
Highlights
Accessibility of Low-Code Approaches: a Systematic Literature Review
Hourieh Khalajzadeh,John Grundy

• We report an analysis of the literature on the accessibility of low-code approaches
• We investigate the accessibility considerations in the existing literature
• We categorise the model-driven methods adopted in the existing literature
• We inform other researchers of the future directions in making low-code approaches accessible

Accessibility of Low-Code Approaches: a Systematic Literature Review
Hourieh Khalajzadeha, John Grundyb

aSchool of Information Technology, Deakin University, 221 Burwood Highway, Burwood, 3125, Victoria, Australia
bFaculty of Information Technology, Monash University, Wellington Road, Clayton, 3800, Victoria, Australia

A R T I C L E I N F O
Keywords:
Systematic literature review
Low-code
Visual languages
Block-based programming
Accessibility

A B S T R A C T
Context: Model-driven approaches are increasingly used in different domains, such as education,
finance and app development, in order to involve non-developers in the software development process.
Such tools are hugely dependent on visual elements and thus might not be accessible for users with
specific challenges, e.g., visual impairments.
Objectives: To locate and analyse existing literature on the accessibility of low-code approaches, their
strengths and weaknesses and key directions for future research.
Methods: We carried out a systematic literature review and searched through five leading databases
for primary studies. We used both quantitative and qualitative methods for data synthesis.
Results: After reviewing and filtering 918 located studies, and conducting both backward and forward
snowballing, we identified 38 primary studies that were included in our analysis. We found most papers
focusing on accessibility of visual languages and block-based programming.
Conclusion: Limited work has been done on improving low code programming environment ac-
cessibility. The findings of this systematic literature review will assist researchers and developers
in understanding the accessibility issues in low-code approaches and what has been done so far to
develop accessible approaches.

1. Introduction
Software development requires collaboration among

stakeholders with diverse skill sets, technical and non-
technical expertise, and various backgrounds, fostering com-
munication and interaction within multidisciplinary teams
(Khalajzadeh et al., 2020). According to the research con-
ducted by Costello and Rimhol (2021), an average of 41%
of non-Information Technology (IT) professionals engage
in customising or creating data and technology solutions.
The rise of these “citizen software developers", where in-
dividuals without specialised IT knowledge create software,
highlights the need to make software development accessible
to users without technical backgrounds (Adrian et al., 2020).

Low-code development platforms are software develop-
ment environments designed to construct software applica-
tions using graphical user interfaces and models that rep-
resent the underlying code. These platforms facilitate rapid
software application development in a format that is more
approachable for non-experts (Grillo et al., 2012). The adop-
tion of low-code approaches can significantly boost software
development productivity and empower project stakeholders
lacking IT expertise to contribute their insights based on
their domain knowledge (Bock and Frank, 2021; Zhuang
et al., 2022). Visual-based programming languages, like
Scratch, which function as low-code platforms, have shown
great promise in teaching programming skills, particularly
to children (Zubair et al., 2023).

However, most software systems, including Low-code
approaches, often prioritise performance and cost-effectiveness

hkhalajzadeh@deakin.edu.au (H. Khalajzadeh);
john.grundy@monash.edu (J. Grundy)

ORCID(s): 0000-0001-9958-0102 (H. Khalajzadeh);
0000-0003-4928-7076 (J. Grundy)

while neglecting many diverse human factors among end-
users, such as their accessibility for those with diverse ages,
preferences, characteristics, experiences, and impairments
(Grundy et al., 2020). The software engineering research
community has concentrated on the accessibility of software
engineering products but has paid less attention to the acces-
sibility of software engineering processes and development
tools themselves (El-Attar, 2023). Since low-code heavily
relies on graphical user interfaces, it can often exclude many
users with visual impairments, including colour blindness
and low vision.

According to the World Health Organization (2023b) re-
port, approximately 1.3 billion individuals, which accounts
for 16% of the world’s population, are facing substantial
disabilities. This figure is on the rise due to the increasing
prevalence of non-communicable diseases and the extended
lifespan of people. World Health Organization (2023a) also
reports a minimum of 2.2 billion individuals worldwide
who experience near or distance vision impairments. Visu-
ally and cognitively impaired individuals deserve accessible
means to actively participate in software development tasks
and reap the benefits of low-code abstraction. Consequently,
low-code approaches should be inclusive and provide ac-
cessibility not only to those without a technical background
but also to other citizen developers, including individuals
with limited socio-economic resources and those with visual
impairments. As an example, students with visual impair-
ments encounter a lot of barriers to learning programming in
existing programming environments and curricula (Moun-
tapmbeme and Ludi, 2021). Educators working with visually
impaired students often find them either overly intricate or
insufficient for accommodating students with visual impair-
ments (Mountapmbeme and Ludi, 2021). Moreover, Luque
et al. (2014) claim that graphical notations are considered
inaccessible since they impose significant usage barriers

Khalajzadeh et al.: Preprint submitted to Elsevier Page 1 of 24

on blind people. UML, being the predominant graphical
notation in software system development, is extensively em-
braced within the industry, with numerous educators incor-
porating UML diagrams into computer education programs
to instruct students on object-oriented concepts.

Several literature reviews have been published on inves-
tigating the accessibility of programming environments for
visually impaired users (Mountapmbeme et al., 2022), ac-
cessibility of UML (Seifermann and Groenda, 2016), and ac-
cessibility of diagrams in general (Brown et al., 2004; Torres
and Barwaldt, 2019). In comparison to these review studies,
this novel study identifies and analyses studies discussing the
accessibility of low-code approaches using model-driven
engineering and visual languages for a diverse user base
through a systematic literature review. The objective of this
SLR is to identify the existing approaches taken to make low-
code accessible for diverse users. The key contributions of
this work are as follows:

• We report on work published to date on the accessi-
bility of low-code approaches;

• We investigate key low-code tool accessibility consid-
erations in the existing literature;

• We categorise key model-driven methods adopted in
the existing low-code literature; and

• We suggest to other researchers some key future re-
search directions for making low-code approaches
more accessible.

The rest of this paper is organised as follows. Section
2 presents a background on the topic. Section 3 discusses
the research methodology, our research questions and the
SLR steps. Section 4 presents the results, according to the
research questions. Section 6 discusses the threats to the
validity, while Section 7 concludes the paper.

2. Background and Motivation
2.1. Low-code

As model-driven development (MDD) becomes more
prevalent in the engineering of software systems, there
is a concurrent rise in the quantity of low-code applica-
tions (Kirchhof et al., 2023). Low-code approaches enable
simplified one-step deployment by employing declarative,
high-level programming abstractions like model-driven and
metadata-based programming languages. They expedite the
development, deployment, execution, and management of
applications, encompassing user interfaces, business pro-
cesses, and data services (Vincent et al., 2019). Low-code
methods have garnered substantial attention from both aca-
demic and industrial circles in recent years, with 40% of
businesses adopting these techniques (Hale, 2022). Nonethe-
less, research regarding the accessibility of low-code ap-
proaches for a diverse range of end-users, including those
with visual and cognitive impairments, remains notably lim-
ited. Domain-specific visual languages (DSVL) are visual

modelling languages used in low-code approaches, where
the models and notations are customised for a particular
domain (Bottoni et al., 2004). On the other hand, general-
purpose modelling languages, such as UML, are not specific
to a domain. Several design principles are presented to guide
through notational design and evaluation, e.g., Cognitive
Dimensions (CD) of notations (Green and Petre, 1996) and
Physics of Notations (PoN) (Moody, 2009).
2.2. Accessibility

While everyone has the right to access and take advan-
tage of the opportunities presented by the Information Soci-
ety, certain demographics, such as the elderly and individ-
uals with disabilities, may encounter challenges in utilising
these new technologies and services at times (Kavcic, 2005).
"Accessibility" is a broad term used to convey the ease
with which individuals can access, utilise, and comprehend
various elements (Kavcic, 2005). The objective of software
accessibility is to ensure the availability and usability of
software applications by as many users as possible. This
entails enabling all users to perceive and understand on-
screen content and operate controls. Consequently, software
application design must accommodate variations in users’
abilities to see, hear, input, read text, and process informa-
tion, recognising that these abilities may differ among users,
change over time, and be influenced by the context of use
(Kavcic, 2005).

Different guidelines have been proposed to ensure soft-
ware products are accessible to diverse users. Efforts such as
the World Wide Web Consortium (W3C) Initiative (Chisholm
et al., 1999), known for publishing the inaugural Web
Content Accessibility Guidelines in 1995, have established
it as the longest-standing standards body for web accessi-
bility guidelines. W3C is, however, designed to ensure web
accessibility.
2.3. Prior Surveys and Reviews

Sarioğlu et al. (2023) conducted a systematic litera-
ture review that explores the current research on accessibil-
ity in conceptual modelling. Mountapmbeme et al. (2022)
conducted a literature review on 70 studies investigating
the accessibility of programming environments for visually
impaired users. This study does not investigate low-code
programming environments. The study conducted by Seifer-
mann and Groenda (2016) evaluated the existing status of 31
textual notations for UML, which can serve as alternatives
to, or work in conjunction with, graphical notations. This
assessment was performed through an SLR. They study
the textual UML notations given UML has become the
common language in software description languages. UML’s
textual notations are available to individuals with visual
impairments, offering a more developer-centric and concise
way of presenting information. This study only focuses
on UML accessibility. Brown et al. (2004) conducted a
literature review to explore the challenges associated with
making graph-based diagrams accessible to individuals with
visual impairments through nonvisual presentation methods.
Torres and Barwaldt (2019) conducted an SLR on 26 studies

Khalajzadeh et al.: Preprint submitted to Elsevier Page 2 of 24

Systematic
Literature

review

Protocol Development

Research Question
Development

Protocol Design

Review Process

Initial Pool
(n=918)

Phase 1
(n=91)

Duplicates removed
and title/abstract

skimmed Phase 2
(n=28)

Inclusion/Exclusion
criteria applied by
reading the papers Phase 3

(n=38)

Analysis Process

Data Extraction
Qualitative/Quantitative

Analysis

Snowballing

Snowballing Process

Backward (n=13)
Forward (n=17)

Backward (n=3)
Forward (n=7)

Inclusion/Exclusion
criteria applied by
reading the papers

Figure 1: Stages of SLR process

proposing solutions to make diagrams accessible for blind
people. The authors found that the keyboard was the main
input interface for the interactions. These studies focus on
diagrams in general and not specifically diagrams used in
model-driven approaches.

