentrated in a single alter

Centrality

Degree the number of nodes adjacent to a given node
nDegree the normalized Degree by the total number of nodes
Closeness the sum of the lengths of the shortest paths between a node and all other nodes
Reachability the number of nodes that a node can reach
Eigenvector assigning relative scores to all nodes involving in the network
nEigenvector the normalized Eigenvector by the total number of nodes
Betweenness measuring the frequency of a node appears on the shortest paths among other nodes
nBetweenness the normalized Betweenness by the total number of nodes
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Figure 5: Labeling scheme for multiple clusters.

cluster as defective and all modules in the second cluster as
non-defective.

For the 6 supervised models, a classification threshold
is needed for the learning methods to determine the labels
of the modules. More specifically, a module is classified as
defective if its probability given by the model is larger than
the classification threshold, otherwise, it is classified as non-
defective. In this work, we used the default threshold 0.5 as
used in Zhou et al’s work [57].

3.7. Evaluation Indicators
To measure the effectiveness of the total 46 methods for

SDP, we employed 3 indicators as our performancemeasure-
ment, includingMatthewCorrelationCoefficient (MCC),EAF-
measure, and Popt. MCC is considered as the most appropri-
ate indicator for SDP task [82, 90]; EAF-measure is a more
comprehensive effort-aware indicator recently proposed by
Huang et al. [8, 54]. Popt is a normalized version of the
effort-aware indicator originally proposed in [91].

We first defined 4 basic terms as follows:
True Positive (TP) and False Negative (FN) denote the

number of defective modules that are correctly and incor-
rectly identified by amodel, respectively;TrueNegative (TN)
and False Positive (FP) denote the number of non-defective
modules that are correctly and incorrectly identified by a
model, respectively.

(1) MCC. Given the above 4 terms, the general formula
of MCC is defined as follows:

MCC = TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)
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Figure 6: Calculation process for effort aware indicators.

MCC is non-effort-aware or traditional indicator since it
does not consider the efforts of inspecting modules.

To evaluate the SDP performance in an effort-aware sce-
nario [91] in which only limited test resources are used for
code review expecting the maximum profit [5, 92, 93], we
used 2 effort-aware indicators, i.e., EAF-measure and Popt.
In previous studies, the number of LOC was used as proxy
measure of the test resources involving in inspecting a mod-
ule and the percentage of defective modules found after the
inspection process was treated as the profit. In this work, we
specified the test resources as 20% of total LOC following
[5, 94, 95, 96]. In the calculation process of EAF-measure,
we employed the same ranking strategy in [97], a variant
version towards the strategy in [54]. The reason why we did
not employ the ranking strategy in [54] is that the probabili-
ties of the modules being defective are not always available
for unsupervised models. Figure 6 depicts a diagram of the
calculation process for the effort-aware indicators. The pro-
cess consists of 5 main steps: (1) we clustered the modules
into multiple groups (usually 2 groups) and labeled them as
defective or non-defective based on the labeling strategy de-
scribed in Section 3.6; (2) we ranked the modules in each
cluster in ascending order based on their LOC values; (3)
we concatenated the two ranked results in which the ranked
result of the defective group is in the front of that of the non-
defective group; (4) we simulated the developers or testers
in inspecting the ranked modules until their cumulative LOC
reached 20% (i.e., the cutoff point); and (5) we recorded
statistics to calculate EAF-measure.

Before obtaining EAF-measue, we first needed to calcu-
late Effort-Aware Recall (EARecall) and Effore-Aware Pre-
cision (EAPrecision). Given data with n1 defectivemodules,
after inspecting the ranked modules with 20% of LOC, we
assumed n′ modules and n1′ actually defective modules have
been detected. EARecall is defined as EARecall = n1′∕n1and EA-Precision is defined as = n1′∕n′.

(2) EAF-measure. Given the terms of EARecall and
EAPrecision, the general formula of EAF-measure is defined
as

EAF-measure =
(1 + �2) × EAPrecision × EARecall
�2 × EAPrecision + EARecall

. (2)

In this work, we set � as 2 to emphasize more on the
role of EARecall when balancing EARecall and EAPreci-
sion following the previous studies [98, 99]. In addition, we
also upload the result of EAF-measure with � of 1 to our
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Figure 7: LOC-based Alberg diagram

online supplementary materials.
(3) Popt. Another effort-aware indicator Popt is based

on the area under the effort curve in an Alberg diagram [92].
Figure 7 presents an example of an LOC-based Alberg dia-
gram. The calculation of Popt relies on 3 curves which cor-
respond to an optimal model, our proposed model m, and a
worst model. The 3 curves are described as follows:

• The optimalmodelmeans that all themodules are ranked
in descending order, based on their actual defect den-
sity. In detail, the actual defective and non-defective
model are ranked in ascending order according to their
LOC respectively and the two ranked results were spliced,
in which the ranked result of the defective group is in
the front of that of the non-defective group.

• The proposed model m means that all modules are
ranked according to our ranking strategy.

