
A Taxonomy of Computer-supported Critics

Norhayati Mohd Ali, John Hosking
Department of Computer Science

University of Auckland
Private Bag 92019, Auckland, New Zealand

nmoh044@aucklanduni.ac.nz, john@cs.auckland.ac.nz

John Grundy
Faculty of Information and Communication Technologies

Swinburne University of Technology
PO Box 218, Hawthorn, Victoria, Australia

jgrundy@swin.edu.au

Abstract—Critics have emerged over the last several years as a

specific tool feature to support users in computer-mediated tasks.
These computer-supported critics provide proactive guidelines or
suggestions for improvement to designs, code and other digital
artifacts. The concept of a critic has been adopted in various
domains, including: medical (ATTENDING, ONCONCIN),
programming (Lisp-Critic, RevJava), software engineering
(Argo/UML, ABCDE-Critic), design sketching (Design
Evaluator) and others. Critics have proven to be an effective
mechanism in providing feedback to users. In this paper we
propose an initial critic taxonomy based on our review of the
critic literature. We present the groups and elements of the critic
taxonomy and explain the groups and critic elements together
some examples. We believe our taxonomy will assist others in
identifying, categorizing, developing and deploying computer-
supported critics in a range of domains.

Keywords-critic; critic taxonomy; critiquing system;critic tool.

I. INTRODUCTION
The term “critic” was initially used by Miller to describe a

software program that critiques human-generated solutions
[21]. These types of program, also known as a critiquing
system, have evolved in recent years to help users in computer-
mediated tasks by providing feedback and suggestions for
improvements [2, 6, 7, 9, 10, 16 -18, and 23]. The concept of
such a critic is not new and it has been accepted in various
domains such as medical applications (e.g., ATTENDING,
ONCONCIN), programming (e.g., LISP-Critic, RevJava),
software engineering (e.g., Argo/UML, ABCDE-Critic), and
others. Furthermore, reports from various studies demonstrate
that a computer-supported critic is an effective mechanism in
providing feedback to users. For instance, the Design Evaluator
supports designers with critical effective feedback and gives
reasoning on the design sketches [23]. Likewise, the Java
Critiquer detects statements in a student program code that can
be improved for readability and best practice [18].

Various critic definitions can be found in the literature.
Though each critic tool author often provides their own
definition a common concept is that they provide knowledge
support to users who lack specific pieces of knowledge about
the problem or solution domains. Thus, a critic is primarily
there to detect potential problems; offer advice and alternative
solutions; and possibly provide automated or semi-automated
design improvements to end users. Currently there is no
accepted categorization of critics, definition of their different

features and domains of discourse, nor a framework to compare
and contrast different critics in any systematic way.

The aim of our paper is to present an initial critic taxonomy
that we have developed from our reviews of the critic literature.
Our critic taxonomy guides our own research work on the
development of visual critic authoring templates for domain-
specific visual language tools. We believe that it will be useful
for critic developers in different domains to reason about their
own critics. We first outline the creation and purpose of our
critic taxonomy. We then explain the groups and elements that
comprise the taxonomy. Finally we conclude with utilities of
our critic taxonomy and suggest future work.

II. PROPOSED CRITIC TAXONOMY
According to the Cambridge dictionary, a taxonomy is “a

system for naming and organizing things …into groups which
share similar qualities” [5]. The process of developing our
critic taxonomy began with our review of the related literature
concerning critics. Several articles and reports have been
published to explain and discuss critics (or critiquing systems)
[3, 4, 12, 13, 15, 18, and 24] as a supporting tool for a wide
range of computer users. As we were designing our own critic
authoring and realization system we decide to develop a critic
taxonomy to assist us in reasoning about different kinds of
critics we had come across. We then classified the information
from the critic literature in the following groups, which were
tailored to meet our specific needs.
• Critic domain – what domain(s) of discourse is the critic

used in?
• Critiquing approach – does it compare or analyze target

domain elements?
• Critic dimension – is the critic active, passive (invoked on

user demand), reactive, proactive etc?
• Critic type – does the critic check for completeness,

correctness, consistency, alternatives, a mixture?
• Modes of critic feedback – how does it provide end users

with feedback?
• Types of critic feedback – suggestions, argumentation,

explanation etc
• Critic implementation approach – how is the critic built or

realized in the target tool(s)?
• Critic rules authoring – how are the rules embodied by the

critic encoded?

