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Abstract—Social networks boast a huge number of worldwide users who join, connect, and publish 
various content, often very large, e.g. videos, images etc. For such very large-scale data storage, data 
replication using geo-distributed cloud services with virtually unlimited capabilities are suitable to 
fulfill the users’ expectations, such as low latency when accessing their and their friends’ data. 
However, service providers ideally want to spend as little as possible on replicating users’ data. 
Moreover, social networks have a dynamic nature and thus replicas need to be adaptable according to 
the environment, users’ behaviors, social network topology, and workload at runtime. Hence, it is not 
only crucial to have an optimized data placement and request distribution – meeting individual users’ 
acceptable latency requirements while incurring minimum cost for service providers – but the data 
placement must be adapted based on changes in the social network to keep it efficient and effective 
over time. In this paper, we model data placement as a dynamic set cover problem and propose a novel 
approach to solve this problem. We have run several experiments using two large-scale, open Facebook 
and Gowala datasets and real latencies derived from Amazon cloud datacenters to demonstrate our 
novel strategy’s efficiency and effectiveness. 
Index Terms— Access latency, cloud computing, cost optimization, data placement, data replication, 
greedy algorithm, set cover problem, social networks 

1 Introduction 

Based on a recent report, there were 2.80 billion global social media users in 2017, or roughly 37% of the 
population of the world, with more than 20% growth over the previous 12 months [1]. Users are 
geographically scattered around the world often having friendships with users from elsewhere. 
Participating users join a social network, create friendships with any other users with whom they 
associate, and publish various content – some such as videos and images being very large – to share 
with each other. Facebook (2 billion monthly active users), YouTube (1.5 billion monthly active users), 
WhatsApp (1.2 billion monthly active users), and Instagram (700 million monthly active users) are some 
examples of popular social networks [2] with large social media data content. Social network users have 
quality of service expectations from their social network service provider, including low latency, data 
consistency and availability, and privacy requirements. In terms of latency, users can endure a certain 
threshold to access their own data and the data of their friends. Not being able to access the data in a 
desirable timeframe is likely to lead users to becoming frustrated, lowering their usage and possibly 
even leaving the social network. 
Replication of data can be utilized to meet these user performance requirements. Geo-distributed cloud 
services with virtually unlimited capabilities are suitable for such large-scale data storage. There are 
many cloud service providers maintaining storage infrastructure based on a pay-as-you-go model [3-
5]. Amazon S3 [6], Google Cloud storage [7], and Microsoft Azure [8] are some examples. However, 
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such cloud rental is extremely costly when using naïve full replication for social media data in order to 
minimize the latency, ensure availability and meet other requirements. Moreover, as different replicas 
of users’ data may need periodical synchronization, such a huge investment becomes uneconomical 
due to the very large size of datasets. Based on Facebook statistics for 2016 [9], Facebook generates four 
petabytes of new data per day for the 1.083 billion daily active users at that time. 
Social networks have a dynamic and growing nature. Users can join or leave the network at any time; 
add, delete or update datasets; travel and move to another location in the world; and also create or 
break friendships. Different users have different levels of activeness and similarly their friends have 
various frequencies of accessing, updating and adding to their data. Users can become less or more 
active and gain less or more interest in their friends’ shared contents. Finally, sometimes new 
datacenters can be added for use by the social network or occasionally the existing datacenters can be 
out of use, hence removed. 
An optimized data placement approach is required that must be capable of finding the most cost 
effective solution while fulfilling individual users’ acceptable latency requirement. Furthermore, the 
data placement needs to be able to cope with the dynamic changes in the environment, e.g., users’ 
behaviors, social network topology, and workload at runtime. Hence, finding the optimal placement 
of data in different datacenters with minimum cost while keeping the placement optimized over 
time is the key challenge addressed in this paper. 
We aim to guarantee the latency requirement for Pth percentile of all individual requests between all 
friends with a minimum cost, i.e., over P% of all individual operations are within specified latency 
requirement.  
We present a novel dynamic strategy to cope with data placement that is applicable in dynamic 
environments where users can join, leave, move or change their friendships in the social network; data 
can be added, removed and updated as needed; and datacenters can also be added or removed. To the 
best of our knowledge, our work is the only comprehensive work dedicated to all different scenarios 
that happen in a social network for data placement. Four significant contributions of this research are: 
• Finding the initial minimum number of replicas for every user and relay different requests to the 

best datacenters in order to ensure the latency requirement. 
• Presenting a novel dynamic strategy that continuously guarantees the optimality of the social 

network data placement over time. Our dynamic strategy is based on our static minimum cost 
replication strategy in order to make it practical in the real world where social networks change 
rapidly. 

• Fulfilling Pth percentile requirement of individual access latencies of all users. Taking individual 
instead of average latencies into account makes our work much more practical and significantly 
distinct from other existing works.  

• Guaranteeing a very low – almost unnoticeable – individual latency of less than 250 ms 
(milliseconds) [10] not only for users to access their own data but also for all their friends to access 
their data. 

We model and map the complex problem of finding a cost effective data placement strategy and coping 
with the changes in the social network while fulfilling the latency requirement for individual requests 
to the simple well-known (dynamic) set cover problem in order to solve it efficiently and effectively. To 
derive the most cost effective solution, a framework consisting of a combination of greedy and dynamic 
greedy algorithms is used to find the most affordable solution. A greedy algorithm - one of the most 
effective heuristic algorithms to solve the set cover problem [11] - is used to find the minimum number 
of appropriate datacenters for every user that, by replicating data in them, it is possible to have the 
latency requirement fulfilled for this user’s friends. Our overall goal is to continuously adapt the data 
placement for a given set of users’ data replicas based on the changes to the social network so that we 
have the minimum storage, transfer and synchronization cost while guaranteeing that Pth percentile of 
individual latencies is no more than the acceptable latency. Real Amazon datacenters are tested to use 
real-world datacenter latency measurements. Two large-scale open datasets, Facebook dataset [12] and 
location based Gowala dataset [13], are used to evaluate our novel strategy and demonstrate its 
efficiency and effectiveness. As verified by simulation experiments, our dynamic strategy to solve the 
data placement as a dynamic set cover problem is capable of finding the optimal solution. 
Section 2 provides a motivating example of social network data placement with problem analysis. 
Section 3 introduces our set cover based problem formulation. Section 4 presents our dynamic 
framework including the greedy and dynamic greedy algorithms in more detail. Section 5 demonstrates 
the simulation results and the evaluation. Section 6 discusses related work. Finally, Section 7 
summarizes conclusions and key areas for future research. 

