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Abstract

Cloud computing systems provide the capabilities to make application services resilient against failures of individual
computing resources. However, resiliency is typically limited by a cloud consumer’s use and operation of cloud resources.
In particular, system operation failures have been reported as one of the leading causes of system-wide outages. This
applies specifically to DevOps operations, such as backup, redeployment, upgrade, customized scaling, and migration –
which are executed at much higher frequencies now than a decade ago. We address this problem by proposing a novel
approach to detect errors in the execution of these kinds of system operations, in particular focusing on rolling upgrade
operations. Our regression-based approach leverages the correlation between operations’ activity logs and the effect
of operation activities on cloud resources. First, we present a metric selection approach based on regression analysis.
Second, the output of a regression model of selected metrics is used to derive assertion specifications, which can be used
for runtime verification of running operations. We have conducted a set of experiments with different configurations of
an upgrade operation on Amazon Web Services, with and without randomly injected faults to demonstrate the utility
of our new approach.

Keywords: Cloud application operations; cloud monitoring; metric selection, anomaly detection; error detection; log
analysis.

1. INTRODUCTION

The failure of systems and software has been the topic
of research and investigation for a very long time. Despite
many advances in this area failure rates are still high. Sev-
eral industry surveys show significant loss of money, mar-
ket share, and reputation due to various types of system
downtime. According to a survey conducted by Interna-
tional Data Corporation (IDC) [1] in late 2014, the average
cost of unplanned downtime in Fortune-1000 companies is
$100K per hour. This observation is in line with other in-
dustry estimates from Gartner [2], Avaya [3], Veeam [4],
and Ponemon [5]. These surveys estimate the cost of appli-
cation downtime between $100K and $540K per hour. A
separate survey from 205 medium to large business firms in
North America states that companies are losing as much as
$100 million per year as a result of server, application, and
network downtime, respectively [6]. Such significant losses
(both in monatery and non-monetery terms) demonstrate
the need to address the key reasons for system failures.
Operation and configuration issues have been reported to
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be one of the main causes of overall system failure [7, 8, 9],
and an empirical study conducted by Yuan et al. [9] reports
that operational activities are the root cause of up to 69%
of system-wide outages.

One of the reasons for such high percentages of oper-
ational failure issues is the complexity of modern, large-
scale applications, especially in cloud environments. These
environments are inherently complex due to the flexibil-
ity provided and the large number of resources involved.
Applications in a cloud environment are subject to regu-
lar changes from sporadic operations, such as on-demand
scaling, upgrade, migration, and/or reconfiguration [10].
Sporadic operations are usually implemented by a set of
separate tools and are subject to interference from simul-
taneous operations dealing with the same resources.

Executing an operation like Rolling Upgrade in such
an environment is error-prone, as changes to one resource
(e.g., the state of a VM) may affect the correct execu-
tion of other operations. With these complexities, it is not
surprising that operational-related failures have been re-
ported as one of the main challenges in system failures and
outages [10, 11]. However, operation and configuration ac-
tivities have not received the much deserved attention until
the recent emergence of DevOps.

One way to improve a system’s reliability is to leverage
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a set of tools and techniques to better monitor running
operations and to assess their impact on a system in real-
time. In systems monitoring, one problem is that system
operators have to deal with tracking multiple monitoring
metrics and receive too much monitoring information, in-
cluding many false warnings and alerts. This distracts sys-
tem operators from becoming aware of critical abnormal
situations [12, 13]. This problem in particular has caused
operators to disable monitoring when sporadic operations
are running, so as to avoid too many false alerts [14]. An-
other problem is that most of the existing approaches to
systems monitoring solely focused on point data [15]: they
observe the state of hardware and software metrics, such
as CPU utilization, network traffic, a number of live ses-
sions etc. without monitoring the contextual behavior of
operations or inspecting the impact of operation steps on
systems resources. In current practice of monitoring cloud
application operations, an operation’s log is the primary
source of information for monitoring the operation’s be-
haviour. Logs provide valuable information about run-
ning operations, yet they are not fully reliable as there are
various limitations in log analysis [15]. Logs are usually
low-level, noisy, and lack information about changes to
resource states. These shortcomings make dependability
assurance of running operations a very challenging task.

We have developed a novel, statistical approach to ad-
dress these difficulties through learning from the correla-
tion between resources and operations’ activities. In our
approach, we first leverage a statistical technique to clus-
ter low-granular-level logs to a higher abstraction level, in
order to form a set of correlated activities. Next, we pro-
pose a technique to identify monitoring metrics that are
sensitive to an operation’s steps, which helps us to form
a set of statistically relevant candidate metrics suitable
for anomaly detection. We then present an approach us-
ing regression analysis to identify which set of operation
log events (i.e. activities) affect the target resource met-
rics, resulting in an assertion specification model. In this
process, assertions are used to check if the actual state
of the system corresponds to the expected state of the
system. This assertion checking is a crucial part of error
detection in monitoring the execution of operation steps.
Finally, we leverage the selected metrics at runtime, to
verify that the actual state of the system observed from
monitoring metrics actually corresponds to the expected
state of the system based on the assertion specification. In
addition, we propose an algorithm to distinguish anoma-
lies that are triggered from the ripple effect symptoms of
a failure rather than being caused by the direct effect of a
failure.

To assess and evaluate these proposed approaches, we
conducted experiments using a public cloud environment
of Amazon EC2 by running multiple rounds of rolling up-
grade operations. We used Amazon CloudWatch metrics
as the source of monitoring resource metrics and Netflix
Asgard logs as the source of operation log events.

In summary, our approach improves the dependability

assurance of cloud application operations, within the scope
of above experimental setting, through the following key
contributions:

• Identifying log events that cause changes to cloud re-
sources by:

(i) clustering low-granular logs using weight timing
and correlation coefficients;

(ii) utilizing a regression-based statistical technique
to learn correlation and causation relationships
between operation behavior and cloud metric
changes.

• Applying this regression-based technique to find the
most statistically relevant resource metrics from all
available metrics to a specified anomaly detection re-
quirement.

• Defining assertion specifications as predictors of the
expected behavior for system operations, based on the
correlation and causation model.

• Proposing a new approach to identify anomalies re-
sulting from ripple effects of errors and distinguishing
them from direct effects.

• Evaluating the approach on realistic data sets, where
we learn from error-free traces, specify assertions, and
evaluate if the assertions can detect injected faults.

This article is an extension of an earlier publication [16].
In addition to state-based metrics explored in our previ-
ous work, we study non-state-based metrics and leverage
this exploration to address the problem of finding relevant
metrics for anomaly detection. Further, we present a new
approach to distinguish the ripple effect of errors from the
direct effect of errors. To this end, new technical material
is presented throughout sections 4, 5, and 6, respectively.
In addition, we share the insights and lessons learned from
this process and discuss the potential usage of the proposed
approach for improving DevOps processes.

The rest of this article is organized as follows: first, we
give a relevant background to this work along with the mo-
tivating example of our study in Section 2. This is followed
by an overview of the proposed approach in Section 3 with
its details being explained in Section 4. In Section 5, we
present our experimental results from the learning phase,
followed by an evaluation of error detection in Section 6.
In Section 7, key related work is discussed, and finally
conclusions and future work are given in Section 8.

2. BACKGROUND AND MOTIVATIONAL EX-
AMPLE

In this section we provide the necessary background ex-
planation for the concept of sporadic cloud operations,
discuss why cloud DevOps operations commonly fail, and
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highlight some of the current challenges of operations mon-
itoring, in particular for the domain of public cloud envi-
ronments.

The focus of our work is on monitoring and depend-
ability assurance of DevOps application operations, also
referred to as “sporadic operations,” in public cloud en-
vironments. Examples of sporadic operations are Backup,
(Rolling) Upgrade, Cloud migration, Reconfiguration, On-
demand scaling, Rollback/Undo, and Deployment. These
operations are administrative operations that do not nec-
essary have a scheduled routine. In other words, “there
is a sporadic nature to these operations, as some are trig-
gered by ad-hoc bug fixing and feature delivery while oth-
ers are triggered periodically” [17]. Sporadic operations
often have a system-wide impact and several technologi-
cal complexities make ensuring the successful execution of
these operation a challenge [18]. In the following sections
we will provide further background about these challenges,
followed by a case study that motivates our work.

2.1. VM Instance Failure

Public cloud computing services, like Amazon Web Ser-
vices (AWS), are designed and engineered in a way to
be fault-tolerant for service delivery. This resiliency is
achieved mainly through shared resources, in which the
failure of one resource will not significantly affect the whole
system. However, it does not mean that all cloud ser-
vices are fault-tolerant. In fact, many of these services
are fault-tolerant to the extent a cloud customer chooses
to architect them. In contrast to service delivery in the
cloud where the status of VM instances is important in
an aggregated form, at the operational level (e.g., rolling
upgrade, deployment, or backup) each individual VM in-
stance and its attached resources is important in its own
right. From time to time an instance fails – for example, an
instance freezes, crashes and/or it becomes unresponsive.
Such failures are usually caused by one of the following:
a problem stemming from the resources that the instance
is running on; memory over-usage due to an increasd sys-
tem load; an application bug that stresses the instance; an
operating system kernel bug; or through random system
termination for assessing of systems resiliency and recov-
erability in production (e.g., Chaos Monkey) [19, 20]. The
occurrence of any of these failures during an upgrade op-
eration can put the upgrade process on hold or even derail
it. Hence, it is important to adopt a mechanism to track
and trace the successful execution of an operation.

