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Abstract

Context: Mobile health (mHealth) applications are widely used for

chronic disease management, but usability and accessibility challenges per-

sist due to the diverse needs of users. Adaptive User Interfaces (AUIs) offer

a promising approach to personalizing interactions and improving user ex-

perience. However, their adoption remains limited, partly due to a lack of

understanding of how users perceive and evaluate different adaptation strate-

gies. Addressing this gap is crucial for advancing user-centered design and

requirements engineering in software systems for health contexts.

Objective: This study identifies key factors influencing user preferences and

trade-offs in mHealth adaptation design.

Method: A Discrete Choice Experiment (DCE) was conducted with 186
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participants living with chronic conditions who regularly use mHealth appli-

cations. Each participant completed a series of choice tasks, selecting their

preferred adaptation designs from scenarios composed of six attributes with

varying levels. A mixed logit model was applied to examine preference het-

erogeneity. Subgroup analyses were also conducted to explore variations in

preferences across age, gender, health condition, and coping mechanism.

Results: Participants preferred adaptation designs that preserved usability,

offered controllability, introduced changes infrequently, and applied small-

scale modifications. Conversely, adaptations affecting frequently used func-

tions and those involving caregiver input were generally viewed less favor-

ably. These findings highlight key trade-offs that influence user acceptance

of adaptive mHealth interfaces.

Conclusion: This study employs a data-driven approach to quantify user

preferences, identify key trade-offs, and reveal variations across demographic

and behavioral subgroups through preference heterogeneity modeling. These

insights provide actionable guidance for designing more user-centered adap-

tive interfaces and contribute to advancing requirements prioritization prac-

tices in software engineering—particularly in the context of health technolo-

gies.
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1. Introduction

Chronic diseases such as diabetes, heart disease, stroke, and cancer re-

main leading causes of death worldwide. In 2022, they accounted for nearly

40% of all U.S. deaths and significantly increased COVID-19 risks [1, 2, 3].

Effective chronic disease management relies on sustained adherence to care

plans, essential for better health outcomes, quality of life, and cost-efficiency

[4]. Mobile health (mHealth) applications provide crucial features like

symptom tracking, medication reminders, remote monitoring, and telehealth,

which aids in disease management through smartphones and wearables [5].

mHealth applications should enhance accessibility and flexibility to effec-

tively engage users with chronic diseases [6]. Most mHealth applications

for chronic disease management use a one-size-fits-all design approach that

doesn’t meet users’ diverse needs [7, 8]. Patients with chronic diseases dif-

fer in backgrounds, expertise, and demographic, psychological, and cognitive

traits [9]. As chronic diseases progress, patients’ needs change, indicating

diverse requirements differ not only between individuals but also throughout

their lifetime [10]. These long-term conditions [11] often come with comor-

bid medical and psychopathological conditions [10], increasing user needs and

functional requirements [12]. However, few studies have systematically ad-

dressed how to design mHealth systems that can adapt to these complex,

dynamic, and individualized user needs over time.

Smartphones and tablets provide flexible access to health information

[13], while wireless sensors and location systems improve contextual data

collection [13]. However, these technologies create variability in user envi-

ronments and needs, making fixed User Interfaces (UIs) inadequate for
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many mHealth applications, requiring more adaptable solutions to serve di-

verse users [14]. Several studies have been conducted on the creation of

Adaptive User Interfaces (AUIs) for mHealth applications for various

chronic diseases [15, 16, 17, 18, 19]. Many studies on AUIs have involved min-

imal user engagement during the development and evaluation phases, making

it challenging to assess user preferences for these adaptations [14]. However,

research has consistently shown a trade-off between adaptive mechanisms and

usability [20, 21, 22, 23, 24, 25, 26]. These trade-offs complicate UI adap-

tation decisions, as users differ in prioritizing goals, competence, app usage,

and scenarios [26]. Limited research has focused on understanding user prior-

ities in adaptive UI design, with existing studies often constrained to specific

tasks, applications, and small participant samples [23, 27]. While requirement

prioritization is a critical aspect of software development [28, 29], traditional

approaches tend to focus on stakeholder demands, often overlooking the nu-

anced user preferences and trade-offs essential for creating truly user-centric

designs. Bridging this gap requires systematic methods that capture how

users weigh competing design factors in real-world contexts. Our study con-

tributes to this gap by using a large-scale Discrete Choice Experiment to

empirically model user trade-offs and preferences in adaptive mHealth UI

design across diverse user groups.

Discrete Choice Experiments (DCEs) offer a promising yet under-

explored approach in Software Engineering (SE) by providing a data-

driven, structured method for quantifying user preferences and modeling

trade-offs between competing requirements. DCE is a survey-based tech-

nique that presents participants with hypothetical choice scenarios to se-
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lect their preferred option, allowing researchers to infer the relative impor-

tance of different attributes and understand how users prioritize competing

factors in decision-making [30]. Although DCEs have been widely applied

in healthcare and economics to tackle complex decision-making challenges

[31, 32, 33, 34, 35, 36, 37], their potential to improve requirements prioritiza-

tion in software development remains largely unexplored. This study seeks

to address this gap by investigating the key factors influencing AUI adoption

in mHealth applications for chronic disease management through DCEs. Our

research makes several key contributions to the field of adaptive mHealth

design. First, it provides a data-driven approach to quantifying user pref-

erences and assessing the relative importance of key adaptation attributes

in mHealth applications. Second, it uncovers important trade-offs between

competing design factors and reveals preference heterogeneity across user

subgroups based on demographic and behavioral characteristics. Finally, it

lays the foundation for the development of next-generation adaptive mHealth

applications and identifies future research directions within the broader field

of software engineering. The rest of the paper is organized as follows. Section

2 reviews the related work, focusing on the trade-offs between different adap-

tation factors and the application of DCE in healthcare research and software

engineering research. Section 3 outlines the research methodology used to

conduct the DCE study. The results are presented in Section 4, followed

by Section 5, which explores key implications for mHealth developers and

researchers. Sections 6 and 7 conclude by outlining the study’s limitations,

contributions, and offering suggestions for future research directions.

5



2. Related work

(a) Easy-to-understand language (b) Text-to-image conversion (c) Interface elements rearrangement

Figure 1: Examples of prototype of content adaptation.

2.1. Adaptive User Interfaces for mHealth applications

AUIs have been deployed across a spectrum of mHealth applications,

ranging from stroke rehabilitation [15], diabetes [16], cardiac disease [17],

dementia [18] and Parkinson’s disease [19]. A systematic literature review

(SLR) [14] identified three primary types of Adaptive User Interfaces (AUIs)

in mHealth applications: presentation adaptation, content adaptation, and

behavior adaptation. Presentation adaptation focuses on improving user ex-

perience by modifying the visual aspects of the UI, such as adjusting colors,

positioning, and font sizes to better align with user preferences and accessi-

bility needs. Content adaptation tailors the information displayed to better

match individual user needs. For example, this can include simplified text

representation that enhances readability through clear and concise language

(see Figure 1a), text-to-image conversion that transforms complex textual

content into visual formats for better understanding (see Figure 1b), and

interface element rearrangement (see Figure 1c). Behavior adaptation is a

6



more complex form of adaptation that spans multiple aspects of content and

presentation while also modifying system interactions. For example, this

can involve adjusting navigation permissions, customizing motivation tech-

niques to encourage behavior change according to user type or health status,

and modifying interface modalities to accommodate different usage contexts.

