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Indoor positioning has attracted much research effort due to many potential appli-
cations such as human or object tracking, and inventory management. Whilst there
are a number of indoor positioning techniques and algorithms developed to improve
positioning estimation, there is still no systematic way to characterise the estimation.
In this paper, we propose a method comprising of 3 characteristics to characterise in-
door positioning estimation. We conducted experiments on an active Radio Frequency
Identification (RFID)-based Real Time Location System (RTLS) in different environ-
mental conditions. We used both a human and a robot to traverse two experimental
areas and collected positioning results at different fixed points along the traversal
path. Using this basic positioning data, we were able to characterise positioning esti-
mation using 3 characterisations: position accuracy, centroid consistency, and angular
distribution. We demonstrate the use of these characteristics for examining different
points in a travelling path and different measurements.

Keywords: Real Time Location System (RTLS); Radio Frequency Identification
(RFID); Indoor Positioning Estimation.

1. Introduction

Indoor positioning refers to techniques and algorithms that can estimate objects’
position inside indoor environments. Accurate indoor positioning systems offer
a number of benefits for various applications, including human or object track-
ing, indoor navigation, etc. Various indoor positioning systems have been devel-
oped using different technologies such as WLAN (Bahl and Padmanabhan (2000);
Laoudias, Michaelides, and Panayiotou (2012)), Bluetooth (Tadlys Wireless Com-
munications Ltd. (2014); Kotanen et al. (2003)), camera imaging (Sugimoto et al.
(2014); Krumm et al. (2000)), etc.

Current indoor positioning research focuses on deviations between positioning
results and their true position, positioning errors, as a means to gauge positioning
performance (Adler et al. (2015)). For example, works such as (Hazas and Hopper
(2006); Casas et al. (2006); Ruiz et al. (2012); Adler, Schmitt, and Kyas (2014))
utilise mean error, mean square error or positioning error, as measures to report
accuracy, while research such as (Mirowski et al. (2012); Ni et al. (2004); Saad
et al. (2012)) adopts cumulative distribution function (in the forms of percentiles
of error) for the same purpose. While positioning error reflects how truthful posi-
tioning results are with respect to the true position and hence, a useful measure
of positioning performance, it cannot convey other characteristics such as whether
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the positioning results are converging or diverging, or if the estimation is biased
in some ways in different areas. These characteristics are also important in artic-
ulating positioning performance since they reflect how well the system performs
under different conditions. Furthermore, if we are able to characterise positioning
estimation of a system, we have a basis to estimate and predict the likely result
of that system; the knowledge of positioning estimation characteristics can be use-
ful in supporting positioning estimation. However, positioning characterisation has
not been established.

In this work, we conducted multiple experiments with an active RFID-based Real
Time Location System (RTLS), using both human and the NAO robot1. NAO is
a humanoid robot that can perform various and advanced operations. The exper-
iments were conducted in two indoor locations: one at the warehouse of Adilam
Technologies2, the other at an university laboratory. The system works by measur-
ing the ranges from one (or more) RFID tags, worn by a tracked object, to multiple
RFID readers placed within a monitored area, and using multi-lateration to esti-
mate the positions of the tag(s). Though we used a positioning system that is based
on radio frequency (RF) signal in our experiments, we do not focus on studying the
impact of human tissues on RF signal propagation, which has attracted many re-
search works such as (Bancroft et al. (2012); Garcia-Villalonga and Perez-Navarro
(2015)).

Based on these experiments, we have developed a new method for characterising
indoor positioning estimation. We propose three characteristics for such positioning
estimation: (a) the position accuracy with respect to the true position, (b) the
centroid consistency among positioning results, and (c) the angular distribution of
positioning results with respect to the true position. We also propose corresponding
metrics suitable to be used to report these characteristics.

The key new contributions of our work are thus:

• design of experimental platforms to systematically and repeatably measure
positioning accuracy, demonstrated in two different indoor environments with
two different platforms;
• the introduction of centroid consistency and angular distribution to charac-

terise accuracy;
• systematically characterising an indoor positioning estimation using position

accuracy, centroid consistency, and angular distribution characteristics. We
show in our experiments how these new characteristics can be used to com-
pare positioning estimations of different positioning systems.

We present the motivation of our work in Section 2. We review various methods to
report positioning results of a system in Section 3. We present our characterisation
method in Section 4. We present our experiments, and the results of applying our
characterisation method in Section 5. We discuss the meaning and implication
of the proposed estimation characteristics in Section 6. We present the threats to
validity of our work in Section 7. We conclude the paper and discuss possible future
works in Section 8.

1http://www.aldebaran.com/en
2http://www.adilamtech.com.au/
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2. Motivation

Consider an elderly care environment where equipment, medical personnel and
elderly patients need to be tracked. An accurate positioning system would allow
for better monitoring of available personnel to respond to emergencies (or even
simply improved staff allocation to non-emergency tasks); tracking of equipment
and consumables to improve both logistics for equipment management, but more
importantly to ensure a safe living environment for mobility-limited patients; and
monitoring of patients’ safety, in terms of their general location in the facility
but more importantly their specific location and historic location in rooms (to
proactively determine potential injury or illness).

To achieve these goals, an effective indoor positioning system is required to pro-
vide a high degree of positioning accuracy. Our first aim is to understand and
characterise the positioning estimation by conducting multiple experiments with
an active RFID system. The active RFID system was motivated by the need for a
moderate-to-low cost, high volume, high degree of accuracy, and ability to retrofit
existing spaces without expensive modifications. Each person or thing in the envi-
ronment to be tracked will utilise a single active RFID tag. A collection of RFID
readers will be used to determine indoor position to a high degree of accuracy.

Key research questions we wanted to answer include:

• How do we characterise indoor positioning estimation?
• How accurately can the position of one active RFID tag be determined using

multiple readers?
• How can we apply these results to characterising the accuracy of indoor

positioning system in general?