3. Research Methodology
We adhered to the SLR guidelines and procedures out-

lined in Kitchenham et al. (2022) and drew upon the method-
ology introduced by Watson et al. (2022) to ensure the
robustness of our analysis and to establish a process that
can be replicated. The primary author formulated the review
protocol, which underwent a thorough review by the second
author to mitigate potential biases. Our protocol outlines
the core objectives of the review, the essential contextual
information, research questions (RQs), inclusion and exclu-
sion criteria, the search strategy, data extraction, and the
subsequent data analysis. The entire process is illustrated in
Figure 1, which delineates the three principal phases of our
review: planning the review, selecting studies and extracting
information. These phases will be discussed in more detail
in the following subsections.
3.1. Research Questions

We aimed to formulate research questions (RQs) that
naturally guide the establishment of a taxonomy for the
examined research and tackle the obstacles encountered in
the design of low-code approaches. The RQs of this study
are as follows:
RQ1: What research to date has focused on developing
accessible low-code IDEs? This RQ investigates primary
studies found on Low-code IDEs that are accessible, in terms
of the authors’ affiliations, publication venues and years,
users and applications.

• RQ1a: What is the publication venue distribution of
the primary studies? RQ1a analyses the authors’ affil-
iations, the venues papers related to the accessibility
of low-code IDEs are published in, and the publication
years.

• RQ1b: What applications are they used for? indus-
try/academic examples? RQ1b investigates the appli-
cations domains.

RQ2: What accessibility considerations are taken into ac-
count in the low-code IDEs designed to date? In this RQ,
we aim to investigate the accessibility considerations that
low-code IDE developers have taken into account in our
selected primary studies. Therefore, the following sub-RQs
have been defined.

• RQ2a: Are any of them accessible for users with spe-
cial needs, including visually impaired users? RQ2aanalyses whether the selected primary studies have de-
veloped a fully accessible solution, a partially acces-
sible one, or have just proposed an accessible solution
without actually implementing it.

• RQ2b: What guidelines they have used? RQ2b in-
vestigates whether they have used any accessibility
guidelines to implement their accessible solution.

• RQ2c: How do they ensure accessibility? RQ2c anal-
yses and classifies the methods they have used to
implement their accessible solution.

RQ3: What MDE approaches have been employed? RQ3investigates the MDE approaches being used by accessible
low-code approaches. It studies the guidelines they used,
whether they use code generation or transformation meth-
ods, the solution and study types and how the approaches
are being evaluated.

Khalajzadeh et al.: Preprint submitted to Elsevier Page 3 of 24

• RQ3a: What design guidelines are employed? (Physics
of Notations, Cognitive Dimensions, etc) RQ3a in-
vestigates whether any of the approaches use design
guidelines proposed for low-code IDE development.

• RQ3b: What is generated using MDE? What are the
key MDE transformation methods used? RQ3b analy-
ses whether they generate code or apply model trans-
formations.

• RQ3c: What are the study types and what solutions are
proposed? RQ3c analyses and classifies the type of the
studies.

• RQ3d: Do they describe a tool prototype? What tech-
nology stack does the tool use? How does this impact
accessibility provision? RQ3d analyses whether the
primary study describes a tool prototype, the technol-
ogy it was built on, and impact of this technology stack
on low-code accessibility provision in the tool.

• RQ3e: How are the low-code approaches evaluated?
Is the generated code verified? RQ3e analyses and
classifies the evaluation methods, and discussed the
evaluation results.

RQ4: What are key future research directions for more
accessible low-code approaches? This research question
analyses the limitations discussed in the selected primary
studies and their future directions. This aims to help other
researchers further build on top of the current research on
the accessibility of low-code IDEs.

• RQ4a: What are the strengths discussed in the selected
primary studies? RQ4a discusses the strengths dis-
cussed in the selected primary studies.

• RQ4b: What are the limitations discussed in the se-
lected primary studies? RQ4b discusses the limita-
tions discussed in the selected primary studies.

• RQ4c: What are the future works? RQ4c discusses
the future directions proposed by the authors of the
selected primary studies.

3.2. Search strategy
Our search strategy was devised to locate and gather all

relevant literature that aligns with the specific inclusion and
exclusion criteria outlined in Section 3.3.
3.2.1. Data sources

We evaluated and assessed the search engines em-
ployed in prior software engineering literature reviews, as
documented in Maplesden et al. (2015) and Shahin et al.
(2014). The final selection of electronic databases that we
opted to search included: ACM Digital Library, IEEExplore,
SpringerLink, ScienceDirect, and Scopus. We excluded Wi-
ley, Compendex, and Inspec due to their substantial overlap
with other search engines. Notably, Compendex and Inspec
exhibited a high degree of overlap with Scopus, as indicated
in Maplesden et al. (2015). Furthermore, Wiley is already
indexed by Scopus, as corroborated by Wiley (2022).

3.2.2. Search terms
As shown in Table 1, we used PICOC criteria (Keele,

2007) to determine the search terms. We included all the
terms related to model-driven development, e.g. domain-
specific visual languages, block-based programming, low-
code/no-code, etc in the search string since they are some-
times used interchangeably in the literature.
3.3. Inclusion and exclusion criteria

The criteria for inclusion and exclusion, as outlined in
Table 2, were employed to assess all the studies retrieved
from the databases and target venues. The criteria that start
with an "I" are the inclusion criteria, and those that start with
an "E" are the exclusion criteria.
3.4. Study Selection

Figure 1 illustrates the SLR process and the quantity of
studies gathered during each phase. The selection of primary
research adhered to predefined inclusion and exclusion crite-
ria, detailed in Section 3.3. Throughout the progression from
the initial stage to the ultimate screening, essential records
of the chosen primary studies were meticulously maintained
within Excel spreadsheets. An overview of the 38 studies
that met the inclusion criteria, along with demographic anal-
ysis, can be found in Table 9 in Appendix A. The selection
process is structured into four distinct phases:

Initial Pool: We executed the search query across the
five digital libraries, resulting in the retrieval of 918 papers.

Phase 1: We then removed duplicates and assessed the
publications found during the initial search based on their
title and abstracts. We retained papers for thorough screening
when it was challenging to decide based solely on their titles
and abstracts. By the conclusion of this stage, 91 papers were
chosen.

Phase 2: Publications that passed the initial screening
in Phase 1 proceeded to undergo a comprehensive full-
text assessment. Out of these, 28 papers were identified
as the pertinent subset and were subject to review by the
first author. In addition, four of the selected primary studies
were independently evaluated by an external reviewer. Any
disagreements that arose were promptly resolved through
discussions. Subsequently, we employed both backward and
forward snowballing techniques as described in (Wohlin,
2014) and identified a total of 30 potentially relevant papers
based on their titles and abstracts.

Phase 3: In this stage, we conducted a review of the pa-
pers obtained through snowballing. The entire snowballing
process is depicted in Figure 1. We utilised Google Scholar
for both forward snowballing, which involved identifying
additional papers that cited any of the included studies,
and backward snowballing, which entailed examining the
references of the selected papers from Phase 2. We deemed
this manual search phase as necessary to minimise the
risk of losing potentially relevant literature that might be
overlooked in automated searches. Following the application
of inclusion and exclusion criteria, removal of duplicates,
and full-text screening, we retained 10 papers from the

Khalajzadeh et al.: Preprint submitted to Elsevier Page 4 of 24

Table 1
Key search terms aligned with the PICOC criteria

Concepts Major search terms

Population (“Domain Specific Visual Language” OR “Domain-Specific Visual Language” OR “DSVL”
OR “Visual domain-specific language” OR “Visual domain specific language” OR “VDSL”
OR “Unified Model*ing Language” OR “UML” OR “istar” OR “Model-Driven Engineering”
OR “Model-Driven Development” OR “Model Driven Engineering” OR “Model Driven
Development” OR “Platform Independent Model” OR “Computation Independent Model”
OR “Platform Specific Model” OR “Model-Driven Architecture” OR “Meta Model” OR
“low-code” OR “lowcode” OR “no-code” OR “nocode” OR “MDE” OR “MBE” OR “MDA”
OR “MDD” OR “block programming” OR “block-based programming”)

Intervention (“Abstract”: “accessibility” OR "colo*r blind*" OR "low vision" OR "vision impair*" OR
"visual* impair*")

Criteria
ID

Criterion

I01 Full-text papers published as a journal, or conference proceeding, including workshops co-located with the
conferences, with a focus on the accessibility of low-code approaches including domain-specific modelling
languages, and block-based programming approaches.

I02 The complete papers are authored in English and cite academic literature references.
I03 The study must be available in full text and published in one of the digital libraries we considered in this

review.
E01 Gray literature, posters, books, work-in-progress proposals, keynotes, editorial, secondary or review articles.
E02 Short papers with fewer than four pages and studies that are irrelevant or of low quality, lacking a

substantial amount of extractable information.
E03 An extended or up-to-date journal edition authored by the same individuals is accessible for the same

research.
E04 Papers that discuss the accessibility of low-code approaches but do not propose a solution.
E05 Papers that use low-code approaches to generate accessible solutions.

Table 2
Inclusion and Exclusion Criteria

snowballing process. This expanded the total number of
primary studies in our analysis to 38.
3.5. Data extraction strategy

To address RQ1–RQ4 and streamline our data extraction
procedure, we employed a Google data extraction form
to gather essential data from the studies included in our
analysis. The extraction form is divided into four sections.
The first section captures the paper’s title, authors, affiliation,
country, year, venue, type and ranking of the venue, number
of pages, and study aim. The second section addresses
accessibility, noting if the approach is accessible, the special
needs considered, the accessibility guidelines and methods
used, and the provided solutions. The third section examines
the application domain, specifying if the study is academic
or industrial, the MDE approach, design guidelines, tech-
nologies, MDE transformation method, and evaluations. The
final section outlines the limitations, strengths, and future
work. The data extraction form can be accessed through
Khalajzadeh and Grundy (2024).
3.6. Data Synthesis, and Taxonomy Derivation

We compiled all essential information within a data
extraction sheet, encompassing two key components: a)
Demographic data, such as title, authors, venue, affiliation,
and publication type. b) Responses to each RQ, comprising
both qualitative and quantitative data.

Quantitative analysis: We conducted both univariate
and multivariate frequency distribution analyses. The uni-
variate frequency distribution served to provide a sum-
marised count of occurrences within specific variables.
Meanwhile, multivariate frequency analysis was applied to
aggregate the distribution of two or more variables, thereby
elucidating their interrelationships.

Qualitative analysis: To build our taxonomy, we used
open coding technique (Glaser and Strauss, 2017).