These mechanisms enable mHealth apps to deliver personalized and accessi-

ble experiences that align with user needs.

2.2. Trade-offs between different UI adaptation factors

Existing research on AUI for mHealth often lacks detailed reporting on the

design and development process, particularly in the early stages that involve

user input, making it difficult to align user preferences and requirements with

the final AUI solutions [14]. In addition, many evaluations assess the overall

effectiveness of applications rather than specific adaptive features, often using

small participant sample, which limits the generalizability of findings on AUI

effectiveness [14]. As a result, the limited involvement of users in both the

development and evaluation of AUIs raises uncertainty about whether users

truly prefer adaptive interfaces as a whole or specific adaptive functionalities

within them. In addition, research has identified distinct trade-offs between

adaptation features and design choices. Adaptations can improve or alter

usability [20, 22, 25], and may introduce predictability challenges, making

it difficult for users to anticipate subsequent actions [21]. The trade-offs

associated with adaptation are influenced by the balance between routine

and non-routine tasks, with older individuals experiencing greater adapta-

tion benefits than their younger counterparts [23]. Peissner and Edlin-White

[24] investigated the balance between adaptability and user control by analyz-
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ing situations that require explicit user confirmation prior to adaptation and

those that do not. These studies are restricted by a limited number of partic-

ipants and a specific demographic profile of users, such as older participants,

and focus on specific adaptation conditions. The Technology Acceptance

Model (TAM) [38] and the Unified Theory of Acceptance and Use of Tech-

nology (UTAUT) [39] offer a lens for understanding these trade-offs: adaptive

features can enhance perceived usefulness and ease of use if they align with

user goals, but unpredictability or poor transparency may hinder adoption.

UTAUT also highlights the role of facilitating conditions (e.g., customization

options). However, it is still unclear how users’ implicit preferences align with

these trade-offs, the level of control they expect over system-driven decisions,

and how priority variations differ between user groups, as only a few studies

have explored these aspects. Although advances in AI allow systems to learn

and adapt to human behavior dynamically, the lack of transparency in how

such systems prioritize features raises critical questions [40]. Understanding

these priorities is crucial to ensure that AI systems adapt in ways that align

with user expectations, improve usability, and build trust.

2.3. Requirements prioritization

Requirements prioritization is a crucial aspect of software development,

particularly in mobile application development, where frequent system up-

dates, limited resources, response to user feedback, and challenges such as

decreased user adherence due to overwhelming choices complicate the pro-

cess [41]. Given the constraints of human resources, technical feasibility, cost,

and schedule, it is rarely feasible to implement all the identified requirements.

Therefore, the primary goal of requirements prioritization is to select an op-
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timal set of requirements that balances stakeholder demands with available

resources while effectively addressing trade-offs [42]. Several SLRs have ex-

amined requirements prioritization techniques [28, 29]; these works provide a

comprehensive overview of existing methods and are complementary to our

study. However, most of the approaches they review primarily emphasize

the perspectives of project stakeholders rather than directly capture end-user

preferences. This limitation is particularly evident in user-centric software

systems, where conflicts and trade-offs between usability, functionality, and

other quality attributes are common [43]. In contrast, our work foregrounds

end-user preference elicitation as a core input to requirements prioritization.

2.4. Discrete choice experiments

Stated preference methods are survey-based approaches designed to elicit

people’s preferences towards specific, often poorly understood behaviors, with

DCE being the most widely used type [44, 30]. In recent years, DCEs have

become accepted as a useful method for quantifying societal preferences

and setting priorities in healthcare by allowing an understanding of the

relative importance of attributes affecting healthcare decisions and especially

the trade-offs that individuals are willing to make between these attributes

[31, 45]. Numerous DCE studies have been reported that address patient

experiences and health outcomes [31]. Some research explores optimal meth-

ods for providing health services or medical treatments. For example, certain

studies focus on patients’ treatment preferences for depressive and anxiety

disorders [32]. A study investigates how patients weigh their options among

different attributes of targeted pharmacotherapy, such as cost, effectiveness,

and side effects [33], and other studies are dedicated to the treatment of
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epilepsy [34].

The development of mHealth technologies that improve access to health

knowledge and information is crucial to address physical and social inequities

[46], particularly given the high levels of non-adherence to treatment regi-

mens in developing nations [47, 48]. However, the implementation of mHealth

applications presents significant challenges, with mixed results in their effec-

tiveness in supporting the adherence to treatment plans [4, 49]. Another

key issue is the low adoption and high abandonment rates among users [50],

underscoring a persistent gap between the design and consumer preferences

[4]. Few studies have explored strategies for improving mHealth technol-

ogy design, including COVID-19 contact tracing applications [35] and self-

monitoring tools that track sun exposure duration and intensity [36]. Ad-

ditionally, research has examined patient preferences for key factors driving

the adoption of mHealth solutions for mental health management, such as

those that address depression [37].

Traditional requirements elicitation methods often fail to capture the

complexities of user decision-making and trade-offs. Although all require-

ments are typically considered essential, research shows that their impor-

tance varies between stakeholders [28]. DCEs offer a solution by simulat-

ing real-world decision-making, requiring users to weigh multiple trade-offs

simultaneously rather than evaluating features in isolation [44, 30]. Unlike

standard surveys, which rank or rate attributes independently, DCEs present

choice scenarios with varying attribute combinations, enabling researchers to

quantify user preferences and support more nuanced decision-making [51].

Integrating DCE into software development presents a novel opportunity to
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align mHealth features with user expectations and enhance prioritization ef-

fectiveness. However, despite its proven benefits in other fields [31], DCEs

have not yet been widely adopted in SE, highlighting a critical gap in using

this method for informed design and decision-making in this field.

3. Method

We conducted a DCE survey study to explore the perceptions of individ-

uals with chronic diseases and prior experience using mHealth applications

on various aspects of adaptation. Given the need for a focused and inter-

pretable approach in a short communication format, the DCE method offers

a concise yet powerful way to quantify user preferences through structured

choice tasks. In the survey, participants were repeatedly presented with two

versions of the same mHealth application and asked to select their preferred

option (see the example question in Figure 2). By analyzing these repeated

choices, we can statistically determine which attributes—and their specific

levels—participants value most, providing information on factors that maxi-

mize user utility [52, 53].

Our methodology follows the guidelines reported by the ISPOR Good

Research Practices for Conjoint Analysis Task Force [54] and is structured

around five steps: (1) Key attributes identification, (2) Survey development,

(3) Piloting and survey adjustments, (4) Data collection, and (5) Choice data

analysis. The survey was administered online and received ethical approval

from the Monash University Human Research Ethics Committee (Project

ID: 40245).
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Table 1: Identified attributes and levels

Attribute # Level

Controllability over adaptations 1 Limited control over adaptations.