3. Related Work

Positioning results have typically been reported in terms of the mean error, and
the cumulative distribution function (CDF) of the error. The error is computed
as the distance from a positioning result to the true position, while the CDF is
usually reported in terms of percentiles of the errors. For example, an integration
of WiFi and Inertial Navigation Systems (INS) for indoor positioning has been
proposed (Evennou and Marx (2006)). The results of this work show that fusing
the INS information in a WiFi (WLAN) system using particle filter can result in a
mean error of 1.53 metres, which is smaller than that of the RADAR system (Bahl
and Padmanabhan (2000)), being 3.88 metres. The LANDMARC system (Ni et al.
(2004)) uses RFID technology to compute people’s location inside building. It first
identifies the closeness of the tracked tag to a number of reference tags, and then
uses the position of these reference tags to estimate the location of the tracked tag.
The experimental results show that the number of reference tags that can yield the
most accurate positioning result is 4, with 50 percentile having an error distance
of around 1 metre. It is better than the RADAR system (Bahl and Padmanabhan
(2000)), whose 50 percentile is around 2.37-2.65 metres.

Other research, such as (Casas et al. (2006); Hazas and Hopper (2006); Jin, Soh,
and Wong (2010)), reports positioning results in terms of mean error and confi-
dence interval of the mean. For example, a robust least-median-of-squares method
to mitigate the NLOS issue in indoor environment has been proposed (Hazas and
Hopper (2006)), where a tag’s position is calculated based on the time of flight
measurements of ultrasonic signals emitted from several beacons. It was reported
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that 99th percent confidence interval of 2D positioning error of ±3 cm has been ob-
tained, after 750 localizations with at least 4 beacons that are under direct vision in
the experimental area. Other metrics such as mean-square-error (MSE), root-mean-
square (RMS) and percentage of positioning error with respect to the total travel
distance have also been used. For example, an indoor navigation system based on
foot-mounted inertial measuring units and RFID measurements has been proposed
(Ruiz et al. (2012)). The accuracy of the system was reported as less than 1% of
the total travel distance, where the accumulated positioning error is calculated as
the 2-D distance between the start and stop positions of the traversal path. An ac-
curacy analysis of wireless sensor network-based indoor localization measurement,
using weighted centroid localization method (WCL) and relative-span exponential
weighted localization method (REWL), has been presented (Pivato, Palopoli, and
Petri (2011)). The experimental results show that using 4 anchors with the contri-
bution weight of each anchor being 1, the WCL method achieves the RMS of 1.29
metres. Furthermore, in the case of the REWL method, using 4 anchors with the
weighting factor being 0.1, the achieved RMS is 1.27 metres.

Positioning results can also be reported in terms of their probability function. For
example, an ultrawideband-based indoor positioning method has been developed,
taking advantage of a map of measurement noise and particle filter to improve
position estimation (Suski, Banerjee, and Hoover (2013)). In this work, there were
5.6 million positioning results obtained throughout the experimental areas. These
results were used to build up probability functions of the positioning results, given
the true positions. These probability functions were based on the assumption that
the measurement noise is bivariate, mixture of Gaussian random variables. This
resulted in ellipsoid boundary for positioning results.

In summary, various metrics have been used to report indoor positioning results.
However, they only focus on articulating positioning errors, which are deviations
from positioning results to the true position. While it is helpful, the sole use of
positioning error in reporting the estimation of a positioning system is not enough,
since it cannot convey other important estimation characteristics. For example,
whilst positioning errors are different in different positions, they also tend to re-
side at certain directions with respect to the true positions. Furthermore, their
dispersive level are also different regardless of positioning errors. This suggests
that indoor positioning estimation is more than just the average or distribution of
deviations between the estimated positions and the true position. Characterising
positioning estimation is needed to provide a better understanding of positioning
behaviour and performance of a system. In our work, we have identified a number
of positioning estimation characteristics.

4. Positioning Estimation Characterisation

Characteristics of positioning estimation are not well-defined in the literature. In
this work, we systematically analysed positioning data from 2 empirical studies,
and observed that there are 3 key characteristics in positioning estimation: position
accuracy, centroid consistency, and angular distribution. We define and propose
new methods to metrics and measures for these characteristics.
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4.1 Position Accuracy

Positioning errors, which are deviations from positioning results to the true posi-
tion, are often used as means to report estimation performance. In our work, this
characteristic is reflected through the position accuracy of the estimation.

Definition: Position accuracy is the measure of closeness, statistically of posi-
tioning results to the true position, where the closeness of a positioning result is
calculated as Euclidean distance between that result and the true position.

δT =
√

(x− xT )2 + (y − yT )2 (1)

where δT is the distance from a positioning result to the true position, which is also
the positioning error ; x and y are coordinates of the positioning result; xT and yT
are coordinates of the true position.

Rationale: Positioning systems give estimation results to approximate the true
position. Approximations may deviate from the true position. The bigger the devi-
ations, the less reliable the estimation. Position accuracy reflects the reliability of
the estimation in terms of deviations from estimation results to the true position.

Measure: In our work, the position accuracy is expressed in terms of the trueness
and precision of the estimation (Adler et al. (2015)), which are measured by means
of, respectively, the mean and variance of distances from positioning results to the
true position. While the mean of distances indicates, on average, how close the
positioning results are to the true position, the variance of distances indicates the
spread of the distance values. The smaller the mean is, the closer, on average, the
positioning results are to the true position, and hence the better. Moreover, the
smaller the variance is, the more convergent the distance values are to the mean
distance value, and hence the more precise the estimation is.