• The worstmodel means that all modules are ranked in
ascending order, based on their actual defect density,
that is, the results are opposite to that of the optimal
model.

The Popt(m) is formally defined as follows:
Popt(m) = Area(m) − Area(worst)

Area(optimal) − Area(worst)
. (3)

where Area() represents the area under the corresponding
curve.

According to this definition, Popt is equal to the ratio of
the area of region B (the green dotted lines) to the sum of the
area of region B and the region A (the gray dotted lines). A
larger Popt value signifies that there is a smaller difference
between our proposed model m and the optimal model.
3.8. Parameter Configurations for Unsupervised

Models
For the unsupervised models, if the clustering methods

support specifying cluster number manually, we set it to 2,
following the approach conducted by Zhang et al. [4]. Among
the 40 selected unsupervised models, 4 of them i.e., MS, AP,
SOM, and Cobweb, can determine the cluster number auto-
matically. We hence did not specify the cluster number of
them. For other parameters, we employ the default values in
the Weka, Python, and R libraries.
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(a) Box-plots of MCC on defect data with code complexity features.
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(b) Box-plots of EAF-measure on defect data with code complexity features.
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(c) Box-plots of Popt on defect data with code complexity features.

Figure 8: Box-plots of the 3 indicator values across 27 defect data with code complexity features.

3.9. Performance Analysis Method
In this work, we applied a statistical test technique, i.e.,

Friedman test with the improved Nemenyi post-hoc test in
[100] (instead of the well-known novel Scott-Knott test) to
analyze the performance results, which determines whether
the performance differences among the methods are signif-
icant or simply due to the natural variability of the perfor-
mance results [101]. The Friedman test is non-parametric
which does not require the analysis data to follow a particu-
lar distribution and the improvedNemenyi test can divide the
methods into non-overlapping groups. Whereas the novel
Scott-Knott test [76, 102, 103, 104] requires the analysis data
to satisfy the normality and homoscedasticity assumptions
[105], which is not always fulfilled in some cases. The com-
bination of Friedman with Nemenyi test is widely adopted
in previous SDP studies for significance test [10, 78, 80, 84,
91, 100, 106, 107].

For the SDP study, if the p value of the Friedman test
towards the performance results of multiple SDP methods is
lower than 0.05, it denotes that these methods exist signifi-
cant performance differences for SDP task. Then Nemenyi
post-hoc test is employed to distinguish which SDPmethods
are significantly different from others.

4. Empirical Results
4.1. Results for RQ1.

Since we needed to perform a total of 46 methods (40
unsupervised models and 6 supervised models) on 27 defect
data with 100 times, we obtained 124200 (46 × 27 × 100)

records of the performance results for this question.
Figure 8 depicts the box-plots of 3 indicators on defect

data with code complexity features. We reported both the av-
erage andmedian indicator values represented by the colored
point and bands inside the boxes, respectively. The boxes
with different colors imply distinct meanings as follows: the
red boxes indicate that the corresponding methods belong
to the top-ranked group after conducting the statistical test.
In other words, these methods outperform the others with
a statistical significance; the green boxes indicate that the
corresponding methods belong to the bottom-ranked group,
which implies that thesemethods are outperformed by others
with a statistical significance; the blue boxes indicate that the
corresponding methods belong to the middle-ranked group.

From Figure 8, we can observe that, first, in terms of the
supervised model family, 5 classifiers except for NB belong
to the top-ranked group on all indicators. In terms of the
PBC family, one method (i.e., Canopy) belong to the top-
ranked group on all indicators, and 4 methods (i.e., CM,
X-means, K-Modes, and Canopy) belong to the top-ranked
group on 2 effort-aware indicators. In terms of the HBC,
DBC, GBC, MBC, and HC families, no methods belong to
the top-ranked group on at least 2 indicators. In terms of
the GTBC family, one method (i.e., SC) belongs to the top
group on 2 effort-aware indicators. In terms of the SBC, all
two methods (i.e., BSAS and MBSAS) belong to the top-
ranked group on 2 effort-aware indicators. In terms of the
IVSBC family, all methods belong to the top-ranked group
on all indicators.
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(a) Box-plots of MCC on defect data with process features.
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(b) Box-plots of EAF-measure on defect data with process features.
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(c) Box-plots of Popt on defect data with process features.

Figure 9: Box-plots of 3 indicator values across 27 defect data with process features.

In terms of MCC, all classifiers in the supervised model
family, 4 methods in the PBC family, one method in HBC,
DBC, MBC, and HC families, and all methods in the IVSBC
family belong to the top-ranked group. In terms of EAF-
measure, 5 methods in supervised model and PBC families,
one method in the HBC family, 2 methods in the DBC fam-
ily, one method in the GBC family, 3 methods in the MBC
family, one method in the GTBC family, and all methods in
SBC and IVSBC families belong to the top-ranked group. In
terms of Popt, 5 methods in supervised model and PBC fam-
ilies, 3 method in the HBC family, one method in the GTBC
family, and all methods in SBC and IVSBC families belong
to the top-ranked group.