The work was supported in part by a scholarship from the Ministry of Higher
Education, Malaysia, a grant from the Software Process and Product
Improvement and a Postgraduate Research Student Support account from the
University of Auckland, New Zealand.

jgrundy
2010 International Symposium on Information Technology, 15-17 June 2010, Kuala Lumpur, Malaysia.

Fig.1 illustrates the groups and elements that make up our
critic taxonomy. We briefly describe the groupings and their

elements in the following section.

Critic Groups and Elements

A. Critic Domain

B. Critiquing
Approach

C. Modes of Critic
Feedback

D. Critic Rule
Authoring

E. Critic
Realization
Approach

F. Critic
Dimension

G. Types of Critic
Feedback

H. Types of Critic

Comparative Textual Insert new critic
rule

Rule-based Active Explanation Correctness

Analytical Graphical (visual) Modify critic rule Knowledge-based Passive Argumentation Completeness

3-Dimension (3D)
Visualization

Delete critic rule Predicates Reactive Suggestion Consistency

Enable / disable
critic rule

Pattern-matching Proactive Examples (or
precedent)

Optimization

Critic rule
authoring facility

Object constraint
language (OCL)
expression

Local Simulation Alternative

Programming code Global Demonstration Evolvability

Interpretation Presentation

Positive feedback Tool

Negative feedback Experiential

Constructive
feedback

Organization

Design Pattern

Figure 1. Critic Taxonomy

III. CRITIC TAXONOMY-GROUPS AND ELEMENTS
There are eight groups in our critic taxonomy and each

group consists of several elements. Brief explanation of these
groups and their elements are outlined below.

A. Critic Domain
The first group in the critic taxonomy is the Critic Domain.

There is no elements associate with this group. A domain is
defined “as an area of interest …” [5]. Examples of domains
are medical, business process, education, software engineering
and architecture, among others. Critics are specified based on
the domain knowledge of that particular area. In order to define
and specify critics it is required that we understand the domain
that we deal with. Only by understanding the domain
knowledge will one be able to define and specify meaningful
critics. The use and context of critics are varies from one
domain to another. Reports from most research [3, 4, 12, 13,
15, and 16] provide either long or short descriptions of critics
from different domains. This indicates that critics can be
applied to various domains and problems. Furthermore, it
provides one of the effective mechanisms in providing critic
feedback to users.

B. Critiquing Approach
The Critiquing Approach is the second group of our

taxonomy. Elements in this group are comparative and
analytical critiquing. Critiquing is a way to generate valid

reasoning about a product or action [12]. Reports and articles
from [3, 12, 13, 15, 18, and 24] have identified that critic tools
commonly use comparative critiquing, analytical critiquing or
both as their critiquing approaches.

In a comparative (also known as differential) critiquing,
complete and extensive domain knowledge is essential to
generate good solutions. When a user recognizes potential
problems in a design, the critic system will then produce an
optimal result from the predefined solutions in the system. The
user-proposed design is then compared with the system’s
solution. The comparison will result in a report of the
differences between the two solutions. Robbins stated a
comparative approach can direct users to make their work like
the one that the system proposed [15]. Hence, this approach
guides the user to a known solution [15]. According to [18] the
critics authoring in this approach is relatively intuitive and
straightforward because it allows critic authors to write down
problems and answers, and the system will take care of
comparison and feedback generation. For example,
TraumaTIQ [2] supports a physician’s treatment planning. The
TraumaTIQ interprets the physician’s goal treatment plan,
evaluates the inferred plan structure by comparing it to the
system’s recommended treatment plan, and finally generates a
critique that addresses potential problem [2].

In an analytical critiquing approach, as long as the domain
knowledge is sufficient then solutions can be generated.
Hence, this approach can be applied to domains where
knowledge is incomplete. This approach uses rules to detect
potential problems in the design and change it into assistance
opportunities [15]. Thus, in a way it guides the user away
from recognized problems [15]. Unlike comparative
critiquing, this approach does not generate solutions on its
own but instead analyses the user-proposed designs to identify
any potential problems from a set of rules. It is not easy to
author critics in analytical approach although it is applicable in
a broad range of domains [18]. This is because, according to
[18], the rules for all the problems in all situations need to be
written. Argo [16] is a software design tool example that
applies analytical critics. Argo uses analysis predicates to
identify undesirable designs and then generates feedback items
with more kinds of design context, such as contact information
for relevant experts and stakeholders [16].