4.2 Centroid Consistency

The centroid is the average of all positioning results provided by the positioning
system given each true position. While the position accuracy reflects how close
the results are to the true position, centroid consistency refers to the way the
positioning results are distributed. Note that the notion of centroid has been used
in indoor positioning community (Blumenthal et al. (2007); Schmitt, Adler, and
Kyas (2014)). For example, a weighted centroid localisation technique has been
proposed, relying on the idea of calculating the position of devices by averaging
the coordinates of known reference points. However, the notion of the centroid
mentioned in these works is related to estimation techniques, or the centre of mass
of geometric object(s). To our knowledge, the use of centroid in characterising the
positioning estimation of a system has not been studied.

Definition: Centroid consistency is the measure of closeness among estimation
results, in terms of geometric distribution, for a true position.

Rationale: The true position is unknown, but approximated by a positioning
system. Approximation results may not coincide with each other. The more the
approximations spread, the less consistent the estimation is. Centroid consistency
indicates the stability of a positioning system in providing concurring approxima-
tions.

Measure: In our work, centroid consistency is analysed by examining how po-
sitioning results are distributed around their centroid. As such, we propose to
measure centroid consistency in terms of the level of outliers and convergence.
Note that the convergence is measured after outliers have been removed from the
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dataset.

• Outliers: An outlier is an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different
mechanism (Hawkins (1980)). In our work, outliers are positioning results
that yield much farther distances to the centroid than others, where the
centroid of the estimation is obtained by calculating the means of x− and
y− coordinates of positioning results:

xc =

∑n
i=1 xi
n

(2)

yc =

∑n
i=1 yi
n

(3)

where xc and yc are x- and y-coordinates of the centroid; xi and yi, i = 0...n
are x- and y-coordinates of positioning results; n is the number of positioning
results.

An outlier is an extreme manifestation of the random variability inherent
in the data, or the result of gross deviation from prescribed experimental
procedure or an error in calculating or recording the numerical data (Grubbs
(1969)). In our work, outliers are detected using boxplots, where a box rep-
resents distance data ranging from the first quartile (25th percentile) to the
third quartile (75th percentile); the length of the box is also called interquar-
tile range, and the two hinges of the box are identified using Tukey’s Hinges.
A solid line in the box indicates the value of the median. Outliers are then
considered as values that fall outside 1.5 interquartile ranges from the upper
or lower hinges. Extreme outliers are considered as values that fall outside 3
interquartile ranges from the upper and lower hinges.
• Convergence: Convergence is the measure of how concentrating around the

centroid positioning results are. Positioning systems producing more diverg-
ing positioning results are less consistent, since repeating positioning estima-
tion at the same position may yield results that deviate from each other.

In our work, convergence is measured using the mean and the variance of
distances from positioning results to their centroid. The mean of distances
shows, on average, how close the positioning results are to the centroid. The
smaller the mean is, the more concentrating positioning results are, and hence
the better. Besides, the variance of distances indicates the spread of distance
values around the mean; the smaller the variance is, the more convergent
positioning results are.

4.3 Angular Distribution

Besides position accuracy and centroid consistency, the directions with respect
to the true position, in which positioning results are concentrating, are also a
characteristic of positioning estimation. In our work, this characteristic is defined
as angular distribution.

Definition: Angular distribution is the measure of how positioning results are
distributed in terms of their angles with respect to the true position.

Rationale: Positioning systems provide approximations of a true position. An-
gular distribution shows the bias of the approximation toward certain directions
from the true position. The angular bias is reported using the mean angle and
the spread. Knowing the angular bias will provide a measure to understand the
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approximation tendency at a position.
Measure: We apply directional statistics (Mardia and Jupp (2009)) to calculate

the mean and variance of angles as angles are of circular nature, and consequently,
for e.g., 0 degrees and 360 degrees are identical angles. The directional mean and
variance of the angle values are calculated as follows:

θ̄ =

{
arctan(

∑n
i=1 sin θi,

∑n
i=1 cos θi) if

∑n
i=1 cos θi ≥ 0

arctan(
∑n

i=1 sin θi,
∑n

i=1 cos θi) + π if
∑n

i=1 cos θi < 0

(4)

directionalV ar(θ) = 1−
√

(
∑n

i=1 cos θi)2 + (
∑n

i=1 sin θi)2

n
(5)

where θ̄ is the directional mean of angles to the true position; directionalV ar(θ) is
the directional variance of angles to the true position; θi, i = 1...n are angles from
positioning results to the true position; n is the number of positioning results; the
inverse tangent function ‘arctan’ takes values in [−π/2, π/2].

The mean angle indicates the direction where positioning results are concentrat-
ing. The variance of angles indicates the spread, ranging from 0 to 1; the higher
the variance, the more dispersed the angles are. If the angular data are widely
dispersing, then the variance will be almost 1. On the other hand, if the angular
data are tightly clustered, then the variance will be almost 0. Since the angular
data are circular and not normally distributed, we apply Chebyshev inequality on
angular data to calculate the range of angles around the mean that covers at least
certain percentage of positioning results (Mardia and Jupp (2009)):

Pr(| sin(
1

2
(θ − θ̄))| ≥ ε) ≤ directionalV ar(θ)

2ε2
, 0 < ε < 1 (6)

where θ is the random variable denotes the angle, θ̄ is the directional mean angle,
and directionalV ar(θ) is the directional variance of angles.

5. Experiments

In this section we describe a set of empirical measurement experiments that we
carried out to validate our positioning metrics. These were carried out in two
different indoor locations using two different RFID carriers - a NAO robot and a
human.

5.1 Experimental Equipment

We used an active RFID-based Real Time Location System (RTLS), available com-
mercially1, to estimate indoor position. The RTLS hardware in our experiment
consists of one main reader, five auxiliary readers and a number of active RFID
tags. Fig. 1 shows the architecture of the system. The system functions as follows:
the RFID tags communicate with the readers (including the main reader) using
RFID signal. Based on the signal received, the readers calculate the distance, rang-
ing information, between them and the RFID tag. All information received and

1We are currently not able to disclose the manufacturer of the system due to confidential terms
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calculated by the readers is forwarded to the main reader via a WiFi connection.
The main reader uses triangulation to compute the position, positioning result, of
the RFID tag.