To sum up, on defect data with code complexity features,
5 classifiers except for NB in the supervised model family,
Canopy in PBC family, and all methods in IVSBC family
perform best on all indicators.
4.2. Results for RQ2.

Since we also needed to perform a total of 46 methods on
27 defect data with 100 times, we obtain 124,200 (46×27×
100) records of the performance results for this question.

Figure 9 depicts the box-plots of 3 indicators on defect
data with process features. From Figure 9, we observe that:
first, in terms of the supervised model family, 4 classifiers
except for NB and LR belong to the top-ranked group on all
indicators, NB and LR classifiers belong to the top-ranked
group on one traditional and one effort-aware indicators. In
terms of the PBC family, nomethods belong to the top-ranked
group on all indicators, one method (i.e., K-Medoids) be-

longs to the top-ranked group on 2 effort-aware indicators.
In terms of HBC, GBC, MBC, SBC, and HC families, no
methods belong to the top-ranked group on at least 2 indica-
tors. In terms of the DBC family, 2 methods (i..e, DBSCAN
and OPTICS) belong to the top-ranked group on one tradi-
tional and one effort-aware indicators. In terms of the GTBC
family, onemethod (i.e., SC) belongs to the top-ranked group
on 2 effort-aware indicators. In terms of the IVSBC fam-
ily, two methods (i.e., CLA and CLAMI) belong to the top-
ranked group on all indicators, onemethod (i.e., CE) belongs
to the top-ranked group on 2 effort-aware indicators, and one
method (i.e., AC) belongs to the top-ranked group on one
traditional and one effort-aware indicators.

In terms of MCC, all classifiers in the supervised model
family, 4 methods in the PBC family, all methods in the DBC
family, 3 methods in the IVSBC family, and one method in
the HC family belong to the top-ranked group. In terms of
EAF-measure, all classifiers in the supervised model family,
5 methods in the PBC family, one method in the HBC fam-
ily, 2 methods in the DBC family, one method in the GBC
family, 4 methods in the MBC family, all methods in GTBC,
SBC, and IVSBC families belong to the top-ranked group.
In terms of Popt, 4 classifiers in the supervised model fam-
ily, 2 methods in the PBC family, one method in HBC and
GTBC families, 3 methods in the IVSBC family belong to
the top-ranked group.

Overall, on defect data with process features, 4 classi-
fiers (except for NB and LR) in the supervised model fam-
ily, CLA and CLAMI in the IVSBC family achieve the best
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(a) Box-plots of MCC on defect data with network features.
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(b) Box-plots of EAF-measure on defect data with network features.

NB LR NN
CART

RIP
PE

R RF
K-M

ea
ns

K-M
ed

oid
s

CM
X-M

ea
ns

M
BM

PA
M

FC
M

FC
S

HCM
K-M

od
es FF

Can
op

y
CLA

RA
AHC
DAC
Birc

h
LV

Q
CURE
ROCK

DBSC
AN

OPT
IC

S
M

S
NG EM

Cob
web

SO
M

SO
M

SC
SY

NCSO
M

HCL SC AP
BSA

S
M

BSA
S

CLA
CLA

M
I

AC CE
HM

C
HCPC

0.0

0.5

1.0
                    Supervised                                                        PBC                                                              HBC                        DBC                          MBC                        GTBC      SBC            IVSBC              HC          

(c) Box-plots of Popt on defect data with network features.

Figure 10: Box-plots of 3 indicator values across 27 defect data with network features.

performance on all indicators.
4.3. Results for RQ3.

Due to the practical difficulties in launching the CLIQUE
method in the GBC family with network features, we have
to ignore CLIQUE from this study. The process of CLIQUE
is that: it first divides each dimension into a certain num-
ber of equal-width grid cells and saves those whose density
is greater than a threshold as clusters; then each set of two
dimensions is examined: if there are two intersecting cells
in these 2 dimensions and the density in the intersection is
greater than the threshold, the intersection is also saved as
a cluster. This is repeated for all sets (e.g., 3 dimensions, 4
dimensions) until the total feature dimension [108]. From
this point of view, CLIQUE is faced with the curse of di-
mensionality, which means that the complete enumeration
of all subspaces becomes intractable with the increasing di-
mensionality. Our experiments show that we could not apply
the CLIQUE method to our defect data with 24 network fea-
tures due to the required run time. For example, on project
Eclipse JDT Core, CLIQUE needs nearly 3000 seconds (50
minutes) for one run of one data split. Since there are in to-
tal 100 runs, CLIQUE needs 5000 minutes (nearly 3.5 days).
As we have 27 projects, it can be roughly estimated that we
need nearly 3months to get the results for CLIQUE on defect
data with network metrics. Considering the practical appli-
cability of CLIQUE, we did not consider CLIQUE in this
question since infinite time is not always available for the
SDP task. As a result, we performed in total 45 methods (39
unsupervised models and 6 supervised models) on 27 defect

data with 100 times, and obtained 121,500 (45 × 27 × 100)
records of the performance results for this question.