2 Motivating Example and Problem Analysis 

Social networks deal with an extremely large number of users distributed all around the world sharing 
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a rapidly growing volume of interconnected and often large data items. Users typically have friends in 
diverse places who expect to access their data promptly, i.e., with a small latency.  
For example, let us consider a user who has active friends in North America, India, Europe and 
Australia. They share text, images, videos, audio, and frequently add new content on a daily basis. They 
may also periodically update existing content, e.g. modifying, replacing, or deleting a variety of 
datasets. Friends share any information with different levels of addition and update frequencies. A 
variety of datacenters located around the world can be used by the social network provider. Some 
geographic locations may have several datacenters and some none. These friends expect to be able to 
receive updated data including news and event feeds, some made up of data in large size like images 
and videos, within a very short period of time, no matter where their geographic locations are. Data is 
accessed often by mobile devices in different locations. Constantly slow updates or problems in timely 
playing quality videos/audios, viewing images or interacting with other dynamic social media 
contents are unacceptable to the users. 
Furthermore, social networks have a dynamic and growing nature where different scenarios happen. 
These scenarios are identified as follows in a decreasing order based on their frequency of happening: 
S1: New datasets are added and existing datasets are updated or deleted 
S2: Replicas become unsynchronized from time to time and synchronization is required to fulfill the 
consistency  
S3: New users join the social network 
S4: Users create new friendships 
S5: Workload and access frequencies change over time 
S6: Existing friendships can be broken 
S7: Users move and change their locations 
S8: Existing users may delete their accounts permanently 
S9: New datacenters might be added or existing datacenters might be removed 
Scenarios 1-4 happen more frequently in a social network while scenarios 5-7 happen less frequently. 
Scenario 8 is a relatively rare scenario and finally, scenario 9 is a very rare scenario yet possible and 
needs to be considered. These scenarios are explained in more detail with some real world examples in 
Part 1 of our online supplementary materials. With the emergence of cloud computing [14], social 
network providers can store data in cloud datacenters at a lower cost. When using geo-distributed 
cloud datacenters to store social media data, the service provider needs to have the minimum possible 
number of replicas stored for every user that are capable of ensuring the latency requirement for their 
friends who are accessing their data. The problem that service providers face is to have the most 
affordable system by considering the trade-off between monetary cost and latency. Therefore, we need 
a minimum cost storage strategy for data placement in the cloud to find the minimum possible 
number of replicas for every user’s data and their locations that can guarantee key service level 
agreement constraints such as latency and availability. As social networks are dynamic, replicas and 
their placement need to be updated based on ongoing changes in the social network over time. Thus, 
we must make online, real-time replica placement updates. 
In this research, we pursue two main objectives. First, the bottom line is to keep Pth percentile of 
individual access latencies lower than 250 ms. With such a short latency, a user will not notice any delay 
for the best user experience possible, based on research at Google [10]. Considering the individual 
latency of all friends for all users makes our work much more practical and significantly distinct from 
others using such as average latency [15]. Second, based on achieving the above, the primary goal is to 
cut the replication cost to a minimum without sacrificing the quality of service, i.e., the user’s minimum 
latency requirement.  
There is a huge difference between average latencies and percentile individual latencies considered in 
this paper. For example, let us consider Amazon datacenter in Sydney with 70% of users located in 
London and 30% of users located in Melbourne. London users access the data placed in this datacenter 
in almost 332 ms while Melbourne users access the same dataset in about 56 ms (see Part 2 of our online 
supplementary materials). The average latency to access the dataset placed in the Sydney datacenter by 
all users is 249.2 ms, lower than the target requirement of 250 ms. However, in reality, the latency 
requirement is not met by the majority of the users, i.e., 70% in this example. In contrast, Pth percentile 
tells us the value greater than or equal to P% of our data. For this example, the latency requirement is 
fulfilled for only 30th percentile of the users, i.e., 30%, which is very poor but reflects reality. In contrast, 
for a reasonable service level agreement, Pth percentile is normally much higher, such as 90% or above 
[16]. Note it is theoretically impossible to guarantee latency requirement for all the users, i.e. 100% of 
users since network failure, while rare, is unavoidable. There may also be some users located in areas 
with no nearby datacenter, making it impossible to satisfy the target latency for them. 
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3 Problem Formulation 

In this paper, we address the research problem of dynamic data placement in social networks, while 
minimizing monetary expenses incurred in using resources of geo-distributed clouds and guaranteeing 
social network users’ requirements, i.e., latency. We handle update and adaptation of the replication 
and placement based on the dynamic environment of social networks. For every user, we need to create 
an initial latency matrix of all their friends from all datacenters. Then, we update the latency matrix for 
all users based on all changes in the social network over time. The objective is to find and keep the most 
cost effective placement of data replicas of each user in different datacenters so that Pth percentile of 
individual requests from all friends of the user has the latency requirement fulfilled over time.  
3.1 Data Placement Formulation 
The set of n users in the social network is denoted as Users = {1, 2, …, n} and the set of m different 
datacenters in the cloud environment is represented as Datacenters = {1, 2, …, m}. Users have 
relationships with each other, which are described by a matrix of relationships with the rows as users 
and columns as friends. Connections are denoted as Connections = {1, 2, …, c}, where every element is 
assigned to a row in the matrix of relationship which refers to a connection between a user and a friend. 
Sets of Users, Datacenters, and Connections are updated once there is a change in any of these sets, such 
as when a friendship is created/broken, a user has joined/left, or a datacenter is added/removed. 
Notations used in this paper are shown in the Appendix. 
Our overall data placement problem is divided to two stages: static and dynamic placement, described 
in detail below. Time is modelled as equal time periods ts; a static placement is used initially and the 
dynamic data placement is applied during different time periods to adapt the current placement based 
on the changes in the social network.  

3.1.1 Static Data Placement 
We formulate the initial static data placement problem as a set cover problem. Latency between users 
and different datacenters (DCs) is denoted as matrix L of size n×m: 

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠 
𝐿!" = 𝐷𝑒𝑙𝑎𝑦	𝑜𝑓	𝑢𝑠𝑒𝑟	𝑖	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔	𝐷𝐶	𝑗                              (1) 

For every user i, we find the number of friends FriendsNumi and let L’ present the latency of all his/her 
friends to access all datacenters which is a matrix of FriendsNumi×m. 

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠, ∀𝑘 ∈ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚! 
𝐿!"#$ = 𝐷𝑒𝑙𝑎𝑦	𝑜𝑓	𝑓𝑟𝑖𝑒𝑛𝑑	𝑘	𝑜𝑓	𝑢𝑠𝑒𝑟	𝑖	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔	𝐷𝐶	𝑗           (2) 

Finally, for every user, we create a delay matrix D of size FriendsNumi×m for all friends of this user. For 
a given delay requirement, e.g. Pth percentile no more than Delay, all elements in the delay matrix are 
compared with (P/100)×Delay. ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠, ∀𝑘 ∈ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚! 

𝐷!"# = >1			𝑖𝑓	𝐿!"#
$ 	𝑖𝑠	𝑙𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	( %

&''
) × 𝐷𝑒𝑙𝑎𝑦

0																																														𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (3) 

For every user i, we have a set of elements Ui = {Ui1, …, UiFriendsNumi}, i.e., a list of the friends for user i and 
a set of the subsets of Ui as Si = {Si1, ..., Sim}, i.e., to store the data of user i in any of datacenters 1 to m. 
Every element in Si is considered as a subset of the elements in Ui because by replicating the data of 
user i in every datacenter in Si, a subset of the friends can have the latency requirement fulfilled. The 
goal is to find a subset of Si for user i by which all friends of this user can access his/her data for Pth 
percentile of their requests with latencies no more than the acceptable latency. Our strategy is to find 
the minimum number of columns, i.e., datacenters in delay matrix Dijk that have the elements with value 
of 1 covering all rows, i.e., friends. This equates to a “Set Cover Problem” which is NP-Complete [17].  
In the set cover problem, we are given a universe Ui for every user i, i.e., list of the friends for every 
user in our problem, such that |Ui|= FriendsNumi, i.e., number of all friends for user i, and sets S1, . . ., 
Sj ⊆	U, i.e., placement of replicas in all different datacenters which guarantees the latency requirement 
for a subset of the friends. A set cover is a collection S, i.e., the solution set in our problem and includes 
some of the sets from S1, . . ., Sj whose union covers the entire universe U. Formally, S is a set cover if 
⋃ 𝑆! = 𝑈(!∈( . We would like to minimise |S|. In order to minimize |S|, a weight is defined, i.e., the 
storage cost of one replica per request in our problem. Therefore, the solution space is as follows: 

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠 
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𝑆!" = J1			𝐷𝑎𝑡𝑎	𝑜𝑓	𝑢𝑠𝑒𝑟	𝑖	𝑖𝑠	𝑠𝑡𝑜𝑟𝑒𝑑	𝑖𝑛	𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟	𝑗0																																																													𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              (4) 

∑ 𝑆!" ≥ 𝑀𝑖𝑛𝑅𝑒𝑝𝑙𝑖𝑐𝑎! 																∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠*
"+&                                                            (5) 

MinReplica is set to 2 in order to ensure the availability of data for all users. In a cloud environment, 
maintaining high data availability is important [18]. Different cloud providers might have their own 
availability policy by keeping a certain number of replicas for data. A minimum of 2 replicas are 
considered in our simulations. Therefore, for every user i, if the final optimal number of replicas 
ReplicaNumi is less than MinReplicai, (MinReplicai-ReplicaNumi), i.e., 1, an extra replica will be placed in 
user’s nearest datacenter not currently holding any replica.  
Our static strategy can find the most affordable data placement strategy and guarantee the latency 
requirement for static social networks. However, it is not practical in dynamic social networks and 
therefore is used only to generate the initial placement for our dynamic data placement and replication 
strategy. 