Figure 1. The architecture of the active RFID RTLS system used in the experiment.

We took a large number of positioning results of a RFID tag within a room
and compare them to its known actual positions. To do so, we adopted a novel
solution of using a NAO robot to carry the RFID tag and traverse through our
experimental areas. The use of the robot was to assure the accuracy of its position,
and the repeatability of a robot to travel a path many times with high degree of
accuracy. As shown in Fig. 2, the RFID tag was put on top of a pole, carried by the
NAO robot. In our experiment, we programmed the NAO robot to use a camera
positioned on his chin to follow a pre-defined path. The robot also used its WiFi
connection to communicate with the RTLS software in the computer. We describe
the detailed experimental procedure in Section 5.2

Figure 2. The NAO robot carrying the RFID tag on top of a pole and traversing through a pre-defined
path.

In addition to using the NAO robot, the RFID tag was also carried on either the
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right or left hand of a person. The height of the tag when carried by the person was
similar to when it was carried by the NAO robot. These additional experiments
were carried out to test if a human body influences the positioning estimation.
In these experiments, the person used a phone to communicate with the RTLS
software, and to log timing information (described in Section 5.3) while traversing
the area. We developed an application to run on an Android phone to accomplish
this task. In our experiment, we used a Samsung Galaxy S phone for this purpose.
Details about the logs and their use are presented below.

5.2 Experimental Procedure

We conducted our experiments at two locations. The first location was at the
warehouse of an industry partner - Adilam Technologies. The second location was
at an university laboratory room. The maps of the experimental areas and the
traversal paths are shown in Fig. 3. The experimental areas in the laboratory
and Adilam warehouse are, respectively, 5.4x6.15 m2 and 7.08x16.2 m2. We chose
the laboratory location to represent a medium-sized, cluttered single indoor office
environment. We chose the Adilam location to represent a larger, more open indoor
environment with connected room.

(a) (b)

Figure 3. The map of experimental areas: (a) is the map of the laboratory; (b) is the map of Adilam
warehouse. The blue boxes are the auxiliary readers; the red boxes are the main reader; the dark grey objects
are desks; the light grey objects are tables; P1, P2, ..., P54 are the experimental points constituting the
traversal path in each environment, there are 13 experimental points at the laboratory and 54 experimental
points at Adilam warehouse.

There were three experimental settings applied for each environment. The first
setting used the NAO robot to carry the RFID tag; the second and third settings
used a person wearing the RFID tag on their, respectively, right and left hands.
The robot and the person traversed a pre-defined path. The height of the RFID tag
when carried by the robot was also the same as the height when it was carried by
a human. Furthermore, the robot’s movement was done by flexing its legs, hence
imitating a human’s movement.

In each experiment, the following procedure was followed:

• We created a path in each of the experimental areas by carefully measuring
and then taping the floor. At pre-defined positions on the path, we used labels
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to guide both human and robot movement, i.e., Stop label, Right label and
Left label.
• We manually measured the coordinates of each label. The results of this

measurement were the true positions of the labels. These true positions were
measured with respect to the main reader’s position.
• We had a human wearing the RFID tag or the NAO robot carrying the RFID

tag traverse along the path. The active RFID tag was a wearable wrist band.
When worn by a human or carried by the robot, the tag was always positioned
directly above the path. During the traversal, the human or the NAO robot
needed to communicate with the RTLS software and log certain information.
We developed an Android application, in the human case, and programmed
the NAO Robot, in the robot case, to accomplish these tasks. The following
mechanism was adopted during the path traversal:
◦ All the readers were set up and configured using the RTLS software.

Then, the RTLS software waited for a starting signal, sent by either the
human or the NAO robot, before logging the positioning results and
ranging information into a file.
◦ To signal the start of the experiment, the human or the robot sent a

signal to the RTLS software. Upon receiving the starting signal, the
RTLS software logged the starting time, and continuously logged the
positioning results and ranging information with their corresponding
time stamp.
◦ Upon arriving at a label, the arrival time was logged. Note that the

arrival time at the first label was also the starting time of the phone
or NAO logging. After this, the human or the robot stayed upon the
label for 6 seconds. During this period, multiple positioning measures
were made by the RTLS system. If the label was the Stop label, then
after staying on the label, the human or the robot kept going straight.
If the label was the Right or Left label, then the human and the robot
performed, respectively, the right turn or left turn while staying on top
of the label, and then went straight.
◦ Upon leaving a label, the departure time was logged.
◦ For each experimental setting, the traversal process was repeated 30

times so that the positioning results at each point can be statistically
tested.

5.3 Data Collection Mechanism

After a human or the robot had traversed the path, we had two types of log file:
one log file was created by the RTLS software, which stores the starting time, the
positioning results and ranging information with their corresponding time stamp;
the other was created by the phone application or the NAO robot, which stores
the corresponding arrival and departure time at each label. Since we know the
true location of each stop, given these 2 files, we can compare the accuracy of the
measured positions using time as the correlation factor.

The comparison of the true position to the measured position depends on the
synchronisation of the clocks of the RTLS system and logging of the true position.
We synchronised time recorded by the respective clocks through the data logs. The
accuracy of the time difference is in tenths of milliseconds.
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5.4 Experimental Results

We illustrate our method with positioning results at positions 1 and 2 at the
laboratory (see Fig. 3(a)) in the NAO robot case as examples 1. Figs. 4 and 5 show
the aggregated positioning results for, respectively, positions 1 and 2. The x and y
axes are relative to the main reader (in metres), in 2 dimensional space. We proceed
by analysing these results in terms of the position accuracy (Section 5.4.1), the
centroid consistency (Section 5.4.2), and the angular distribution (Section 5.4.3).