An example of a tool applying both comparative and
analytical critiquing is UIDA (User Interface Design
Assistant). UIDA is a system that critiques user interface
window layouts [10]. UIDA performs analytical critiquing by
applying 72 style rules written in an OPS5-like language and
comparative critiquing via recording and comparing the
particular set of rules satisfied by each layout [10].

In general, the choice of critiquing approach depends
largely on application domain, the characteristics of the task it
supports and the cognitive support needs of the user [13].

C. Modes of Critic Feedback
The third group in our taxonomy is the Modes of Critic

Feedback. Elements in this group consist of textual, graphical
and 3D visualizations. Presenting critic feedbacks (also known
as feedbacks or critiques) is another element to be considered
in the design of a critic. Most critics provide critic feedbacks
in textual messages. However, graphics can be used as well for
presenting critic feedback. Oh et al., [23] recognize three
modes used for presenting critiques in existing critic tools: text
messages, graphic annotations and three dimensional (3D)
visualizations. Text message refers to a critique that is
presented in a written form. Graphic annotation refers to a
critique that is presented in a graphical form. 3D visualizations
involve critiques that are presented via images, diagrams, or
animations in a three dimension format. In addition, animation
and sound can also be used to provide feedback, in
conjunction with one of these other mechanisms.

For instance, [23] developed Design Evaluator, a pen-
based critic tool that generates critiques and displays them in
textual and visual formats. The architectural floor plan in
Design Evaluator display critiques in three ways: as text
messages, annotated drawings and texture-mapped 3D models.
When a designer selects a text message critique, the tool
shows the critiques in two other forms, such as graphic
annotation on a designer’s floor plan diagram and generates a
3D texture-mapped VRML (Virtual Reality Model Language)
model that shows the path via the floor plan [23]. As [4, 24]

point out, communicating design information in a mixture of
graphical critiques and text critiques is likely to be more
effective than selecting one mode.

D. Critic Rule Authoring
The fourth group in the taxonomy is the Critic Rule

Authoring. Elements in this group are: insert new critic rule,
modify critic rule, delete critic rule, enable and disable critic
rule, and critic rule authoring facility. Critic rules are one of
the important components in building critics. In general, critics
are specified by a single rule or groups of rules (or procedures)
to evaluate different aspects of a product or design in a
domain. Thus, a critic development has to involve the writing
of critic rules. As [18, 24] argue, critic rules are normally
written in advance by the system designers to develop a critic
system and it is hard for the user to modify the existing rules
or add new critic rules after the critic system is deployed.
However, as [13, 24] pointed out, critiquing capacity and
issues may need to be adjusted from time to time in various
situations. Furthermore, [12] emphasizes that users should not
be required to have comprehensive programming knowledge
in order to perform the modification of critic rules. For these
reasons it is important to allow users to understand the critic
rules and be able to modify and expand the rules by authoring
new rules to incorporate in critic system. Qiu and Riesbeck
[18] have explored the issue of authoring critic rules for
educational critic system. They developed an educational critic
tool for Java programming, called Java Critiquer. They
explored the question of how users can author critic rules.
Their Java Critiquer system provides the authoring capability,
so that users (teacher) can check or modify the critiques in
addition to the feedback that Java Critiquer generates [18].
The tool also allows teachers to gradually enter and update
critic knowledge during real use of the system. In addition,
some tools allow the user to enable and disable the critic rules
via menu configuration. A disabled critic will never be
executed until the user enables the critic rules (e.g., ABCDE-
Critic, and Argo/UML). The capability for rule authoring is to
enable end-user designers to construct and store their own
critic rules. A rule authoring facility will allow critics to deal
with various conditions and authorize end-user designers to
add to the system’s feedback process [24].

E. Critic Realization Approach
The Critic Realization Approach is the fifth group in our

taxonomy. This group is about implementing critics by using
specific approaches. The elements in this group are: Rule-
based, predicate, knowledge-based, pattern-matching, object
constraint language (OCL) expressions, and programming
code. In order to support critic development, several
approaches have been applied to designing and realizing
critics. Critics implementation in various domains uses a
variety of approaches as outlined below.