3.1.2 Dynamic Data Placement 
After generating the initial placement of replicas for the social network using our static strategy, the 
next step is to adapt the replica placement based on changes to the social network in an ongoing fashion 
so that we can have our key latency requirement fulfilled with minimum cost over time. Our problem 
is a fully dynamic set cover problem [19] in which for every user, not only the subset of the universe, S, 
changes but also the universe itself, U, changes over time. In our domain, this dynamic set cover 
strategy is applied to different users, who also change over time, and users are recognized by location, 
which is dynamic as well.  
Requests from different friends need to be routed to suitable replicas. We create a replica access table 
for every user in which requests are accessed from the nearest datacenter holding any replica of the 
requested data. At the end of different time periods, by having the final number of replicas, their 
locations, and the replica access table, the final latency and cost which are modelled in Sections 3.2.1 
and 3.3.1 can be calculated. Efficiency and effectiveness objectives are modelled in Sections 3.2 and 3.3 
respectively. 
3.2 Efficiency 
Latency and time overhead are defined here, utilized in Section 4 and evaluated in Section 5. Latency 
is the time for users to access data. Time overhead is (1) the overall time for our static strategy to find 
the best solution and (2) the update time taken for our dynamic strategy to adapt the solution. 

3.2.1 Latency 
In this work, latency between users and datacenters is determined by using the actual latency of real 
end users in different locations around the world to access different cloud datacenters. Given a 
placement of data in different datacenters, every user accesses data from the nearest datacenter that 
holds a replica of the data. Thus, the final latency for every user is Pth percentile of latencies of all 
requests from all friends to access this user’s data. As the percentage of more than 90% makes much 
more sense in most applications [16], requirements are set as 90% and 99.9% (also 95% and 99%) of the 
latencies of no more than 250 ms. The goal is to have Pth percentile of individual latencies (for all users 
and all their friends) of no more than the acceptable delay: 

𝑃,-(𝑙𝑎𝑡𝑒𝑛𝑐𝑦.(𝑡)) ≤ 𝐷𝑒𝑙𝑎𝑦                                                       (6) 
where 𝑟 = 1,… ,∑ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚!"

/.!012345*!
"+&

1
!+& (𝑡) 

The latency of request r in time period ts is the time for the friend sending a request to access the data 
from the nearest datacenter containing the replica of the requested data. Different users have friends 
with different access frequencies, i.e., the number of times they access this user’s data. Access 
frequencies of friend j of user i in time period ts is shown by RequestNumij(ts). The total latency for every 
user affects more by the friends who access this user’s data more frequently. 

3.2.2 Time Overhead 
On one hand, we need to ensure the latency requirement for users. On the other hand, we should not 
jeopardize the time it takes for our strategy to solve the problem. The amount of time taken to find the 
initial solution S0 and update the solution St-1 to St is measured in order to model the time overhead. We 
use greedy and dynamic greedy algorithms with polynomial time approximation, as evaluated in 
Section 5. 
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3.3 Effectiveness 
To ensure the effectiveness of the final solution, cost, competitive ratio, and recourse are defined here, 
utilized in Section 4 and evaluated in Section 5. Cost is the rate for storing, requesting, transferring data 
replicas from different datacenters, and finally synchronizing different replicas. Competitive ratio is the 
worst-case ratio between the cost of our strategy and the optimal strategy. Recourse is the number of 
replicas added or dropped from the solution. 

3.3.1 Cost 
With n users, the cost rate in time period ts is the total monetary cost of storing replicas of all users’ data 
in different datacenters during this time period, requesting and transferring all users’ and friends’ data 
replicas from different datacenters, and synchronizing different replicas from the primary replica for 
all the users. The total cost is calculated as follows: 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡($) = ∫ ∑ (𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡!(𝑡𝑠) + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡!(𝑡𝑠) + 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡!(𝑡𝑠)) × 𝑑𝑡1
!+&

6
,3+&         (7) 

where firstly, the storage cost is: 
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡!(𝑡𝑠) = ∑ 𝑆!" × (𝑈𝑛𝑖𝑡𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒"(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒"(𝑡𝑠) ×*

"+&
𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒!(𝑡𝑠)             (8) 

UnitWRequestPricej(ts) is the price in time period ts for write request in datacenter j. UnitStoragePricej(ts) 
is the price for storing one GB of data at the end of time period ts in datacenter j. StoredDataSizei(ts) is 
the data size for user i at the end of time period ts. Therefore, the storage cost is the cost for requesting 
to write and store a user’s data and replicas in different datacenters during a time period.  
Secondly, the transfer cost is calculated as follows: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡!(𝑡𝑠) = ∑ Z𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚!#(𝑡𝑠) × [𝑈𝑛𝑖𝑡𝑅𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒76!"(𝑡𝑠) +
/.!012345*!
#+&

𝑈𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑃𝑟𝑖𝑐𝑒76!"(𝑡𝑠) × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒!(𝑡𝑠)\]         (9) 

UnitRRequestPricej(ts) is the price in time period ts for read request in datacenter j. UnitTransferPricej(ts) 
is the price for transferring one GB of data from datacenter j in time period ts. Moreover, RT is the 
replica access table and RTik shows the datacenter from where friend k reads the data of user i. Thus, the 
transfer cost is the cost for requesting and transferring a users’ data and replicas from different 
datacenters during one time period.  
Finally, the update cost is calculated as follows: 
𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡!(𝑡𝑠) = 𝑈𝑛𝑖𝑡𝑅𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒89#$!%!

(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑃𝑟𝑖𝑐𝑒89#$!%!
(𝑡𝑠) ×

𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒!(𝑡𝑠) + ∑ 𝑆!" × (𝑈𝑛𝑖𝑡𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒"(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒"(𝑡𝑠) ×*
"+&,";89#$!%!

(𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒!(𝑡𝑠) − 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒!(𝑡𝑠 − 1))       (10) 
DCmaini is the datacenter where the primary replica of user i is located, i.e., main datacenter for user i. 
StoredDataSizei(ts-1) is the data size for user i at the end of time period ts-1 or in the beginning of time 
period ts. Consequently, the update cost is the cost for synchronizing users’ replicas from their primary 
replicas at the end of a time period. More specifically, the synchronization cost includes the cost for 
requesting and transferring users’ primary replicas from their main datacenters and requesting to write 
and store user’s new data in different datacenters. The total cost is the summation of the storage cost, 
transfer cost, and update cost during different time periods. For the initial static data placement, as 
there is no synchronization required, the update cost is not applicable. 

3.3.2 Competitive Ratio 
Online algorithms are studied from the viewpoint of competitive analysis in [20, 21]. The competitive 
ratio of an online algorithm for an optimization problem is defined as the approximation ratio achieved 
by the algorithm, that is, the worst-case ratio between the cost of the solution found by the algorithm 
and the cost of an optimal solution. The greedy algorithm is proved to be an O(logn)-approximation 
algorithm for the set-cover problem [21], thus the solution of this algorithm can be no more than log(n) 
times worse than the optimal solution in the worst case. The optimal solution is considered as the 
log(n)×(static solution).  

3.3.3 Recourse 
Recourse is the number of sets added or dropped from a set cover over the course of the algorithm, as 
a function of the length of the input sequence. An online algorithm is α-competitive with r recourse if 
at every time period ts, solution St has the total cost at most α.Optts, and the total recourse in the first 
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batch of ts time periods is at most r.ts. For r worst-case recourse, the number of sets dropped at each 
time period must be at most r. The recourse of our strategy is also evaluated in Section 5. 