2 Extensive control over adaptations.

Involvement of caregivers 1 Caregivers have no access to the app.

2 Caregivers have limited access, such as receiving basic updates or reminders.

3 Caregivers are actively involved and can jointly utilise the application.

Usability of the app 1 Unpredictable and requiring users to learn it due to adaptations.

2 Easy to use with a familiar interface.

Function usage patterns 1 Less than once a week.

2 Several times a day.

Frequency of adaptations 1 Adapt (only) once when user logs in.

2 Adapt weekly.

3 Adapt monthly.

Granularity of adaptations 1 Adaptations are broad and impact the app significantly.

2 Adaptations are specific, affecting small aspects of the app.

3.1. Key attributes identification

In a DCE, attributes are key features of a product, service, or system

presented to participants as variables influencing their choices, and are typ-

ically assigned multiple levels [55]. The attributes are extracted from two

primary sources: (i) a SLR concerning the current state of the art of AUIs in

mHealth applications [14], and (ii) the findings of a socio-technical grounded

theory analysis that scrutinized data derived from focus groups and interview

sessions, focused on examining perceptions regarding the implementation of

AUIs in mHealth applications [25]. The first author identified seven potential

attributes from the sources, selecting the six most significant for the DCE

survey, which asks participants to assess their importance.

1. Controllability over adaptations: assesses the level of control users

have over how the app adjusts to their needs;

2. Involvement of caregivers: describes the role caregivers play in sup-

porting daily use of the app;
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3. App usability: refers to how intuitive and user-friendly the app is, even

with its adaptive features;

4. Function usage patterns: reflect how the app adapts to users based

on the frequency with which specific functions are used;

5. Adaptation frequency: examines how often the app’s features change

to align with user preferences, ranging from infrequent updates to regular

adjustments;

6. Adaptation granularity: highlights the scale of changes, whether they

involve broad adjustments that affect multiple areas of the app or smaller,

targeted modifications.

Table 1 outlines the various levels for each attribute. An example DCE choice

question set for attributes is shown in Figure 2. Participants are presented

with a list of questions in this format and are requested to select one of the

combined choice sets from the two options provided.

Figure 2: Example question of the DCE
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3.2. Survey development

To study how the attributes in Section 3.1 affect user preferences, we

used a factorial design to systematically integrate these levels and evalu-

ate their impact on decision-making [56]. The factorial design comprising

six attributes, in which four attributes possess two levels each and two at-

tributes present three levels, results in a full factorial design encompassing

144 (24 × 32 = 144) potential choice sets [56]. However, it is impractical to

ask participants to make 72 discrete choices due to time and complexity con-

straints. Thus, we followed established practice and employed a fractional

factorial design, reducing the survey to a subset of choice sets [45, 54, 57]. A

fractional factorial design selects a smaller subset of combinations from

the full factorial set, effectively capturing key effects. Based on D-optimality

criteria, our resulting fractional factorial design consists of 18 choice sets

[58], converted to nine questions, each offering two choice sets from which

respondents need to select. We randomized both the order of the attributes

and the sequence of questions presented to the participants when entering

the survey to minimize order effects, such as consistently prioritizing earlier

attributes or questions [54].

To assess the quality and internal validity of the DCE survey [59], we

added a randomly generated tenth question, along with its set of choices,

which mirrored the previous question as one attention check question. This

facilitates the evaluation of whether the responses exhibited consistency,

demonstrated by the selection of the same adaptation design in both equiv-

alent questions. Although internal validity checks assess data quality, incon-

sistent responses to repeated questions align with random utility theory [60].
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To avoid bias or lower statistical efficiency, we do not remove participants

who fail the validity check, as advised by Lancsar and Louviere [61]. We

provide information on internal validity to allow the reader to assess possible

biases, but responses to the random tenth question are excluded from the

analysis [62]. Figure 2 presents a sample question from the DCE survey,

asking participants to choose one of the two presented combined choice sets.

We used statistical language R 1 and Qualtrics 2 to design the DCE survey.

3.3. Piloting and survey adjustments

The pilot study of our DCE survey involved four participants: two ex-

perts specializing in statistics and choice modeling, an experienced academic

staff member in the field of survey research, and an individual representa-

tive of the target demographic, notably possessing both hypertension and

lung cancer. The participants filled out the survey, expressed their opinions,

and recorded the time it took them to finish, confirming it was within the

20-minute limit. All participants found the DCE survey engaging and rele-

vant but expressed confusion about unclear terminology and how to respond.

To address these issues, we made the following revisions: (1) simplified the

survey language by using clearer, more intuitive terminology; (2) added one

comprehension check questions to ensure participants fully understood each

attribute, addressing concerns about potential ambiguity; (3) improved sur-

vey instructions by including example questions to better guide participants

through the response process; and (4) added one more attention check ques-

1https://www.r-project.org
2https://www.qualtrics.com
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tion to ensure thoughtful responses.

The survey consists of three sections that guide the participants through

the study step by step. Section A begins with an introduction explaining the

purpose of the study. It also includes a screening step to confirm participant

eligibility (i.e., experience with mHealth apps and a chronic disease), followed

by demographic questions such as age, gender, and other relevant background

details. Section B introduces participants to the concept of AUI in mHealth

applications, explaining their relevance to the study. This section also pro-

vides an overview of the DCE, including a sample question and a description

of the attributes under investigation. To ensure that participants under-

stand these concepts before proceeding, a comprehension check is included

at the end of this section, allowing up to three attempts. The participants

then complete ten DCE choice tasks, with the tenth question serving as an

attention check to assess the consistency of the internal response. Section

C concludes with five questions on participants’ health conditions and their

attitudes towards managing health challenges, along with a second attention

check to ensure continued engagement with the survey content. A complete

version of the survey instrument is available in the supplementary materials

for reference3. In total, the survey includes three quality checks: one com-

prehension check (Section B), one attention check within the DCE (Section

B), and one final attention check (Section C).

3https://doi.org/10.5281/zenodo.17555183
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3.4. Data collection

The data collection process for our DCE survey was conducted in two

stages. Stage One involved non-probability sampling through commu-

nity and organizational outreach within Australia. The survey was dis-

tributed online through social media platforms and distributed through na-

tional and state-level non-governmental health organizations, including the

Stroke Foundation, Victoria Diabetes, Dementia Australia and Kidney Health

Australia. In addition, physical posters were displayed in private clinics and

select hospitals. Collaboration with JOIN US 4 facilitated the promotion

of the study to individuals with specific health conditions. A total of 122

responses were collected through these channels during stage one.