Critics implemented with a rule-based approach consist of
a condition and an action. If the condition is true, then the
action is performed. Actions can include suggestions,
explanations, argumentations, messages or precedents of

problems. For instance, ABCDE-Critic [6] uses rule-based
expression to specify critics that comment on UML class
diagram-based designs. The critic tool invokes critics when a
condition clause is found to be true in the current design parts
warning a user that the design possibly have error [6].

A knowledge-based approach can be used to specify
critics. The knowledge base represents the most important
component of a knowledge-based system. The format of the
knowledge refers to how this knowledge is represented
internally within the knowledge-base system so that it can be
used in problem-solving. Several knowledge representation
schemes that are commonly used: predicate, rules, frames,
associative networks and object. For instance, the IDEA
(Interactive DEsign Assistant) tool [9] produces design pattern
critics implemented with Prolog rules that are directly
integrated with a knowledge base. Bergenti and Poggi stated
the knowledge base of IDEA is comprised with a set of design
rules, corresponding critics, and a set of consolidation rules
[9]. The rules for creating the pattern-specific critics are not
easy as it requires a high-level of understanding of a design
patterns and detailed knowledge of the Prolog and knowledge
base structures.

Another approach is to use the pattern-matching. As stated
by [22], “a pattern is any arrangement of objects or entities”.
Basically, a pattern matching process involves an attempt to
relate two patterns where one is a theoretical pattern and the
other is an operational one [22] or it can consists of left-hand
side and right-hand side rules. For instance, the Java Critiquer
tool performs automatic critiquing using a pattern matching
approach [18]. The left-hand side of a rule is a LMX pattern
(Language for Mapping XML). The right-hand side of a rule is
a critique. In the Java Critiquer, the pattern is a JavaML
pattern for matching JavaML code generated from the Java
parser. When a pattern is matched, its matching critique is
added right below the problematic Java source code [18].

The predicate logic approach can be used to implement
critics. According to [8], predicate logic is based on the idea
that sentences can express relationships between objects as
well as qualities and attributes of such objects. The argument
or terms of the predicate is represented by the objects. The use
of terms lets a predicate to express a relationship about various
objects rather than just a simple object [8]. Furthermore,
predicates can be applied to represent an action or an action
relationship between two objects [8]. An example of a tool
that applies the predicates approach is the Design Evaluator
[23]. The evaluation layer in Design Evaluator evaluates
sketches with predicates that embody design rules. The tool
produces critiques when the rules identify a pattern in the
design. The tool checks recognized spatial information with
each rule. A design critique is shown in the visualization layer
when a rule violation is found [23]. The rules are coded as
Lisp predicates that apply to the design objects.

The OCL expression approach is another way to specify
critics. Kleppe and Warmer claimed that the Object Constraint
Language (OCL) is a language that offers ways to specify the

semantics of an object-oriented model in a very accurate style
[1]. The semantics are expressed in invariants and pre-and-
post conditions, which are all types of constraints [1]. A
research of model checking by [14], demonstrated the use of
OCL to express constraints via a simple domain-specific
language (DSL) called Class Diagrams (CD). As [14] argue,
OCL needs extensions to support additional elements such as
the severity of a constraint attached to constraints. They
classified the severity of a constraint as an error, a warning or
a critic [14]. Thus, in their CD example, they show how a
critic is specified using an OCL expression.

Apart from the approaches stated above, critics can be
realized through the use of programming code. For instance,
critics in Argo/UML [17] are coded as Java classes. Class
Critic identifies several methods that can be overridden to
define and alter a new critic. Each critic’s constructor
identifies the headline, problem description, and related
decision categories [17].

F. Critic Dimension
The sixth group in our critic taxonomy is the Critic

Dimension. The elements within this group are based on
Fischer’s suggestion [11]. Report and articles from [13, 15, 18
and 24] support Fischer’s suggestion on critic classification
dimensions. The critic dimensions are shown in Table 1.

TABLE I. CRITIC DIMENSION (ADOPTED FROM [11,15])

Critic Dimension Brief Description

Active critics Continuously critique a user’s design or task.

Passive critics Wait until a user asks for a critique

Reactive critics Critique on the design or task that the user has
done.