4 Our Dynamic Data Placement Approach 

Dynamic set cover is used to optimize the cost of data placement in social network services with inter-
connected datasets. Static data placement is first used to find the initial data placement. Then, our fully 
dynamic adaptation strategy is divided to two phases of eager and lazy adaptations. Eager adaptation 
is done on the fly except for the scenarios of synchronizing the replicas (S2, i.e., scenario 2 introduced 
in Section 2) and adapting the workload and access frequencies of the friends (S5). For S2 and S5, due 
to high rates of change and lower frequency, the adaptation is postponed and done during different 
time periods, so called lazy adaptation. Lazy adaptation is based on the greedy algorithm while eager 
adaptation is based on either greedy or dynamic greedy algorithms. Fig. 1 provides an overview of our 
strategy. 

4.1 Initial Static Data Placement 
The concept of set cover is used to optimize the initial cost of data placement. A greedy algorithm is 
used to solve the initial static social network data placement problem. This algorithm iteratively picks 
the most cost-effective set that contains the largest number of uncovered elements in each stage, and 
removes the covered elements, until all elements are covered. Let I be the set of elements already 
covered at the beginning of an iteration. Cost effectiveness of set S is the average cost at which it covers 
new elements, i.e., Cost(S)/|S−I|. The weight of an element is the average cost at which it is covered. 
Equivalently, when set S is picked, we can think of its cost being distributed equally among the new 
elements covered, to set their weights [11].  
For every user i we find set Si, i.e., the placement of user i’s data in different datacenters. Weight of 
every solution in the greedy algorithm is considered as the storage cost of replicas in different 
datacenters divided by the number of requests being accessed within the acceptable latency.  
4.2 Overview of Dynamic Greedy Algorithm 
An obstacle to make greedy algorithms dynamic is their sequential nature and insertions/deletions of 
elements can further disorganize the sequence. However, greedy algorithms can be maintained fast, 
and with small amounts of recourse using simple “local” moves [19]. 
In the dynamic greedy algorithm presented in [19], the input is a set system (U, S), which is the solution 
of a static set cover.   The input sequence is σ = <σ1, σ2, …>, where request σt is either (et, +) or (et, -). At 
⊆ U denotes the active elements at time t with the initial active set as A0 = Ø. If σt = (et, +), then At←At-1 
∪	{et}; if σt = (et, -) then At←At-1\{et}. At time t, only the elements seen so far and which sets they belong 
to are known, and there is no need to know either U or S upfront. When a new element arrives, it reveals 

Fig.  1. Dynamic data placement process 
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the sets containing it. We maintain a feasible set cover St ⊆ S, i.e., the sets in St must cover the active 
elements At. 
Let Optt be the cost of the optimal set cover for the set system (At, S). Let nt denote the number of 
elements that needs to be covered at time t, i.e., nt := |At|, and n denote the maximum value of nt, i.e., 
n = maxt nt. For the fully dynamic set cover problem, there is an O(log n) competitive deterministic 
algorithm for the dynamic set cover problem, with O(1) non-amortized recourse per input step. If all 
sets have the same cost (unweighted set cover), then the competitive ratio improves to O(1). Our greedy 
algorithm chooses sets one by one, minimizing the incremental cost-per-element covered at each step. 
Analysis shows that the number of elements covered at incremental-costs ≈ 2i(Opt/n) is at most n/2i, 
which will give the desired O(log n) bound for approximation factor. The key steps of this algorithm 
are described in [19].  
4.3 Our Dynamic Data Placement Approach 
After finding the initial data placement using our static data placement strategy, equal time periods are 
considered. For every user i we find set Si, i.e., the placement of user i’s data in different datacenters. 
Users, connections, datasets, and the datacenters are updated once a change happens in the social 
network. To find a suitable solution based on different scenarios, the dynamic strategy is divided to 
two phases of eager and lazy adaptations.  
Eager adaptation is iteratively applied during a time period in order to update the solution based on 
any changes in datasets (S1, i.e., scenario 1 introduced in Section 2), users joining (S3), new friendships 
(S4), friendships broken (S6), users moving (S7), users leaving (S8), and changes in datacenters (S9). 
Once a time period is finished, lazy adaptation is applied in which synchronization is done (S2) and the 
solutions are updated based on the new workload and access frequencies (S5). Finally, the replica access 
table is updated and the final cost and latency for the current placement is calculated and shown.  

4.3.1 Eager Adaptation 
Eager adaptation, as depicted in Fig. 2, is used to address social network changes for scenarios 1, 3, 4, 
6-9 from Section 2.1. The replica placement adaptation is done on the fly during different time periods. 
For all the scenarios, the list of the users, datasets, connections, and datacenters are updated when 
needed. Then the suitable action is taken based on the scenario. The replication strategy updates are 
explained below for each corresponding scenario: 
S1. Adding/Deleting datasets: Data sizes increase on a daily basis, i.e., at any time during different time 
periods, for all the users based on their workload. Data sizes and storage costs are updated accordingly. 
S3. Joining of users: Once a new user joins, latencies for accessing different datacenters, list of friends 
for this user, initial data storage size, matrix of friends’ delays, workload and access frequencies of the 
friends are created. The data placement problem is mapped to a set cover problem for the user and the 
greedy algorithm is used to solve it. 
S4. New friendships: Once a new friendship is created, a list of friends and access frequencies for the 
user who created the relationship and the replica access table is updated to find the nearest datacenter 
to this new friend. If the latency requirement is fulfilled for this user with the current solution, no new 
replica is created. Otherwise, the problem is mapped to a dynamic set cover problem and dynamic 
greedy algorithm is used to solve it. 
S6. Breaking friendships: When users unfriend each other, the problem is mapped to a dynamic set 
cover problem using the dynamic greedy algorithm to solve it. 
S7. Changing user’s location: Users may move temporarily or permanently. Once a user moves, a 
replica is created in the nearest datacenter as the new primary replica and all write requests for this user 
directed to the new primary replica. The replica access table is updated and the user is asked if the 
change is temporary or permanent. For a permanent move, and there is no request from friends for the 
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old primary replica, the old primary replica is deleted. 
S8. Leaving of users: Quitting could be temporary or permanently deleting the account. Temporary 
quits, e.g. deactivating in Facebook, are ignored and data are kept in case they re-join. For permanent 
quits, we need to delete all the replicas for the user but also the “breaking friendship” scenario needs 
to be considered for all the friends of this user. 
S9. Adding/Removing datacenters: If a new datacenter is added, the sorted list of datacenters for all 
the users needs to be updated. If the new datacenter could be a primary datacenter for any users or 
their friends, the placement is redone for this user using the greedy algorithm. If one of the current 
datacenters is removed or unavailable, the replica access table is updated to redirect the requests of this 
datacenter to another datacenter. If there is a user who cannot have the latency requirement fulfilled 
due to the removed datacenter, a new solution needs to be found for this user using the greedy 
algorithm. 

4.3.2 Lazy Adaptation 
We use lazy adaptation, as depicted in Fig. 3, to address scenarios 2 and 5 from Section 2.1. The 
adaptation is done at the end of every time period and adaptation is only applied to the necessary users 
without any static replication with complete re-computation needed at any point: 
S2. Synchronization of replicas: During every time period, all the write requests from the users are 
routed to the primary replicas and the read requests from the friends are redirected to either the primary 
replica or one of the secondary replicas based on their proximity. At the end of every time period, the 

secondary replicas of all users are synchronized with the primary replicas and update cost is calculated. 
Synchronization could be done in an eager fashion as there could be some inconsistency during that 
specific time period. However, it is not very critical in social network applications since eventual 
consistency suffices [22].  

Fig.  3. Lazy adaptation process 

Fig.  2. Eager adaptation process 
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S5. Changes in workload and access frequencies: Since the workload and access frequencies change for 
all the users and their friends, it is not possible to adapt the solution on the fly based on such changes. 
Therefore, at the end of every time period, the solution is adapted based on the changes in workload 
and access frequencies of friends. Instead of adapting the solution for all users, the replica access table 
is updated for the users given the new workload, access frequencies and existing solution. If the latency 
requirement is not fulfilled for any users with the current solution, the greedy algorithm is used to find 
a solution for the user using the new workload and access frequencies.  