4. Results
4.1. RQ1: What research has been focusing on

developing accessible low-code IDEs?
4.1.1. RQ1a: What is the distribution of the primary

studies found?
We did a comprehensive analysis to find the active

researchers working on the accessibility of low-code ap-
proaches and the venues where most of these works are
published. We found six of the selected primary studies
being conducted at the University of São Paulo in Brazil,
three at Toyama Prefectural University in Japan, two at
NOVA University in Lisbon, and two at the University of
North Texas in the USA. There was only one paper from each
of the other universities. A list of the countries and the first
authors are affiliated with is shown in Fig 2. As shown in this
image, Brazil and USA are the frontrunners in publishing
papers in this field.

Khalajzadeh et al.: Preprint submitted to Elsevier Page 5 of 24

9

9

3

3

3

3

2

1
1

1
1

1 1

Emirates
2.6%
Switzerland
2.6%
Sweden
2.6%
Spain
2.6%
Finland
2.6%
Austria
2.6%
UK
5.3%
Portugal
7.9%

Japan
7.9%

Germany
7.9%
France
7.9%

Brazil
23.7%

USA
23.7%

Figure 2: Countries where the first author is affiliated with

We did not limit the year of the studies, however, the pri-
mary studies we found through the systematic method were
published since 2004, with most of them being published in
2015 and 2021, as shown in Fig 3.

Year

C
ou
nt

0
1
2
3
4
5

20
04

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Figure 3: Publication years

In terms of the venues, most of the selected primary
studies are published in conferences (n=26), followed by
journals (n=7), workshops co-located with top conferences
such as MODELS (n=4), and finally only one published as a
book chapter. The conferences are mostly not ranked (n=23)
according to the Computing Research and Education As-
sociation of Australasia (CORE) ranking1. using Acientific
Journal Rankings (SJR)2, our selected primary studies are
published in two A*-ranked, three A, two B, and three C-
ranked conferences, and one Q1 and four Q2 journals. A
complete list of the venues, their counts, types and rankings
are shown in Table 3.
4.1.2. RQ1c: What applications are they used for?

Almost all of the selected primary studies were con-
ducted in academia, with only one having an author affiliated
with The National Council for the Blind [S29]. Approaches
are developed and discussed for various applications, but
mainly for education purposes (n=13), and general appli-
cations (n=11). Two of the selected primary studies focus

1http://portal.core.edu.au/conf-ranks/
2https://www.scimagojr.com/

on industrial projects [S19], [S33]. Two focus on education
for robot programming, [S2] and [S14], and one on robot
programming [S5]. The rest of the selected primary studies
focus on Education through E-Learning [S6], Education
and Industry [S17], General - Education and Automation
[S22], Computational Physics Research [S27], Creating and
Modifying UML Class Diagrams on Mobile Devices [S1],
Interactive e-learning Activities [S30], Interactive White-
boards [S24], Security in requirements engineering [S25],
and Web Applications Development [S28].

RQ1 Summary. Most of the selected primary stud-
ies were conducted in Brazil (23.7%) and the USA
(23.7%). All were published since 2004, and mostly
from 2012 afterwards. The studies are mostly pub-
lished in conferences (68.4%) and small number in
journals (18.42%). Most studies are conducted in
academia (97.3%). The methods are developed for
a variety of different applications, mainly education
(34.2%), and general applications (28.9%).

4.2. RQ2: What accessibility considerations are
taken into account in the low-code IDEs
designed to date?

4.2.1. RQ2a: Are any of them accessible for users with
special needs, including visually impaired
users?

Among the 38 studies, 32 of them have developed an
accessible solution for various special needs, one presents
a partially accessible solution, while the remaining five
studies have discussed the accessibility issue, but have not
developed a solution. The solutions proposed or discussed in
different papers are proposed to make low-code approaches
accessible. Some of them consider general accessibility,
while others consider accessibility for a special group of
users. The special needs considered in these 38 studies are
listed in Table 4.
4.2.2. RQ2b: What guidelines have they used?

Surprisingly, most of the selected primary studies do
not consider any accessibility guidelines. However, those
that do consider accessibility guidelines are mainly based
on Web Content Accessibility Guidelines (WCAG) interna-
tional standard (n=3) [S31], [S32], and [S36]. WCAG is
a collaborative effort of the World Wide Web Consortium
(W3C) involving individuals and organisations worldwide.
Its primary objective is to establish a global standard for web
content accessibility that caters to the requirements of indi-
viduals, organisations, and governments on an international
scale. WCAG offers documentation that outlines methods for
enhancing the accessibility of web content, encompassing
textual information (such as text, images, and audio) as well
as code and markup (comprising structure and presenta-
tion) to better serve individuals with disabilities, as stated
in Caldwell et al. (2008). [S37] follow Web Accessibility
Initiative and Accessible Rich Internet Application (WAI-
ARIA) (Craig et al., 2009) attributes. Finally, [S35] mentions

Khalajzadeh et al.: Preprint submitted to Elsevier Page 6 of 24

Table 3
List of the venues

Venue Count Venue type Ranking
International Conference on Computers Helping People with Special Needs (ICCHP) 3 Conference C
Conference on Human Factors in Computing Systems (CHI) 2 Conference A*
IEEE Frontiers in Education Conference (FIE) 2 Conference Not Ranked
International Workshop on Human Factors in Modeling / Modeling of Human Factors
(HuFaMo) at MODELS 2 Workshop Not Ranked

Software and Systems Modeling 2 Journal Q2
Universal Access in Human-Computer Interaction (UAHCI) 2 Conference Not Ranked
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS) 1 Conference A
Annual Computers, Software, and Applications Conference (COMPSAC) 1 Conference B
Brazilian Conference of Software 1 Conference Not ranked
Brazilian Journal of Computers in Education 1 Journal Not ranked
Computer Physics Communications 1 Journal Q1
Conference on Technologies and Applications of Artificial Intelligence 1 Conference Not Ranked
Conferencia Iberoamericana en Software Engineering (CIbSE) 1 Conference Not Ranked
Graphical Modeling Language Development (GMLD) workshop at ECMFA 1 Workshop Not Ranked
IEEE Blocks and Beyond Workshop 1 Workshop Not Ranked
IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS) 1 Conference Not Ranked
Inclusive Designing 1 Conference Not Ranked
Innovation and Technology in Computer Science Education (ITiCSE) 1 Conference A
Interaction Design and Children Conference (IDC) 1 Conference Not Ranked
International Conference on Auditory Display 1 Conference Not Ranked
International Conference on Automated Software Engineering Workshops (ASEW) 1 Conference Not Ranked
International Conference on Computers for Handicapped Persons 1 Conference Not Ranked
International Conference on Human-Computer Interaction 1 Conference B
International Conference on Model Driven Engineering Languages and Systems (MODELS) 1 Conference A
International Model-Driven Requirements Engineering (MoDRE) 1 Conference Not Ranked
Journal of Visual Language and Sentient Systems (VLSS) 1 Journal Q2
Journal of Visual Languages & Computing 1 Journal Q2
Mensch und Computer (MuC) 1 Conference Not Ranked
Procedia Computer Science 1 Journal Not Ranked
Springer Nature Switzerland 1 Book Chapter Not Ranked
World Automation Congress (WAC) 1 Conference Not Ranked

Table 4
The special needs considered in different studies

The special need # of studies
Visual Impairment 24
Visual Impairment and Age (Younger Learners) 5
Visual Impairment and Technical Background
(Beginners) 1

Technical Background and Location 1
Diversity 1
Technical Background 1
Physically disability 1
Socio-economic Status 1
General and Disabilities 1
General 2

that ARIA accessibility guidelines can be added to their
approach but have not implemented it in their paper.
4.2.3. RQ2c: How do they ensure accessibility?

The selected primary studies follow three approaches for
developing accessible solutions: 1) Developing new acces-
sible tools (n=24), 2) Using existing accessibility options to
make the existing solutions accessible (n=8), and 3) Devel-
oping algorithms to provide accessible solutions (n=1). The
rest of the papers have only studied the existing solutions
(n=5).

Developing Accessible Solutions: Most of the selected
primary studies propose a variety of accessible tools. [S2]
developed P-CUBE, which is a new programming education
tool. With P-CUBE, users construct programs by arranging
surface gap blocks on a program mat per the algorithm’s
structure. This tool is renowned for its robustness owing to
its straightforward design and is anticipated to serve as an
educational toy for students. [S3] created P-CUBE2, a tangi-
ble block-based tool for programming education. P-CUBE2
was designed to incorporate the concept of subroutines into
the original P-CUBE. Notably, this version introduces an
audio output feature, enabling visually impaired individu-
als to discern the outcomes of program execution through
voice feedback. [S5] made enhancements to P-CUBE with
the specific aim of making it more accessible to individu-
als with visual impairments. These improvements include
programming blocks that offer tactile cues regarding their
types to users, and a mobile robot that emits distinct sounds
when turning right or left, effectively conveying data on the
robot’s operational status. In the study conducted by [S37],
the authors undertook a redesign of Blockly’s user inter-
face, introducing supplementary features aimed at enhancing
accessibility for visually impaired individuals and those
who cannot utilise a mouse. Their approach encompassed
the integration of a keyboard interface, compatibility with
screen readers, options for customising the appearance, and

Khalajzadeh et al.: Preprint submitted to Elsevier Page 7 of 24

other related features, all geared toward expanding access to
systems built on Blockly.

The goal of [S8] was to establish an environment that
could be utilised independently and found engaging by indi-
viduals who are sighted, have low vision, or are blind. They
strived to implement modifications that could be readily inte-
grated into existing block-based environments. Furthermore,
they aimed to preserve the features of block-based environ-
ments that render them suitable for young children. [S9]
introduced Accessible Web Modeler (AWMo), a prototype
web tool designed to enable users to model software artifacts
using UML class diagrams. AWMo offers two distinct views:
a graphical view for sighted software developers to create
diagrams in a conventional manner by visually dragging
elements and connecting them, and a textual view that allows
software developers, regardless of visual impairment, to
generate identical diagrams using a text-based language they
developed. Similarly, [S16] proposes to provide users with
both textual and graphical views. [S10] developed Tangible
Blocks Go Online (TaBGO), a tool comprising enhanced
tangible Scratch’s blocks and associated optical recognition
software. [S11] presents a prototype design that uses lego
and plays music for visually impaired users.