In stage two, we employed a purposive sampling strategy through Pro-

lific5 by employing a custom screener to refine the pool of participants to

individuals with chronic diseases. This change was essential to increase the

sample size and improve diversity in participant demographics since all stage

one participants were from Australia. We excluded participants with dis-

crepancies between their screening and prescreening responses on Prolific to

identify falsified answers.A total of 64 responses were collected through Pro-

lific during stage two. Overall, we collected 186 responses. To determine the

required sample size for a DCE, Orme [63] proposes a commonly used rule of

thumb estimating a minimum of 94 respondents for our survey design, while

research suggests that response precision improves significantly with around

150 participants [30], despite the challenges in calculating precise sample

4https://www.joinus.org.au
5https://www.prolific.com/
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sizes for DCEs. Based on this guideline, we set 150 as our benchmark and

successfully exceeded this target, ensuring robust and reliable findings.

3.5. Data analysis

Individual characteristics were explored descriptively. To analyze the data

collected from the DCE, we used statistical models designed to understand

how participants make trade-offs between different features. These models

help quantify the importance of each attribute by examining the choices that

participants made in multiple scenarios. A mixed logit model was used as this

modeling approach accommodates multiple observations per participant and

does not require the assumption of the independence of irrelevant alterna-

tives [64]. The analysis was performed in R 6, specifically using the mlogit

package based on 1000 Halton draws to ensure stable coefficient estimates.

A univariate regression analysis is conducted to examine the independent

effect of the participant’s characteristics on choices, which helps to identify

the significant factors that affect preference. Following this, a multivariate

regression model is fitted, incorporating all attributes and participant char-

acteristic factors identified in the univariate analysis, to evaluate the joint

effects of multiple factors while controlling for confounding and capturing

the relative importance of each.

Subsequently, an analysis specific to subgroups was conducted to facilitate

a direct comparison of preferences across predefined cohorts. The standard-

ized Relative Attribute Importance (RAI ) was used to elucidate the relative

contribution of various attributes in distinct subgroups. A Marginal Rate

6https://www.r-project.org
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of Substitution (MRS) analysis was conducted to evaluate the trade-offs be-

tween attributes by estimating a mixed logit model to derive attribute coef-

ficients. The usability of the app is chosen as a reference attribute, given

its high significance and its crucial role in the study. Subgroup analyzes

are performed to capture heterogeneity in preferences between groups, with

separate models estimated for each subgroup. MRS values are normalized,

ensuring that the reference attribute had a relative utility of 100% for ease

of comparison. The study examined the influence of seven predetermined

participant characteristics on response data. These characteristics were: na-

tionality (Australia or Non-Australia); age; gender; educational attainment

(below Bachelor’s degree or above Bachelor’s degree); health status (Poor

(including fair) or Good); and stress coping mechanism (positive (including

mixed feelings) or negative).

4. Results

This section presents the findings of the DCE, including the’ overall pref-

erences for adaptive mHealth features, subgroup differences based on demo-

graphic and psychological factors, and the trade-offs users are willing to make

between competing design attributes.

4.1. Participants demographic

Table 2 presents the demographic and key characteristics of our DCE

study’s 186 participants, who were predominantly women (60%) and mainly

residing in Australia (66%). Our participants ranged in age, with the largest

group aged 65–74 (24%), followed by those aged 35–44 (20%) and 25–34

(19%). The majority identified as White (82%), with smaller proportions
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identifying as Multicultural (7%), Black or African American (6%), Asian

(3%) or Aboriginal / Torres Strait Islander (1%). Most of the participants

(56%) did not have a bachelor’s degree, while 27% had a bachelor’s degree

and 16% had advanced degrees. Regarding health, 41% rated their health as

fair, while 32% rated it good, and the remaining categories ranged from poor

(16%) to very poor (5%). With 62% of the people reporting cardiometabolic

and endocrine disorders, respiratory conditions (29%) and neurological or

mental health problems (22%). A mix of positive thinking and avoidance is

the most common (33%), followed by staying positive and managing stress

(31%). This diverse sample provides broad information on the demographic

and health characteristics of the population.

Table 2: DCE survey participants demographics information (n=186)

Demographics # % of Participants

Gender

Female 112 60%

Male 74 40%

Age

18-44 93 50%

45-84 93 50%

Ethnicity simplified

White 153 82%

Multicultural 13 7%

Black or African American 12 6%

Asian 3%; Aboriginal or Torres Strait Islander 1%

Health conditions

Very Poor 10 5%

Poor 29 16%

Fair 76 41%

Good 60 32%

Very Good 11 6%

Coping menanism towards stress

Avoid dealing with the stress 13 7%

Avoid it but try to stay positive 34 18%

A mix of positive thinking and avoidance 61 33%

Stay positive and try to handle the stress 57 31%

Actively manage the stress 21 11%

Demographics # % of Participants

Country of residence

Australia 123 66%

United States of America 13 7%

Canada 12 6%

Poland 6 3%

Portugal 6 3%

Mexico 5 3%

United Kingdom of Great Britain 5 3%

Chile, Italy and Spain 2% each; Hungary, Kenya, Germany, Greece

and Sweden 1% each

Education

Less than Bachelor degree 105 56%

Bachelor’s degree 51 27%

Master’s degree 22 12%

Doctorate degree 8 4%

Categories of chronic disease**

Cardiometabolic and Endocrine conditions 116 62%

Respiratory conditions 54 29%

Immune-related conditions 22 12%

Neurological and Mental Health 41 22%

Chronic Pain and Musculoskeletal 34 18%

Gastrointestinal conditions 13 7%

Other conditions 17 9%

* Some categories do not add up to 100% due to rounding.

** This does not added up to 100%, because some participants have multiple chronic diseases.
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Table 3: Estimated user preferences for adaptive mHealth features based on mixed logit

model

Attributes Coefficient Std Error z value CI Lowerc CI Upperc SD

Controllability over adaptations 0.279a 0.099 2.820 0.085 0.473 0.763

Involvement of caregivers -0.330 a 0.081 -4.074 -0.489 -0.171 2.926

Usability of the app 0.704 a 0.064 11.079 0.579 0.829 3.137

Function usage patterns -0.229a 0.079 -2.899 -0.383 -0.074 2.730

Frequency of adaptations 0.263a 0.088 3.007 0.092 0.435 3.356

Granularity of adaptations 0.221a 0.102 2.162 0.021 0.421 3.057

Log likelihood -1051.5b

McFadden’s Pseudo-R² 0.113

AIC/BIC 2119.865/2184.946

a. Significant at 5% level. The table represents beta coefficients and CIs from mixed logit regression. The regression

coefficients for each attribute level represent the mean part-worth utility of that attribute level in the respondent sample.

A positive value denotes utility/satisfaction, and a negative value denotes disutility/dissatisfaction.

b. The mixed logit model was estimated using maximum simulated likelihood with 1,000 Halton draws.

c. If the CI does not include zero, the effect is statistically significant. A narrow CI suggests a precise estimate, whereas

a wider CI indicates more variability in responses.