2.2. Concurrent Operations and Configuration Changes

Cloud sporadic operations are subject to interference
from simultaneous operations, whether through automatic
concurrent operations or manual changes applied to a sys-
tem and its resources. Changes in cloud configuration
are one of the reasons that make operation validation in
this environment very challenging. A recent Gartner re-
port states that over half of the outages of mission-critical

systems are caused by “change, configuration, release in-
tegration and handoff issues” [11]. A cloud provides a
configurable and scalable resource sharing environment,
and thus software applications and services are exposed to
frequent configuration changes, due to efficient and cost-
effective use of these shared resources. Examples of fre-
quent configuration changes are: detaching or attaching
an Elastic Block Storage (EBL) disk volume from/to an
instance; changes in conditions and configuration of an
Auto Scaling Group (ASG), for example, its size (horizon-
tal scaling in/out); manual termination or reboot of an in-
stance; instance manipulation for testing purposes; migra-
tion of machines to different zones or regions; or changing
from one machine type to another (vertical scaling up/-
down). Such configuration changes of cloud resources may
happen frequently. They are another motivation for our
work, demonstrating that the validation of sporadic oper-
ations has critical importance.

2.3. Motivation Example: Rolling Upgrade Case Study

Our study aims to investigate whether it is possible to
derive a strong correlation model between event logs of
operations and the observable metrics of cloud resources.
To conduct this investigation, we chose rolling upgrade, as
implemented by Netflix Asgard on top of Amazon Elas-
tic Computing Cloud (EC2), as a case study of such an
operation.

A rolling upgrade operation is a good example of a spo-
radic cloud operation that incurs interference from other
operations. Applications in the cloud are deployed on a
collection of virtual machines (VMs). Once there is a new
version of the application released, a new virtual machine
image is prepared with the new version; this is also called
baking the image. Then all the current virtual machines
will be replaced by newly baked image through an up-
grade process, such as rolling upgrade. A rolling upgrade
replaces VM instances, x at a time, e.g. upgrading 400
instances in total by upgrading 10 instances concurrently
at any given time during the operation. Asgard upgrades
each EC2 VM instance through the following main steps:
remove and deregister the instance from Elastic Load Bal-
ancer (ELB), terminate the instance, wait until the auto-
scaling group replaces the missing instance with a new
instance (running the updated version of the application);
the new instance is registered with the ELB. There is a
chance that an instance faces a configuration change or an
error at any time during these steps.

The contemporary practice of continuous deployment fo-
cuses on pushing every commit into production as soon as
possible – as long as it passes a large number of tests. In
such an environment, upgrades can occur with high fre-
quency – between few times a week [21] to many times per
day [22], updating hundreds of machines, without causing
any service downtime.

In a nutshell, rolling upgrade is an excellent exemplar
operation for our investigation for the following reasons:
according to several reports [23], upgrade operations are
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one of the most error-prone operations; the rolling upgrade
operation is one of the sensitive and critical operations
in Cloud system administration as a failure may cause a
system-wide outage; and a rolling upgrade operation is
likely to be affected by interference of concurrent opera-
tions and configuration changes, respectively. For further
information about Rolling Upgrade readers can refer to
[18], [24], or [25].

3. OVERVIEW OF PROPOSED APPROACH
AND DATA COLLECTION

Our new approach uses a statistical technique to ex-
tract a regression-based model that explains the correla-
tion and potential causalities between operation event logs
and cloud resource metrics. The output of the model is
used to generate assertions, which are then leveraged for
anomaly detection of run-time execution of cloud applica-
tion operations.

To derive assertions from observations, we assume that
there is a stream of time-stamped events, such as events
represented by log lines, and at least one cloud platform
metric that can be observed. Fig. 1 gives an overview of
the approach.

Logs represent the behavior of an operation while met-
rics show the status of a system. As can be seen in Fig.
1, event logs are generated at various points in time, and
metrics are collected at potentially different points in time.
Collecting monitoring data points usually happens at fixed
intervals, such as every minute or every 5 minutes in Ama-
zon CloudWatch. In contrast, observation of system op-
erations behavior through event logs happens at non-fixed
intervals, such as the occurrences of few event logs within
one second, and then the absence of any event logs for the
next few seconds or even minutes.

Besides directly observed metrics, there can also be de-
rived metrics, such as the difference between the previous
and the current data point, or the n-th derivative. Fur-
thermore, the observation component can pull metrics ex-
plicitly, for example, through API calls. This can be done

Figure 1: Assertion derivation from log and metric observations.
*Note: A1..A5 are activities; Metric1..3 are metrics like CPU uti-
lization, network usage, number of instances changes etc.

at fixed intervals, in which case the result is very similar to
regularly collected metrics, or pull requests can be issued
whenever an event was observed.

This study explores the relationship between the behav-
ior of application operations and a clouds resource states.
Our research investigates whether adopting a log analy-
sis technique along with a regression-based technique is
practical to model the relationship between cloud opera-
tion behavior and the changing states of cloud resources.
The outcome of this effort is used for detecting anomalies
that are happening during the execution of sporadic cloud
operations.

The high level steps of the approach, also shown in
Fig. 2, are as follows: 1) data collection and data metrics
derivation; 2) logs-metrics data mapping; 3) Logs cluster-
ing; 4) Correlation derivation between logs and metrics;
and 5) Assertion specification for anomaly detection. We
describe the steps of data collection for both monitoring
metrics and logs in this section, and then we discuss in
detail the steps of the approach to utilize these data for
the the metric selection and anomaly detection in the next
section.

3.1. Data Collection and Data Metrics Derivation

To set up an experiment and obtain data from a realistic
environment, we collected data by running rolling upgrade
operations in a public cloud environment. To this end, we
used environments and tools that are in wide-spread use
in industry: clusters of VMs on Amazon EC2, grouped
into Auto Scaling Groups (ASGs), Amazon CloudWatch
for collecting cloud monitoring metrics, and Netflix Asgard
for executing the operations and collecting event logs.

3.1.1. Metrics from Monitoring Tools

Amazon AWS provides CloudWatch as a monitoring
tool to track the usage and status of various resources for
many Amazon services, including Amazon EC2, S3, Dy-
namoDB, etc. In our experiments, we used CloudWatch
to collect measurements for AWS resources, specifically for
individual VM instances, Auto Scaling Group (ASG), and
Elastic Load Balancer (ELB).

CloudWatch offers two modes of monitoring: basic mon-
itoring and detailed monitoring. In basic monitoring
mode, data is collected at five-minute intervals whereas
in detailed monitoring mode, data is collected with one-
minute frequency. For this study, we used detailed moni-
toring. Depending on the type of resources, CloudWatch
may collect data at a higher frequency, but only makes
it available per minute, as minimum, maximum, average,
and possibly sum of the data points for each minute.1 The
data is available in the JSON file format and can be re-
trieved through an API.

1Like to AWS, the two other major public cloud service providers
– at the time of writing this paper, Microsoft Azure and Rackspace
– provide motoring metrics with a frequency of one minute or more.
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Figure 2: Workflow of extracting correlation between logs and met-
rics.

Monitoring tools provide multiple metrics to show the
status of various system and software resources. As with
CloudWatch, several monitoring metrics are available at
both VM instances level (showing the status resource for
each VM instance) and at group level (such as Auto Scal-
ing Group metrics). These metrics include CPU utiliza-
tion, Network traffic (both incoming and outgoing), Disk
I/O (read and write), and Latency.

In general, monitoring metrics are presented in two
forms. One form is related to metrics that show the per-
centage or the degree of the changes on the usages of the
resources, such as CPU utilisation or network traffic. The
other form indicates the status of a resource, for example
an instance being in the “stopped” or “running” state.

Figure 3: Amazon EC2 instance lifecycle – source: AWS documen-
tation.

In our study on the effects of logged events, we are inter-
ested in the metrics that represent the transitions between
states of a VM instance. For example, once a termination
action is triggered through operation execution, one VM
instance should transition from state “running” to “shut-
ting down” and eventually to state “terminated”. Fig. 3
shows the life-cycle of an Amazon EC2 instance.

The metrics available from CloudWatch do not explicitly
show the number of started or terminated instances within
an ASG. The metric “AsgInServiceInstances” shows the
total number of healthy machines in an ASG, but it is
only partly indicative of our desired metrics: if, during any
minute, a new machine becomes active and an old one is
terminated directly thereafter, the total number of healthy
machines remains static. This is a very common occur-
rence during rolling upgrade. However, the data points for
individual instances, like CPU utilization, are only present
when the machine is active. Hence, we were able to de-
rive metrics for the numbers of started and terminated
instances, respectively. These derived metrics from Cloud-
Watch data are a cornerstone of our approach, insofar as
the case of rolling upgrade is concerned.

As there is usually a large number of monitoring metrics
available, a system operator needs to decide which mon-
itoring metric or metrics to focus on. In our study, we
demonstrate how to leverage a simple statistical technique
to find statistically correlated metrics from all available
metrics rather than merely relying on domain knowledge
to separate the relevant metrics from non-relevant ones.
Additionally, we investigated how effective these target
metrics are for addressing our anomaly detection require-
ments. Lastly, we discuss how some of these metrics can
become relevant to other forms of anomaly detection.

3.1.2. Event Logs from Operations Tools

To draw any mappings between cloud metrics and infor-
mation from operation logs, we needed to extract a set of
metrics that show the occurrences of different event logs.
Although the styles of logging might be different, almost
all type of logs contain time-stamped information, whether
they are application logs, database logs, or operation logs.
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Sample of log events: 
 

"2014-11-06_10:28:29 The group testworkload-r01 has 8 instances. 8 will be replaced, 2 at a time." 

"2014-11-06_10:28:30 Disabling testworkload / i-3abc33f5 in 1 ELBs." 