Proactive critics Guide the user by presenting guidelines before
the user make a decision.

Local critics Critics that evaluate individual design elements.

Global critics Critics that consider interactions between most or
all of the elements in a design.

In a critic development, a critic designer has to consider
the use of active critics and passive critics. An active critic
usually continuously monitors the user tasks and warns the
user as soon as a critic is violated and then offers a critic
feedback. An active critic makes the user aware of their
unsatisfactory design when the potential problem is easy to
correct [11]. However, as [11] argues some users may find it a
disturbance to have something continuously criticise them
without giving them an opportunity to develop their own
design or task.

In contrast, a passive critic only works when a user asks
for a check of critic violation. Normally, after the user
completes preliminary design, the user then asks for
evaluation of the design. Passive critics are less intrusive
compared to active critics because they allow the user to
control when to activate the critics. The problem with passive
critics is that most of the time the user does not activate them
early enough to prevent potential problems [18]. Argo/UML

provides active critics when a user attempts to draw a design
diagram. For example, when a user selects a new class to place
in the class diagram design, several critics trigger to indicate
that part of the design has been started, but still not completed
[17]. Whereas, the Java Critiquer uses passive critics to allows
students to concentrate on their programming tasks without
interruption [18].

There are critic tools that employ either reactive or
proactive critics. A reactive critic provides critiques on the
user’s accomplished design, whereas a proactive critic
attempts to lead the user before the user makes any specific
action decision. Similar to these two approaches is the critic
dimensions suggested by Silverman [3] i.e. before, during and
after. Silverman’s before critic is similar to Fischer’s
proactive critic. During and after critics can be viewed as
Fischer’s reactive critics. However, during and after critic is
different in terms of whether a user’s work is completed or
not. The SEDAR [19] tool adopts Silverman’s three
dimensions: before (error prevention), during (design review
critic, design decision) and after (error detection). The
Heuristic Requirements Assistant (HeRA) [7] tool provides
proactive support because while a user is typing the
requirements, it analyzes the input and warns the user of any
ambiguities or incomplete specification detected [7].

Finally, critics can be classified as either local or global
critics. Local critics are critics that evaluate individual design
elements and global critics involve the interactions between
most or all of the elements in a design [15]. For instance, the
HeRA [7] tool provides users with local and global critics. The
local critics of the tool is concerned with the current focus of
the requirements editor (i.e. requirements, use cases, and a
glossary), while the global critics allow users to analyze a
global perspective in terms of list of all critiques and inference
of global process diagrams (i.e. UML Use Case Diagram,
Event-driven Process Chain models, and Use Case Point
View) [7].

G. Types of Critic Feedback
The next group in our taxonomy is the Critic Feedback.

There are ten elements in this group: explanation,
argumentation, suggestion, example (or precedent),
interpretation, simulation, demonstration, positive feedback,
negative feedback, and constructive feedback. There are many
ways to present critic feedback (also known as feedback or
critique) to users. Critic tools can offer critic feedback to users
by choosing the appropriate techniques from the ten elements.
However, the most widely used techniques are explanation,
suggestion, and argumentation.

Explanations technique is widely used in most critic tools.
Explanation as defined in a Cambridge dictionary is “details or
reasons that someone gives to make something clear or easy to
understand” [5]. Thus, critics must produce explanations so
that the user has the chance to assess the details and reasons
before making a decision as whether to accept the critique
generated by the tool. The explanations can be focused on the
violations of general guidelines or the differences between the

user’s design solution and system’s solution [12].
Furthermore, it is essential to validate a critique via
explanation because without details or reasons, a user will not
accept the critique. Explanations can be simple or in-depth.

Argumentation is another option for offering critic
feedback. It is also another mechanism for explanation where
it can contains issues, answers, and arguments about a product
or design domain. A user, who may not understand critiques
offered by a critic tool, may wants to know more information
about the critiques. Thus, via an argumentation component,
the user can obtain the required information to justify the
critique. An example of argumentation style is shown in the
ABCDE-Critic tool. The ABCDE-Critic incorporates an
argumentative hypermedia system to provide in-depth
explanation for user that does not understand or wants more
information about critics [6]. The argumentation component
contains issues, answers and arguments about the design
domain [6].