4.2. Establishing initial preferences

This subsection presents the main effects from the mixed logit model to

identify overall user preferences for adaptive mHealth features, followed by

subgroup analyses that examine how these preferences vary across health

condition, gender and coping mechanism. In the discrete choice analysis, all

attributes are statistically different from 0, indicating their importance in

shaping user preferences for adaptation design. Table 3 presents the esti-

mated coefficients, standard errors, z-values, 95% confidence intervals (CI)

and standard deviations (SD) of the random parameters of the mixed logit

model. The mixed logit model was estimated using the maximum simulated

likelihood with 1,000 Halton draws. The final log-likelihood was –1051.5,

with a McFadden’s pseudo-R² of 0.113, indicating a moderate model fit.
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The AIC and BIC values were 2119.865 and 2184.946, respectively. The

standard deviations of the random coefficients reveal considerable hetero-

geneity in preferences between individuals. This suggests that participants

vary substantially in how they value these features, which justifyes the use

of a random-parameter approach to better capture individual-level varia-

tion. The regression coefficients for each attribute level represent the mean

part-worth utility of that attribute level in the respondent sample. A pos-

itive value denotes utility/satisfaction and a negative value denotes disutil-

ity/dissatisfaction. The usability of the app is the most important factor

influencing user preferences (β = 0.704, 95% CI 0.579–0.829), highlighting

the critical role of maintaining usability while adapting the UI. This is fol-

lowed by controllability over adaptations (β = 0.279, 95% CI 0.085–0.473),

frequency of adaptations (β = 0.263, 95% CI 0.092–0.435) and granularity of

adaptations (β = 0.221, 95% CI 0.021–0.421), reflecting the value users place

on the flexibility of adaptation design. In contrast, the involvement of care-

givers (β = −0.33, 95% CI −0.489 to −0.171) and patterns of function usage

(β = −0.229, 95% CI −0.383 to −0.074) posed significant obstacles to the

adoption of the adaptation design. This suggests that users may be averse to

adaptations occurring in features they frequently use, while the involvement

of caregivers may lead to a perceived redundancy in adaptations, as users

can obtain assistance in utilizing the application from their caregivers. In

our DCE, due to the innovative nature of research concerning the adoption

of adaptive designs in mHealth technology and the absence of empirical evi-

dence indicating possible attribute interactions, we opted to focus solely on

the main effects.
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4.2.1. Differences in the preferences of adaptation design: Subgroup by health

condition, gender and coping mechanism

Following multivariate analysis involving country, gender, health con-

dition, and coping mechanism, the significance of the country variable de-

creased. We selected gender, health condition, age, and coping mechanism as

key moderators for our subgroup analysis. We are using RAI to understand

the relative contribution of different attributes among different subgroups, as

detailed in Section 3.5, the comparison of subgroups of RAI can be checked in

Figure 3. RAI scores reflect how important each attribute is in shaping par-

ticipants’ choices. These RAI values are derived from normalized coefficients

and serve as descriptive indicators of preference patterns. Higher scores mean

greater influence, while lower scores imply less impact. The granularity of

adaptations holds greater importance for women (RAI: 0.399) and older age

(RAI: 0.388), those with negative coping styles (RAI: 0.340), and partici-

pants in poor health (RAI: 0.370), compared to men and other subgroups.

In contrast, controllability over adaptations consistently ranks as the least

important attribute across all groups, with minimal importance among men

(RAI: 0.008), women (RAI: 0.014) and participants in poor health (RAI:

0.013), although it holds slightly higher value for individuals with positive

coping styles (RAI: 0.142) and good health (RAI: 0.142). In general, us-

ability emerges as the paramount attribute, being prioritized most highly by

men (RAI: 0.661). It is also more appreciated by people with negative coping

mechanisms (RAI: 0.589) compared to those with positive coping strategies

(RAI: 0.529), and it is ranked higher by people with poor health (RAI: 0.617)

than by those in good health (RAI: 0.529). Because these subgroup analyses
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are based on point estimates, confidence intervals for RAI values were not

computed, and no formal significance testing was performed. As such, sub-

group comparisons should be interpreted as descriptive patterns rather than

statistically confirmed differences.

Figure 3: Radar chart for subgroup comparison. This radar chart illustrates the Relative

Attribute Importance (RAI) for three key attributes—controllability over adaptations,

usability of the app, and granularity of adaptations—across subgroups based on gender,

health condition, age, and coping mechanisms. Lines represent the relative weight each

subgroup placed on each attribute. Values are point estimates for descriptive comparison

only; no statistical tests were conducted.

4.2.2. Inconsistent Responses

A demographic subset of 17 participants (constituting 9.1% of the total

sample, 17 out of 186) exhibited inconsistencies in their responses to the

tenth question, as detailed in Section 3.2. The predominant portion of these

discrepancies was observed among individuals between the ages of 18 and 34

(n = 12), those without a bachelor’s degree (n = 9) and participants who

reported being in relatively good health (n=14). An analysis comparing the
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outcomes of the mixed logit model, including and excluding these 17 incon-

sistent respondents, indicated similar results; therefore, all participants were

retained in the final analysis. Importantly, only the duplicated 10th question

was excluded from the main model analysis—none of the respondents were

excluded.

4.3. Trade off between different attributes

This subsection examines the trade-offs users are willing to make between

usability and other adaptation attributes, using MRS to quantify these pref-

erences. The definition and calculation of MRS are detailed in Section 3.5.

Table 4 displays the MRS values, where a higher positive MRS indicates a

greater willingness to trade usability for that attribute, and a negative MRS

suggests the attribute is viewed as less valuable or undesirable compared

to usability. We found that participants are highly willing to trade usabil-

ity for controllability over adaptations (40%) and frequency of adaptations

(37%), highlighting their importance. The involvement of caregivers (-5%)

and function usage patterns (-0.3%) are perceived unfavorably, indicating

that participants regard these factors as less desirable or potentially coun-

terproductive in terms of usability. However, the slight negative valuation of

these attributes indicates that they have a relative importance that is closer

to usability.

We also performed a subgroup analysis by age, gender, health condi-

tion, and coping mechanism based on our previous analysis in Section 4.2.1.

Subgroup MRS values were obtained by normalizing point estimates from

subgroup-specific models relative to the usability attribute. The confidence

intervals for the MRS values were not computed and no formal statistical tests
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were conducted; therefore, all subgroup comparisons should be interpreted

as descriptive rather than inferential. Women prioritized infrequent adapta-

tions (45%) and controllability (24%), compared to their male counterparts.