Figure 4. Positioning results at position 1 in the laboratory using the NAO robot.

5.4.1 Position Accuracy

Fig. 6 shows the histograms of distance values from, respectively, positioning
results at positions 1 and 2 to their true position. It can be seen that, on average,
the positioning results at position 1 are farther from their true position than those
at position 2 from their true position. This is reflected in the mean distance of these
positions, in which the mean distance at position 1 is 0.82 metres while the mean
distance at position 2 is 0.69 metres. Furthermore, it is shown that the distances
from positioning results at position 1 to their true position spread out more than
those at position 2 to their true position. This means that the measurement errors
at position 1 are less converging than those at position 2. This is indicated in
the variances of distances, from positioning results of these two positions to their
corresponding true positions. For position 1, the variance is 0.11 while for position
2, the variance is 0.09.

5.4.2 Centroid Consistency

Fig. 7 shows a box-plot of distances from positioning results at position 1 to their
centroid. As shown in the figure, there are 5 results that are considered as outliers
since the distances from these results to the centroid fall outside of the normal
range, within which the majority of results reside. On the other hand, positioning
estimation at position 2 yields no outlier.

1The full results under each experimental setting can be found in
http://opax.swin.edu.au/∼ldlam/Appendix-PositioningCharacterisationResults.xlsx
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Figure 5. Positioning results at position 2 in the laboratory using the NAO robot.

Figure 6. Histogram of positioning distances to the true position at positions 1 and 2 in the laboratory
using the NAO robot.

Fig. 8 shows the histograms of distances, from positioning results at positions
1 and 2 to their centroid. It can be seen that positioning results at position 1
are closer to their centroid than those of position 2. This is indicated through the
means of distances at positions 1 and 2. In position 1 case, the mean distance is
0.42 metres, smaller than that in position 2 case, being 0.5 metres. Furthermore,
the variance of the estimation at position 1, being 0.05, is also smaller than that
of the estimation at position 2, being 0.09.
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Figure 7. Box-Plot of distances from positioning results at position 1 to their centroid. The plot shows
that there are 5 results that fall outside of 1.5 interquartile ranges; hence, they are considered as outliers.

Figure 8. Histogram of positioning distances to the centroid at positions 1 and 2 in the laboratory using
the NAO robot.

5.4.3 Angular Distribution

The positioning results of positions 1 and 2, as depicted in Figs. 4 and 5, show
that the positioning estimation at position 1 tends to distribute toward certain
directions from the true position, while that at position 2 tends to disperse more
around the true position. This is in line with the histograms of angular data at
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positions 1 and 2 in Fig. 9. The figure shows that, in the position 1 case, the
angles concentrate at the direction from 150 to 200 degrees, while, in the position
2 case, the angular distribution reaches its peak at around 200 degrees. The figure
also shows that the angular distribution in the position 2 case also spreads out
to other values more than that in the position 1 case. In fact, the angular mean
values of positions 1 and 2 are, respectively, 170 degrees and 193 degrees. This
indicates that the positioning estimation of positions 1 and 2 is concentrated at
around these orientations. Furthermore, the angular variance values of positions 1
and 2 are, respectively, 0.1 and 0.36. This indicates that the spreading level in the
position 1 case is less than that in the position 2 case.

Figure 9. Histogram of positioning angles to the true position at positions 1 and 2 in the laboratory using
the NAO robot.

Consider the 50% case. Applying Equation 6 on the angle data shows that the
angular range that covers at least 50% positioning results at position 1 is from
132.45 degrees to 207.81 degrees, while that at position 2 is from 119.53 degrees
to 266.17 degrees. The results are depicted in Fig. 10, in which the distribution
areas, formed by the 2 angular boundary lines and an arc, are where the majority
of positioning results reside in. The arc is part of the circle, whose centre is the true
position and the radius is determined by the farthest point in the angular range
from the true position.

6. Interpreting and Using Positioning Characteristics

We have identified and analysed 3 characteristics of indoor positioning estimation.
We have illustrated methods that we used to measure these characteristics, using
positioning results at positions 1 and 2 in the laboratory and the NAO robot case
as examples. In this section, we discuss the meaning of the characterisation results
in assessing the performance of a positioning estimation process (Section 6.1), and
the use the characterisation in different cases (Section 6.2).
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Figure 10. The angular and distance ranges that cover at least 50% positioning results at positions 1
and 2 using Chebyshev inequality. The solid arrows originate from the true positions and denote the mean
angles. The broken arrows denote the boundaries of angular ranges. The blue arcs show the boundaries of
the distance ranging from the true position.

6.1 Assessing the performance of an estimation process

Current indoor positioning research utilises positioning error, which is the Eu-
clidean distance from positioning result to the true position, as a means to mea-
sure the performance of an estimation process. While positioning error is a useful
measure of positioning performance, there are other characteristics, such as the
convergence of positioning results or the bias in the estimation process, that have
not been studied. Our characterisation results can capture all these characteris-
tics, and hence can be used to provide a more holistic assessment of an estimation
process.

Position accuracy refers to the closeness of positioning results to the true posi-
tion. In our work, the measurement of position accuracy is based on the notion
of positioning error, which has long been used in the literature. The meaning of
position accuracy in characterising the performance of an estimation process is
interpreted based on the trueness and precision of the measurements, which are
measured by, respectively, the mean and variance of positioning errors. Specifically,
the smaller the mean and variance are the better, as it indicates a more accurate
and precise estimation of the tracked target’s position. For example, the mean and
variance of positioning errors at position 1, respectively 0.82 metres and 0.11, are
larger than those at position 2, respectively 0.69 metres and 0.09. As such, in terms
of accuracy, the estimation at position 2 is better than the that at position 1.