Figure 10 depicts the box-plots of 3 indicators on defect
data with network features. From Figure 10, we have the
following findings: first, in terms of the supervised model
family, 4 classifiers except for NB and LR belong to the
top-ranked group on all indicators, NB and LR classifiers
belong to the top-ranked group on one traditional and one
effort-aware indicators. In terms of PBC, HBC, and DBC
families, no methods belong to the top-ranked group on at
least 2 indicators. In terms of the MBC family, one method
(i.e., SOMSC) belong to the top-ranked group on one tradi-
tional and one effort-aware indicators. In terms of the GTBC
family, all methods belong to the bottom-ranked group on
all indicators. In terms of the SBC family, all methods be-
long to the top-ranked group on 2 effort-aware indicators.
In terms of the IVSBC family, two methods (i.e., CLA and
CLAMI) belong to the top-ranked group on one traditional
and one effort-aware indicators. In terms of the HC family,
one method (i.e., HCPC) belongs to the top-ranked group on
one traditional and one effort-aware indicators.

In terms of MCC, all methods in the supervised model
family, one method in PBC, DBC, MBC, and HC families,
all methods in the IVSBC family belong to the top-ranked
group. In terms of EAF-measure, all classifiers in the super-
vised model family, one method in PBC and HBC families,
2 methods in DBC and MBC families, all methods in the
SBC family, and 2 methods in the IVSBC family belong to
the top-ranked group. In terms of Popt, 4 classifiers in the
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(a) Box-plots of MCC on defect data with combined features.
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(b) Box-plots of EAF-measure on defect data with combined features.
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(c) Box-plots of Popt on defect data with combined features.

Figure 11: Box-plots of 3 indicator values across 27 defect data by combining the 3 types of features.

supervised model family, 4 methods in the PBC family, 5
methods in the HBC family, one method in the MBC fam-
ily, and all methods in SBC and HC families belong to the
top-ranked group.

In summary, on defect data with network features, 4 clas-
sifiers (except for NB and LR) in the supervised model fam-
ily exhibits the best superiority on all indicators.
4.4. Results for RQ4.

Since the dimension of the combined features is larger
than that of the network features, we also could not get the
performance of the CLIQUE method on the defect data with
combined features. Thus, we also did not consider CLIQUE
in this question. Again, we performed in total 45 methods on
27 defect data with 100 times, and obtained 121,500 (45 ×
27×100) records of the performance results for this question.

Figure 11 depicts box-plots of 3 indicators on defect data
with all features by combining code complexity, process,
and network features. From Figure 11, we have the follow-
ing findings: first, in terms of the supervised model family,
5 classifiers except for NB belong to the top-ranked group
on all indicators. In terms of the PBC family, one method
(i.e., FF) belongs to the top-ranked group on one traditional
and one effort-aware indicators. In terms of HBC, DBC,
MBC, GTBC and HC families, no methods belong to the
top-ranked group on at least 2 indicators. In terms of the
SBC family, all 2 methods belong to the top-ranked group
on 2 effort-aware indicators. In terms of the IVSBC family,
2 methods (i.e., CLA and CLAM) belong to the top-ranked
group on all indicators, one method (i.e., AC) belongs to the

top-ranked group on one traditional and one effort-aware in-
dicators.

In terms of MCC, all classifiers in the supervised model
family, one method in PBC, DBC, HC families, and 3 meth-
ods in the IVSBC family belong to the top-ranked group.
In terms of EAF-measure, all classifiers in the supervised
model family, one method in the HBC family, 2 methods in
the DBC family, 3 methods in the MBC family, one method
in the GTBC family, all methods in the SBC family, and
3 methods in the IVSBC family belong to the top-ranked
group. In terms of Popt, 5 classifiers in the supervised model
family, 2 methods in the PBC family, 3 methods in the HBC
family, all methods in the SBC family, and 3 methods in the
IVSBC family belong to the top-ranked group.

Overall, on defect data with all features, 5 classifiers (ex-
cept for NB) in the supervisedmodel family, CLA andCLAMI
in the IVSBC family perform significantly better on all indi-
cators.
4.5. Results for RQ5.

To answer this question, we considered the unsupervised
models who belong to the top-ranked group on all indicators
or on 2 effort-aware indicators over defect data with one of
the feature types and all supervised models. According to
the result analysis in the above 4 research questions, 12 un-
supervised models were remained (i.e., K-Medoids, CM, X-
Means, K-Modes, and Canopy in PBC family, SC in GTBC
family, and all methods in SBC and IVSBC families). Thus,
we used 18models (12 unsupervised + 6 supervisedmodels)
to analyze this question.
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(a) MCC.
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(b) EAF-measure.
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(c) Popt.

Figure 12: Average values of 3 indicator for the selected methods on defect data with different feature types and the combined
features.