4.3.3 Data Placement Strategy  
Our strategy is described by the pseudocode in Algorithm 1 whilst details of our static data placement, 
eager adaptation, and lazy adaptation algorithm pseudocodes are presented as Algorithms 2, 3 and 4 
in Part 3 of online supplementary materials.  

ALGORITHM 1 
DYNAMIC DATA PLACEMENT STRATEGY PSEUDOCODE 

Inputs:  
Social network graph (Users and Connections) 
Existing solution set {S1, S2, ..., Sm} for every user 
Time period duration: interval 
Number of connections:  c, users: n, and datacenters: m 
Latency requirement with Delay and Pth percentile 
Outputs: 
Adapted solution set {S1, S2, ..., Sm} for every user 
Replica access table 
Cost and latency of the final placement 
Algorithm 
1. StaticDataPlacement();         //Referring to Algorithm 2 
// Check for the changes until time period is finished 
2. do 
3.    StartTime = the current time; 
4.    while ((CurrentTime - StartTime) <= interval) 
5.        EagerAdaptation();       //Referring to Algorithm 3 
6.        CurrentTime = the current time;  
7.    end while 
8.    LazyAdaptation();            //Referring to Algorithm 4 
// Update the replica access table 
9.  Let RT represent the replica access table 
10.  for all connections c’=1 to c of user i and friend j 
11.      RTc = the datacenter with the lowest latency for user j which holds a replica of user i  
12.  end for 
13.  Update and return the final cost and latency 
14.  Return the solution set for every user 
15.  Return the number of replicas for every user 
16.  Return replica access table 
17. end do 

 
Algorithm 1 is explained below: 
1) The initial social network graph of users (Users) and their connections (Connections), the current 

number of connections (c), users (n), datacenters (m), existing solution set Si for every user i, in 
addition to the duration of time periods (interval) are retrieved as inputs.  

2) Static data placement is initially carried out (line 1) 
3) The following instructions are repeated (lines 2-17) 

a) Start of the time period (ts) is recorded and while ts is not finished, i.e., the duration of ts is 
lower than interval, repeat the following instructions (lines 3-7) 
• Call EagerAdaptation() to adapt the solution eagerly 

b) Call LazyAdaptation() to adapt the solution at the end of time period (line 8) 
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c) Using the final replicas, the replica access table is updated (lines 9-12). To create the replica 
access table, the connections are checked one by one and the datacenters are sorted for every 
connection. The nearest datacenter for every friend holding any replica of every user is used to 
access the data.  

d) The final cost and latency of all the users are updated in this step. Finally, the solution with the 
number of replicas, cost, latency and the replica access table for the current time period are 
returned (lines 13-16). 

e) Continue to the next time period (line 17) 

4.3.4 Time Complexity Analysis of our Strategy 
Time complexity of our dynamic strategy, explained in Algorithm 1, is analyzed here. Please refer to 
Part 3 of online supplementary materials for the time complexity analysis of our static data placement 
strategy. As discussed earlier, the greedy algorithm has been shown and proven to be an O(log(n))-
approximation algorithm for solving the set-cover problem [21]. Moreover, the results presented in [19] 
which are based on a novel dynamic greedy framework for the set cover problem, obtains O(log(n))-
competitive results, which leads to a time complexity of O(log(F)) for dynamic greedy algorithm for 
every user. Given the time complexity for greedy algorithm in our problem is O(n×log(F)) where n is 
the number of users, m is the number of datacenters and F = max(FriendsNum), the overall time 
complexity for the initial data placement is effectively O(n×F+(c+n)×m×log(m)). The time complexity of 
our dynamic data placement strategy is proved to be O(((c×m+n)×log(m)+n×log(F)) as follows.  
Time complexity of our dynamic data placement strategy is the time complexity of Algorithm 1. For 
doing so, we need to find out the time complexity of Algorithms 3 and 4 first. The overall time 
complexity for Algorithms 3 and 4 are proved as O((c×m+n)×log(m)+n×log(F)) and 
O(n×log(F)+c×m×log(m)) in Sections 3.4 and 3.6 of online supplementary materials.  
Therefore, the time complexity of Algorithm 1 is the time complexity of Algorithms 3 and 4 in addition 
to update the replica access table with O(c×m×log(m)) and to calculate the total cost and latency with 
O(n) that is O(((c×m+n)×log(m)+n×log(F)). Finally, the overall time complexity of our dynamic data 
placement strategy considering α as the number of changes in the network, is 
O(α×(((c×m+n)×log(m)+n×log(F))). 

5 Simulation Evaluation and Results 

We describe detailed simulation results using real world datasets and using different percentiles of 
latency requirement. We compare our static strategy with other representative counterparts while 
comparing the performance of our dynamic strategy with our static strategy under a set of different 
dynamic scenarios in the social network. Two real world social network datasets are used to 
demonstrate how our dynamic strategy finds an efficient and effective placement of data with 
minimized cost while satisfying the latency requirement. The first dataset used is a Facebook social 
network graph [12] with 63,731 nodes, i.e., users, and 1,545,686 edges, i.e., connections. The second 
dataset used is SNAP location based Gowala social network graph [13] with 196,591 nodes and 950,327 
edges.  
5.1 Experimental Settings 
In the experiment, we simulate a social network over one year as close to reality as possible by using 
real world data. We have considered 365 time periods, denoted as timeslots in the experiments, each 
takes about 100 seconds and is mapped to one physical day in order to simulate a real social network 
over one year. In every timeslot, all scenarios introduced in Section 4.3.1 could possibly happen at any 
time during the timeslot and the solution is adapted on the fly once these changes occur. At the end of 
every timeslot, the solution is adapted based on the scenarios introduced in Section 4.3.2. The growth 
rate of the users is considered as 18 percent increase year over year, based on a Facebook report 
published on May 2017 [23]. We consider 28 percent of the friends for different users as the initial 
number of the friends based on a report indicating 28 percent of the friends for every user to be 
“genuine”, or close friends [24]. The number of friends is randomly increased over time because the 
growth rate of the friends depends on factors such as days they were active, contents uploaded, and so 
on [25]. We assume dynamic scenarios randomly happen during different timeslots based on the 
frequency of nine scenarios (S1 to S9), as in Section 2.1. Addition and removal of datacenters are 
considered to happen only once during our simulations. 
For simulation, real Amazon datacenters in Virginia, California, Oregon, Ireland, Frankfurt, Singapore, 
Sydney, Tokyo, and Sao Paulo are considered and the real unit storage cost for data storage per GB per 
month, request cost per request and transfer cost per GB in all these datacenters are taken into account. 
The prices of UnitStoragePricej, UnitRequestPricej, and UnitTransferPricej for Amazon datacenters used in 
our experiments are shown in Part 4 of online supplementary materials. The final cost of our strategy 
is the summation of the storage cost; transfer cost; and update cost. To find the latency of these 
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datacenters, we had 19 users in 19 cities around the world pinging different Amazon datacenters from 
their locations for ten times. As mentioned before, the average latencies are shown in Part 2 of online 
supplementary materials. To assign these latencies to a different number of users in these locations, we 
used different normal distributions with the collected latencies as the mean for every region. Number 
and location of the users as well as different parameters such as delay time and processing time can 
vary in our model. 