Male participants would require an increase of 10% in usability to compen-

sate for an increase in caregiver involvement. This suggests that caregiver

involvement is viewed as a detractor or a feature that reduces the perceived

value of the system for men. Young participants value more controllability

compared to their older counterparts (54% versus 25%). In contrast, older

participants prioritize infrequent adaptations (49%) and small-scale adapta-

tions (35%). Those in good health prioritize controllability over adaptations

(57%) more than those in poor health (33%), reflecting a stronger desire for

autonomy. Participants in poor health place greater importance on the gran-

ularity of adaptations (36% versus 22%), emphasizing the need for precision

and small-scale changes, while also valuing caregiver involvement (12%) and

less frequent adaptations (4%). Different approaches to coping led to varied

preferences. Those who used positive coping strategies placed a high prior-

ity on controllability (85%), whereas they assigned less significance to infre-

quent change (28%). In contrast, participants with negative coping strategies

preferred infrequent change (44%) and smaller changes (36%) over control-

lability (19%). Participants with a positive coping attitude are more open

to compromises, allowing caregivers to utilize the app (19%), whereas those

with a negative coping style tend to ignore their health conditions and resist

involving the caregiver in the app’s usage (-17%).
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Table 4: Percentage of usability of the app participants are willing to trade, across the en-

tire sample, and split by gender, age, health condition, and coping mechanism, separatelya

Attributes All Man Woman Younger Older Goodhealth Poorhealth Positivecop Negativecop

Controllability over adaptations (40% (24% (55% (54% (25% (57% (33% (85% (19%

Involvement of caregivers "-5% "-10% "-0.1% "-6% "-3% "-14% (12% (19% "-17%

Function usage patterns "-0.3% (1% "-2% "-1.8% (1.8% "-1.2% (4% (0.2% "-1%

Frequency of adaptations (37% (31% (45% (26% (49% (41% (39% (28% (44%

Granularity of adaptations (31% (31% (32% (28% (35% (22% (36% (22% (36%

a. The table represents the Marginal Rate of Substitution (MRS) expressed as percentages, derived from the mixed logit regression model.

The percentages indicate the degree to which participants are willing to trade off usability (the reference attribute) for improvements in other

attributes.

( Positive values: Indicate that participants are willing to compromise usability to prioritize improvements in that attribute. Higher

percentages reflect greater willingness to trade usability for improvements in the respective attribute.

" Negative values: Indicate that participants are willing to sacrifice that attribute to preserve usability, implying lower desirability or priority

of the attribute relative to usability.

5. Discussion

5.1. Implications for mHealth Developers

Our DCE study explored participants’ preferences for various attributes

in mHealth app adaptation design and their willingness to make trade-offs,

focusing on different subgroups such as gender, coping strategies, and health

conditions. Figure 4 visually illustrates the trade-offs between different at-

tributes and delineates how these trade-offs vary between different subgroups.

The findings highlight app usability as the most critical attribute across all

subgroups, underscoring its pivotal role in users’ decision-making processes

regarding adaptation design. However, the study also reveals that providing

users with controllability over adaptations, such as the ability to remove

specific features, revert changes, or adjust adaptation levels, can mitigate

potential usability trade-offs. User-controlled adaptation fosters a sense of

ownership and agency, leading to increased engagement and motivation to
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utilize the system effectively [65, 66]. While caregiver involvement can offer

benefits, the observed negative attitudes indicate that adaptation mecha-

nisms should be carefully designed to balance control and support.

Incorporating caregivers into mHealth systems can influence user pref-

erences for app adaptations, as patients can delegate certain responsibilities

to caregivers. However, involving caregivers can also create a negative at-

titude toward adaptations. For example, apps like Health2Sync7 and Libre-

LinkUp8 include caregivers in chronic disease management but limit their

role to monitoring, without allowing them to control or customize app fea-

tures for patients. This suggests that while caregiver participation can be

beneficial, practitioners should carefully design adaptation mechanisms to

maximize benefits. In particular, permit caregivers to aid in distinct tasks

(such as personalizing reminders or monitoring health information) instead

of granting patients sole control over the application’s capabilities. Ensure

that adaptations do not degrade the app’s usability, as patients are unwilling

to sacrifice ease of use for caregiver involvement.

The frequency and criticality of the app functionalities play a sig-

nificant role in determining user preferences for adaptations. Users are less

inclined to accept adaptations for frequently used or essential functionali-

ties, as these tasks require consistency and reliability. This aligns with the

findings of Lavie and Meyer [23], who demonstrated that the proportion of

routine versus non-routine tasks influences the effectiveness of AUIs. Specif-

ically, adaptations are less desirable for tasks that are performed regularly

7https://www.health2sync.com/
8https://www.librelinkup.com/
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or are critical to the user’s workflow. For mHealth applications, where users

often engage in a mix of routine and non-routine tasks [67], this insight is

particularly relevant. Practitioners should avoid introducing many adapta-

tions for commonly used or essential functionalities to maintain user trust

and efficiency. Focus on adapting features that are used infrequently or are

less critical, where users may be more open to changes. Ensure that adapta-

tions do not disrupt the usability of core functionalities, as these are key to

user satisfaction and engagement.

Patients prefer adaptations that occur infrequently and only when

necessary. Once an adaptation aligns with their capabilities and needs,

they see little value in frequent changes [25]. This suggests that adaptations

should focus on essential functionalities and aim to enhance usability without

introducing unnecessary disruptions. Importantly, users are willing to tol-

erate lower usability if it means avoiding frequent adaptations, particularly

for less-used features. To create effective adaptive mHealth applications,

practitioners should minimize adaptation frequency by designing changes to

occur only when absolutely necessary. Practitioners should also focus on

core functionalities by prioritizing adaptations for essential tasks that signif-

icantly improve usability or accessibility. Additionally, it is crucial to avoid

over-adaptation by resisting frequent changes. Frequent adaptations can lead

to frustration and reduced trust in the app.

Patients prefer small-scale and incremental adaptations, ensuring that the

app remains familiar even after adaptations are implemented. For example,

they are more comfortable with adaptations that modify specific components,

such as the navigation bar or the order of data entry fields, rather than
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large-scale overhauls of the interface. This finding suggests that familiarity

may outweigh usability improvements for some users. Practitioners should

make small, specific adaptations to app components rather than extensive

modifications. Maintain the app’s structure and flow to keep it familiar to

users, recognizing their preference for familiarity and consistency, even at the

expense of some usability improvements.

Summary. When designing adaptive mHealth apps without caregiver

involvement, practitioners should focus on less frequently used functional-

ities for adaptations, as these are less likely to disrupt the user experience.

For example, adaptations could target features like data export settings or

advanced analytics, which users interact with infrequently. These adapta-

tions should provide essential assistance while being infrequent and small-

scale to avoid overwhelming the user. When caregivers are involved in

mHealth app usage, the design should prioritize collaborative function-

ality while maintaining a balance between patient autonomy and caregiver

support. For example, caregivers could have access to monitor health data

or set reminders, but patients should retain control over critical app cus-

tomizations to ensure usability and comfort. For the rest of the factors for

adaptation design. The design should follow the recommendations outlined

earlier, such as focusing on small-scale, infrequent changes and prioritizing

less frequently used functionalities. To address the varying frequency of

functionality usage, a practical design approach is to introduce adapta-

tions for less frequently used features during the first login. This allows users

to customize these features upfront, ensuring personalization without the

need for frequent changes later. For frequently used functionalities, such as
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daily health tracking or medication reminders, it is better to let users interact

with the app for a period of time before offering adaptations.