Figure 12 shows bar charts of the average values of 3
indicators for the selected methods on defect data with dif-
ferent feature types and the combined features. From this
figure, we can observe that, in terms of the 6 classifiers in
supervised model family, they achieve the best average per-
formance on Popt over defect data with network features and
the best average performance on other 2 indicators over de-
fect data with the combined features. For the methods ex-
cept for the ones in the IVSBC family, they perform bad on
the traditional indicator but perform well on 2 effort-aware
indicators over defect data with different types of features.
In terms of the 12 unsupervised models, their performance
of different indicators vary according to the feature types of
the defect data. For example, for Canopy, it achieves bet-
ter performance on the traditional indicator over defect data
with code complexity and process features, but obtains bet-
ter performance on 2 effort-aware indicators over defect data
with network and combined features; for the two methods in
the SBC family (i.e., BSAS and MBSAS), they achieves the
best MCC values on defect data with process and network
features, the best EAF-measure values over defect data with
network and combined features, the best Popt values over
defect data with network features; for SC, it achieves nearly

the same MCC and EAF-measure values on defect data with
different feature types, but obtains the best Popt value over
defect data with process features. For CLA, CLAMI, and
AC, they perform the best on the traditional indicator over
defect data with combined features, and do not perform well
on 2 effort-aware indicators over defect data with code com-
plexity features. In addition, CLA and CLAMI obtain sim-
ilar average performance on 2 effort-aware indicators over
defect data with process, network, and combined features.
For CE, it does not perform well on the traditional indicator
but performs the best on 2 effort-aware indicators over de-
fect data with process and combined features, and it obtains
nearly the same average performance on all indicators over
defect data with process and combined features.

From the above observations, the superiority of the
selected 18methods (especially for the unsupervisedmod-
els) on defect data with distinct feature types varies ac-
cording to the indicators used.

Zhou Xu et al.: Preprint submitted to Elsevier Page 16 of 24



A Comprehensive Comparative Study of Clustering-based Unsupervised Defect Prediction Models

5. Discussion
5.1. Implications

We provided some implications from the analysis of our
experimental results for practitioners and researchers.
(1) Themethods in theHBC,GBC, andHC families should

be avoided in practice for defect prediction. The rea-
son is that no methods from the above families perform
well on all indicators and on 2 effort-aware indicators
over defect data with any kind of feature types and the
combined features. This may explain why the methods
in these 3 families were not explored in previous studies.
We recommended that practitioners should avoid using
suchmethodswhen conducting SDP on unlabeled defect
data.

(2) The methods in IVSBC family appear to be optimal
options for CUDP. Overall, they present promising per-
formance in most cases. As these methods design spe-
cific rules (such as the violation score) which rely on the
defect data characteristics to divide the modules, they
are able to well adapt to the SDP task in practical appli-
cations.

(3) Clustering-based defect prediction models should be
highly regarded for researchers. Our experimental re-
sults show that several clustering-based models are not
inferior to the classical supervisedmodels, such as Canopy
method in the PBC family which can achieve competi-
tive performance or even better performance over defect
data with code complexity features. As unsupervised
models do not require the prior knowledge of the de-
fect data by label collection which is known to be time-
consuming and labour-intensive [6, 109, 110], they can
promote the quality assurance activity.

(4) Selection of clustering-basedmodels forCUDP should
comprehensively consider feature types of the defect
data and the used indicators. Performance of these
methods varies towards the two factors. For example,
the effort-aware performance of Canopy prefers to the
defect data with network and combined features while
the traditional performance of Canopy prefers to the de-
fect data with other two types of features. We recom-
mend that software engineering researchers should ex-
tract suitable features from the source code for specific
performance according to actual requirements.

(5) A combination of features does not always enable the
defect data to promote the performance of unsuper-
vised models. Although the supervised models achieve
better performance on two indicators (i.e., MCC andEAF-
measure) over defect data with combined features over-
all, the clustering-based unsupervised models do not al-
ways perform well on such defect data. For example,
defect data with combined features are not suitable to
K-Medoids on 2 effort-aware indicators, and to Canopy
on the traditional indicator. Thus, when the researchers
hesitate whether to combine different feature types to
form a new defect dataset, the decision should rely on
the used unsupervised methods and indicators.

(6) As there exist some clustering-basedmodels with promis-
ing defect prediction performance,we can use themwith
the labeling scheme to annotate some data for the re-
searchers and practitioners to perform some other
supervised learning tasks, expecting to save the cost
of manual annotation.

(7) As discussed in Section 3.2, the implementation of
our framework (with the help of Weka, Python and
R) is quite generic. Hence, apart from comparing clustering-
based defect predictionmodels, we believe that our frame-
work, with slight modifications, could be also applied
to other comprehensive comparative studies concerning
clustering-based approaches.

5.2. Threats to Validity
In this subsection, we presented the following 3 major

threats to the validity of our work.
(1) External Validity: Our experiments were conducted us-

ing publicly available benchmark data from 27 versions
of 14 open source projects. An external validity threat
is that all of these projects were developed with Java
language and we do not consider the projects developed
with other languages, such as C, C++ or python. This
may limit the generality of our experimental results. In
addition, since our benchmark data consists of 3 types of
features, i.e., code complexity features, process features,
and network features, our experimental results may not
be generalized to the defect data with other feature types,
such as text features [111] and developer’s scattering
features [112]. Future experiments on various defect
data can alleviate such threats.