[S18] propose StoryBlocks, a tangible block-based game
that creates audio stories to help enable blind program-
mers to learn basic programming concepts. [S19] presents
a method that maintains synchronisation between models
and text by skillfully merging advanced natural language
processing technology with OCL model querying. [S21]
developed a novel module built on an entirely new platform.
[S22] constructed a modelling workbench platform that,
similar to modelling workbenches focused on diagrammatic
languages, enables a software language engineer to design
a domain-specific language. This platform also facilitates
the creation of a voice/audio editor, allowing domain end-
users to interact with and navigate diagrams using speech
recognition and voice synthesis tools. [S27] developed a
tool designed to streamline code development in global
collaborations, catering to developers with varying levels
of expertise and coding skills. This tool enhances backward
traceability, supports the iterative and incremental develop-
ment of intricate algorithms, and improves code readability
and transparency. [S28] made improvements to the WebML
language. The system designed by [S29] employs various in-
terfaces and representation techniques to address the hurdles
of rendering UML diagrams accessible to individuals with
visual impairments.

[S30] developed a web-based prototype called Inclusive
UML with different views for blind and sighted users. [S31]
created a tool that offers alternative textual representations
of models within a web-based environment, promoting ef-
fective collaboration. In the work by [S32], they created a
tool that incorporates a screen-reader compatible interface
tailored for blind users, alongside a graphical interface de-
signed for sighted users. [S33] developed a tool that has a
graphical view, an Auditory Design, and an Audio-Haptic
Design. [S34] developed a tool that has a voice recognition

component. [S35] developed a tool with diagrams that are
readable by screen readers. In their study, [S15] put forward
a model-based approach for the bidirectional generation of
textual and graphical representations of UML diagrams.
The UML4ALL syntax aligns with the workflow of screen
reader users, facilitating content consumption through text-
to-speech or Braille reading, as it reads content line by line.
They also provide an accessible syntax structure for blind
people to help understanding the semantics of UML ele-
ments. [S36] introduces a prototype for an accessible block-
based programming library named "Accessible Blockly."
This library empowers users to both generate and traverse
block-based code with the assistance of a screen reader
and keyboard. Accessible Blockly facilitates access to the
abundant visual data found in block-based programming
environments and offers an alternative interaction method to
the conventional mouse-based approach.

Use of existing accessibility tools: Several selected pri-
mary studies propose accessibility tools to make modelling
diagrams more accessible for users with special needs. [S1]
harnesses the accessibility tools already available on con-
temporary mobile devices and enhance these devices with
an economical physical guide. This integration seamlessly
complements the existing features of iOS VoiceOver. [S7]
employs abstract sounds and appropriate metaphors for an
intuitive mapping. This approach enables the transformation
of actions performed by others into perceptible cues for
individuals with visual impairments through an auditory
interface and sonification of crucial elements related to
workspace awareness. As a result, blind users gain the ability
to access collaborative resources and stay informed about
workspace updates. [S13] creates 3D-printable haptic UML
models from an existing UML modelling tool. [S12] em-
ployed an accessible UML editor designed for collaborative
work on UML models in an inclusive manner. Accessibility
was ensured through the use of a textual syntax and the
incorporation of flexible assistive reading and editing func-
tionalities. They also implemented model synchronisation
mechanisms to enable collaborative work. The introduced
accessibility features encompassed change histories and au-
dio notifications, providing support for individuals with vi-
sual impairments. [S20] uses Google’s latest Keyboard Nav-
igation to enhance the environment. [S23] utilises tactile rep-
resentations and haptic interaction as a means to potentially
empower individuals with visual impairments to work with
UML diagrams using a widely adopted industry-standard
editor. They have developed both tactile representations and
a verbalised version. [S24] introduces a voice interaction
mode within software design environments. [S38] enables
UML modelling with voice recognition.

Using New Algorithms: One of the selected primary
studies applies a new algorithm to make diagrams accessi-
ble. [S4] employes transfer learning and data augmentation
techniques to classify UML diagrams. The authors used a
dataset custom-made for this research, encompassing six
distinct types of UML diagrams. The project served as an
exploratory endeavor to implement Convolutional Neural

Khalajzadeh et al.: Preprint submitted to Elsevier Page 8 of 24

Networks (CNN) in the task of UML diagram classification.
In addition to CNN, they harnessed transfer learning and
data augmentation to leverage the benefits of pre-trained
models.

Studying the Existing Solutions: [S14] engaged edu-
cators and visually impaired children in their design activi-
ties, adhering to established best practices in the literature.
In their first study, the authors conducted a retrospective
analysis of established solutions, extracting insights into
the strengths and limitations of such approaches. In their
second study, they took a prospective approach to evaluate
the performance of a tailored accessible environment and
derived insights that could guide the development of future
environments. [S17] does not propose an accessible solution
but instead focuses on assessing existing solutions. [S25]
carried out an empirical study involving 84 IT professionals
to evaluate the cognitive effectiveness of the RGD version
of the PoN-enabled misuse case notation, as introduced by
(Saleh and El-Attar, 2015). [S26] contrasted block-based
programming lessons designed for two different participant
groups: 29 high school interns with prior programming ex-
perience but no formal pedagogical training, and 86 teachers,
with no background in programming but formal pedagogical
training. [S6] assessed the perceptions of learners, which
included both visually impaired and sighted individuals,
during e-learning lectures focused on software requirements
specification utilising UML/SysML use case models. To
facilitate communication and coordination of lecture activi-
ties, participants utilised a tool known as Model2gether for
collaborative real-time interaction with use case models.

RQ2 Summary. Most of the selected primary stud-
ies developed an accessible solution for users with
visual impairments (63.1%). The rest of the special
needs include age, technical background, diversity,
physical disability, and socio-economic status. Most
of the studies do not consider any accessibility
guidelines (86.8%). The studies rarely consider or
discuss WCAG (7.8%), and WAI-ARIA (5.2%). We
categorise the methods they used to ensure accessi-
bility into Developing Accessible Solutions (63.1%),
Use of existing accessibility tools (21%), Using New
Algorithms (2.6%), and just Studying the Existing
Solutions (13.1%).

4.3. RQ3: What MDE approaches have been
employed?

The grouping of selected primary studies by approach is
shown in Table 5. Over 40% of the selected primary studies
build on top of UML, aiming to make UML accessible for
users with special needs (n=16). Nearly 30% of the selected
primary studies use block-based programming (n=11). Two
primary studies do not consider any specific approaches, and
two are based on Scratch. The rest of the selected primary
studies are based on variations of UML, such as jsUML2,
OctoUML, PlantUML, both UML and PlantUML, and both

Table 5
MDE Approaches used in different studies

MDE approach Studies

UML [S1,S4,S9,S12,S13,S15,S16,S17,S19,
S23,S25,S29,S30,S32,S33,S38]

Block
Programming

[S2,S3,S5,S8,S14,S18,S20,S21,
S26,S36,S37]

General [S22,S34]
Scratch [S10,S11]
jsUML2 [S31]
OctoUML [S24]
PlantUML [S27]
UML and
PlantUML [S35]

UML and
SysML [S6]

WebML [S28]
Workspace
Sketch [S7]

UML and SysML. One of the studies is based on WebML,
and one based on Workspace Sketch.
4.3.1. RQ3a: What design guidelines are employed?

Most of our selected primary studies do not consider
any specific design guidelines. The exceptions are [S8] and
[S10] which have considered their own design guidelines for
developing model-driven approaches. [S30] established 11
requirements for the accessibility of UML for blind users in
an online mode. These requirements were derived from user
stories provided by sighted participants, blind participants,
and general participants. The analysis drew upon their col-
lective experience in teaching object-oriented analysis with
UML, which highlighted five common activities that occur
during the process. [S25] assess their method which is based
on the Physics of Notations (PoN) framework and [S28] use
both Cognitive Dimensions (CDs) and PON to develop their
solution.
4.3.2. RQ3b: What is generated using MDE? What are

the MDE transformation methods used?
Most of the approaches described in the selected primary

studies do not generate any arefacts using the MDE ap-
proach, except for [S27], [S31], and [S34]. [S27] created the
Flowgen tool, which produces a collection of interconnected
high-level UML activity diagrams. Specifically, it generates
one diagram for each annotated function or method found
in the C++ source code. [S31] converted a textual model
into a format that is compatible with the jsUML2 JavaScript
library on the application view. [S34] used the Epsilon
Transformation Language (ETL) and Epsilon Generation
Language (EGL) to save the diagram in XMI.
4.3.3. RQ3c: What are the study types and what

solutions are proposed?
The solutions proposed by our selected primary studies

are summarised in Table 6. Almost three quarters of the
selected primary studies develop a prototype (n=28), three
conduct empirical studies, two propose a proof of concept,
and the rest propose a framework, set of guidelines, method,

Khalajzadeh et al.: Preprint submitted to Elsevier Page 9 of 24

Table 6
Proposed solutions in different studies

Solution Studies
Providing graphical and textual views [S6,S7,S9,S32,S16,S30,S31]
Extending block-based tools [S2,S3,S5,S10,S18,S21,S36,S37]
Using assistive technologies [S8,S11,S20,S22,S23,S24,S34]
Converting to accessible versions [S29,S19,S35,S38]

Prototype

User-centred design [S1,S33]
Empirical Studies [S17,S25,S26]
Proof of concept [S13,S27]
Framework [S12]
Guidelines [S14]
Method [S4]
New Graphical Symbols [S28]
UML notation [S15]

new graphical symbols, and UML notations. In this section,
we summarise all these methods.

Prototype: Most of the selected primary studies propose
an accessible low-code prototype. We have divided the pro-
totypes into five different categories. Category 1 presents
prototypes where they provide both graphical and textual
views, to make them accessible for users with visual impair-
ments. Category 2 prototypes build on top of block-based
tools and make them accessible. Category 3 prototypes use
assistive technologies, such as voice recognition for those
who are not able to use graphical interfaces. Category 4
prototypes convert the general user interface to accessible
versions. Finally, Category 5 prototypes are built based
on user-centred design approaches, i.e. through co-design
sessions or workshops with real users.