5.1.1. Heterogeneous preferences across different user groups

Gender. Our analysis indicates that while men prioritize usability, women

place greater emphasis on adaptability and customization, underscoring the

importance of gender-specific design considerations (See Figure 4). Accord-

ing to Hofstede’s Masculinity vs. Femininity dimension, masculine cultures

tend to favor practical problem-solving strategies, whereas feminine cultures

place greater value on emotional support and personalized care [68]. These

preferences align with the behavioral differences observed in the usage of mo-

bile applications. For example, women tend to use smartphones for longer

periods than men [69], and their app-related gratifications are more focused

on enjoyment and setting goals for physical activity tracking applications.

In contrast, men are more likely to engage in live tracking and sharing of

their results [70]. To improve usability for male users, designs should priori-

tize streamlined interfaces, performance-oriented analytics, and quick-access

shortcuts, ensuring efficiency without excessive complexity. In contrast, fe-

male users benefit from greater adaptability through personalized settings,

context-aware assistance, motivational feedback, and progress-tracking tools

that align with their preference for social and emotional engagement. Mean-

while, men place less value on caregiver involvement, so the design of mHealth

applications should focus on improving user autonomy by providing intuitive

self-management tools, clear guidance for independent use, and seamless ac-

cess to necessary resources without relying on external support.

Age. A clear pattern emerged among older individuals, who were more
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Figure 4: MRS relative to usability and its implications (N/A indicates no significant

difference in preference for that attribute across subgroups).
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likely to trade off usability for less frequent and small-scale adaptations while

placing less emphasis on controllability compared to younger users (See Fig-

ure 4). This preference may be due to age-related memory decline and limited

familiarity with technology, which can increase susceptibility to confusion and

cognitive overload [71, 72, 73]. Frequent changes or an abundance of options

within an application can feel overwhelming for older users, making stabil-

ity and simplicity in design critical [74]. The current mHealth landscape is

deficient in user-friendly tools and services, with elderly people particularly

facing usability challenges when using mHealth technology [75]. Extensive

research has been conducted on designing mHealth applications to better

suit elderly users, focusing on features such as simple and consistent nav-

igation [76, 77], presenting all essential content on one screen and using a

simple and familiar language [75, 78]. Additionally, cultural considerations

in UI design have been highlighted as critical for improving usability for older

adults [79]. Based on the observed preferences, mHealth applications for el-

derly users may benefit from infrequent, small-scale adaptations that modify

only specific parts of the interface while preserving familiarity and ease of

navigation.

Coping mechanism. Patients must continually develop strategies to

maintain their physical, emotional, and spiritual health due to the long-

lasting nature of chronic disease [80], making coping with the disease an

ongoing process. Some individuals cope by ignoring distressing situations

through avoidance and denial, while others use positive strategies to alle-

viate stress and restore normal functioning [81]. Coping strategies affect

consumers’ beliefs about new technology, which subsequently mediate the
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impact of these strategies on their attitude towards adoption [82]. Our find-

ings suggest that coping strategies shape users’ preferences for adaptation

design. For individuals with positive coping styles, adaptive mHealth de-

signs can benefit from supporting collaboration through caregiver involve-

ment, such as shared access to health data and communication tools, while

also providing customization options that improve user control over app func-

tionality. In contrast, the observed preferences of individuals with negative

coping styles indicate a stronger need for simplicity and stability, favoring in-

frequent and small-scale adaptations that preserve familiarity and minimize

disruption (see Figure 4). These patterns suggest that caregiver integration

should remain optional, respecting preferences for independent use, while

subtle prompts and non-intrusive notifications may help encourage engage-

ment without imposing additional burden.

Health conditions. Chronic diseases impose diverse physical, psycho-

logical, and mental effects on individuals [11, 10]. Research has shown that

changes in health conditions over time for those with chronic diseases signif-

icantly affect their use of technology, a crucial subject that remains under-

explored [83]. Health conditions played a critical role in shaping attribute

preferences. Participants in good health prioritize controllability, reflecting

a preference for autonomy, while those in poor health emphasize small-scale

adaptations and caregiver involvement, indicating a need for support and pre-

cision (See Figure 4). The design of mHealth technology frequently does not

account for the fluctuation of mHealth conditions [83, 84], and most research

tends to focus on a single chronic condition, despite the increasing prevalence

of multimorbidity over time [85, 86]. These findings suggest that adaptations
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should be tailored to accommodate users with diverse health conditions. For

individuals in relatively good health, emphasizing controllability—through

customization settings, manual override functionalities, and interfaces that

allow users to fine-tune their experiences—may better support autonomy. In

contrast, the observed preferences of participants in poorer health indicate

greater benefit from simple, small-scale design modifications and straightfor-

ward caregiver access for supervision and assistance. As health conditions

can change over time, these results further suggest that mHealth applications

should incorporate dynamic adaptation mechanisms that adjust features in

response to users’ current health status.

5.2. Implications for researchers

5.2.1. Using DCEs to Design mHealth Applications

The growth of mHealth apps has exceeded the evidence of their effec-

tiveness, creating a gap in understanding the optimal design to meet user

needs [87]. Many mHealth interventions are designed around existing health-

care systems, often without sufficient input from end users [88]. This user-

centered design shortfall can lead to apps that are hard to use or do not meet

users’ specific needs, prove ineffective, or, in some cases, lead to adverse out-

comes [89, 90]. In a healthcare system already burdened by suboptimal out-

comes and rising costs, premature adoption of untested mHealth technologies

risks exacerbating these challenges. Using a DCE can inform the design of

mHealth applications by identifying key features that promote user uptake

and engagement [35, 37]. Unlike traditional methods, the experimental

nature of DCEs enables researchers to systematically vary attributes under

controlled conditions, providing insight into the marginal effects of attribute
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changes on user choices [30].

By identifying high-priority features early in the design process, DCEs

can help reduce development costs and ensure that resources are al-

located to features that maximize user engagement and satisfaction. For

example, in our DCE study, we found that involving caregivers in the app

design significantly influenced patients’ perceptions of adaptations, highlight-

ing the importance of considering the interdependence between adaptation

features and user roles. DCEs also provide a structured approach to un-

derstanding how different features interact and influence user preferences.

For instance, in our DCE study, the level of controllability over the adapta-

tions can have cascading effects on the app usability. By quantifying these

trade-offs, DCEs enable researchers to make informed design decisions that

balance competing priorities and align with user needs.

However, while DCEs offer significant advantages, they also present chal-

lenges, such as the complexity of designing choice tasks and the need for large

sample sizes. There are existing tools (e.g., Qualtric, Ngene9, SPSS10) and

papers (e.g., [57], [54], [62]) to teach how to do the DCE step by step. The

methodology remains challenging, especially for those without prior experi-

ence, as the intricate process of creating realistic choice scenarios, ensuring

attribute balance, and analyzing complex data poses significant barriers to

entry for novice researchers. Future research could focus on developing tools

to simplify the implementation of DCEs for researchers and practitioners,

making the methodology more accessible to those without extensive experi-

9https://www.choice-metrics.com/index.html
10https://www.ibm.com/products/spss-statistics
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ence. Exploring mixed methods that integrate DCEs with qualitative ap-

proaches, such as interviews or focus groups, could offer deeper insights into

user preferences by allowing researchers to quantify trade-offs and compre-

hend the contextual factors and personal experiences influencing decisions.