Centroid consistency measures the number of outliers in the estimation process,
and the convergence of positioning results. The more outliers in the results, the less
stable the estimation is. Furthermore, the more convergent the positioning are, the
more consistent the estimation is. As such, estimation with less outliers and more
convergent results is more preferred. For example, the estimation at position 1
produces 5 outliers while that at position 2 yields no outlier; hence, the estimation
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at position 2 is more stable. Besides, the mean and variance of distances - from
positioning results to their centroid - at position 1, respectively 0.42 metres and
0.04, are smaller than those at position 2, respectively, 0.5 metres and 0.09. This
indicates that the estimation process at position 1 yields more convergent results
than that at position 2.

Angular distribution measures the distribution of positioning results in terms of
their angles with respect to the true position. The angular distribution can show
the angular bias of an estimation process. For example, as depicted in Fig. 9, the
estimation process at position 1 is biased toward the 170-degree direction while that
at position 2 is biased toward the 193-degree direction. Furthermore, the spreading
level at level 1 is less than that position 2. This is reflected in the angular variances
at these 2 positions, which are 0.1 at position 1 and 0.36 at position 2. This suggests
that the estimation at position 1 is more biased than that at position 2.

Fig. 11 shows the percentiles representing the frequency of positioning results
and their distances from the true position. It can be seen that distances at position
1 are consistently farther away from the true position than those at position 2.
For 25th, 50th, 75th, 100th percentiles, the values at positions 1 are, respectively,
0.62 metres, 0.85 metres, 1.09 metres, and 1.52 metres; while those at position 2
are, respectively, 0.46 metres, 0.67 metres, 0.95 metres, and 1.39 metres. This is
also consistent with the position accuracy at these 2 positions, where positioning
estimation at position 1 is less truthful than that at position 2.

Figure 11. Percentiles of distances from positioning results inside the distribution areas to the true position
at positions 1 and 2. The 4 arcs at each position, from innermost to outermost, are, respectively, 25th,
50th, 75th, 100th percentiles.
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Besides, Fig. 12 shows the percentiles representing the frequency of positioning
results and their distances from the centroid. It can be seen that the values at
25th and 50th percentiles at these 2 positions are quite similar, with those at
position 1 being, respectively, 0.26 metres and 0.39 metres while those at position
2 being, respectively, 0.26 metres and 0.44 metres. However, at 75th and 100th
percentiles, the values at position 2 (respectively, 0.7 metres and 1.32 metres) are
larger than those at position 1 (respectively, 0.56 metres and 1.02 metres). This
further consolidates that the estimation at position 1 is more convergent than that
at position 2.

Figure 12. Percentiles of distances from positioning results to the centroid at positions 1 and 2. The 4
circles at each centroid, from innermost to outermost, are, respectively, 25th, 50th, 75th, 100th percentiles.

6.2 Using the characteristics

Our positioning characterisation can be used in 2 ways: comparing the estimation
at different positions in an area, and comparing the estimation across different
settings such as using the NAO robot as traveller and using human as traveller.

6.2.1 Comparing the estimation at different positions in an area

After characterising the positioning estimation at all positions in our experiment,
we pick 3 positions to compare their characteristics. This comparison provides an
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example to illustrate how the characteristics can be interpreted. The comparison
is shown in Table 1. We first compared the estimation at positions 3 and 1. It can
be seen that the position accuracy at position 3 (i.e. (0.53, 0.05)) is smaller than
that at position 1 (i.e. (0.82, 0.11)), which means that estimation at position 3 is
more accurate than that at position 1. Position 3 has angular distribution that
is more evenly spaced out, which is reflected in its directional variance (i.e. 0.24)
compared with that at position 1 (i.e. 0.1). The centroid consistency at position 3
(i.e. (0.33, 0.03, 1.08%)) is smaller than that at position 1 (i.e. (0.42, 0.04, 2.4%)),
which suggests that the estimation at position 3 is more convergent and contains
fewer outliers than that at position 1. Overall, the estimation at position 3 is better
than that at position 1 across all 3 characteristics.

Table 1 also shows the comparison between the estimation at positions 1 and
10. The table shows that the estimation at position 1 is less accurate than that
at position 10, which is reflected in the position accuracy at these 2 positions (i.e.
respectively (0.82, 0.11) and (0.67, 0.1)). Furthermore, the directional variance at
position 1 (i.e. 0.1) is smaller than that at position 10 (i.e. 0.62), which suggests
that the estimation at position 1 is more biased than that at position 10. However,
the centroid consistency at position 1 (i.e. (0.42, 0.04, 2.4%)) is smaller than that
at position 10 (i.e. (0.6, 0.11, 5.4%)), which means that the estimation at position
1 is more convergent and contains fewer outliers than that at position 10. Overall,
the estimation at position 1 is worse than that at position 10 in terms of position
accuracy, angular distribution, but is better in terms of centroid consistency.

Table 1. Comparing the estimation at 3 positions in the laboratory in the NAO robot case. P1, P3,
and P10 indicate, repectively, positions 1, 3, and 10. The tuple in the Position Accuracy row shows,
respectively, the mean and variance of distances from positioning results to the true position. The tuple in
the Angular Distribution row shows the directional variance of angles from positioning results to the
true position. The tuple in the Centroid Consistency row shows, respectively, the mean and the variance
of distances from positioning results to the centroid and the percentage of outlier in the estimation. The
comparison shows which result is better than the other.