"2014-11-06_10:28:30 Deregistered instances [i-3abc33f5] from load balancer ELB-01" 

"2014-11-06_10:28:30 Disabling testworkload / i-82b9364d in 1 ELBs." 

"2014-11-06_10:28:30 Deregistered instances [i-82b9364d] from load balancer ELB-01" 

"2014-11-06_10:28:33 Terminate 1 instance [i-3abc33f5]" 

"2014-11-06_10:28:34 Waiting up to 1h 10m for new instance of testworkload-r01 to become Pending." 

"2014-11-06_10:28:34 Terminate 1 instance [i-82b9364d]" 

"2014-11-06_10:28:34 Waiting up to 1h 10m for new instance of testworkload-r01 to become Pending." 

"2014-11-06_10:29:23 It took 49s for instance i-3abc33f5 to terminate and be replaced by i-58b43b97" 

"2014-11-06_10:29:23 Waiting up to 50m for Pending i-58b43b97 to go InService." 

"2014-11-06_10:29:55 It took 31s for instance i-58b43b97 to go from Pending to InService" 
 

Sample of regular expressions: 
 

"\d\d\d\d-\d\d-\d\d_\d\d:\d\d:\d\d\sThe\sgroup\s[a-zA-Z0-9\-

]*\shas\s\d+\sinstances\.\s\d+\swill\sbe\sreplaced,\s\d+\sat\sa\stime\." 
 

"\d\d\d\d-\d\d-\d\d_\d\d:\d\d:\d\d\sTerminate\s\d+\sinstance\s\[i-[0-9a-f]{8}\]" 
 

"\d\d\d\d-\d\d-\d\d_\d\d:\d\d:\d\d\sWaiting\sup\sto\s\d+m\sfor\sPending\si-[0-9a-f]{8}\sto\sgo\sInService\." 

Figure 4: Sample of log event and extracted regular expression of Rolling upgrade operation with Netflix Asgard.

Furthermore, log message represent information about an
event, including logs that indicate preparation or waiting
periods. Hence, we assume a logged event must have at
least two attributes: a timestamp and an event description.

For our case study, we used Netflix Asgard both, to ex-
ecute rolling upgrade operations as well as to collect oper-
ation logs. Asgard is an open-source, web-based tool pub-
lished by Netflix for managing cloud-based applications
and infrastructure. It automates some of the AWS cloud
operations such as deployment and upgrade, and hence
provides a higher-level management interface. Its log ful-
fils our base assumption, and contains high-quality textual
messages – albeit the latter is not required in our approach.
Asgard has been released publicly and is widely used.

In programs with any form of repetition it is common
to have logged events of recurring event types. In our case
study, every time a VM is terminated, the same type of
event is logged, where only certain parameters (VM ID,
timestamp, etc.) differ. As part of our data transforma-
tion of event logs, all unique types of event logs for an oper-
ation are identified and the regular expressions extracted.
The regular expressions can be generated from event logs
automatically as described in [26]. However, we extracted
a regular expression that matches exactly the log lines be-
longing to each event type manually. Fig. 4 shows the
sample of log events and the sample of regular expression
extracted for these log events. During log processing, the
event type for each log line can be identified by match-
ing the log line to the corresponding regular expression.
We can then derive a metric that shows the occurrence of
each event type over time throughout the operation pro-
cess. Fig. 5 shows the pattern of occurrences of the event
logs throughout the process of a rolling upgrade operation
for updating four virtual machine instances.

In the log occurrence pattern shown in Fig. 5, the axis
that is labelled as Logged event types lists the event type
1 (ET01) to event type 18 (ET18); axis labelled as Times-

tamp shows the time-line of the operation; and vertical axis
shows the number of occurrence of each logged event type
for each minute of the operation. Looking at the figure, it
reveals that there is a reoccurring pattern that is happen-
ing at different time windows. For instance, ET01, ET02,
ET04, ET05, ET06, ET07 and ET08 are just appeared at
the beginning of the running of the operation, which may
imply to be related to the logs associated to the starting
and preparation steps of the operation, while there are re-
occurring pattern for event types ET09 to ET17, which
may be responsible of recurring activities like VM termi-
nation. In this paper, we will explore and investigate the
occurrence and correlations of these logged events in de-
tail with statistical analysis. However, we think visualizing
textual log events can be helpful for a preliminary anal-
ysis and it may be useful for better understanding of the
behaviour of application operations.
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Figure 5: Visualization of occurrence of 18 event types of rolling
upgrade for 4 VM instances.
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4. APPROACH TO METRIC SELECTION AND
ASSERTION DERIVATION FROM STATIS-
TICAL OBSERVATIONS

In this section, we give the details of the key steps in
our approach, as outlined in previous section and shown
in Fig. 2.

4.1. Log-Metric Mapping

Amazon CloudWatch offers metrics with a granularity
no finer than one minute. In contrast, events can be logged
with a frequency of split seconds or several minutes, as is
in part the case in our case study. Therefore, the log and
metric data need to be mapped. Since we can observe
actual changes to cloud resources only through the Cloud-
Watch metrics, that is, only once per minute, we chose to
interpolate the occurrence strength of event log types that
occurred within each one-minute long time window to the
respective minute. The number of occurrences for each
event type is extracted as described above in Section 3.1.

Specifically, the interpolation indicates at which second
of a minute an event happened. Indicating a point of time
for the derived metric for log events would show a relative
interval of happening of set of log events. Therefore, we
parse the timestamp of each log message and extract the
point of time (seconds of a minute) the event happened.
Then a relative occurrence value is calculated as an in-
terpolated value, capturing the time-wise proximity of the
event to the full minute before and after the event hap-
pened. For instance, say event E1 happened at x minutes
and 30 seconds – then its occurrence strength is counted as
0.5 for both, minute x and minute x+1. If it happened at
x minutes and 15 seconds, occurrence strength for minute
x is 0.75 and 0.25 for minute x+1. This interpolated oc-
currence strength allows us to map the event log data onto
the one-minute interval cloud metric data.

4.2. Clustering Logged Events

We cluster logged events into higher-level activities, for
two reasons: (i) logs are often low-level and voluminous; by
raising the level of abstraction, users may find the informa-
tion provided more useful; (ii) if a set of event types always
co-occur, then high correlation among them may cause
a problem of multicolinearity in some statistical models,
which can lead to unreliable and unstable estimates.

To facilitate the clustering process, we adopted the Pear-
son product-moment correlation coefficient method to de-
rive a measure of association strength between logged
events. Based on the interpolated occurrence strength de-
scribed above, we use the Pearson correlation coefficient
to automatically determine where strong associations ex-
ist between any two event types. Event types with a very
high correlation can then be combined into activities.

In our data analysis, we used SPSS to derive the Pear-
son correlation coefficient between variables by extracting
the correlation strength and the direction of the linear as-
sociation between the types of event logs. Fig. 6 shows

a snippet of the Pearson-r values for correlation distance
between 18 different event types of the rolling upgrade op-
eration of upgrading 40 VMs instances, four at a time.
The value of Pearson-r ranges from −1 to +1; a value of
zero or very close to zero indicates that there is no corre-
lation between two variables. A value close to 1 indicates
a strong positive correlation between the variables, that
is, in our case, that the events of these types (almost) al-
ways co-occur. Negative values indicate that events of the
respective event types rarely co-occur. It is important to
note that in this stage, we assumed that we don’t have
knowledge about the context of the logs and we simply
leverage Pearson as a tool to find whether any correlation
exist between event logs. For example, from Fig. 6 we can
observe there is a strong correlation between two events of
ET08, ET09, ET10 and ET11 , and perhaps these events
belong to one activity. By looking at the context of the
logs we can confirm that all these event types are respon-
sible for the process of VM termination of Auto Scaling
Group: ET08 and ET09 reflects the VM is going to be
disabled and removed from ELB and ET10 and ET11 indi-
cates that the VM is going to be terminated. More details
of the process and results of clustering of logs to activities
are explained in Section 5.1. It is important to note that
clustering event logs simply based on the correlation of oc-
currences of the events may not lead to a set of meaningful
activities. Where user interaction is a direct application,
other factors should be taken into consideration, for ex-
ample, as done in [26].

4.3. Statistical Event-Metric Correlation Derivation

Correlation is defined as a statistical tool to measure the
degree or the strength of association between two or mul-
tiple variables, whereas causation expresses the cause and
effect between variables [27]. It is important to note that
while the presence of causation certainly implies correla-
tion, the existence of correlation only implies a potential

Figure 6: Snippet of a Pearson correlation matrix .
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causation. For instance, one may observe a correlation be-
tween power consumption and the number of errors. How-
ever, the underlying cause of a higher number of errors
could be due to the increased chance of observing any er-
ror when a higher number of VMs is involved as the result
of the scaling up process to respond incoming higher work-
load traffic.

Correlation is a powerful tool, as it can signify a predic-
tive relationship that can be exploited in practice, espe-
cially for forecasting. In order to infer whether a correla-
tion implies causality, one needs to ensure that the correla-
tion is extracted from a controlled environment, that is, to
ensure there are no factors, other than the ones included in
the analysis, affecting the target variable. If this criterion
is fulfilled, a meaningful correlation can be interpreted as
causation.

For the purpose of this study, we are interested in find-
ing the effect of operation actions on cloud resource state
changes. To this end, we start from data that has been
collected over a period of time and has resulted in a suf-
ficiently large number of data points. We then use a
regression-based technique to discover correlation between
logged events and changes in metrics, that is, the absence,
presence, and strength of such changes. In our running
example, whenever there is a log event indicating that a
termination request for one VM has been issued, the ex-
pectation is that within the next minute, one VM will
transition from “running” to “shutting-down”, and finally
“terminated”. As the example suggests, it is rational to as-
sume that there is a direct linear relation between a logged
action and its effect as a change of a VM state.