(2) Internal Validity: Formethod implementation, we used
the third-party library implementation or the code pro-
vided by the authors for most methods to avoid potential
mistakes in the implementation process by ourselves,
which is beneficial to relieve the threat to the internal
validity. One potential threat is that our implementa-
tions for AC and CE may be slightly inconsistent with
the original versions. In this work, two graduate stu-
dents participated in checking the source code to mini-
mize this threat. For the parameter setting of the cluster
number, we set it to 2 for most methods. Thus, another
threat is that the derived results may exist a certain de-
gree of differences for other settings of this parameter.
More fine-tuned parameters would be needed in future
studies.

(3) Construct Validity: The threat to the construct valid-
ity is that the used performance indicators may not pro-
vide a comprehensive evaluation for the methods. In
this work, we used one traditional and 2 effort-aware
indicators to measure the performance of these meth-
ods. Although these indicators were commonly used
in the defect prediction domain, we still cannot claim
that our conclusions are consistent with that of other in-
dicators that we have not analyzed in this study. An-
other threat is the appropriateness of the used statistical
test technique. In this work, we used a non-parametric
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test, the Friedman test with Nemenyi post-hoc test to
check the significant differences among these methods.
This test is a classic statistical test which is employed in
many previous defect prediction studies. Rather than us-
ing the original test, we used the improved version pro-
posed in [100] which is more suitable to generate non-
overlapping groups for statistical analysis.

6. Related Work
The topic of SDP has been an active research field and

been widely studied in the last two decades. Recent stud-
ies on this topic can be roughly divided into 3 categories.
The first category is that the researchers employed ready-
made techniques or proposed new methods for SDP task in
which machine learning methods are the mainstream trends.
This type of studies aims to improve the performance of de-
tecting the defective modules, such as the work in [113, 96,
85]. The second category is that researchers collected dif-
ferent features from the source code for SDP tasks. This
type of studies aims to extract more effective representations
for the modules to promote the identification of the defec-
tive modules, such as the work in [12, 94, 114, 115, 116].
The third category concerns the works leveraging previous
publications or dataset to perform comprehensive compar-
isons on the performance of a set of methods. The first two
categories mainly focus on improving the SDP performance
from a technological perspective while the last one mainly
focuses on conducting literature reviews or empirical stud-
ies to investigate the impacts of different experimental com-
ponents on the prediction performance, such as the work in
[76, 82, 102]. Our work belongs to the last category. In this
section, we report the research progress about this category.
6.1. Empirical Studies on Classification Models

for SDP
Lessmann et al. [107] considered three potential factors

that may cause bias for SDP performance, including the used
classification models, the used performance indicators, and
the statistical tests used for empirical findings. To investi-
gate this issue, they choose 22 classifiers as studied objects
and applied them to 10 publicly available projects from orig-
inal NASAdataset. Besides, they employedAUC to evaluate
the performance of these classifiers and used the Friedman
test with the Nemenyi test to analyze the results. The results
showed that there exist no significant performance differ-
ences among the top 17 classifiers. Following Lessmann et
al.’s work, Ghotra et al. [76] conducted a larger-scale empiri-
cal study for a total of 31 classification models on 29 projects
from 3 datasets (i.e., the original NASA dataset, the cleaned
NASA dataset, and the PROMISE dataset). They employed
the AUC and a double Scott-Knott test to evaluate and ana-
lyze the performance of these classifiers, respectively. They
found that the results are similar to those in [107] on orig-
inal NASA dataset, but the results on the other 2 datasets
show a statistically distinct separation among these classi-
fiers. They hence concluded that the choice of classification

models have impacts on SDP performance. Tantithamtha-
vorn et al. [104] explored the impacts of parameter opti-
mization on 26 classification models on 4 datasets with 12
performance indicators. They found that the optimization
can improve the AUC performance of models by up to 40
percents.

Different from the above studies which focused on an-
alyzing the impacts of supervised classification models on
the SDP performance, in this work, we investigated the im-
pacts of clustering-based unsupervised models on the SDP
performance.
6.2. Empirical Studies on Unsupervised Models