TABLE 1 
PERCENTAGES OF USERS WITH DAILY ACTIVENESS LEVELS  

Percentage Activeness level 
8 12 
15 8 
12 4 
14 2 
27 1 
remaining 0 (inactive, hence not in simulation) 

 
To measure the workload of the social network, we define a term called activeness level. Activeness 
level of the users is based on how many times they check their accounts per day. Percentages of different 
Facebook users and the number of times they check their accounts daily is reported in [26]. We use the 
same proportion for different percentages of the users, as in Table 1. To find the access frequencies of 
different users to access different friends’ data, the access frequencies of users to access their friends’ 
data is set randomly between 0 and every user’s activeness level. The activeness levels and access 
frequencies may change at the end of each timeslot.  
5.2 Simulation Results with Facebook Dataset 
The Max Plank institute Facebook dataset [12] with total 63,731 users and 1,545,686 connections are 
considered as the final social network graph after finishing the simulation of a social network for one 
year. Based on the statistics presented in Section 5.1, the initial number of users is considered as 54,005, 
which is 84.74 of the total number of users by incorporating 18 percent annual growth. The initial 
number of friends for every user is considered as 28 percent of the total friends of the user. By having 
84.74 percent of the users and 28 percent of their friends, our simulations start with 29 percent of the 
whole dataset and would reach to the total dataset after 365 timeslots. 
While the users’ location information is not provided in the dataset, we generate random locations in 
19 different cities as shown in Part 2 of online supplementary materials based on real distribution of 
Facebook users’ locations [27] which is shown in Part 5 of online supplementary materials. We use a 
similar proportion of the users’ locations consistent with that of Facebook and random locations are 
added to the list. Users’ locations are randomly changed for some of the users during different timeslots. 
Parameters such as pricing and latency from Amazon cloud datacenters are used. Using statistics for 
2016 [9], Facebook generates four new petabytes of data per day for the 1.083 billion daily active users. 
Hence, on average, every active user stores around 3.6 MB (4 PB/1.083 billion) information daily in 
Facebook datacenters. We generate random sizes of data for users following a normal distribution with 
average size as the mean initially. Data size increases daily during different timeslots, for all users based 
on activeness levels.  

5.2.1 Simulation Results for Our Static Strategy 
We compared our static strategy with 11 different strategies. The minimum number of replicas for all 
strategies are considered as 2 in order to ensure the data availability. These strategies (A1-A12) are listed 
as follows:  
Random-based strategies: 
A1: Random number of replicas (between 2 and the number of datacenters) in random datacenters. 
A2: Two replicas in two random datacenters. 
A3: Three replicas in three random datacenters. 
Full-replication strategy: 
A4: Full replication of data in all datacenters that is claimed in [28] and [29] as the data placement 
strategy used for Facebook. Full replication has the lowest possible latency and can be deemed as the 
minimum latency benchmark. 
Distance-based strategies: Datacenters are sorted based on the distance for every user as list1. Because 
long distance incurs high latency, users prefer to have a replica of data in their nearest datacenter.  
A5: Two replicas in the first and second preferred datacenters in list1. 
A6: Three replicas in the three most preferred datacenters in list1. 
Friend-based strategies: Datacenters are sorted based on both distance as list1 and number of friends as 
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list2 for every user. Users prefer to have replicas not only in their nearest datacenters but also in the 
nearest datacenters to the most of their friends.  
A7: One replica in the most preferred datacenter in list1 and one in the most preferred datacenter in 
list2. 
A8: One replica in the most preferred datacenter in list1 and two more replicas in the two most preferred 
datacenters in list2. 
Request-based strategies: Datacenters are sorted based on both distance as list1 and number of requests 
as list3 for every user. Users prefer to have replicas not only in their nearest datacenters but also in the 
datacenters where most of the requests are from the friends around them. 
A9: One replica in the most preferred datacenter in list1 and one in the most preferred datacenter in 
list3. 
A10: One replica in the most preferred datacenter in list1 and two more replicas in the two most 
preferred datacenters in list3. 
Social locality based strategy:  
A11: Social locality, which is maintained in [30], we further consider transfer cost that is ignored in their 
work. 
A12: Our static strategy.  

 
Fig. 4. Latency requirement of 90% lower than 250 ms for Facebook 

 
Fig. 5. Latency requirement of 99.9% lower than 250 ms for Facebook 

The cost and latency of these strategies, for a duration of one month for the Facebook dataset with 
different latency requirements are shown in Figs. 4 and 5. An arrow in these figures points to our 
strategy. As shown in some of the results for the Facebook dataset, having less replicas might cause a 
higher total cost due to the extra transfer cost since the storage cost is much lower than the transfer cost. 
For example, strategy A5 with two replicas has a higher cost than strategy A6 with three replicas. 
As shown in Figs. 4 and 5, with more results in Part 6.1 of online supplementary materials, our static 
strategy is able to guarantee the latency requirement in all cases with much lower storage and transfer 
cost comparing to the other strategies. Moreover, the only strategy, except costly full replication, that 
can guarantee the acceptable latency for 99.9 percentiles of all requests with a reasonable cost is our 
greedy set cover based strategy.  



14 
 

5.2.2 Simulation Results for Our Dynamic Strategy 
The cost and latency for our static, our dynamic, and full replication strategies are compared at the end 
of different timeslots. Our original static strategy is our reference strategy, which finds the offline 
solution from scratch based on the existing setting in every timeslot. Our dynamic strategy adapts the 
solution of the previous timeslot based on all the changes during the current timeslot and the cost and 
latency of the adapted solution are shown at the end of each timeslot. The full replication strategy, i.e. 
replication of data in all datacenters, has the lowest possible latency but incurs the highest cost. Several 
settings based on the latency requirement for users and their friends to access data are used to compare 
the cost and latency results.  Requirements here are set as 90% and 99.9% of individual latencies no 
more than 250 ms with more results in Part 6 of online supplementary materials. 
5.2.2.1 Simulation results for eager adaptation 
For eager adaptation, the solution is adapted on the fly once any of the scenarios introduced in Section 
4.3.1 happens. We simulated four different combinations of the scenarios separately while keeping all 
other variables fixed for 90 and 99.9 percentiles of latencies. Different experiments are based on a 
combination of different scenarios, however, S1 and S2 are considered in all experiments. S1, in which 
datasets are updated, happens with all other scenarios to consider data growth over time. S2 happens 
at the end of every timeslot to apply replica synchronization. At the end of every timeslot, we update 
and compare the cost and latency of all three strategies. 
The first experiment is to keep datacenters and locations fixed, start from an initial number of 
connections and add new users and friends until covering all the friends and users. The results are 
shown in Fig. 6 (Exp 1: Scenarios 1, 2, 3 and 4).  The second experiment keeps datacenters and locations 
fixed, starts from the total number of users and friends and deletes friends and users during different 
timeslots. Results are shown in Fig. 7 (Exp 2: Scenarios 1, 2, 6 and 8), showing cost minimization while 
fulfilling the latency requirement when data items change, and users and friends join or leave the 
network over time. 

 
Fig. 6. Cost and latency when new users and friends are added 

 
Fig. 7. Cost and latency when users and friends are removed 

The third experiment keeps users, friends and datacenters fixed, starts from the total number of users 
and friends and changes the location of random users during different timeslots. Results are shown in 
Fig. 8 (Exp 3: Scenarios 1, 2 and 7). This shows cost minimization while fulfilling the latency requirement 
when users and friends move. 
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Fig. 8. Cost and latency when users move 

The last experiment is to keep the users, friends and locations fixed. Then, we start with the total 
number of users and friends and (1) the complete list of datacenters, remove datacenters one by one 
(Exp 4: Scenario 9), and (2) the minimum number of datacenters, add datacenters one by one. (Exp 5: 
Scenario 10). Results for Exp 4 and Exp 5 are shown in Fig. 9 and Fig. 10 respectively. These show when 
datacenters are added or removed, our dynamic strategy keeps latency unnoticeable with the minimum 
cost. 

 
Fig. 9. Cost and latency when a datacenter is removed 

 
Fig. 10. Cost and latency when a datacenter is added 

5.2.2.2 Simulation results for lazy adaptation 
For lazy adaptation, the solution is adapted at the end of every timeslot based on the changes in the 
scenarios introduced in Section 4.3.2. To see how the cost and latency are affected when the workload 
and access frequencies of different users and friends change, the workload and access frequencies are 
changed while all other variables are fixed. The cost and latency of the latest solution with the new 
workload and access frequencies in addition to the cost and latency of static, dynamic, and full 
replication are shown and compared in Fig. 11 for 90 and 99.9 percentiles of latencies (Exp 6: Scenarios 
1, 2 and 5). This shows our strategy fulfills the latency requirement while minimizing the cost when 
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access frequencies change.  