In our analysis, we adopted a Multiple Regression tech-
nique, namely Ordinary Least Squares (OLS) regression.
“There are two general applications for multiple regres-
sion: prediction and explanation” [28]. This means, first,
multiple regression can be utilized to predict an outcome
for a particular phenomenon, based on the knowledge
available from some other correlated variables [29]. Sec-
ond, multiple regression can be used to understand how
much of the variation of the outcome can be explained
from the correlated variables. Therefore, multiple regres-
sion is done for several independent variables (IV) as pre-
dictors (i.e. event logs), and one dependent variable (DV)
(i.e. a monitoring metric) as the outcome.

Given y is the dependent variable, x1, x2, . . . , xn the in-
dependent variables, and ε to be the error term or noise,
the general form of a linear regression function is

y = α+ β1x1 + β2x2 + . . .+ βnxn + ε (1)

where the intercept α denotes a constant value that is the
expected mean value of y when all x=0. The coefficients
β1x1 +β2x2 + . . .+βnxn denote the effect of each variable
on an overall model. The coefficient parameters measure
the individual contribution of independent variables to the
prediction of the dependent variable after taking into ac-
count the effect of all the independent variables.

Several types of linear regression models are based on
the above mechanism, and these types differ in the kinds
and distribution of data they are suitable for. One chal-
lenge is to find a model that fits the data at hand well. We
analysed our data with multiple regression and generalized
linear regression models, including Poisson regression and
Negative Binomial regression, respectively. It is beyond
the scope of this paper to explain in detail the results of
these models. The multiple regression model (OLS) pro-
vided the best fit for our data.

Multiple regression is a robust model, used as the base
of data analysis in many disciplines. It is important to
note that, in contrast to many common uses of multiple
regression (for example in the social and medical domain
where the sample data collection is expensive, limited, and
comes with a degree of bias), for our use in log and metric
data analysis, there is higher confidence in accuracy of the
sample data as they are collected through machine-based
observations. Further, in our approach the emphasis is
on validation of the regression results through empirical
evaluation, rather than mere generalization from the ob-
servation of sample data.

4.4. Target Metric Selection

In cloud resource monitoring, there are usually many
monitoring metrics available. For example, AWS Cloud-
Watch offers 168 metrics for an ASG with 10 machines, an
ELB and an Elastic Block Storage (EBS).2 When admin-
istrating tens or hundreds of machines, tracking changes
on each metric is often impractical and, in many cases,
not immediately beneficial. In fact, system operators are
often exposed to an excessive amount of monitoring infor-
mation, and they receive too many monitoring warnings
and alerts [12, 13, 14]. Other problems include a system
operator receiving too many false alarms or a flood of alerts
from different channels about the same event [30].

This excessive information load can make the detection
of anomalies more complicated, and it may delay the de-
tection of an issue at critical times. Therefore, it is impor-
tant to identify which subset of monitoring metrics is most
relevant for a specific monitoring requirement. In today’s
practice of system monitoring, this task is done by system
operators mostly manually, based on their domain knowl-
edge. In fact, most of software monitoring packages offer
customization, often allowing the choice which metrics to
show and user-defined alarms. However, this customiza-
tion has become more difficult with the ever-growing num-
ber of resource types in cloud environments and the variety
of associated metrics.

2At the time of writing this paper, Amazon AWS pro-
vides metrics monitoring for 30 AWS services including 14 met-
rics per EC2 instance, 8 metrics per ASG, 10 metrics per
ELB and 10 metrics per EBS. For further information re-
fer to: http://docs.aws.amazon.com/AmazonCloudWatch/latest/

DeveloperGuide/CW_Support_For_AWS.html
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Figure 7: Checking the relevancy of a monitoring metrics.

We developed a new approach that facilitates the pro-
cess of metric selection, primarily by statistical analysis
and objective insights, i.e., the statistically most relevant
target metrics. In our concrete use case, we investigate all
the group-level metrics like CPU utilisation and Network
input/output, as well as state-based metrics like StartedIn-
stances and TerminatedInstances using regression analysis
as explained in Section 4.3. Once a multiple regression
equation has been constructed, we can check how strong
the regression output is in terms of (i) correlation of the
event logs with the target metrics, and (ii) the model’s the
predictive abilities.

The correlation is assessed by extracting the Correla-
tion Coefficient, denoted by R, and the predictive ability
is examined by the Coefficient of Determination, denoted
by R2 (R-squared). The values of both R and R2 lie be-
tween 0 and 1. R measures the strength and the direction
of a linear relationship between independent variables (log
events) and the target variable (a monitoring metric). In
contrast, R2 shows the proportion of variance in a tar-
get variable (y) that is explained by predictors (x1, x2,
xi, ...xn). This allows us to determine how certain one can
be in predictions derived from a given model. The closer
R2 is to 1, the better the model and its prediction. There-
fore, we use the coefficient of determination R2 to identify
whether the behaviours of metrics are significantly influ-
enced by the operation’s activities. Otherwise, the metric
will be identified as potentially not being influenced by
the operation’s activities. Fig. 7 illustrates these steps. It
is important to note that a high value for R2 indicates a
metric has linear relationship with the activity logs of an
operation, and such a metric can be potentially employed
for the anomaly detection of an operation. When a metric
does not show a correlation with the operation’s activities,
either there is no direct relationship between them or there
might be a non-linear relationship that could be explored
further with non-linear regressions.

4.5. Assertion Derivation for Fault Detection

Once the correlation and causation relationships be-
tween events and metrics is determined, these can be for-
mulated as assertions, such that an assertion evaluation
service can determine at run-time if the assertions are ful-

filled. If any assertion is violated, the service will raise
an alarm, for example, to trigger automatic diagnosis or
remediation actions. To derive assertions, we extract the
regression equation from the multiple regression coefficient
results, where y denotes the dependent variable (e.g., num-
ber of terminated instances), and x1, x2 and x3 refer to
the relevant activities. The resulting regression equation
is

y = α+ β1 ∗ x1 + 0 ∗ x2 + β3 ∗ x3 + . . .+ 0 (2)

From the model, we learn concrete values for α and the
βi. In particular, for any xi where the explanatory anal-
ysis of a correlation is not statistically significant, where
(p > .005) or Standardized Coefficient is close to zero,
we set βi = 0. At run-time, each log event is processed
as outlined earlier in this section, so that an interpolated
occurrence strength for each of the independent variables
(x1, x2 and x3 in the example) can be obtained. Every
minute, a prediction can be calculated and compared with
the actual CloudWatch metrics.

One challenge remains: while some of the CloudWatch
metrics are discrete values (such as the number of started
and terminated VMs), the prediction always has a contin-
uous result value. This value then needs to be discretized.
The easiest method for discretisation is rounding the num-
ber, but this may lead to predictions with a fairly low con-
fidence. For example, how do we interpret the meaning of
half a VM was terminated when y=0.5? Another method
is to define a threshold t, such that 0 < t < 0.5, and the
prediction is set to the natural number i closest to y iff y
is closer to i than t, that is, |y − i|<t. Finding a suitable
threshold t has to be done for each application scenario
separately, as a trade-off is needed between missing too
many real alarms (false negatives) and receiving too many
false alarms (false positives).

5. EXPERIMENTAL RESULTS FOR LEARN-
ING

In this section, we discuss the experiments conducted
for the learning phase – the next section covers the evalu-
ation of error detection. We performed our analysis based
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on two separate case studies of rolling upgrades: first, run-
ning multiple runs of rolling upgrade of 8 instances, up-
grading two instances at a time; and the other, running
rolling upgrade of 40 instances, upgrading four instances
at a time. We conducted 10 rounds for each case of run-
ning rolling upgrade on Amazon EC2, and gathered 283
and 514 logged events respectively for 8 and 40 instances,
as well as monitoring data from CloudWatch.

5.1. Logs Clustering Learning by Pearson Coefficient

We generated the Pearson correlation coefficient for two
different data sets. First, we generated correlation data for
running a rolling upgrade of 8 virtual machine instances,
upgrading two instances at a time. Then, we defined a
rule that event types to be grouped together when they
had correlation strength of more than 75% (Pearson-r >
0.75) whereas values show highly statistical significance
(i.e. p-value < 0.01). In other words, as a rule, any event
type of an activity should indicate at least 75% correla-
tion with any other event type of the group that formed
an activity. One may choose a higher or lower level de-
pending on the desired abstraction level to obtain from
logs. We chose Pearson-r > 0.75 as it is low enough to
avoid multicollinearity in our regression analysis while it
is high enough to associate strongly correlated event types
together. To make sure that the correlation of activities
is not affected by different configuration and scales of the
operation, we applied the same process for running rolling
upgrade of 40 virtual machine instances, upgrading four
instances at a time.

In both experiments, although there were slight differ-
ences in correlation values, the log abstraction led to iden-
tical clusters. The 18 event types are grouped into six clus-
ters of event logs (i.e. activities). Note that the whole pro-
cess of log abstraction was done in an automated manner
without relying on domain knowledge. To evaluate how
meaningful our log abstraction result is, we investigated
the context of the log entries; the result, given in Table 1,
shows that all the event types of each cluster are meaning-
fully related to each other. For instance, the four events
DisablingXInELB, RemoveInstanceFromELB, Terminate-
Instance, and WaitingInstancesPending that are clustered
together are related to the action of terminating a VM
instance. For simplicity of the analysis, each cluster was
given a name according to the context of its event types.
The full logs to activity mapping is given in Table 1.