for SDP
Yang et al. [5] were the first to compare the performance

of unsupervised models with that of supervised models for
JIT defect prediction. Their results on 6 projects showed that
some simple unsupervisedmodels achieved better effort-aware
performance than supervised models under 3 prediction sce-
narios. Fu et al. [6] revisited Yang et al’s work and proposed
a supervised model, called OneWay which is based on the
implication of Yang et al’s simple unsupervisedmodel. They
repeat experiment on the same project as Yang et al’s work
and the results showed that OneWay performed better than
Yang et al’s unsupervised models. They suggested that sim-
ple supervised models should be given priority to perform
defect prediction task. Yan et al. [7] replicated Yang et al’s
work for file-level defect prediction task. The results showed
that their conclusion was consistent with Yang et al.’s un-
der the cross-project prediction scenario but was contrary to
Yang et al.’s under the within-project prediction. Huang et
al. [8][54] also replicated Yang et al.’s work and analyzed
the reason why the unsupervised model could achieve better
effort-aware performance. They proposed a simple super-
vised model called CBS [8] and CBS+ [54] that performed
better than the unsupervised model in terms of two effort-
aware indicators and could inspect fewer changes. Chen et
al. [55] made a first attempt to compare the performance be-
tween unsupervised models and supervised models for pre-
dicting the defect number. They conducted experiments on
7 projects with 24 versions under 3 prediction scenarios and
suggested that the unsupervised method should be treated as
the baseline method when researchers proposed new super-
vised defect number prediction models.

Different from the above studies in which the unsuper-
vised models ranked the software modules according to the
feature values, in this work, we focused on the unsupervised
models based on the clustering techniques that group the
software modules into different clusters. Recently, Li et al.
[117] conducted a systematic review of unsupervised mod-
els for SDP. They mainly analyzed some experimental re-
sults in existing articles. Different from their work, we did a
more detailed summary for the experimental configurations
of existing articles, like the information of used datasets, per-
formance indicators, and labeling schemes. In addition, we
conducted large-scale experiments to comprehensively ana-
lyze the SDP performance of 40 clustering-based model and
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investigated the impacts of feature types on the SDP perfor-
mance.
6.3. Empirical Studies on Feature Selection and

Reduction Methods for SDP
Muthukumaran et al. [118] investigated 7 ranking-based,

2 wrapper-based and one embedded-based feature selection
methods on the original NASA dataset and AEEEM dataset.
They found that the performance of the 10 methods has no
significant differences. Gao et al. [119] studied 7 ranking-
based feature selection methods followed by 4 feature sub-
set searching strategies on a private dataset. They found
that 6 ranking-based methods obtained similar performance.
Wang et al. [120] conducted an empirical study on 6 ranking-
based and 2 ensemble-based feature selection methods on 3
datasets. They found that the performance of the ranking-
based methods is affected by 2 factors (i.e., the datasets and
classification models used) while the ensemble-based meth-
ods are stable and robust to the 2 factors.

Xu et al. [102] empirically studied 32 feature selection
methods from 5 families on 3 datasets (i.e., the original NASA
dataset, the cleaned NASA dataset, and the AEEEM dataset)
with a random forest classifier. They used the same perfor-
mance indicators and statistic test as in [76]. They found
that these methods have significant performance differences
on each dataset. Following Xu et al’s work, Ghotra et al.
[121] conducted a larger-scale empirical comparison for 30
feature selectionmethods on 2 datasets (i.e., the clean NASA
dataset and the AEEEM dataset) with 21 classification mod-
els. They found that the correlation-based filter subset se-
lection method with the BestFirst search strategy performed
the best, and the performance impacts of these methods vary
across the used classificationmodels and the datasets. Kondo
et al. [122] performed an empirical study to investigate the
impact of 8 feature reduction techniques on the performance
of 5 classification models and 5 clustering models over 3
datasets. The difference between feature selection and fea-
ture reduction methods is that the former one reduces the
number of features by choosing a subset based on the impor-
tance degrees of the features, while the latter one reduces
the number of features by generating new or combining fea-
tures through feature transformation methods. They found
that neural network-based feature reducing methods (i.e., re-
stricted Boltzmann machine and auto-encoder) performed
the best on clusteringmodels, and created featureswith small
variants in performance across the classification models and
clustering models.

The above studies explored the application of feature se-
lection or reduction methods for SDP task, which usually
need the labeled defect data to select the informative fea-
ture subset. Different from these studies, our work concen-
trated on the usage of clustering-based unsupervised models
in SDP without involving in the feature engineering tech-
niques.

6.4. Empirical Studies on Sampling-based
Imbalanced Learning Technologies for SDP

There are different methods to alleviate the class imbal-
ance issue for SDP, such as the sampling-based, ensemble-
based, and cost-sensitive-based imbalanced learning meth-
ods. The sampling-basedmethods add or remove somemod-
ules to re-balance the training set. Ensemble-based methods
combine the decisions of multiple classifiers to obtain bet-
ter performance than the single one. Cost-sensitive-based
methods take the misclassification costs for different classes
into consideration by treating different misclassification dif-
ferently. That is, the cost for labeling a defective module
as non-defective is higher than the cost for labeling a non-
defective module as defective. Many empirical studies about
the imbalanced SDP issue focus on sampling-based meth-
ods.