Category 1: Providing graphical and textual views.
[S32] and [S6] introduced Model2gether, an online tool
designed to facilitate collaborative modelling and ensure
the participation of individuals with visual impairments.
The prototype offers two distinct interfaces: one designed
to be compatible with screen readers, catering to blind
users, and a graphical interface tailored for sighted users.
Both interfaces incorporate mechanisms to facilitate con-
versation, coordination, and awareness during collaborative
modelling activities. [S7] designed an auditory interface
and then implemented a web-based prototype for diagrams’
collaborative modelling in order to evaluate the auditory
interface. [S31] introduced several model representations
utilising both graphical and textual notations. They also
put forth the Accessible Web Modeler (AWMo), a web-
based tool designed to enhance collaboration with visually
impaired users through multiple model presentations. With
the utilisation of a screen reader, a blind or visually impaired
software developer can engage with the textual model, while
other developers can continue using the conventional graph-
ical model that they are accustomed to when working on the
same model. Any changes made in one view are reflected
in the other, ensuring synchronisation between the two rep-
resentations. [S9] and [S16] further used AWMo, where
sighted and visually impaired users can work in two different
modes, visual and textual, which allows collaborative work
in both modes.[S30] developed a web-based tool prototype

with an accessible version of the diagrams. This accessibility
was achieved by implementing a textual Domain-Specific
Language (DSL), built upon the yUML DSL, and introduc-
ing keyboard shortcuts for interaction. Consequently, both
sighted and visually impaired individuals can access distinct
views of the same diagram.

Category 2: Extending block-based tools. [S2] pre-
sented a prototype called PCUBE with which the users
can create two types of programs: sequential programs and
line trace programs. [S3] developed P-CUBE2, a tangible
block-type programming education tool. [S5] developed a
further extension of P-CUBE. [S10] developed Tangible
Blocks Go Online (TaBGO) prototype, to allow Scratch
programming in classrooms for visually impaired people.
The tool uses tangible blocks and associated optical recog-
nition software. [S18] developed StoryBlocks prototype, a
tangible block-based game that helps blind programmers
to learn basic concepts of programming by creating audio
stories. [S21] designed MUzECS, which is intended to be a
more affordable alternative to Lego Mindstorms, all while
maintaining support for the same educational curriculum
objectives. It relies on a custom block-based programming
approach, providing a more economical alternative for low-
income schools to deliver Computer Science courses. [S37]
extended blockly by adding screen reader support. They
used three attributes from WAI-ARIA guidelines to make
Blockly accessible. They also included changes such as the
option to change the workspace text size and colour, an
accessible customised help guide, and a window to display
comments. [S36] created a prototype for an inclusive block-
based programming library named "Accessible Blockly,"
which enables users to generate and navigate block-based
code using a combination of a screen reader and a keyboard.

Category 3: Using assistive technologies. In [S8] the
authors developed Blocks4All, a prototype environment in
which they integrated diverse methods to overcome accessi-
bility challenges using a touchscreen tablet computer. [S20]
created a self-voicing solution that does not rely on a screen
reader, instead utilising synthetic speech and interactive text-
to-speech methods. [S22] developed a prototype platform
that employs voice, sound, and gestures as interactive el-
ements for manipulating software models. [S23] designed

Khalajzadeh et al.: Preprint submitted to Elsevier Page 10 of 24

a screen explorer for UML that retains the layout infor-
mation and textual labels of diagrams. This tool enables
both blind and sighted individuals to read UML diagrams
within a software system, comprising a standard UML edi-
tor and assistive technology while maintaining consistency.
[S24] developed an extended version of their previous work,
OctoUML, which is voice-recognition-enabled (OctoUML-
V). [S34] designed a prototype known as ModelByVoice,
which seeks to leverage contemporary voice recognition and
speech synthesis technologies for the purpose of editing
models in various modeling languages. [S11] created an
innovative instructional platform referred to as the Tangi-
ble Programming Tool (TPT) environment. This prototype
utilises LEGO bricks and incorporates musical elements to
cater to visually impaired users.

Category 4: Converting to accessible versions. [S29]
developed a fully automated system that allows users to
receive UML diagrams and access their content without
the need for a sighted mediator. This is achieved by taking
UML design tool output in XMI format and converting
and representing the diagram content in a format suitable
for blind users. [S38] introduced an approach to creating
speech interfaces for UML tools. They manually derived
SpokenUML, a spoken imperative command language for
the UML domain, from the UML metamodel by following
language derivation guidelines. To assess the potential of
speech-controlled user interfaces in software engineering,
they developed the prototype software VoCoTo2 (VoiceCon-
trolTool). [S35] developed software called Latitude (Light
and Accessible Tags Into plain Text using Universal DE-
sign). It automatically generates documents in HTML for-
mat and graphics and diagrams in SVG format from plain
text enriched with lightweight and nonintrusive tags. These
two XML-structured formats are particularly screen reader-
friendly. [S19] proposed a Literate Modeling algorithm to
validate element relationships in UML models using a set of
validation constraints triggered by specific sentence charac-
teristics. The synchronisation algorithm takes a UML model
and an annotated piece of text as input, returning a set of
problem markers. Each marker contains information about a
specific inconsistency, including the location within the text,
the error message, and additional guidance on error reso-
lution. This approach has been implemented in a prototype
editor for Literate Modeling called LiMonE.

Category 5: User-centred design. [S1] implemented a
prototype using SwiftUI for the user interface. The prototype
has gone through three iterations with different subjects in
order to improve it based on the feedback received from the
test subjects. [S33] developed a cross-modal collaborative
tool based on the requirements collected through a work-
shop. The tool facilitates self-directed non-visual diagram
editing and enables real-time collaborative work.

Empirical Studies: In [S17], empirical studies were
conducted building upon the research of the HyperBraille
project, which involved the development of a novel touch-
sensitive tactile display. By expanding screen reader tech-
nology, they created a modular audio-tactile screen explorer,

Table 7
MDE Approaches used in different studies

Technology Stack Studies
HTML [S6, S7, S9, S16, S27, S30, S32, S35]
Tangile blocks [S2, S3, S10, S11, S18]
Windows UI [S24, S29, S33, S38]
Blocks + Sound [S20, S36, S37]
Eclipse [S22, S34]
SwiftUI [S1, S8]
Visio 2007 [S23]
Tangible 3D [S13]
Lego mindstorm [S21]

referred to as HyperReader, to provide blind individuals
with access to on-screen information. They further extended
this technology to develop a screen explorer for UML di-
agrams and evaluated the availability and accessibility of
solutions for involving blind individuals in activities related
to UML diagram creation and editing. [S25] developed a
PoN-enabled version of the misuse case notation previously
introduced by (Saleh and El-Attar, 2015) and conducted an
accessibility evaluation in this paper. [S26] conducted em-
pirical studies to compare block-based programming lessons
made by high school interns and teachers.

Proof of concept: [S13] designed PRISCA, a proof of
concept toolchain that automates the generation of a 3D-
printable haptic UML model from an existing UML mod-
elling tool. PRISCA also produces a 3D Braille represen-
tation of the textual annotations present in the graphical
models. [S27] introduce the Flowgen tool, which produces
flowcharts derived from annotated C++ source code.

Framework: [S12] outline their intentions to implement
an accessible editing environment for UML models. The
proposed plan involves utilising a textual concrete syntax
integrated with a state-of-the-art editor to enable accessible
interaction with UML models. Additionally, they provide
an overview of their envisioned support for collaborative
editing of UML models within teams.

Guidelines: [S14] formulated a set of criteria that pro-
gramming environments should encompass to be inclusive
for children with varying visual abilities.

Method: [S4] utilised Data Augmentation and intro-
duced two distinct scenarios to assess the effects of em-
ploying the dataset with and without implementing data
augmentation.

New Graphical Symbols: [S28] identified a set of pos-
sible improvements and new graphical symbols for WebML.

UML notation: [S15] created the UML4ALL syntax
to accommodate the step-by-step working method of blind
individuals who rely on screen reader technology.
4.3.4. RQ3d: Do they describe a tool prototype? What

technology stack does the tool use? How does
this impact accessibility provision?

Table 7 summarises the technology platforms, as far as
we could work out if not explicitly described in the primary
studies. HTML or web-based interfaces are the most com-
mon technology platforms. These have the advantage that

Khalajzadeh et al.: Preprint submitted to Elsevier Page 11 of 24

most web browsers provide some (limited) forms of acces-
sibility support for some content e.g. magnification, screen
readers, etc. For example, study S6 describes Model2gether,
a web-based textual DSL with a screen reader enabling blind
users to create UML models. S7, S9 and S16 all provide
similar support tools for blind users to construct low-code
models. However, these do not usually work on explaining
graphical figures in detail nor interacting with graphical
figures.

Several works provide tangible block-based program-
ming tools, mostly targeted to vision-impaired users. For
example, S2 and S3 describe PCUBE and its enhancements,
and S10 describes TaBGO for creating Scratch programs.
Several works describe tangible block-based interfaces with
audio enhancements, such as S20 and S36. These combine
a tangible block-based programming model with various
forms of auditory feedback to vision-impaired users.

Several low-code programming tools use a Windows-
style interface e.g. S24 describes OctoUML, as a CASE
tool with a variety of accessibility enhancements. Several
tools use Eclipse plug-ins to provide accessibility e.g. S34
describes ModelByVoice with voice control of Eclipse di-
agram editing. A Visio 2007 enhancement, S23, provides
various accessibility enhancements to browse UML dia-
grams. A challenge with these ‘desktop’-type interfaces is
sometimes limited ability to provide a range of accessibility
support due to the technology capabilities of the platform.
While the web-based tools above often use browser plug-
ins or third-party plug-ins to support accessibility, most
desktop-based tools use custom augmentations.

One tool uses a 3D printed tangile interface to sup-
port sight challenged user accessibility, S13. One provides
programming support on top of the Lego Mindstorm robot
platforms, S21. Two provide iPad/iPhone interfaces using
the Swift GUI toolkit. Like HTML-based tools, Swift pro-
vides developers with a range of accessibility-supporting
programming APIs and supports natively.
4.3.5. RQ3e: How are the low-code approaches are

evaluated? Is the generated code verified in
some way?

Our selected primary studies evaluated their approaches
in several ways. Over half (n=19) conducted some form of
user studies with both sighted and visually impaired users
making use of the tool/approach proposed. Several studies
conducted ongoing studies, while others collected feedback
through online questionnaires or interview-based studies.
Several studies used their approaches in the classrooms and
some conducted experiments. Several papers only proposed
evaluations without implementing them, Finally, [S30] and
[S31] did not evaluate their approaches. Table 8 presents
different evaluation types and the participants’ types.
4.3.6. User studies

Nineteen of the studies evaluated their approach through
user studies. [S1] compared their prototype with a textual
modelling language (TML) called PlantUML. Their findings

indicate that their solution is often more user-friendly for
newcomers, significantly reducing the learning curve when
compared to TMLs. It also offers advantages to visually
impaired users who are already familiar with a TML, par-
ticularly when it comes to reading and navigating diagrams.
Additionally, during the test cases, all visually impaired
users preferred their prototype for both reading class and
relationship information. Even visually impaired users with-
out prior knowledge favoured their solution for tasks like
creating classes, generating class information, and exporting
images.