We compared our result of creating a log abstraction
with the one reported in a previous study [10] where the
same operation (i.e. rolling upgrage) was extracted based
on domain knowledge expertise. In the comparison, we
did not find any conflict in terms of mapping event logs
to activities, although the level of abstraction is slightly
different in [10]. Based on the resulting similarity, we con-
cluded that the derived log abstraction was meaningful
and appropriate for further analysis with regression.

5.2. Identification of Relevant Target Metrics

To investigate the relationship between the occurrence
of event types and cloud metrics in our regression model,
we assigned the activities derived from log clustering as
predictor variables and monitoring metrics from Cloud-
watch as candidate target variables. We aimed to iden-
tify which metrics have the highest potential to reflect the
effect of running rolling upgrades in the system.

Several metrics are available in CloudWatch, both at
the instance level and at the group level. Considering
instance-level metrics is, in general, impractical, especially
if hundreds of VM instances are to be considered. Further,
metrics associated with instances cease to exist once the
corresponding VM goes out of service. Therefore, we con-
sider group-level metrics of instances and metrics of the
EC2 Auto Scaling Group (ASG) and the Elastic Load Bal-
ancer (ELB). To this end, we managed to obtain data for
17 group-level metrics based on above-mentioned experi-
ments.

We performed multiple regression analysis to predict
the value of monitoring metrics given the six activities
extracted from logged events, from the 20 total runs of
rolling upgrade for 8 and 40 instances. The results of lin-
ear regression analysis over group-level monitoring metrics
are shown in Table 2.

In the table, R denotes the correlation between a given
monitoring metric and occurrences of activities from the
event logs, and R2 indicates how well the model predicts
new observations. In general, R2 is used to assess the
predictive power of the regression model for the given pre-
dictors and target variables. Adj.R2 is a modification ver-
sion of R2 that adjusts for the number of predictors in a
model. The value of R2 may increase by chance if new
predictors are added to the model, leading to over-fitting
of the model. Adj.R2 takes this into account by penalizing
models with more variables, meaning that the increase in

Table 1: Event logs to activity abstraction for the rolling upgrade
operation

Event Activity

ET01 StartedThread

A1 Start of Rolling
upgrade (sorted
instances)

ET02 UpdatingLaunchWithAmi
ET03 CreateLaunchConfig
ET04 UpdatingGroupXToUseLaunchConfig
ET05 UpdateASG
ET06 SortedInstances
ET07 XInstancesWillBeReplacedXAtATime

ET08 DisablingXInELB A2 Remove Instance
from ELB and
Terminate Instance

ET09 RemoveInstanceFromELB
ET10 TerminateInstance
ET11 WaitingInstancesPending

ET12 ItTookXminInstanceToBeReplaced A3 Instance
Replacement ProcessET13 InstanceInLifeCycleStatePending

ET14 WaitingForInstanceToGoInService

ET15 ItTookXminInstanceToGoInService A4 New Instance to go
in serviceET16 WaitingForInstanceToBeReady

ET17 InstanceXIsReady A5 Instance is ready

ET18 Completed A6 Rolling upgrade
completed
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Table 2: Coefficient Correlation and Coefficient Determination results for each metric

Experiment: 8 Instances Experiment: 40 Instances

Metric R R2 Adj.R2 p-value R R2 Adj.R2 p-value

CPUUtilizationAverage 0.751 0.564 0.555 0.000 0.801 0.642 0.638 0.000

CPUUtilizationMinimum 0.391 0.153 0.134 0.000 0.367 0.135 0.124 0.000

CPUUtilizationMaximum 0.810 0.656 0.649 0.000 0.855 0.732 0.728 0.000

NetworkInAverage 0.532 0.283 0.267 0.000 0.299 0.089 0.079 0.000

NetworkInMinimum 0.428 0.183 0.165 0.000 0.640 0.410 0.403 0.000

NetworkInMaximum 0.214 0.046 0.025 0.420 0.166 0.027 0.016 0.028

NetworkOutAverage 0.502 0.252 0.236 0.000 0.299 0.090 0.079 0.000

NetworkOutMinimum 0.475 0.226 0.209 0.000 0.635 0.403 0.396 0.000

NetworkOutMaximum 0.349 0.122 0.103 0.000 0.118 0.014 0.002 0.313

InServiceInstances 0.771 0.595 0.586 0.000 0.676 0.457 0.450 0.000

ELBLatencySum 0.405 0.164 0.146 0.000 0.118 0.014 0.002 0.304

ELBLatencyAverage 0.430 0.185 0.167 0.000 0.060 0.004 0.008 0.934

ELBLatencyMinimum 0.169 0.029 0.007 0.235 0.052 0.003 0.009 0.968

ELBLatencyMaximum 0.458 0.209 0.192 0.000 0.125 0.016 0.004 0.239

ELBRequestCount 0.091 0.008 0.000 0.808 0.135 0.018 0.007 0.152

StartedInstances 0.828 0.686 0.679 0.000 0.884 0.782 0.780 0.000

TerminatedInstances 0.921 0.848 0.845 0.000 0.955 0.912 0.911 0.000

R2 (i.e. the improvement of the fitting) must be reason-
ably large for the inclusion of a new variable to cause an
increase in Adj.R2. Thus, in our analysis, Adj.R2 was the
most appropriate measure to assess the relevance of each
of monitoring metric and the activities of the rolling up-
grade operations. Prediction abilities of the metrics based
on the value of Adj.R2 are shown in Fig. 8.

For several metrics, highlighted in bold in Table 2, we
observe high values of R2 and Adj.R2 which suggests that
the variation of these monitoring metrics can be explained
by our regression model. In other words, given operation
logs the model is capable of predicting the value of mon-
itoring metrics for a few of the metrics to a fairly good
extent. However, for the rest of monitoring metrics, the
regression model did not fit the data, and a derived re-
gression equation may lead to weak predictions. As shown
in Fig. 8, the best fit of the model is obtained for Termi-
natedInstances in the experiment with 40 instances: 91.2%
of the variation in TerminatedInstances can be explained
by the linear relationship between six predictor variables
derived from event logs and the TerminatedInstances. In
this case, R2 = 0.912 and Adj.R2 = 0.912 are statisti-
cally significant at confidence level p < 0.005. A similar
interpretation of the model can be inferred from Table 2
for the experiments with 8 instances and 40 instances for
other metrics.

The results show that seven metrics have a p-value
greater than .005, indicating that our linear regression
analysis does not show a good fit for these metrics. There-
fore, they are not valid candidates for our anomaly detec-
tion requirement. These seven metrics include all five ELB
metrics. Other metrics such as NetworkInput show rela-
tive correlation with the operation’s event logs. However,
correlation and prediction power are not strong enough
to be considered as potential candidates for our anomaly

detection. Based on the above results, we select the four
metrics that had the best prediction precision for further
analysis: TerminatedInstance, StartedInstances, CPUUti-
lizationMaximum and CPUUtilizationAverage.

5.3. Correlation and Causality Learning with Multiple Re-
gression Model

In the previous section, we identified metrics that had
a strong correlation with the activities of the rolling up-
grade operation. We now need to find out which of these
metrics are useful for the purpose of our anomaly detec-
tion requirements. We articulate our anomaly detection
requirement as follows:

To verify the successful execution of upgrading VM in-
stances to a new version using the rolling upgrade opera-
tion in the environment of Amazon EC2.

In other words, we aim to detect anomalies during an op-
eration’s execution as mismatching values in the compari-
son of the actual value of a target metric with a predicted
value, which we calculate from a regression equation. To
this end, we explore the correlation and causalities of our
regression model to assess how well we can leverage it to
satisfy the above anomaly detection requirement.

One of the objectives of performing multiple regression
analysis was to find an explanatory relationship between
independent variables (activities) and the dependent vari-
ables (cloud metrics). In Section 5.2 we found the metrics
that have correlation with overall operation’s activities,
yet we need to find out which of operations’ activities are
affecting a target metric to derive an assertion specifica-
tions for our anomaly detection. We thus seek to distin-
guish the activities of the cloud operation that are likely to
affect one of the target metrics from the others. In order to
perform such analyses, we considered the Correlation Co-
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Figure 8: Prediction ability for each monitoring metric based on Adj.R2.

efficient results for each predictive metric of our multiple
regression models generated by regression analysis.

We will first explain the process we used by applying
it to the case of the Terminated-Instances metric and the
experiments with 40 instances. This is followed by a sum-
mary of the results for the StartedInstances and CPUUti-
lization metrics, respectively.

Table 3 shows the Coefficient Correlation resulting from
the generated regression analysis. By considering the p-
values in Table 3, we observe that the correlation of the
metric and activities A3 and A4 are statistically insignif-
icant (p > .005). Therefore, we conclude that the corre-
sponding two variables cannot explain the variation of the
target variable. Further, the standardized regression coef-
ficient shows that the contribution of activities A1 and A6
are almost zero, and can also be excluded. These observa-
tions allowed us to narrow the set of contributing activities
down to A2 and A5. Rerunning multiple regression with
only these two activities resulted in the outcomes shown
in Table 4.

Given the high difference between the Activity A2
(0.836) and the Activity A5 (0.15), presented in Table 4,
it can be concluded the Activity A2 is the main cause of
termination of an instance. The context of the activity log
confirms that the model was effective in correctly identify-
ing the activities that causes the termination. These find-
ings can then be used to define an assertion specification,
as explained in Section 4.5, with the following equation:

y = 0.051 + 1.197 ∗A2 + 0.149 ∗A5 (3)

We applied a similar approach for the regression analysis
of other candidate metrics. Fig. 9 shows the importance
or relative contribution of each predictor for each candi-
date metric, similar to the one that is explained for the
TerminatedInstances in Table 3, Table 4 and Equation 3.