Positions Comparison

Positions 3 and 1

Position Accuracy P3(0.53, 0.05) > P1(0.82, 0.11)

Angular Distribution P3(0.24) > P1(0.1)

Centroid Consistency P3(0.33, 0.03, 1.08%) > P1(0.42, 0.04, 2.4%)

Positions 1 and 10

Position Accuracy P1(0.82, 0.11) < P10(0.67, 0.1)

Angular Distribution P1(0.1) < P10(0.62)

Centroid Consistency P1(0.42, 0.04, 2.4%) > P10(0.6, 0.11, 5.4%)

6.2.2 Comparing the estimation across different experimental settings

The positioning characteristics can be used for comparing an estimation under
different experimental settings over the same trajectories, such as the estimation
in the NAO robot case and the estimation in the cases the human wearing the
RFID tag on the left (”the left hand case”) and right hands (”the right hand
case”). Table 2 shows the comparison between estimation under different settings
in our experiment. The results were calculated using aggregated positioning results
obtained in each setting.

At the laboratory, it can be seen that the NAO robot case provides the most
accuracy and least biased estimation results compared with the left hand and right
hand cases, which is reflected in the position accuracy and angular distribution
characteristics. For example, the position accuracy in the NAO robot case (i.e.
(0.65, 0.12)) is smaller than those in the left hand and right hand cases (i.e. respec-
tively (0.75, 0.17) and (0.79, 0.16)); furthermore, the directional variance in the
NAO robot case (i.e. 0.85) is also larger than those in the left hand and right hand
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case (i.e. respectively 0.62 and 0.6), which suggests that the angular distribution in
the NAO robot case is more evenly spaced out than those in the left hand and right
hand cases. In terms of centroid consistency, the percentage of outlier in the NAO
robot case (i.e. 2.86%) is the smallest compared with those in the left hand and
right hand cases (i.e. respectively 3.53% and 4.26%), which means the estimation
in the NAO robot case is more stable than those in the left hand and right hand
cases. However, the estimation in the right hand case provides the most convergent
results than those in the NAO robot and left hand cases, which is evident through
the mean and variance of distances to the centroid in the right hand case (i.e.
(0.45, 0.07)) compared with those in the NAO robot case (i.e. (0.47, 0.07)) and left
hand case (i.e. (0.5, 0.08)).

At the warehouse, the table shows that the position accuracy in the left hand case
(i.e. (0.9, 0.24)) is smaller than those in the NAO robot case (i.e. (0.92, 0.29)) and
the right hand case (i.e. (0.95, 0.31)), which suggests that the estimation in the left
hand case is more accurate than those in the NAO robot and right hand cases. The
angular distribution in the left hand case is also more evenly spaced out compared
with those in the NAO robot and right hand cases, which is evident through the
directional variance in the left hand case (i.e. 0.9) compared with those in the NAO
robot and right hand cases (i.e. respectively 0.82 and 0.55). In terms of centroid
consistency, the estimation in the left hand case (whose mean and variance values
are (0.48, 0.09)) produces more convergent results than those in the right hand and
NAO robot cases (whose mean and variance values are, respectively, (0.5, 0.09) and
(0.76, 0.2)); however, the estimation in the NAO robot case is the best in terms of
percentage of outlier (i.e. 3.99%) compared with those in the left hand case (i.e.
5.21%) and right hand case (i.e. 5.35%).

Table 2. Comparing the estimation across different experimental settings. Each tuple in the Mean and
Variance rows of Position Accuracy shows the value of, respectively, the mean and variance of distances
from positioning results to the true position. Each tuple in the Directional Variance row of Angular
Distribution shows the directional variance of angles from positioning results to the true position. Each
tuple in the Mean, Variance, and Percentage of Outlier rows of Centroid Consistency show,
respectively, the mean and variance of distances from positioning results to the centroid, and the percentage
of outlier in the estimation. The NAO, LEFT, and RIGHT indicate, respectively, the NAO robot case, the
left hand case, and the right hand case. The comparison shows which result is better than others.

Location Characteristics Comparison

Laboratory

Position Accuracy
Mean NAO(0.65) > LEFT(0.75) > RIGHT(0.79)

Variance NAO(0.12) ≥ RIGHT(0.16) > LEFT(0.17)

Angular Distribution Directional Variance NAO(0.85) ≥ LEFT(0.62) > RIGHT(0.6)

Centroid Consistency

Mean RIGHT(0.45) > NAO(0.47) > LEFT(0.5)

Variance RIGHT(0.07) ≥ NAO(0.07) > LEFT(0.08)

Percentage of Oulier NAO(2.86%) > LEFT(3.53%) > RIGHT(4.26%)

Warehouse

Position Accuracy
Mean LEFT(0.9) > NAO(0.92) > RIGHT(0.95)

Variance LEFT(0.24) > NAO(0.29) > RIGHT(0.31)

Angular Distribution Directional Variance LEFT(0.9) > NAO(0.82) > RIGHT(0.55)

Centroid Consistency

Mean LEFT(0.48) > RIGHT(0.5) > NAO(0.76)

Variance LEFT(0.09) ≥ RIGHT(0.09) > NAO(0.2)

Percentage of Oulier NAO(3.99%) > LEFT(5.21%) > RIGHT(5.35%)