Some critics offer alternatives or suggestions to the user’s
solution. The suggestion style is also known as solution-
generating critics [12] which are capable of suggesting
alternatives to the user’s solution. An example is the JANUS
system where a problem detecting critic shows that there is a
stove close to a door [12]. Another option is to provide
examples (precedents) to support critics. Examples are a way
of helping users to understand something by showing them
how it is used. For example, the Design Evaluator [23]
provides an exemplar Web page for the designer to look at
when a critique is selected.

Other ways for presenting critic feedback are either to
provide positive or negative feedback. A positive feedback
provides a critique in a praising way when a user produces a
good design. A negative feedback is a complaint when a user
produces a poor design. Positive and negative feedback is
related to human’s evaluation that normally based on
advantages and disadvantages, good and bad. Apart from the
styles stated above, critic feedback can be presented through
the use of a simulation component to allow users to carry out
“what-if” analysis (e.g., JANUS, HeRA), interpretation from a
certain perspective, and constructive feedback (e.g.,
Argo/UML). A combination of styles in presenting critic
feedback certainly facilitates users to clarify their
understandings, as well as improve their knowledge.

H. Types of Critic
Finally, the last group in our taxonomy is the Types of

Critic. Critics can be classified according to the type of
domain knowledge that they present [15, 16]. Thus, the Critic
Domain group and the Types of Critic group complement to
each other. Table II shows the list of critic types. According to
Robbins, those critics are descriptive rather than definitive
[15]. In fact, new categories can be defined based on the
application domain. For instance, IDEA [9] offers pattern-
specific critics to assist the architects in finding and improving
the realizations of design patterns in UML designs.

TABLE II. CRITIC TYPES (ADOPTED FROM [15])

Critic Types Brief Description

Correctness critics identify syntactic and semantics flaws

Completeness critics remind the designer to finalize design works

Consistency critics show contradictions within the design

Optimization critics advice better values for design parameters

Alternative critics prompt the architect to consider options to a
specified design decision

Evolvability critics deal with issues such as modularization, that
affect the effort needed to modify the design over
time

Presentation critics search for awkward use of notation that reduces
readability

Tool critics notify the designer of other accessible design
tools at the times when those tools are useful

Experiential critics offer reminders of previous experiences with
similar designs or design elements

Organization critics express the importance of other stakeholders in
the development organization

IV. CONCLUSIONS
We proposed and illustrated a new critic taxonomy based

on several aspects that characterize critics (or critiquing
systems). These aspects are gathered widely from the critic
literature. Our critic taxonomy identifies eight groups: critic
domain, critiquing approach, modes of critic feedback, critic
rule authoring, critic realization approach, critic dimension,
types of critic feedback, and types of critic.

The utility of our critic taxonomy is manifold: 1) to
provide an overview of critic research, 2) to identify and
distinguish key critic elements, and 3) to recognize techniques
or methods applied in critics. We hope that this taxonomy will
provide meaningful way of describing and reasoning about
critics. We also believe that our critic taxonomy will be useful
in guiding the critic developer towards realizing robust critic
capabilities by comparing and contrasting different critic
dimensions.

We have applied our taxonomy to ten tools that have critic
support. The mapping of the tools to our critic taxonomy
shows that the practice of critics is supported by the critic
taxonomy. Furthermore, this critic taxonomy development has
assisted us in identifying the needs of our own visual critic
authoring research and tools [20]. Hence, we have introduced
a new approach to implement critics which we call a template-
based approach [20].

In the future, we are planning to improve our critic
authoring tool by considering the elements defined in our
taxonomy. We also plan a larger evaluation with end-users
experimenting and applying our critic tool.

REFERENCES
[1] A. Kleppe and J. Warmer, “The Semantics of the OCL Action Clause”,

in C. Tony & J.Warmer (Eds.), Object Modeling with the OCL, LNCS,
vol.2263, Springer-Verlag Berlin Heidelberg, 2002, pp. 213-227.

[2] A. S. Gertner and B. L. Webber, TraumaTIQ:online decision support for
trauma management, IEEE Intelligent Systems, pp. 32-39, 1998.

[3] B. G. Silverman, Survey of expert critiquing systems:practical and
theoretical frontiers, Communications of the ACM, vol.35(4), pp. 106-
127, April 1992.