Our key anomaly detection objective articulated at the
beginning of this section was: which of these metrics is
most suitable to be leveraged for verification of successful
execution of a rolling upgrade operation? To find the an-
swer to this question, two factors need to be considered:
(i) which metrics have the best prediction ability using
statistical information, and (ii) what types of metrics are
best suited for the purpose of anomaly detection.

In regards to the first consideration, among the avail-
able metrics few show a high correlation in the regression
model. The predictive ability of TerminatedInstances is
the highest with R2 = 0.912 and Adj.R2 = 0.911. Such
factual information can be a strong aid for an operator
when filtering out all but the most relevant metrics, and
to understand which metrics are affected by which activi-
ties in an operation.

In regards to the second consideration, given the
anomaly detection requirement for a rolling upgrade op-
eration, state-based metrics that would reflect the target
changes of the rolling upgrade operation should be the first
candidates. This is important because our anomaly detec-
tion has the objective to find unintended changes of num-
ber of terminated and updated VMs while the upgrade op-
eration is running. Therefore, looking at state-based met-
rics is a rational choice, and thus we considered Terminate-
dInstances and StartedInstances as the best suited metrics
for anomaly detection. Nevertheless, for the sake of com-
parison between the results from an state-based metric
(e.g. TerminatedInstances) and non-state based metrics
(e.g. CPUUtilization) we demonstrate the evaluation re-
sult of both type of metrics in the next section.

Note that other (types of) metrics might suit anomaly
detection with different goals better. For example, if we
had the objective of detecting performance anomalies of
our cloud resources during rolling upgrade operations, then
a CPU utilization metric could be hypothesized to be a
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Table 3: Coefficient Correlation - 40 instances - Terminated-Instances Metric

Predictors β Std. Error B p-value

Intercept (Constant) 0.083 0.027 — 0.003
A1 Start of Rolling upgrade 0.529 0.208 0.035 0.011
A2 Terminate Instance 1.139 0.026 0.836 0.000
A3 Instance Replacement -0.023 0.016 -0.019 0.168
A4 New Instance to go in service -0.023 0.018 -0.017 0.214
A5 Instance is ready 0.201 0.026 0.150 0.000
A6 Rolling upgrade completed -0.730 0.184 -0.058 0.000

*Note. β = Unstandardized regression coefficient;
B = Standardized regression coefficient.

Table 4: Coefficient Correlation for identified influential factors - 40 instances - Terminated-Instances Metric

Predictors β Std. Error B p-value

Intercept (Constant) 0.051 0.021 — 0.018
A2 Terminate Instance 1.197 0.024 0.879 0.000
A5 Instance is ready 0.149 0.023 0.111 0.000

*Note. β = Unstandardized regression coefficient;
B = Standardized regression coefficient.

more appropriate metric. Such outcomes could also be em-
ployed for dynamic reconfiguration of cloud auto-scaling
policies when a rolling upgrade operation is running, to ef-
fectively counter-balance the impact of running these types
of sporadic operations.

A question a reader may asks is how much is needed to
relearn when the conditions and configuration of systems
change. In our case study, the learning process has been
conducted from two different learning data sets and both
almost lead to the same conclusion, though the experi-
ment with 40 instances provided slightly more accurate
learning as there were more records of data to be utilized
for our statistical analysis. As far as we have sufficient
data for a statistical analysis, one can be sure that even
in the case of changing conditions the result of identify-
ing selected metrics and the log event predictors to affect
a particular metric will still be the same. For instance,
the metric of TerminatedInstances will always show high
correlation with activities of rolling upgrade (Fig. 8), or
A2 in logs (Fig. 9) will always have the highest impact
on changing the TerminatedInstance metric in compare to
other activities. However, how much the impact of ac-
tivities on metrics will change if the system condition or
configuration changes needs further investigation.

6. ANOMALY DETECTION EVALUATION

In this section, we describe how we applied our approach
to error detectiong in the rolling upgrade case study. To
this end, we injected faults into 22 runs of rolling upgrade,
and used our learned model for prediction and fault de-
tection. Additionally, we address the cases of anomalies
that result from ripple effects of faults, and present our
technique that can distinguish them from direct effects of
faults. Key insights and lessons learned from our experi-
ments are discussed at the end of the section.

6.1. Evaluation Method

In order to evaluate how well the derived assertions can
detect errors, we conducted a second experiment which
was run independantly from the one used to learn the
model. The raw data of this experiment was obtained from
experiments run by our colleagues [14]. The experiments
were conducted on Amazon EC2, upgrading 8 instances,
two instances at the time. Rolling upgrade was executed
while multiple tasks (HTTP loads, CPU intensive tasks,
and Network intensive tasks) were running, and faults sim-
ulating individual VM failure were randomly injected into
the system. We obtained data on 22 rounds of rolling up-
grade operations, including 574 minutes of metric data and
5,335 lines of logs emitted by Asgard. A total of 115 faults
were injected at random.

As explained in Section 5, the equations derived from
multiple regression models can be used to predict the
number of started and/or terminated instances within the
last minute: given the observed log lines, how many VMs
should have been started or terminated? If this predicted
value does not match the actual value, an alarm is raised.
We wanted to find out how accurately our approach could
identify anomalies. In any given time window, in case there
are concurrent anomalies happening in the runtime, our
approach could identify most of these anomalies. These
anomalies, such as sudden termination of a VM or a peak
on CPU usage, are distinct from the impact of a rolling
upgrade operation in our approach because the effect of
the activity of rolling upgrade operations on the status of
resources has already been taken into account to calculate
the predicted value.

Since the injected faults were all VM failures, our ap-
proach tries to distinguish between VMs being terminated
due to legitimate operational activity, and termination
caused by fault injection. We chose to inject faults that
caused VM failures because the scope of our work has a fo-
cus on DevOps/sporadic operations. For such operations
– in particular, for the rolling upgrade case study used in
this study – the state of VMs is a prime source of anoma-
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Figure 9: Predictors relative importance for selected monitoring metrics based on Standardized Coefficient(B)- bigger value indicates higher
contribution of an activity to the changes in a metric.

lies. Therefore, it was reasonable to inject fault types that
cause VM termination rather than other types of faults.

The faults were injected automatically to the VMs ev-
ery three to 6 minutes by a software service that was run-
ning in parallel with the rolling upgrade operation. In our
experiments each fault has been injected into one VMs
separately. There have been cases where a maximum of
two VMs went out of service due to two separate fault in-
jections during one time window. It is worth mentioning
that rolling upgrade operations can be a time consuming
process and they may target tens or hundreds of VMs, it
is possible that more than one failure can occur during
one rolling upgrade operation and thus we thought hav-
ing more than one fault being injected in rolling upgrade
operation would be more realistic and thorough evalua-
tion. When an anomaly is detected during a time window
an alarm is issued containing the information of differ-
ence between the expected value calculated from regres-
sion equation based on log events versus the actual num-
ber of termination occurred in each minute as indicated in
metric.

In order to measure the precision and recall of the pre-
diction, we classified the result of the prediction into four
categories: True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). Table 5 explains
these four categories in terms of an alarm being raised (or
not), and a fault being injected (or not). For any of the
574 minutes of data, we aim to raise an alarm when a
fault was injected (TP) or raise no alarm when no fault
was injected (TN). FP and FN thus mark cases where the

prediction did not work. These four categories are the
basis for calculating precision, recall, and the F-measure.
Precision is a measure to assess the exactness of the result:
the percentage of the valid issued alarms out of all issued
alarms: P = TP

TP+FP . Recall is a measure of complete-
ness of correct alarms: the percentage of injected faults
where an alarm was raised: R = TP

TP+FN . The F-measure
(or F1-score) is the weighted average (harmonic mean) of
precision and recall: F1 = 2 ∗ P∗R

P+R .

6.2. Evaluation Result with State-Based Metric

In our study, we observed possible delays between an op-
eration action and its effect(s) becoming observable. For
instance, consider the duration of terminating one VM: the
time between the respective event being logged and the
VM actually being terminated may vary between 15 sec-
onds and 3 minutes. It is thus not uncommon that a VM
is terminated in one minute, but the CloudWatch metrics
only reflect the termination in the next minute, or possi-
bly later. This delay is observable in legitimate operations’
actions, as well as in injected faults. Therefore, we stud-
ied the results of applying three different time windows
for prediction: zero minutes (0mTW), that is, only the
current minute; one minute difference (1mTW), that is,

Table 5: Classification metric for the generated alarm

Fault Injected Fault Not Injected
Prediction 6= Actual: Alarm TP FP
Prediction = Actual: NO Alarm FN TN
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Table 6: Evaluation results of state-based metric – basic detection.

Evaluation Metrics 0mTW 1mTW 2mTW

Precision 0.567 0.712 0.745
Recall 0.670 0.914 0.921
F1-Score 0.706 0.826 0.849

the current minute, the minute before, and the minute af-
ter; and two minutes difference (2mTW), that is, from two
minutes before to two minutes after. It should be noted
that a longer time window also delays when the result of
the prediction becomes available. This is an application-
specific trade-off in practice: is it worth waiting two min-
utes longer for an alarm, if the precision goes up by x
percent?

Ripple effects may occur when the model predicts a par-
ticular change to one (or more) metric values, but due to
the fact that an anomaly has already occurred (e.g., a VM
instance prematurely terminated), the predicted change
does not occur. This can lead to further false alarms at a
later stage of the operation’s process.