 
Fig. 11. Cost and latency when access frequencies are updated 

5.2.2.3 Combination of eager and lazy adaptations 
All scenarios are combined (Exp 7: All scenarios) and simulated together with the requirements of 90 
and 99.9 percentiles of latencies. The cost and latency of static, dynamic, and full replication, when all 
scenarios happen together, are shown in Fig. 12. Frequency of the scenarios in different timeslots is 
shown in Table 2.  

 
Fig. 12. Cost and latency when all scenarios happen 

TABLE 2 
FREQUENCY OF DIFFERENT SCENARIOS 

Scenario Frequency in each timeslot 
S1 Average of 3.6 MB of data is added for every user during each timeslot  
S2 At the end of each timeslot 
S3 and 
S4 

18%/365 (0.05%) of the initial users and random number of friends are added in each 
timeslot which is more than 3000 new connections during each timeslot 

S5  Random new rates at the end of each timeslot 
S6 Random number of friendships between 0-6 in different times during each timeslot 
S7 Random number of users between 0-2 in different times during each timeslot 
S8 Random number of users between 0-1 in different times during each timeslot 
S9 Once randomly in 365 timeslots 

5.3 Results Analyses  

5.3.1 Efficiency Evaluation 
Efficiency of our strategy can be evaluated in terms of 1) the time it takes for every user and all their friends 
to access their data, i.e., achieved latency, and 2) the time it takes to run the algorithm and do the adaptation, 
i.e., time overhead. It is necessary to not only guarantee the latency requirement for all users by having an 
optimal data placement, but also to find the optimal data placement in an acceptable time. 
From the latency requirement perspective, our strategy is able to guarantee the latency requirement in all 
cases. The latency requirement is calculated by having P, i.e., percentile, and Delay, i.e., acceptable latency 
requirements.  As shown in Figs. 4-12 for Facebook dataset and Part 6.2 of online supplementary materials 
for Gowala dataset, our strategy can guarantee the latency with a much lower total cost.  
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Moreover, our dynamic strategy is efficient in terms of time overhead. For our simulations, six virtual 
machines on our local Cloud testbed, all with Intel core i5-4570 CPU, 8 GB RAM Memory, and windows 7 
operating system are used. The time it takes for the static strategy to find the initial data placement is about 
10 seconds and the time it takes for our dynamic strategy to adapt the solution, as shown in Table 3, for the 
most frequent scenarios of updating datasets and joining new users/friends is 0.00014 seconds for the 
Facebook dataset. For the Gowala dataset, it takes about 12 seconds to find the initial data placement using 
static strategy and 0.00066 seconds to adapt the solution for these most dominant scenarios. Therefore, the 
results show that it takes only 0.00014 seconds for adapting the solution whilst without having a 
dynamic strategy to adapt the solution; it takes about 10 seconds by using static strategy to reconstruct 
the solutions. Thus, our dynamic strategy is about 70000 times more efficient (10s/0.00014s) than the 
static strategy for Facebook dataset and about 18000 times more efficient (12s/0.00066s) than the static 
strategy for Gowala dataset.  
These results show that although our static strategy is effective and efficient, our dynamic data 
placement strategy is required to make it practical in dynamic environments with very frequent 
changes needed. Update time of different scenarios, shown in Table 3, shows that our dynamic strategy is 
extremely efficient and does not jeopardize the time taken to build the solution in order to have efficient 
results. Since Exp7 is a mixture of different scenarios and the number and frequency of scenarios are 
different, it does not make sense to measure and show the update time of Exp7. As results show, our dynamic 
strategy can save a lot of time compared to using the static data placement strategy.  

TABLE 3 
UPDATE TIME OF DIFFERENT SCENARIOS 

Update Time  
(Seconds) 

Exp1 
(S1, S2, S3, 

S4) 

Exp2 
(S1, S2, 
S6, S8) 

Exp3 
(S1, S2, S7) 

Exp4 
(S9.1) 

Exp5 
(S9.2) 

Exp6 
(S1, S2, 

S5) 

Exp7 

Facebook 0.00014 0.0028 0.0124 0.21 0.55 0.08 N/A 
Gowala 0.00066 0.0051 0.53 4.8 4.5 0.33 N/A 

5.3.2 Effectiveness Evaluation 
Effectiveness of our strategy can be evaluated in terms of 1) the total cost of the data placement, 2) the ratio 
between the cost of our strategy and the optimal strategy, i.e., competitive ratio, and 3) the number of 
replicas added or dropped from the solution, i.e., recourse.  
As shown in Figs. 6-12 our strategy can find the minimal storage, transfer, and update cost while 
guaranteeing the latency requirement for different percentiles of individual requests based on the 
latency requirements. Percentages of cost savings compared to the full replication strategy are shown 
in Table 4. The cost saving percentages for different percentiles of latencies are calculated after finishing 
the experiments, i.e. 365 timeslots for all the scenarios. Exp4 (adding datacenters) and Exp5 (removing 
datacenters) happen only once during the experiments. 

TABLE 4 
COST ANALYSIS OF DIFFERENT SCENARIOS 

Cost  
Saving 

Exp1 
 

Exp2 
 

Exp3 
 

Exp4 
 

Exp5 
 

Exp6 
 

Exp7 
 

Facebook 26% 23% 23% 26% 9% 11% 26% 
Gowala 16% 20% 19% 22% 10% 21% 16% 

 
The cost ratio between the dynamic strategy and its static counterpart is close to 1 for both Facebook and 
Gowala datasets in all scenarios. This shows that our dynamic strategy finds a solution as good as the static 
strategy. As discussed in Section 3.3.2, by having a dynamic to static ratio of 1, the competitive ratio for the 
dynamic set cover strategy will be log(n). This means the solution of our dynamic strategy, in the worst 
case, is log(n) times worse than the optimal solution. 
Finally, recourse, i.e., the number of changes for every user’s solution to be adapted in different 
scenarios is either 0 or 1 which means there is at most 1 change in the replicas in order to adapt the 
solution. This is a very promising outcome as creating/deleting replicas incurs extra cost, latency and 
inconsistency. 

5.3.3 Summary 
Based on this analysis, our dynamic strategy is able to find an efficient and effective solution without 
applying a static data placement and replication from scratch for every social network data change. 
Therefore, our dynamic strategy is practical for dynamic environments in terms of both efficiency and 
effectiveness. More detailed results for Facebook and Gowala datasets including the latency 
requirements of 90, 95, 99, and 99.9 percentiles as well as details of cost analysis are shown in Parts 6 
and 7 of online supplementary materials respectively.  
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Detailed threats to validity for the experiments are discussed in Part 8 of online supplementary 
materials. 