Kamei et al. [123] examined the impacts of 4 sampling
methods on the SDP performance of 4 classification mod-
els over 2 industry legacy software systems. They found
that these sampling methods are only helpful to improve the
performance of linear and logistic models. Bennin et al.
[124] explored the impacts of 4 sampling methods on the
effort-aware SDP performance of 10 classification models
over 10 software projects from PROMISE dataset. They
found that these sampling methods could promote the per-
formance of all the models when the defect percentage of the
data is between 20% and 30%. Bennin et al. [125] investi-
gated the impacts of 6 sampling methods on the SDP perfor-
mance of 5 classification models over 10 software projects
from PROMISE dataset. They found that these methods had
statistic and practical significances in terms of false posi-
tives, Recall, G-mean, but not in terms of AUC. Bennin et al.
[126] studied the impacts of a configurable parameter (i.e.,
the defect percentage of the data) on the SDP performance
of 7 sampling methods with 5 classification models over 10
projects from PROMISE dataset. They found that this pa-
rameter indeed affects the performance of these models in
terms of the used indicators except for AUC.

Tantithamthavorn et al. [104] assessed the impacts of
4 sampling methods on the performance and interpretation
of 7 classification models with 10 performance indicators
over 101 projects from 5 datasets. They found that the op-
timized SMOTE method and under-sampling method could
increase the performance of Recall and AUC, but are not
helpful to interpret the models. Song et al. [82] systemati-
cally evaluated 17 imbalanced learning methods (including
sampling-based, ensemble-based, cost-sensitive-based and
imbalanced ensemble-based methods) with 7 classification
models over 27 software projects. They found that these
methods are more effective on the defect data with moderate
or higher imbalance rates, and a particular combination of
the imbalance learning methods and classification models is
important for improving the performance of SDP.

The sampling-based imbalanced learning methods need
the label information to balance the training sets for learning
unbiased supervised classification models. Different from
the above studies, our work assumed that the label informa-
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tion was not available and studied the unsupervised models
that do not consider the class imbalance processing.
6.5. Literature Reviews on SDP studies

Some researches have surveyed a large amount of SDP
studies and designed some criteria to identify the primary
ones. They mainly analyzed these articles to find common
patterns and give some deep insights.

Catal et al. [127] reviewed 74 articles about SDP and
found that the usage of publicly available datasets, themethod-
level features and machine learning methods are the main-
stream trends. Hall et al. [77] performed an in-depth anal-
ysis of the quantitative and qualitative results of 36 articles
with sufficient contextual and methodological information
selected from 208 articles. Their empirical observations sug-
gested that simple classification model and the combination
of process, product, and people-based features tended to per-
form well and the feature selection methods were beneficial
to the SDP performance. Shepperd et al. [128] conducted
a meta-analysis on 600 sets of prediction results published
in 42 primary studies. They found that the choice of classi-
fication models had little impacts on the SDP performance.
In contrast, the researcher group was the major explanatory
factor to affect the SDP performance.

Hosseini et al. [129] conducted a systematic literature
review towards Cross Project Defect Prediction (CPDP) ar-
ticles and identified 30 primary studies. CPDP utilizes the
labeled data of external projects to build a classifier to pre-
dict the labels of the unlabeled data in the project at hand.
They pointed out the most commonly-used performance in-
dicators, the well-performed classification models and the
widely-used datasets, and suggested thatmore attention should
be paid on CPDP as it is still a challenging task. In order to
identify which CPDPmethod performed the best, Herbold et
al. [100] replicated 24 existing CPDPmethods and evaluated
them on 5 datasets. They found that 3 methods achieved the
best performance in most cases and pointed out that there is
still room for improvement before the CPDPmethods can be
put into practice. Similarly, Porto et al. [130] implemented
31 state-of-the-art CPDPmethods and compared them on 47
versions of 15 projects from PROMISE dataset. They iden-
tified 4 methods that achieved the best performance across
datasets and proposed a meta-learning solution to dynami-
cally choose the suitable method for a specific project.

Different from the above studies which mainly paid at-
tention to review the SDP work under the supervised sce-
narios, i.e., the defect prediction task within the project or
across projects, in this work, we conducted literature reviews
only for the defect prediction studies under the unsupervised
scenario.

7. Conclusions
We conducted a large-scale comparison to analyze SDP

performance differences among 40 clustering-based unsu-
pervised models and 6 typical supervised models. We made
the first step towards investigating the impacts of the feature
types of defect data on the performance of these methods.

Our experimental results on 81 defect data indicate that not
all clustering-based unsupervised models are worse than the
supervised models, and the performance of the methods in
the IVSBC family is particularly outstanding overall. More-
over, we observed that the feature types can indeed affect the
performance of the studied methods on different indicators.

As of our future work, we plan to explore the impacts of
feature selection on the SDP performance of these clustering-
basedmodels, since previous studies have empirically demon-
strated that different feature selection methods can signif-
icantly affect the SDP performance of supervised models
[102, 121]. In addition, as previous studies stated that the
class imbalance issue of the defect data has negative impacts
on the SDP performance of supervised models [104, 82], we
will also explore how to consider this issue in the clustering-
based models to further improve their performance.

We provide the benchmark dataset, the experimental scripts,
and experimental results at https://github.com/sailer2020/
CUDP.
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