In this section, we have shown that the three positioning characteristics can
be used to represent accuracies of each position as measured by a RTLS system,
it can also be used to characterise and compare RTLS systems for a whole tra-
jectory. Comparing with other approaches in the literature, our characterisation
method can be used to compare not only the position accuracy of the estimations,
but also whether the estimations are biased, convergent and stable. For exam-
ple, a survey of experimental evaluation in indoor localisation research has been
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conducted (Adler et al. (2015)), where various metrics used to evaluate position-
ing performance are analysed including: trueness, precision, accuracy, distribution,
and sample size. Apart from sample size, other metrics are related to the notion
of measurement error, which is the deviation from positioning result to the true
position. As such these metrics can only reflect how close positioning results are
to the true position, they cannot articulate if the estimation is biased, convergent
and stable. A number of metrics to assess the performance of different wireless
indoor positioning techniques and systems have been proposed (Liu et al. (2007)).
Among the proposed metrics, those related to positioning outcomes are accuracy
and precision. In this work, accuracy is defined as location error which is usually
reported in terms of mean distance error to the true position, while precision is
reported in terms of distribution of distance error between the estimated positions
and the true position. As such, these 2 metrics correspond to the position accu-
racy characteristic in our work; however, other characteristics of the estimation
(i.e. angular distribution and centroid consistency) are not studied. A survey of
indoor positioning systems for wireless personal networks has been conducted (Gu,
Lo, and Niemegeers (2009)). In this work, accuracy and precision have been used
to assess the performance of positioning systems in terms of positioning outcome.
The accuracy is defined as the average error distance, and the precision means the
success probability of position estimations with respect to pre-defined accuracy. As
such, these metrics are the measured of closeness from positioning results to the
true position. Our characterisation method - including 3 characteristics: position
accuracy, angular distribution, and centroid consistency - can be used to assess not
only the closeness of positioning results to the true position, but also whether the
estimation is biased, convergent, and stable.

7. Threats to Validity

In our work, we conducted a set of empirical measurement experiments in order to
measure and study the positioning estimation of an active RFID-based RTLS. In
this section, we discuss key threats to validity of our findings.

Threats to Construct Validity : We set out to measure and characterise positioning
estimation at two different indoor locations that were available to us. There are
confounding factors, such as furniture, surrounding object’s material, etc., in the
environments that may significantly influence the positioning results. However, our
main goal was to better understand positioning estimation and develop a method
to characterise it. While the positioning results can be affected, they do not have
any impact on the characterising method.

Threats to Internal Validity : We conducted our experiments using the RFID-
based RTLS, the NAO robot and a mobile phone. As the time in the log files are
only precise to tenths of milliseconds, there is a time synchronisation difference be-
tween the measured position and the true position. In order to ensure the accuracy
in extracting positioning results, we stopped at each position for 6 seconds. This
adequately compensates for such time difference between the log files.

Threats to External Validity : We used a particular brand and technology in our
experiments. Therefore, the positioning results obtained may be specific to the
system used. Whilst the measured results cannot be generalised because of that,
the characterisation method is general.
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8. Conclusion

Indoor positioning estimation is typically characterised in terms of deviations from
positioning results to the true position. Important characteristics such as angular
bias and positioning convergence have not been studied. The key contributions
of this paper are the introduction of centroid consistency and angular distribu-
tion in characterising accuracy, and a method for systematically characterising an
indoor positioning estimation using all 3 characteristics: position accuracy, cen-
troid consistency, and angular distribution. As an example application domain of
these techniques, we used an active RFID-based real time location system in order
to demonstrate our new characterisation methods. The positioning results were
obtained through empirical measurement experiments, conducted under various
conditions, and using both the NAO robot and human.

Our proposed new characteristics give a quantitative analysis of the estimation
performance of a positioning system. Specifically, position accuracy indicates how
truthful the positioning are, and is measured in terms of the mean and variance of
positioning errors. The smaller the mean and the variance are, the better. Centroid
consistency is a measure of how consistent positioning results are. In our work, the
centroid consistency of an estimation process is measured in terms of the number
of outliers in the results, and the convergence of the results with respect to their
centroid. Estimation with less outliers and more convergent results is more pre-
ferred. Lastly, angular distribution articulates the angular bias of an estimation.
While the mean angle shows the biased directions, the variance of angles indicates
the level of bias. The smaller the variance, the less biased the estimation.

These characteristics also reflect the positioning tendency of a system in terms of
where positioning results tend to be distributed given a true position. As such, the
knowledge of these characteristics will be useful in developing statistical models to
improve raw positioning results. This is a focus of our future work, which would
also include conducting further experiments in different environments with different
technologies.
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Table 3. List of figure captions.

Figure number Caption

1
The architecture of the active RFID RTLS system
used in the experiment

2
The NAO robot carrying the RFID tag on top of a
pole and traversing through a pre-defined path

3

The map of experimental areas: (a) is the map of the
laboratory; (b) is the map of Adilam warehouse. The
blue boxes are the auxiliary readers; the red boxes are
the main reader; the dark grey objects are desks; the
light grey objects are tables; P1, P2, ..., P54 are the
experimental points constituting the traversal path in
each environment, there are 13 experimental points at
the laboratory and 54 experimental points at Adilam
warehouse

4
Positioning results at position 1 in the laboratory us-
ing the NAO robot

5
Positioning results at position 2 in the laboratory us-
ing the NAO robot

6
Histogram of positioning distances to the true position
at positions 1 and 2 in the laboratory using the NAO
robot

7

Box-Plot of distances from positioning results at posi-
tion 1 to their centroid. The plot shows that there are
5 results that fall outside of 1.5 interquartile ranges;
hence, they are considered as outliers

8
Histogram of positioning distances to the centroid at
positions 1 and 2 in the laboratory using the NAO
robot

9
Histogram of positioning angles to the true position
at positions 1 and 2 in the laboratory using the NAO
robot

10

The angular and distance ranges that cover at least
50% positioning results at positions 1 and 2 using
Chebyshev inequality. The arrows originate from the
true positions and denote the mean angles. The green
lines denote the boundaries of angular ranges. The
blue arcs show the boundaries of the distance rang-
ing from the true position

11

Percentiles of distances from positioning results inside
the distribution areas to the true position at positions
1 and 2. The 4 arcs at each position, from innermost
to outermost, are, respectively, 25th, 50th, 75th, 100th
percentiles

12

Percentiles of distances from positioning results inside
the distribution areas to the centroid at positions 1
and 2. The 4 circles at each centroid, from innermost
to outermost, are, respectively, 25th, 50th, 75th, 100th
percentiles
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