[4] B. G. Silverman and T.M. Mehzer, Expert critics in engineering design:
lessons learned and research needs, AI Magazine, vol.13(1), (1992)
(AAAI).

[5] Cambridge Dictionary, http://dictionary.cambridge.org/
[6] C. R. B. Souza, J.S. Ferreira Jr, K.M. Goncalves, and J. Wainer, A group

critic system for object-oriented analysis and design, In Proceedings of
the 15th IEEE Conference on Automated Software Engineering, IEEE
Press, 2000, pp. 313-316.

[7] E. Knauss, D. Lubke, and S. Meyer, Feedback-driven requirements
engineering: the heuristic requirements assistant, In Proceedings of
IEEE 31st International Conference on Software Engineering, 16-24 May
2009, pp. 587-590.

[8] E. Tyugu, Algorithms and architectures of artificial intelligence,
Frontiers in AI and Applications, vol. 159, IOS Press, 2007.

[9] F. Bergenti and A. Poggi, Improving UML designs using automatic
design pattern detection, In Proceedings of the 12th International
Conference on Software Engineering and Knowledge Engineering
(SEKE), 2000, pp. 336-343.

[10] G. A. Bolcer, User interface design assistance for alrge-scale software
development, Automated Software Engineering, vol.2(3), pp. 203-218,
September 1995.

[11] G. Fischer, Human-computer interaction software: lessons learned,
challenges ahead, IEEE Software, vol.6, pp.44 – 52, January 1989.

[12] G. Fischer, A. C. Lemke, and T. Mastaglio, Critics: an emerging
apporach to knowledge-based human computer interaction, International
Journal o Man-Machine Studies, 35, pp. 695-721, 1991.

[13] H. Irandoust, 2006. Critiquing systems for decision support. DRDC
Valcartier TR 2003-321.
http://pubs.drdc.gc.ca/PDFS/unc44/p524782.pdf.

[14] J. Bézivin and F. Jouault, Using ATL for checking models. Electronic
Notes in Theoretical, Computer Science, 152, Elsevier, 2006, pp. 69–81.

[15] J. E. Robbins, 1998. Design critiquing systems, Technical Report UCI-
98-41. http://www.ics.uci.edu/~jrobbins/papers/CritiquingSurvey.pdf

[16] J. E Robbins, and D. F. Redmiles, Software architecture critics in the
Argo design environment. Knowledge-Based Systems 11(1), 1998, pp.
47-60.

[17] J. E Robbins, and D. F. Redmiles, Cognitive support, UML adherence,
and XMI interchange in Argo/UML, Information and Software
Technology, vol.42(2), pp. 79-89, January 2000.

[18] L. Qiu, and C. K. Riesbeck, “An incremental model for developing
educational critiquing systems: experiences with the Java Critiquer”,
Journal of Interactive Learning Research, 2008(19), pp.119-145.

[19] M. C. Fu, C. C. Hayes, and E. W. East, SEDAR: Expert critiquing
system for flat and low-slope roof design and review, Journal of
Computing in Civil Engineering, vol.11(1), pp. 60 – 68, January 1997.

[20] N. M. Ali, J. Hosking, J. Huh, and J. Grundy, Template-based critic
authoring for domain-specific visual language tools, In Proceedings of
the 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing, Corvallis, Oregon, USA, pp. 111-118.

[21] P. L. Miller, Expert critiquing systems: practice-based medical
consultation by computer. Springer Verlag, New York, 1986.

[22] W. M. K. Trochim, Outcome Pattern Matching and Program Theory,
Journal of Evaluation and Program Planning, vol.12(4), pp. 355-366,
January 1989.

[23] Y. Oh, E.Y.-L. Do, and M.D. Gross, “Intellligent critiquing of design
sketches”, in JL Randall Davis, T Stahovich, R Miller and E Saund
(Eds), Making Pen-based Interaction Intelligent and Natural, The AAAI
Press, Arlington, Virginia, 2004, pp 127-133.

[24] Y. Oh, M.D. Gross, and E.Y.-L. Do, Computer-aided critiquing systems,
lessons learned and new research directions, In Proceedings of the 13th
International Conference on Computer Aided Architectural Design
Research in Asia, Chiang Mai (Thailand) 9-12 April 2008, pp.161-167.