[S2] assessed and validated the efficacy of P-CUBE
system through a series of tests: 1) They conducted a dis-
crimination test to evaluate the effectiveness of the tactile
information provided on the blocks. 2) They examined the
process of creating a sequential program and assessed the
ease of using the P-CUBE system. 3) They verified the
procedures for loop and conditional branch programming,
where a mobile robot follows a black line. To evaluate the
P-CUBE system, they compared the creation of a sequential
program using the P-CUBE system and PC software (Beauto
Rover). In Prototype 1, the accuracy rate was 95 percent.
Based on these outcomes, they developed Prototype 2, where
all subjects were able to create a proper sequential program.
In a separate study, [S3] organised a programming workshop
for visually impaired children. They compared the process
of transferring using P-CUBE2 with conventional systems,
analysing it in terms of Therblig factors and transfer time.
The results indicated that young children could effectively
perform transfers using Pro-Tan, leading to the conclusion
that visually impaired children can easily manage program
transfers.

To assess the ease of operating P-CUBE, [S5] initiated
the evaluation process by examining how sighted individuals
create a sequential program. They then proceeded to com-
pare the ease of operating P-CUBE with PC programming
software. All participants completed the task of creating
a sequential program using both programming tools. The
questionnaire results indicated that individuals with no prior
programming or flowcharting experience found it easier to
create a sequential program using P-CUBE. Furthermore,
the workshop results demonstrated that users with impaired
vision could also monitor the operating status of the mobile
robot using their remaining sight. In a separate evaluation,
[S7] conducted a user testing session to assess the interface’s
performance using the success rate per task method. The
results suggest that it is feasible for visually impaired users
to have awareness of the actions and activities of others in
a shared workspace. During the usability test, participants
were able to discern who was involved in specific tasks and
where those activities were taking place.

A usability study was conducted by [S11], to assess a
preliminary version of their prototype. Their findings indi-
cated that it is possible to enhance the accessibility of visual
programming languages for users with visual impairment
and low vision by incorporating the following features: 1)

Khalajzadeh et al.: Preprint submitted to Elsevier Page 12 of 24

Table 8
Evaluation types in different studies

Evaluation Participants # Participants’ category Studies
4 Completely blind to partially blind [S1]
16 (prototype 1)
+ 10 (prototype 2) Sighted users who wore eye masks [S2]

13 High school students. Seven used braille
and six used extended character points [S3]

10 (test 1)
+ 4 (test 2)

test 1: Sighted participants. test 2: High school students.
Three with very poor vision, one totally blind. [S5]

5 Sighted participants [S7]
9 Participants with visual impairments and low vision [S11]

7 (study 1)
+ 2 (study 2)

Study 1: Visually impaired children with special needs,
Study 2: Same group as Study 1 +
focus group with (six from Study 1 + one new special
needs educator and an IT instructor)

[S14]

2 Blind participants [S16]
3 One blind and two sighted [S17]

16

Six design sessions with five blind and low-vision students
(middle and high school), eight teachers, and three
staff members, including two Braillists
(Braille transcriptionists) and one preschool staff member

[S18]

4 Varying vision needs: low vision to total blindness. [S20]

10 Computer science students or
graduated computer engineers [S22]

7 Blind participants [S23]

30 Two user studies with two post-docs,
13 PhD and 15 M.Sc. students) [S24]

34 Blind and partially-sighted users [S29]
5 Four blind and onr sighted participants [S32]
5 Two blind and three sighted participants [S34]
12 Blind programmers [S36]

User studies

5 Children aged 5-10 with visual impairments [S8]

3
Professional pairs; employees in the head office of a
Children and Families Department
an international charity, and a private business.

[S33]

Ongoing studies 5 The authors of the paper and three other users [S38]

14 Seven sighted (six blind and one severely visually
impaired) and seven visually impaired participants [S15]

84 Red—green colourblind IT professionals [S25]

45 Software engineers (30 students and
15 experts in Software Engineering) [S28]Online

Questionnaire
20 Companies [S17]
1 Teacher of the visually impaired [S8]Interview-based

studies 2 Visually impaired users [S9]
5 (series 1)
+ 5 (series 2) One blind and 4 sighted learners in each of the series [S6]

115

Two participant groups new to creating K-12 computing
curricula (Group 1: 29 high school interns with prior
programming experience but not formal pedagogical
training. Group 2: 86 teachers with formal pedagogical
training but no background in programming.)

[S26]

Class-based
studies Not mentioned Their students for three years [S35]

N/A N/A [S4]
N/A N/A [S13]
N/A N/A [S19]
N/A N/A [S27]Experiments

1 Member of the team who was colour-blind
+ a colour-blindness simulator [S37]

N/A Young visually impaired and sighted students [S10]

N/A Industrial software engineering team that
includes visually impaired engineers [S12]Evaluation

proposals N/A High school students and teachers [S21]

Implementing focus navigation to facilitate movement be-
tween different sections of the interface. 2) Incorporating au-
dio effects to signal valid connections. 3) Ensuring compat-
ibility of screen readers with block labels and symbols, such

as directional arrows. During their evaluation, participants
encountered certain challenges when using Scratch, includ-
ing difficulties in navigating between interface sections and

Khalajzadeh et al.: Preprint submitted to Elsevier Page 13 of 24

receiving feedback regarding valid block connection points.
[S14] conducted a workshop organised through two studies.

In the first study, educators emphasised the signifi-
cance of incorporating a robot with its physical and socio-
emotional attributes. They also suggested that providing a
confined space for organising instructions would enhance
their programming activities. Furthermore, educators appre-
ciated the use of a map, such as one with DOC (Dynamic
Obstacle Course), which allowed children to explore spatial
boundaries and foster orientation skills. While the solutions
presented in the first study were found to be inaccessible,
they exhibited qualities that could be adapted for an accessi-
ble programming environment. The second study’s findings
indicate that, from a physical access perspective, visually
impaired children could engage in spatial training activities
similar to their sighted peers.

[S16]’ user tests results indicate that the AWMo ap-
proach is feasible for enhancing collaboration and commu-
nication between sighted and visually impaired users during
software modeling activities. [S18] conducted six design
sessions where the researcher conducted interviews with the
group members regarding their usage of StoryBlocks and
discovered that the holistic approach of integrating tangible
programming with audio narratives can serve as an engaging
method for instructing foundational programming concepts
inclusively and collaboratively. [S20] evaluated their solu-
tion and found some issues listed in detail in the limitations
section. [S22] conducted a pilot experiment and found that
their novel interaction model expedited user engagement
and enhanced the overall user experience on the platform.
Nonetheless, certain aspects of the interaction may require
further enhancement in the future. [S23] conducted evalu-
ations and compared their newly developed representation
with the common method blind people utilise sequence
diagrams, that is non-visually through verbalisation. The
findings indicated that computer scientists with visual im-
pairments can navigate tactile UML sequence diagrams on
a flat display, but they identified issues that arose during
navigation.

[S24] performed two user studies to assess and compare
the usability and efficiency of two versions of OctoUML:
one with voice recognition enabled (OctoUML-V) and the
other without (OctoUML-Lite). Their findings indicated that
(i) users had a positive perception of usability, (ii) voice
interaction was primarily preferred for text input, and (iii)
the integration of voice interaction in software design en-
vironments improved the efficiency of the software design
process. OctoUML-V received greater user appreciation and
reduced the time required for naming software design dia-
gram elements. [S29] evaluated their system and discovered
that the system was well-received, with participants suc-
cessfully completing UML tasks. In a user study conducted
by [S32], all blind participants expressed enthusiasm about
the tool and provided positive feedback. One participant
even used the tool a week later to collaborate with col-
leagues in creating a use case model for a course. [S34]
carried out a preliminary assessment session, which, despite

the limited number of participants, yielded promising and
confident results, providing valuable feedback for future
improvements. [S36] conducted a study demonstrating that
Accessible Blockly effectively assists users in reading and
understanding block-based code. Participants found it user-
friendly and less frustrating when navigating block-based
programs. They also expressed enthusiasm for using the
keyboard and screen reader to navigate block-based code,
highlighting the accessibility of block-based programming.
Lastly, [S17] conducted a user study and survey. The results
indicated that not all UML diagrams are accessible, posing a
challenge to the inclusion of blind developers in the industry.
Except for TeDUB joystick, none of the proposed software
solutions were available for download.
4.3.7. Ongoing studies

Two papers conducted ongoing studies. [S33] delved
into cross-modal collaboration between visually impaired
and sighted coworkers. Their primary objective was to ex-
plore the dynamics of cross-modal collaboration in a work-
place setting and assess the extent to which the tool they de-
veloped could effectively support this collaboration in real-
world scenarios. This study unearthed a range of challenges
associated with cross-modal technology’s impact on collab-
orative work. These challenges encompassed aspects such
as representation coherence, collaborative strategies, and the
facilitation of awareness across different sensory modalities.
Leveraging their observations, the authors delineated an
initial set of preliminary design recommendations, aimed
at providing guidance and enhancing the design of support
systems for cross-modal collaboration. [S38] conducted pre-
liminary tests over several months, with users who gradually
became proficient in utilising the VoCoTo speech interface
in conjunction with Rational Rose. These initial tests paved
the way for more formal, small-scale user evaluations to
gauge the practicality of their approach. Their findings led to
the conclusion that their approach was indeed viable. UML
proved to be an ideal candidate for speech recognition, and
the maturity of speech recognition technology made it a
feasible option for enhancing the utilisation of UML tools.
Of particular significance from the preliminary tests were
the language improvements identified. Initially, some novice
users encountered difficulties with certain aspects of the
speech interface, such as configuring complex multiplicities
for associations. To overcome this problem, they added
synonyms.
4.3.8. Online Questionnaire

Four studies designed surveys to collect users’ feed-
back. [S17] utilised a combination of user studies and
surveys, as previously described. To assess the usabil-
ity of the UML4ALL syntax, [S15] conducted an online
questionnaire-based empirical study. These findings strongly
indicate that the UML4ALL syntax demonstrates com-
parable usability for both sighted and visually impaired
individuals. [S25] conducted an empirical study aimed at
evaluating the cognitive effectiveness of the RGD version