6 Related Work 

In this section, we compare our work with existing literature in three categories of: social network data 
placement in cloud, content delivery networks (CDNs), and dynamic data replication in the cloud. In cloud 
based social network data placement, social locality, i.e. placing the data of all friends in every user’s 
server maintained in [30] and [31] for optimizing multiple social network objectives. However, the 
social locality assumption incurs a very high cost due to the replication of data in unnecessary 
datacenters. A multi-cloud hosting system is formulated in [32] and the trade-off between satisfying 
users’ requirements and reducing the inter-cloud data propagation cost is demonstrated. A dynamic, 
cost-aware, optimized data replication strategy is presented in [18] in which the concept of the knapsack 
is used to optimize the cost. Additionally, SPAR [33], is based on partitioning of the social network 
graph as well as replication of users with the aim of ensuring local data semantics, i.e. all relevant data 
of the direct neighbors of a user are collocated on the same machine as the user. Moreover, [34] suggests 
that performing partitioning and replication simultaneously can reduce inter-server traffic. However, 
latency is not considered as a requirement in these papers. The primary focus in [22] is to minimize the 
cost in latency-sensitive applications as well as consistency and fault-tolerance requirements with 
considering workload properties. Reducing cloud resources usage, providing good quality of service 
to users, and minimizing the carbon footprint are considered as a multi-objective optimization problem 
as addressed in [35]. They consider latency as an objective instead of constraint that makes it not 
comparable with our work. A geo-cloud based dynamic replica creation in large global Web sites such 
as Facebook is investigated in [36] and a selective data replication mechanism in distributed datacenters 
to reduce inter-datacenter communications while achieving low service latency is proposed in [28]. A 
novel approach of data placement for improving OSN service performance in a Multicloud 
environment by providing acceptable latency delay is introduced in [37]. The authors claim that since 
the amount of total data to store is less than the baseline approach, it can also benefit from the storage 
cost for storing the data. However, minimization of the total monetary cost for replicating data is not 
considered as an objective in these three papers. To minimize monetary cost, while satisfying user-
perceived latency, a geo-partitioning method is employed in [29] which goes beyond the traditional 
graph partitioning problems. The latency requirement is said to be satisfied as long as each user’s data 
is placed on any one of partitions in a user’s vector. Moreover, considering Twitter as their example, it 
is assumed that users have the same storage cost and therefore the storage cost is simply omitted. 
Finally, the QoS-aware data replication problem for cost minimization in cloud systems is investigated 
in [38] but unlike our work for finding the minimum number of replicas for users, the number of 
replicas is fixed in these papers.  
In our earlier work [39], we proposed a Genetic Algorithm (GA) based strategy to minimize the cost 
while guaranteeing the latency requirement. However, transfer and update costs are ignored and the 
latency is derived using the distance between user and different datacenters instead of considering real 
latencies between users and different datacenters. Moreover, based on the scalability problem in using 
GA, we then proposed a Graph Partitioning (GP) strategy based on users’ locations and connections in 
[40]. A static social network is considered where the users, friendships, and datacenters are fixed and 
do not change over time. These used a simple data placement and replication strategy, which led us to 
the current research presented in this paper.  
The data replication problem in a CDN or cache network is addressed in many studies [41, 42]. Building 
CDNs on top of the cloud infrastructure is advocated in [43]. Cache placement is performed in [44] by 
employing social link information and client preferences. Additionally, a CDN based social video 
replication and user request dispatching mechanism in the cloud architecture is presented in [45]. 
Resource provisioning and replica placement problems for cloud-based CDNs are addressed in [46] 
with an emphasis on handling dynamic demand patterns. Finally, social video distribution over the 
cloud-centric CDN infrastructure, with the objective of minimizing the overall system monetary cost, 
while satisfying the averaged time delay is investigated in [45]. Based on [47], CDN mostly handles 
designing optimal strategies for the case where the number of contents and the scale of user requests 
are fixed. However, the very challenging issue, which is addressed in this paper is to present a dynamic 
strategy that can place dynamic contents and requests related to the growing number of users and 
connections on the fly and continuously ensure the optimality attained by the optimal static solution 
with complete knowledge of the social network over time. These CDN methods do not consider content 
dynamicity, which is the most frequent scenario in social networks. 
In the category of dynamic data replication in the cloud, an efficient proactive algorithm for dynamic, 
optimal scaling of a social media application in a geo-distributed cloud is proposed in [47]. Unlike our 
work, only the number of videos increases in the system, while the total number of users and also the 
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datacenters are fixed. The problem of social network data placement in a distributed cloud with the aim 
to minimize the operational cost of a cloud service provider is investigated in [48]. Finally, an associated 
data placement scheme, which improves the co-location of associated data and the localized data 
serving while ensuring the balance between nodes is proposed in [49]. Incremental adjustment of 
replicas is also taken into account in order to deal with workload change.  However, unlike our work, 
changes in the connection links and datacenters are not addressed as part of the dynamic maintenance 
of the social network. Finally, a lightweight replica placement scheme is proposed in [50] to investigate 
the latency constraint cost optimization problem in geo-distributed OSNs. However, unlike our work, 
they do not consider moving of the users and addition/deletion of datacenters. To highlight the 
importance of datacenter changes, Facebook has recently announced two new datacenter locations, 
which will cost hundreds of millions of dollars [51]. Even when using cloud datacenters, Amazon as a 
cloud provider has increased its datacenter locations from 9 in 2014, to 18 in 2018 and is planning to 
add 4 more datacenters soon [52]. 
Overall, there is no comprehensive work dedicated to all different scenarios that happen in a social network 
for data placement, such as moving of the users and addition/deletion of datacenters. Moreover, as 
mentioned before, we take Pth percentile requirement of individual access latencies for all the users into 
account. Considering all the dynamic scenarios as well as individual access latencies instead of average 
latencies makes our work novel and much more challenging from other existing works. 

7 Conclusion and Future Work 

In this paper, a dynamic cost-effective data placement problem for social networks is formulated as a 
dynamic set cover problem, which is NP-complete. Due to the users’ dynamic activeness and mobility 
in social networks, our strategy is applicable in all dynamic environments where users join, leave, move 
or change their friendships in the social network, and datasets are added, removed and updated as 
needed. Addition and removal of datacenters are also taken into account. Our novel dynamic data 
placement strategy is able to adapt according to the changing environment at runtime. A framework 
consisting a combination of greedy and dynamic greedy algorithms is presented to guarantee that even 
up to 99.9 percentiles of individual latencies for all requests from different users in the social network 
is unnoticeable with a minimum cost for storing, transferring, updating, and synchronizing data over 
time. Compared to alternative full replication, our proposed approach can produce up to 26% cost 
savings compared to the full replication strategy while meeting latency requirements. Simulation 
results on two large-scale datasets, Facebook and location based Gowala, with latency timings used 
from real Amazon cloud datacenters, show the efficiency and effectiveness of our strategy over the 
duration of one year.  
In the future, graph partitioning will be used to shape different groups of users based on their mutual 
interests, connections, usages, etc. to make our strategy more scalable. Hence, the experiments will be 
conducted on real social network traces. Using our graph partitioning method, the social network graph 
will be broken into smaller networks and each network would normally be well within the size range 
of our experiments. A large social network of users would be manageable by different computers in a 
parallel and distributed fashion. Additionally, learning methods will be used in order to predict the 
workload and access frequencies of the friends for future timeslots based on previous timeslots. 
Moreover, users will be involved in the process of data placement and replication. Thus, users can have 
different quality of service requirements and expectations. Finally, to improve the efficiency of our 
strategy in the future, we will apply our method to CDN, e.g. AWS CloudFront [53] or edge/fog 
computing, e.g. AWS Greengrass [54] in order to bring the advantages and power of the cloud closer to 
the end users.  
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Appendix: Table of Notations 

Table of notations for our static and dynamic strategies is shown below. 

Notation Meaning 
A Subset of the universe U in dynamic set cover 
c Updated number of connections 
Connections Updated matrix of connections 
Dijk Updated delay matrix of user i 
Datacenters Updated set of datacenters in the cloud environment 
DCmaini Main datacenter for user i 
Delay Acceptable latency 
F Maximum number of all users’ friends 
FriendsNumi Number of user i’s friends 
Lij Updated delay of user i accessing datacenter j 
L’ijk Updated delay of friend j of user i accessing datacenter k 
Latencyr(ts) Latency for request r in time period ts 
m Updated number of datacenters 
MinReplica Minimum number of replicas 
n Updated number of users 
P Desirable percentile 
r Total number of requests from all users 
ReplicaNumi Final number of replicas for user i 
RequestCosti(dt) Total request cost for user i 
RequestNumij(ts) Number of requests from friend j of user i in time period ts 
RT Replica access table 
S Solution space 
Sij Whether data of user i is stored in datacenter j or not 
Sts The updated solution at time period ts 
StorageCosti(ts) Total storage cost of user i during time period ts 
StoredDataSizei(ts) Data size for user i at the end of time period ts 
TotalCost($) Total cost for all users 
TransferCosti(ts) Total transfer cost for user i during time period ts 
ts Time period 
U Set of all possible solutions in greedy algorithm 
UnitRRequestPricej(ts) Price for read request in datacenter j in time period ts 
UnitStoragePricej(ts) Price for storing one GB of data at the end of time period ts in datacenter j 
UnitTransferPricej(ts) Price for transferring one Gigabyte of data from datacenter j in time period 

ts 
UnitWRequestPricej(ts) Price for write request in datacenter j in time period ts 
UpdateCosti(ts) The cost for synchronizing user i’s replicas from the primary replica at the 

end of time period ts 
Users Updated list of the users in the system 

 