5.2.2. Identifying and Meeting Non-Functional Requirements (NFRs)

Non-functional requirements (NFRs) are global constraints such as

performance, security, and availability that software must meet, often across

multiple system components [91]. These requirements play a critical role

in ensuring software quality, user satisfaction, and project success. How-

ever, mismanagement of NFRs has been a major cause of many software

project failures [92], often due to their inherent complexity, interdependen-

cies, and conflicts. Various methods, such as fuzzy logic [93], ontology-based

techniques [94, 95], and machine learning or deep learning [96], automate

the extraction, classification, and prioritization of NFRs from requirements

documents. However, these approaches often fail to capture end-user pref-

erences and priorities, limiting their effectiveness in designing user-centered

systems. The question of how users perceive and manage these competing

NFRs remains largely unexplored. For example, in mHealth applications,

users may value privacy highly, but may be unwilling to sacrifice usability or

performance for improved privacy [97]. DCEs offer a promising framework

to address this gap by systematically quantifying user preferences for such

trade-offs. By simulating real-world decision-making scenarios, DCEs allow

researchers to uncover hidden priorities and inform design decisions that

align with user needs. In addition, DCEs could address evolving challenges in

NFR management, such as sustainability and ethical considerations, ensuring
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that software systems are not only functional, but also socially responsible.

5.2.3. How do user preferences differ among various user demographics

Understanding how user preferences differ across demographics, including

age, health conditions, and mechanisms for managing stress related to dis-

eases, is critical to designing inclusive and effective mHealth solutions. Tradi-

tionally, mHealth applications have focused mainly on younger and healthier

audiences [98], often neglecting the needs of older adults or individuals with

chronic diseases. This lack of inclusive design risks exacerbating health dis-

parities and undermining the goal of universal access to healthcare services

[99]. Insights from DCE can also guide inclusive design practices, ensuring

that mHealth apps are accessible and effective for all users. By focusing

on the requirements of underrepresented groups, including elderly individ-

uals or those with serious chronic disease, DCEs can work towards dimin-

ishing health inequalities and foster fair access to medical services. Beyond

mHealth, DCEs have broader applicability in domains such as education,

finance, and e-commerce, where understanding user preferences is critical to

designing effective systems. For example, in education, DCEs can help prior-

itize features for personalized learning platforms [100], while in e-Commerce,

they can inform the design of user-friendly interfaces.

6. Threats to validity

Internal Validity. First, the study relied on self-reported data, which

can introduce biases such as social desirability or inaccurate recall [101].

Although there were efforts to mitigate biases, these may have influenced

the’ stated preferences of the participants, and as with all stated preference
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methods, the results reflect hypothetical choices in a controlled survey con-

text, which may not fully align with their revealed preferences in real-world

use. Furthermore, variations in the way the participants interpreted the at-

tributes may have occurred, despite a comprehension check carried out

before the DCE. We also included a random tenth question that mirrors the

previous to assess whether responses showed consistency by choosing the

same adaptation design. Furthermore, while the CIs in Table 2 provide in-

sight into participant understanding, this variation constrains the strength

of our conclusions. An excessive number of choice sets or overly complex

attribute combinations in a DCE can result in participant fatigue or cog-

nitive overload, potentially causing random or inconsistent responses. To

address this, we limited the survey to a selection of choice sets, implement-

ing a fractional factorial design [45, 54]. The sequence in which choice sets

or attributes are presented could affect responses [54], and participants could

alter their decision-making approach as the experiment progresses, leading

to inconsistent responses. To mitigate order effects, we randomly assigned

both the order of attributes and the sequence of questions each participant

received upon survey entry.

External Validity. The sample size, while sufficient for statistical analy-

sis, may not fully represent the diversity of people with chronic diseases, par-

ticularly in terms of cultural, socioeconomic, and technological backgrounds.

Furthermore, 62% of the participants had cardiometabolic and endocrine

conditions (Table 2), which may limit the generalizability of the findings

to populations with other health conditions. Similarly, the participants’ fa-

miliarity with technology may have influenced their preferences, restricting
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broader applicability to less tech-savvy groups. Using Prolific as a recruit-

ment platform could potentially lead to sampling bias. Despite Prolific’s

reputation for a varied set of participants, its users generally possess techno-

logical proficiency and a familiarity with online surveys. This might skew the

sample towards people who already found mHealth applications easy to use.

Although Prolific implements quality control measures, the platform relies

on self-reported health information, which can introduce inaccuracies or mis-

classification in participant eligibility. Furthermore, integrating Prolific’s re-

sponses with those obtained through alternative recruitment methods could

result in heterogeneity of the sample, as participants sourced from various

channels could vary in their demographic or psychographic characteristics.

Construct Validity. The DCE methodology, while effective in under-

standing trade-offs and preferences, simplifies real-world decision-making by

isolating attributes and limiting context [31, 45]. The simplification and

hypothetical nature of DCEs may not adequately reflect the intricate re-

quirements of users in adaptive mHealth applications, raising doubts about

whether the choices in DCEs align with real-world decisions, known as the

intention-behavior gap [102]. Although participants may assume that they

would choose a scenario from a set of options, in real-world contexts, addi-

tional factors, such as privacy concerns regarding adaptation or user support

of adaptation [103, 97], could influence their decisions.

Conclusion Validity. Our sample size was sufficient for the primary an-

alyzes, but it limited the ability to explore interactions between demographic

factors (e.g., age and health condition) without substantially reducing statis-

tical power. Further stratification would have produced smaller subgroups,
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increasing the risk of unstable estimates and Type II errors. Future studies

with larger and more diverse samples are needed to examine these interac-

tions with greater reliability.

7. Conclusion

This study contributes a data-driven approach to modeling user pref-

erences and trade-offs in adaptive mHealth interface design, using a Dis-

crete Choice Experiment (DCE) with individuals managing chronic diseases.

By prioritizing attributes such as usability, controllability over adaptations,

frequency of adaptations, and granularity of adaptations, the findings un-

derscore the importance of designing mHealth applications that align with

user needs and preferences. This study contributes to the advancement of

adaptation design for mHealth applications by offering a robust framework

for understanding and addressing competing user requirements. Through a

data-driven approach to requirements prioritization, we quantify user pref-

erences and assess the relative importance of key attributes. By analyzing

preference heterogeneity, we reveal how preferences vary across demographic

and behavioral subgroups, highlighting the trade-offs users are willing to

make. These insights inform the design of more inclusive and responsive

mHealth applications. Future work could extend this framework to support

dynamic personalization strategies and integrate user-driven prioritization

into broader requirements engineering processes for adaptive health tech-

nologies.
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