Khalajzadeh et al.: Preprint submitted to Elsevier Page 14 of 24

of the PoN-enabled misuse case notation in comparison to
the original misuse case notation. This study involved a
comparison of speed and accuracy, with results confirming
the continued cognitive effectiveness superiority of the
RGD version of PoN-enabled misuse case notation over
the original notation. Furthermore, the study demonstrated
that the PoN principles’ positive influence on cognitive
effectiveness remained intact when PoN-enabled diagrams
were viewed by individuals with red-green colour blindness.
[S28] performed empirical validation, employing a question-
naire to gather feedback on alternative graphical symbols.
The questionnaire responses indicated a preference for the
new symbols among the majority of study participants.
4.3.9. Interview-based studies

Two of the papers used interview-based studies. In the
study conducted by [S9], they employed a combination of
interviews as their initial data collection method and ob-
servation of the AWMo tool while participants completed
a predefined set of tasks as their secondary data collection
technique. Each subject participated in two interview ses-
sions, conducted both before and after using the tool. The
study’s findings indicated that their approach does not result
in additional time spent on the activity. Notably, once a
textual language description is created, the graphical repre-
sentation is readily available for sighted users. This suggests
that AWMo is a feasible option for enhancing collaboration
between sighted and visually impaired individuals in soft-
ware modelling activities. [S8] conducted a semi-structured
interview with a teacher who specialises in teaching visually
impaired children. The teacher was questioned about their
experiences teaching children how to use technology and
various assistive tools, including screen readers, zoom, and
connectable braille displays, on touchscreen devices. Addi-
tionally, feedback was solicited regarding different tool de-
signs. Following this, five children with visual impairments
were recruited to participate in the study. Based on the chil-
dren’s experiences and feedback, certain tool modifications
were made, particularly in response to difficulties some of
the children encountered.
4.3.10. Classroom-based studies

Three papers conducted studies in their classroom. In the
study by [S6], a pre-survey and interviews were conducted
before the lectures in the classroom setting. Following the
lectures, learning assessment involved both group work and
an exam. Participants’ perceptions were gathered through a
post-survey and interviews. For the first series of activities,
the diagrams created during group work were error-free
and suitable for the specified system description. Partic-
ipants appreciated the coordination and visibility mecha-
nisms of Model2gether, which contributed to the success
of the lecture. Notably, participants who had previously
attended similar face-to-face courses did not observe any
significant differences in classroom dynamics due to the
participation of visually impaired students. In the second
series, after the lectures, all participants exhibited improved

grades. The results suggest that the tools used enabled vi-
sually impaired students to learn and collaborate effectively
with sighted peers without disrupting the typical dynamics
of a distance education scenario. In the study conducted
by [S26], the research compared block-based programming
lessons related to subject areas, focusing on two partici-
pant groups new to developing K-12 computing curricula.
They assessed a total of 113 lessons for their inclusion
of scaffolding, teacher accessibility, equity, computing and
subject area content, and assessment-focused components.
Comparing lessons created by teachers (who had less coding
experience but more pedagogical expertise) to those cre-
ated by a group of interns, the results revealed that both
groups faced challenges in incorporating equitable practices
and opportunities for culturally responsive and identity-
affirming activities. However, they excelled in including
assessment-focused items. Additionally, teachers and interns
demonstrated the ability to provide substantial support for
coding and content knowledge. In conclusion, both groups
of curriculum creators successfully developed computing-
infused lessons. [S35] utilised their software within their
classroom for three years, and it proved to be highly success-
ful with their students. The majority of students indicated
a desire to continue using the tool in the future. They
also encouraged other teachers in their department to adopt
the same tool, emphasising its convenience. Furthermore,
they appreciated the description file, which allowed for a
clear establishment of the meaning associated with classes
and associations. Notably, as a blind teacher, one of the
authors gained autonomy and could present live diagrams to
students, effectively illustrating problems and responding to
questions. Consequently, the inclusion of this software was
deemed to be proven and highly valuable.
4.3.11. Experiments

Five of the studies conducted experiments. In the study
by [S4], experiments were conducted using various algo-
rithms, and the results were measured in terms of accuracy
and standard deviation between folds. The findings indicated
that the utilisation of transfer learning contributed to achiev-
ing satisfactory results even when working with limited
data. Nevertheless, there is still room for improvement in
successfully classifying the UML diagrams addressed in this
research. [S13]’s toolchain was validated using sample mod-
els created with Visual Paradigm UML, including models
developed for projects in collaboration with industrial part-
ners. However, the specific results of this validation are not
included in the paper. [S19] analysed the runtime complexity
of their methods, revealing the feasibility of incorporating
the proposed solution into contemporary CASE (Computer-
Aided Software Engineering) tools. [S27] tested their initial
implementation of Flowgen on a variety of source files, en-
compassing code with nested if statements, loops, function
and class method calls, annotations with different zoom lev-
els, and links to be followed during browsing. They contend
that their tool, offering two views—a high-level semantic

Khalajzadeh et al.: Preprint submitted to Elsevier Page 15 of 24

view and another focused on code-level implementation de-
tails such as branching and important variables and method
names related to annotated activities—proves beneficial to
users. It serves as a common ground for specialists from
various backgrounds to collaborate more efficiently, which
is an attractive feature in computational physics research.
[S37] conducted testing of their colours using a colour-
blindness simulator and through evaluation by a team mem-
ber with colour blindness to ensure the distinguishability of
the blocks from each other and the background. However,
specific results of this testing were not reported in the paper.
4.3.12. Evaluation proposals

Finally, three papers proposed evaluations, but have not
implemented them. [S10] outlined a forthcoming user study
aimed at assessing the usability and ease of use of their
solution among young students with visual impairments as
well as sighted students. The study intends to gather user
feedback concerning aspects of usability, satisfaction, and
cognitive load. [S12] put forward a strategy for an industrial
software engineering team that incorporates engineers with
visual impairments. The strategy involves the continuous
evaluation of their outcomes. As for [S21], their approach is
presently in use across various schools. They have devised
a plan to gather statistics on block usage from high school
students and teachers who are already utilising MUzECS.
This data will be collected through the use of surveys.

RQ3 Summary. Most of the selected primary stud-
ies build on top of UML (42.1%) or block-based
programming (28.9%). They mostly do not con-
sider any design guidelines (86.8%) and have not
used transformation methods or code generation
(92.1%). The study types are divided into Prototype
(73.6%), Empirical studies (7.8%), Proof of con-
cept (5.2%), Framework (2.6%), Guidelines (2.6%),
Method (2.6%), New graphical symbols (2.6%), and
UML notation (2.6%). The studies that propose a
new prototype, are categorised into those Provid-
ing graphical and textual views, Extending block-
based tools, Using assistive technologies, onvert-
ing to accessible versions, and User-centred design.
The studies are evaluated in different ways. The
evaluation types are categorised into User stud-
ies (50%), Ongoing studies (5.2%), Online Ques-
tionnaire (10.5%), Interview-based studies (5.2%),
Class-based studies (7.8%), Experiments (13.1%),
and Evaluation proposals (7.8%).

4.4. RQ4: What are key future research directions
for accessible low-code tools?

4.4.1. RQ4a: What are the key strengths identified in
the selected primary studies?

Our selected primary studies provide multiple strengths,
as reported by the authors. Here, we just provide interest-
ing examples of the strengths that can motivate future re-
searchers to uptake the current solutions. The main strengths

discussed are making MDE accessible and enabling collab-
oration among sighted and visually impaired users.

[S1] introduces an innovative approach that provides
a novel method for visually impaired users to navigate
and interact with UML class diagrams. By combining
this method with VoiceOver, even those who are unfa-
miliar with these diagrams can read and create content.
This approach significantly enhances the accessibility of
UML class diagrams for newcomers and facilitates more
comfortable collaboration between sighted and visually
impaired users by presenting all the content in a unified
view that links the various diagram elements. According
to [S2], the P-CUBE system offers three notable advan-
tages. First, it utilises blocks with tactile information, such
as surface gaps, to ensure the system can be utilised by
visually impaired and younger individuals, specifically
those aged 5 to 10 years. Second, the system’s interface,
based on RFID-tagged blocks, is robust and resistant to
damage, which is especially advantageous for the younger
and visually impaired target audience. Furthermore, the P-
CUBE system is cost-effective. Lastly, P-CUBE eases the
burden on teachers when preparing programming lessons.

[S5] believe that their approach is easy for beginners
to use since It enables users to focus on designing algo-
rithm structures without the need for tedious PC opera-
tions. [S6] suggest that the tools employed enabled visually
impaired participants to learn and collaborate with their
sighted peers without the latter realising there was a
visually impaired member in the group. [S7] noted that the
participants could effectively discern the actions performed
by individuals. Furthermore, it was feasible to identify the
awareness categories that required further refinement. [S8]
established design principles for creating block-based envi-
ronments and touchscreen applications catering to children
with visual impairments, derived from interviews, formative
testing with children and educators, and the Blocks4All
application. Furthermore, they have made both the source
code and the application readily accessible to the public.
The AWMo tool by [S9] exhibits a highly adaptable ar-
chitecture, allowing forthcoming contributors to create and
explore novel methods for visualising and modifying models
without disrupting the current ones. [S10] introduced a
straightforward approach to boost students’ computing
skills, irrespective of whether they have visual impairments
or not. [S11] introduced a prototype accessible to users with
visual impairments and low vision. [S12] argue that syn-
chronisation between textual and graphical editors enables
the freedom to choose tools based on each team member’s
specific requirements.

[S13]’s PRISCA tool places a strong emphasis on the
reusability of diagram features (such as similar shapes
and line types), extensibility to various diagram types, and
adaptability to a wide range of modelling tools and 3D
printers. [S14]’s approach encourages the emergence of
different behaviours and opportunities, fostering discussion
with educators. [S15] demonstrate a more inclusive design

Khalajzadeh et al.: Preprint submitted to Elsevier Page 16 of 24

of work processes, eliminating the need for manual trans-
lation of visual documents into accessible formats during
subsequent stages. [S19]’s approach is seen as a valuable
contribution to ensuring consistency in documents within
Literate Modeling. [S20]’s spatially organised, yet acces-
sible, block-based coding platform simplifies collabora-
tion and learning between sighted and non-sighted peers.
[S21] have successfully developed cost-effective hardware,
software, curriculum, and resources as an alternative for
the sixth module of the Exploring Computer Science cur-
riculum. [S22]’s innovative solution enables modelling in
a specific language solely through voice commands, of-
fering a flexible and customisable interaction model while
enhancing and expediting interaction with haptic features.