The results of monitoring the operation based on the
metric of TerminatedInstances and log context with the
three different time windows are shown in Table 6. Pre-
cision, Recall, and F1-score are given without considering
the impact of the ripple effect of injected faults. The reader
may note that there is a significant difference between
the basic precision value of 0mTW and 1mTW: 0.145 (or
14.5%). The difference between 1mTW and 2mTW, in
contrast, is comaratively smaller. This observation can be
explained because of the time delay that the action of ter-
mination takes to be completed: the majority of termina-
tions is completed either within the current minute or the
next minute – it rarely takes more than that. Time window
size for alarms can be configurable in a real-time monitor-
ing system. For our experiment, we concluded that 1mTW
offers a good trade-off between capturing most anomalies
and keeping the delay short, respectively.

Not all the effects of injected faults result in observable
errors immediately. There are cases where errors have rip-
ple effects. Table 7 shows three types of ripple effects we
observed in the experiment, as well as their number of oc-
currences. The first two types are essentially race condi-
tions when rolling upgrade and fault injection both want to
terminate a particular VM. In particular, rolling upgrade
retrieves the list of VMs to be replaced at the beginning
of the process, and subsequently goes through the list and
attempts to terminate instances. If a VM has already been
terminated earlier by fault injection – whether or not cor-
rectly detected by our approach at that time – this is not
taken into account by Asgard. Instead, the log states that
Asgard attempted terminating a VM, and no such effect
is observed – hence an alarm is raised. Since no fault had
been injected at that time, the alarm is counted as FP in
the basic detection (cf. Table 6). To distinguish actual
failed prediction from ripple effects (where the prediction
behaved as expected), we analyzed all 30 FP and 7 FN

Table 7: Type of ripple effects observed in the experiment.

Occurrences Ripple Effect Explanation

21 Rolling upgrade’s attempt to terminate
a VM has no effect, since the respective
VM has already been terminated by fault
injection.

5 Fault injection’s termination attempt
fails due to instance being already ter-
minated by rolling upgrade earlier.

2 Instance is terminated by fault injection
while pending to be started.

Table 8: Evaluation results with state-based metric – detection result
with ripple effect

Evaluation Metrics 1mTW Ripple Effect 2mTW Ripple Effect

Precision 0.923 0.925
Recall 1.000 1.000
F1-Score 0.960 0.961

cases for 1mTW (in total 37 cases), by looking at details
of the log lines and metrics. We found that 28 out of 37
FN/FP cases were caused by ripple effects of fault injec-
tion. Since the prediction behaved as expected in these
cases, we re-classified them as TP/TN, leading to the final
results shown in Table 8 and in Fig. 10 respectively.

6.3. Evaluation Result with Non-State Based Metrics

In the previous section we demonstrated and disscussed
the anomaly detection performance utilizing Terminate-
dInstance as the main monitoring metrics. In our met-
ric selection process in Section 5.2 we observed non-state
based metrics of CPUUtilizaionMaximum and CPUUti-
lizationAverage also have fairly good correlation with the
rolling upgrade log activities, though not as high correla-
tion as the TerminatedInstances. In this section we fol-
low the same approach that was explained in detail in the
previous section and show the result of anomaly detec-
tion when using CPU-related metrics and compare this
with the results we obtained when using the Terminate-
dInstancs metric.

In the approach for the state-based metric the thresh-
old value is an indicator of whether there is a change of
state occurred or not, and whether that matches with the
normal behaviour of the system, as with non-state based
metrics such as CPU-Utilization a threshold indicates the
value that separate the outliers from the range of normal
values of the metric. In most statistical based anomaly
detection techniques, Standard Deviations (σ) from Mean
are used to detect outliers, often the values dispersed above
±2.5σ to ±3.0σ are considered outliers [31]. In our ap-
proach, the metric threshold indicates the acceptable range
of difference between the values calculated from the re-
gression formula and the actual value of the CPU utiliza-
tion. Any observed value above these range are considered
anomalies. In our experiment, we consider the difference
of predicted value versus actual value of CPU utilization
that are within one Standard Deviation ±1σ from Mean
to be normal, otherwise an alarm is registered.
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Similar to the case of TerminatedInstances, we have used
two separate datasets for learning and evaluation. In both
learning and evaluation systems, the monitored system
was exposed to a workload with average of 40% of EC2
Auto Scaling Group aggregated CPU power with Variance
of 4.2 and Standard Deviation of 2.05. The systems un-
der test for evaluation were also exposed to an additional
CPU workload task of average 20% of EC2 Auto Scaling
Group aggregated CPU power that lasted between two to
three minutes, and with injection frequency of every two
minutes.

In contrast to general anomaly detection where that
metric is the main source of information, we have con-
textual information for the operation and we obtained the
approximate effects of operation activities on resource con-
sumption from the learning dataset through the regression
analysis. Among all the log activities of the operation, Ac-
tivity A4 (New instance to go in service) had the highest
impact on CPU utilization, Fig. 9 while A2, A3 and A5
had very low impact on CPU Utilization and A1 and A6
did not show an observable impact. We took into account
the impact of these activities based on Equation 3 and
calculated the Precision, Recall and F-Score. The result is
shown in Table 9 and Fig. 10.

As shown in the Table 9 and in the figures, the over-
all results of both precision and recall for a zero minute
time window is very low for the both CPUAverage and
CPUMaximum metrics, then with expanding time window
to one minute before and after the collected data point
the result shows improvements. Finally the best results
were obtained by using two minute time windows. There
are two reasons that we observed a delay of the effect of
failure of VMs with CPU consumption: one is similar to
the effect for TerminatedInstances, as the action of termi-
nation of instances varies between 30 second to over two
minutes; second reason is the activity associated to pro-
cess of an instance to go into service. The activity A4 has
the highest CPU consumption according to our findings
demonstrated in Fig. 9, and it takes place right after the
termination process of the instance is completed.

The reader may note that there is a considerable gap
between anomaly detection delay between TerminatedIn-
stance and CPUUtilization. Such an observation can be
explained as follows: for the case of detecting anomalies
with TerminatedInstance, we had the information to de-
cide when the termination happened and whether it was
the result of a legitimate process or our fault injection, and
that helped us to detect failures as soon they occurred.
While for detecting failure with metric-based on CPU uti-
lization, the significant symptoms are observed after termi-
nation, when a new machine is under the process of going
into service.

6.4. Ripple Effect Detection

In the previous section we briefly discussed the pres-
ence of ripple effects of errors and the way our approach
identified them as anomalies. We demonstrated that our
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Figure 10: Results for three different time windows and with ripple
effects for CPUAverage and CPUMaximum vs. TerminatedInstance.

proposed approach was effective in detecting injected fail-
ures with a high precision. Nevertheless, we noticed that
a small portion of reported anomalies were not caused by
the direct effect of errors. After a detailed analysis we
found that the vast majority of these anomalies were re-
sulted from ripple effects of errors that had already been
detected.

Anomalies detected in a system are reported through
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Table 9: Evaluation Result with Non-State Based Metrics

CPUUtilizationAverage CPUUtilizationMaximum

Metric 0mTW 1mTW 2mTW 1mTWRipEff 2mTWRipEff 0mTW 1mTW 2mTW 1mTWRipEff 2mTWRipEff

Precision 0.235 0.433 0.701 0.464 0.716 0.212 0.399 0.595 0.427 0.614

Recall 0.833 0.789 0.895 0.828 0.914 0.728 0.798 0.917 0.814 0.918

F-Score 0.367 0.559 0.786 0.594 0.803 0.329 0.532 0.721 0.560 0.736

some form of alerts or notifications. As discussed previ-
ously, excessive amounts of less important alerts and noti-
fications can cause alert fatigue, and this concern also ap-
plies to the detection of anomalies caused by ripple effects.
Therefore, our concern in this section is how to distinguish
if a detected anomaly stems from a direct error or from the
ripple effect of an error, with the goal to suppress alerts
from the latter.

In order to address this issue, we implemented a mech-
anism to automatically detect ripple effects of errors. To
do so, we kept track of the instance identifiers, which are
present in both the metrics data and in the operation’s
logs. Additionally, we already had the timestamp of the
event logs – the time that the termination of instances
has been triggered. Given this information, as well as the
records of detected anomalies, we determine if a raised
anomaly is related to an already affected VM or not; if
not, we tag the anomaly as a ripple effect and suppress
the respective alert. It worth mentioning that although the
mechanism of ripple effect detection here is presented sep-
arately, this is a part of the integrated process of anomaly
detection. In fact, in the whole experimental method, any
detected anomalies are checked if it is caused by an actual
fault injection or whether it is a ripple effect symptom of
an injected fault. In other words, the ripple detection is
applied to the whole experiment of fault injection; for all
the anomalies reported there is an action, if it is direct
failure there will be an error alert. If it is a ripple effect
then there will be a warning alert. The pseudo-code of this
ripple effect detection algorithm is shown as Algorithm 1.

We observed three types of ripple effects in our experi-
ments, as shown in Table 7. Out of the total of 28 ripple
effects, five were related to our fault injection process and
thus they had no effect on the rolling upgrade process.
Out of the remaining 23 ripple effects, by applying Algo-
rithm 1 our approach managed to automatically detect 21.
These ripple effects were related to the VM instances that
the rolling upgrade operation intended to terminate and
replace, but the instance had already gone out of service
due to injected faults. The remaining two ripple effects
could not be detected automatically; they were associated
with two VM instances that were in the state “pending
to be started” when the faults were injected, hence fault
injection did not cause the VM instances to be terminated.

Algorithm 1 Ripple effect detection in the process of
anomaly detection
1: while rolling upgrade is not completed do

- Input:
2: opsLogs ← Read Logs at each minute
3: metricsActual ← Read metric at each minute

- Anomaly Detection:
4: metricEstimated ← Estimate metric with regression equation
5: if metricEstimated = metricActual then
6: anomaly ← false
7: else
8: anomaly ← true
9: end if

- Ripple Effect Detection:
10: if anomaly = true then
11: failedVMs ← retrieve latest list of VM instances that were

failed
12: if the error has been already reported then
13: anomalyType ← rippleEffectWarning
14: else
15: anomalyType ← directErrorAlert
16: end if
17: ReportAnomalyWithAnomalyType(anomalyType)
18: end if
19: end while

6.5. Insights and Lessons Learned from the Integration of
Log-Metric Monitoring

We have shown that our approach is effective in detect-
ing anomalies whilst cloud rolling upgrade application op-
erations were running. It is worth noting that the pro-
posed method is a non-intrusive approach: it does not
require changes to cloud application or platform code, the
content of the logs, or the monitoring metrics. Although
our approach is non-intrusive, it depends on information
from operation’s logs and monitoring metrics. We assume
that having higher-quality logs and metrics can improve
the quality of anomaly detection. It can also help to im-
prove the resiliency built into operations. For instance,
we observed several cases where the rolling upgrade pro-
cess attempted to terminate instances that had already
gone out of service. This finding gave us an understanding
about two limitations of this operation: (i) the operation
did not check the status of the instance before attempting
to de-register and terminate the instance; and (ii) the un-
availability of the instance was not logged. These insights
can be used to improve the rolling upgrade operation and
its logging.

Another insight we gained was related to the process of
collecting monitoring data. Collecting monitoring data for
resources on a large scale and for 24 hours a day can be a
costly process, and so it is important to collect monitor-
ing data efficiently. Our case study and analysis showed
that integration of context of the operation’s behaviour
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from logs with resource metrics can reveal which metrics
we need for anomaly detection. To this end, we anticipate
that adopting our approach to correlate an operation’s be-
haviour derived from logs with monitoring metrics can also
help to improve management of DevOps operations in the
following ways:

• to understand the limitations of log content, and thus
to improve the quality of the logging where needed;

• to have statistical information about the importance
of metrics, and if the given frequency of monitoring
data is sufficient; and

• to derive new requirements for improving operation
processes.

7. RELATED WORK

There are two main areas of work related to our ap-
proach: error detection and diagnosis through log analy-
sis, and anomaly detection through system resource health
and performance monitoring.

System error detection and diagnosis is an effort that re-
lies on relationship analysis of a deficiency in a system and
its observable symptoms. In recent years, several studies
have been conducted to automate this process. Kavulya
et al. [32] have categorized automated techniques based on
mapping the relationship between systems symptoms and
failure. These techniques include rule-based techniques,
model-based techniques, statistical techniques, machine-
learning techniques, count-and-threshold techniques, and
visualization techniques [15, 32]. Adopting any of these
techniques comes with limitations. For example, rule-
based techniques require large knowledge bases that are
difficult to maintain, whereas model-based techniques re-
quire a detailed understanding of the system. Statistical
techniques have been widely used for anomaly detection
in system monitoring [15, 31, 33]. Most of the existing
work in this domain focuses on changes in non-contextual
data points (CPU utilization, memory usage etc.) and
raise an alarm when there are breaches of thresholds. Our
research is not focused on normal operation of a system,
where such thresholds have wide applicability. Instead,
we are specifically interested in anomaly detection dur-
ing running DevOps operations. For anomaly detection
during such sporadic operations, state based metrics like
VM start and VM termination are most suitable. Exist-
ing literature is very rich in anomaly detection with data
points; however, there have been few studies on using con-
text (like log events in our work) and behavioral informa-
tion for anomaly detection [15].

Most past approaches that use contextual information
are appropriate for offline assessment, rather than for on-
line assessment. Other approaches are mostly intrusive,
that is, they require changes to be applied to the system.
POD-Monitor [14] attempted to address this gap by using

contextual logs and data point metrics to suppress false
alarms of detected anomalies in resources usage. However,
their approach lacks the support for anomaly detection
of steps of cloud operations that are proposed in this pa-
per. POD-Monitor considers the operational context on
the level of whole operation processes – e.g., rolling up-
grade is running – and focuses on anomaly detection on
resources, whereas we conduct anomaly detection at the
fine-grained level of individual steps of operations. An-
other approach that addresses the above limitations, in
part of one of the authors’ previous work, is called POD-
Diagnosis [10]. This approach models the cloud sporadic
operations as processes and uses the process context to
catch errors, filter logs and perform on-demand assertion
checking for online error handling [10, 34]. This technique
addresses the problem of online validation of operations to
some degree. However, the approach has two limitations,
which we discuss below: it requires manual assertion spec-
ification, and it relies on logs as the primary source of
information.

The first limitation is related to manual assertion spec-
ification. Assertions in POD-Diagnosis check if the ac-
tual state of a system corresponds to the expected state
of a system. In previous work [10], intermediate expected
outcomes of process steps have been defined manually as
assertions. This method is suboptimal for the following
reasons. First, manual assertion specification is time-
consuming and thus, with fast evolving changes of modern
applications, might not be practical. Second, manually
specified assertion might not correctly express the exact
timing and effects of a logged event, resulting in an imper-
fect specification and thus lowered precision in the asser-
tion specifications. Third, manual assertion specification
relies on the expertise of the administrator or developer
writing it. If that developer is not the involved in devel-
oping the underlying tool, the expertise about the exact
function of that tool is typical limited, and its encoding in
assertions may be incomplete. For instance, for a 10-step
process touching on 20 resources with an average of 10
parameters each, a full specification of all desired and un-
desired changes results in 10x20x10=2,000 potential asser-
tions. It is unlikely that any administrator will (correctly)
specify all of them. This will result in a partial coverage
of assertions, potentially leaving out important causes for
failures simply because the administrator has never expe-
rienced them. Our approach differs from these approaches
as we rely on statistical correlation analysis rather than
domain knowledge.

The second limitation is related to the dependability on
logs as the main source of information for operation mon-
itoring. First, logs are often low-level, noisy, and with
inconsistencies in style [35]. For instance, in [35] authors
report the difficulties of failure detection due to logs hav-
ing a lack of relevant information, and [36] highlights that
over 60 percent of failures in their experiments of fault
injection were not reported in the logs. Many of the cur-
rent practices of generating logs focus on developer needs
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during development time, rather than considering admin-
istrative needs in production settings [9]. Second, logs are
voluminous, and it is usually difficult to derive which log
line, or which set of log lines, is actually responsible for
an action in changing the state of a system resource. In
addition, the granularity level of log data is usually differ-
ent from resource metric data, and this uneven granularity
level makes the mapping between these two more challeng-
ing. Third, monitoring execution behavior of an operation
solely based on the operations log is not adequate due to
frequent changes in large-scale applications, in which hun-
dreds of shared resources are involved and resources are
exposed to changes from multiple concurrent operations.
Thus, it is not trivial to isolate the execution of one such
operation from the other running operations. These limi-
tations exacerbate the difficulty of error detection for cloud
operations, and relying on log content limits the general-
isability to tools with high-quality log output. Therefore,
it is important to employ one or more additional sources
of information along with the information extracted from
logs for validation of running operations. To tackle these
limitations, this study attempted to leverage cloud metric
data, in addition to information extracted from logs, to
cross-validate the execution of cloud DevOps operations.

System monitoring is of paramount importance for both
cloud service providers and cloud service consumers. Ana-
lytical tools in cloud monitoring can be used for real-time
performance monitoring to quickly uncover performance
bottlenecks or troubleshoot unknown issues. Monitoring
data can be collected through automatic calls of APIs or
even streamed to outside services in near realtime. This
capability provides a significant opportunity to leverage
such data for anomaly detection. Many commercial and
open source platforms and services are available for cloud
monitoring, including CloudWatch, AzureWatch, Cloud-
Kick, Nagios, and OpenNebula. A detailed comparison of
monitoring platforms and services is given in [37]. One of
the highlighted issues in this domain is the lack of cross-
layer monitoring [37]. Cross-layer monitoring is a challeng-
ing task, as it is difficult to map two different monitoring
data types and to interpret them in an integrated form.
Our research, in particular, contributes in this direction,
as we consider two different types of monitoring informa-
tion, which can span multiple layers.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of moni-
toring cloud application operations through log and met-
ric analysis. Our contribution includes a novel approach
that assists in finding the subset with the most relevant
monitoring metrics. It further includes employing those
metrics for the reliable assurance of the correct execution
of sporadic cloud operations which are common practice in
DevOps, particularly our use case of staged upgrading of
clusters of virtual machines (VMs). Core to this approach
is a domain-agnostic regression-based correlation analysis

technique that correlates operations’ event logs and re-
source metrics. Based on this correlation, we can identify
which monitoring metrics are significantly affected by an
operation’s activities and how. We illustrated that the se-
lected target monitoring metrics, along with the derived
regression model, can be used as the basis for generat-
ing runtime assertions which are suitable for the detection
of anomalies in running operations. Further, we showed
a method to distinguish alarms generated as the result
of direct effects of an error from the ripple effects of er-
rors. We evaluated our approach on the Amazon public
cloud computing service (EC2) where multiple operations
were running and random faults were injected. Our results
demonstrate that our regression-based analysis technique
was able to detect injected faults with high precision and
recall, respectively.

We demonstrated the applicability of our proposed ap-
proach in a comprehensive case study of rolling upgrade
operation with different configuration here, however, we
aim to conduct further experiments to assess the generalis-
ability of approach for different operational environments.
Moreover, we would like to use the proposed approach for
better error diagnosis. Furthermore, we plan to utilize
this approach for designing self-adaptive operations. Such
a self-adaptive operation would be able to perform self-
healing actions after an error happens, as well as utilize
its knowledge for adapting the configuration of itself, other
operations, or the affected application(s) in certain cases
like spikes in the demand.
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