[S23]’s findings suggest that a combined representation
of UML diagrams, incorporating both graphical and linear
elements, is valuable, particularly when there is a need
to quickly access information for specific tasks. [S24]’s
utilisation of the voice interaction modality in software
design environments results in increased efficiency in the
software design process by reducing the time required to
name classes and packages in UML class diagrams. [S25]’s
adherence to the comprehensive set of principles in the PoN
enables the new notation to maintain its cognitive effective-
ness superiority over the original notation, even when colour
perception is limited. The main advantage is to read the
diagrams more easily. [S26]’s strength is gaining insight
into the additional knowledge and training required to
assist content creators in developing improved and more
inclusive computing lessons for non-computer science sub-
jects. [S27] delivers a straightforward and visual summary
of intricate numerical algorithm implementations. Flowgen
creates a shared platform for experts from various disciplines
to collaborate with increased efficiency. [S29] reported
that the users were comfortable with the tool and it was
tested with a large group of blind users. [S30]’s main
benefit is to provide a collaborative web-based tool for both
blind and sighted users.

[S31] anticipate the full elimination of the requirement
for a secondary person to interpret diagrams, thereby en-
abling collaboration in an MDE context. [S32]’s tool has
two interfaces for sighted and blind users, which allows col-
laboration among the two groups. [S33] collected require-
ments from real end-users and developed a tool that pro-
vides options for collaborative usage. [S34] makes model-
driven development accessible for blind users. [S35] en-
ables collaboration between blind and sighted partici-
pants. The approach has been used by students for several
years. [S36] introduced their initial endeavour to create a
block-based programming library that is accessible, employ-
ing keyboard and screen reader interaction. [S37]’s strength
is to provide accessibility features for a well-known block-
based tool, Blockly. [S38]’s approach can be applied to
comparable domains, including other visual modelling or
programming languages. It is also usable with the existing
UML CASE tools.

4.4.2. RQ4b: What are the limitations discussed in the
selected primary studies?

In terms of the limitations, some of the selected pri-
mary studies have not discussed any limitations. Among
those who discussed the limitations, they mostly reported
Limitations in the approach, followed by the Limitations in
the evaluation. Other categories are: Limited data analysis,
Complexity of the approach, Small sample size, Limited
data, Requirement gathering, and Lack of user study.

Limitations in the approach: Seventeen studies discuss
limitations related to their approach. [S7] reported limi-
tations in the auditory interface and lack of features for
the prototype, such as the option to replay the most recent
auditory cue and browse through the various items. [S8]
examined only a limited set of design options. They were
also constrained by only making modifications that could
be embraced by all creators of block-based environments.
Due to the limitations in the approach developed by [S11],
participants faced some barriers during the evaluation. [S13]
reported several limitations in handling the textual anno-
tations of UML, such as translating the text directly to
Braille, limitations in the current graphics library/utilities,
and the technique’s portability. [S18] pointed out that tan-
gible blocks have constraints in displaying labels, as the
blocks may lack the space for Braille or the users might
have difficulty reading Braille. A significant issue raised
was the potential challenge in situations where the visual
aspects of the system outperform the tactile elements, po-
tentially causing difficulties in collaborative work between
blind and sighted participants, as observed during some
study sessions. Another drawback is that StoryBlocks does
not facilitate practices like reusing, remixing, or abstracting
and modularising.

In the current state of the prototype developed by [S19],
only sentences containing references to model elements
are parsed. Pronouns referring to model elements are not
considered in the current model elements, and they need to
be referred to by their specific name in the text. [S20] has
identified limitations related to navigation issues, such as
the challenge of determining the start of a new line of code,
as identified during usability testing. Additionally, there is
no functionality to move blocks across the workspace. The
approach proposed by [S21] faces limitations as it cannot in-
stall Arduino software, leading the authors to develop a web-
based solution through a Chrome browser web page and web
app to overcome platform restrictions. Further evaluation of
this solution is planned. During the empirical experience
organised by [S22], users encountered limitations such as
speech recognition not being entirely reliable and issues with
the comprehensibility of the synthesiser’s voice at times. It
is important to note that [S23]’s approach does not provide
the capability to edit the diagrams.

[S24] highlighted that several factors, including micro-
phone distance, ambient white noise, and variations in hu-
man pronunciation, can influence the effectiveness and ac-
curacy of the voice recognition system. These factors may
consequently impact the improvement in the efficiency of the

Khalajzadeh et al.: Preprint submitted to Elsevier Page 17 of 24

software design process. [S25] discussed the issues related
to the approach that participants reported in their evalu-
ation. According to [S28], they noted that many of the
enhancements suggested by their analysis should have been
implemented during the initial stages of WebML develop-
ment. However, as the product is now well-established and
widely distributed, most of these improvements are consid-
ered financially unfeasible. [S33] identified limitations in
their approach and came up with recommendations. They
plan to conduct further studies. The main limitation reported
by the [S34]’s participants in the preliminary experiment,
was linked to technical failure, specifically the error rate
of the underlying speech recognition technology during the
execution of ModelByVoice. [S38] reported limitations of
their approach in their evaluation results and future work.
[S5] found that in the workshop with visually impaired users,
participants found it challenging to differentiate between
the IF and LOOP blocks, and they expressed the desire for
independent execution of data transfer tasks. After the eval-
uation, these features were revised to address the concerns.

Limitations in the evaluation: Eight of the studies
discuss limitations in their evaluations. [S1] reported that
the users were aware of what tool the researchers had de-
veloped given they were familiar with the tool they used for
comparisons. This might impact the results in their favour.
The study conducted by [S14] concentrated exclusively on
a cohort of visually impaired children, without involving
their sighted counterparts. Additionally, it did not evaluate
computational thinking (CT) concepts like loops or condi-
tionals. The discussions with educators only briefly touched
upon these forthcoming challenges. The research was con-
fined to a single brief session, featuring a limited range of
spatial activities and CT concepts, which might have been
influenced by a novelty effect on children’s interest. The
questionnaire designed by [S15] can solely provide a gen-
eral usability trend. It does not allow for the interpretation
of individual items within the questionnaire. Furthermore,
specific usability issues related to the UML4ALL syntax
could not be deduced from the outcomes. [S23] reported
several limitations in the user study. [S26] did not include
their interview or self-report data. In addition to exit inter-
views, they conducted daily feedback surveys with teach-
ers and collected motivation essays from interns in both
groups. For the upcoming phase of their evaluation, [S29]
plan to incorporate larger diagrams. The diagrams used in
the initial phase were intentionally designed to be small
enough for users to ’chunk’ or hold in memory entirely,
and this adjustment is expected to yield different strategies
and outcomes. [S37] did not study their approach’s features
by their participants. According to [S36], it is important to
note that each navigation scheme was assigned to a specific
set of programs for the entire study. This approach could
have potentially impacted the quantitative results and their
statistical significance.

Limited data analysis: Two of the studies report limi-
tations in their data analysis. [S1] reported that it can some-
times be challenging to obtain precise measurements for data

points related to questions, doubts, and errors. [S16]’s anal-
ysis focused on assessing the navigation strategies employed
by the participants within the application and its textual
editor. The researchers suggest that the potential for non-
sequential navigation warrants further investigation.

Complexity of the approach: One study discusses the
complexity of the approach as its limitation. According to
[S16], the most significant challenge of the AWMo approach
for modelling by blind users is anticipated to be textual
navigation. While the approach presents an innovative way
for blind and visually impaired users to edit models, it
becomes more challenging as systems and models grow in
complexity and size. Therefore, strategies to alleviate the
memory burden on users may be necessary in such cases.

Small sample size: Five of the studies report small
sample size as their limitation. A small number of tested
subjects is the second limitation reported by [S1]. [S8] noted
that the challenge of recruiting participants from their target
population led to a relatively small sample size. This resulted
in participants spanning a wide range of ages and abilities,
which made it challenging to draw meaningful comparisons
among them. [S26] recognised that the use of small or
imbalanced sample sizes might have had an impact on the
analyses conducted. [S34] reported the limited number of
blind users and the limited number of modelling languages
used in their experiments. [S36] noted that the study involved
a limited number of participants.

Limited data: One study reports limited data as their
limitation. [S4] reported that they utilised a set of only 200
images per diagram type, as there was a shortage of available
images for certain categories. To address this limitation, they
employed data augmentation methods to increase the count
to 1000 images per category.

Requirement gathering: Requirement gathering is re-
ported in one study as the limitation. One challenge encoun-
tered by [S31] when engaging with computer programmers
with disabilities was the fact that some of them never had the
opportunity to learn UML class diagrams due to their unique
requirements and the absence of accessible tools. This pre-
sented a difficulty in collecting the initial requirements for
AWMo.

Lack of user study: Lack of user study is reported as
the limitation by [S35]. The tool is not being tested for the
purpose of the study.
4.4.3. RQ4c: What are the future works?

The main future works discussed by different authors
are: Extending the tool, Conducting further experimentation,
Conducting further research, Expanding the solution to other
types of UML diagrams, Conducting usability tests with
users from the industry, Making the tool open-source, De-
veloping collaborative modelling, and Enabling the editing
of diagrams.

Extending the tool: Twenty-one studies propose an
extension of their tool as their future work, mostly based on
their evaluation results. [S2] aims to enhance the program

Khalajzadeh et al.: Preprint submitted to Elsevier Page 18 of 24

transfer process, streamlining it for visually impaired indi-
viduals to transfer program data to the mobile robot without
undue complexity. They also intend to introduce a feed-
back function with auditory cues to keep the user informed
about the mobile robot’s movements. [S4] emphasised that
further studies are needed to address the complexity of
UML diagram classification, particularly concerning class
diagrams. They also recognised the necessity of enhancing
the data augmentation transformations for improved results.
[S7] envisions adding an auditory interface and new features
to their prototype, such as the capability to replay the last
sound cue and navigate among different artifacts, to enhance
the user experience and achieve better outcomes. [S8] has
plans to delve into unresolved questions, such as navigating
more intricate hierarchies of nested code, accommodating
multiple "threads" of program code, and integrating speech-
based commands or other gestures effectively. [S11] intends
to implement the participants’ recommendations, which in-
clude incorporating the music environment, to enhance their
project based on valuable user feedback.

[S12] is working on implementing synchronisation mech-
anisms between graphical and textual editors. [S13] focus
on investigating improved methods for providing textual
descriptions that assist visually impaired users and foster
collaboration by incorporating interactive feedback and
exploring emerging technologies. [S14] dedicates to devel-
oping or enhancing current solutions and moving towards
inclusive classroom activities with children of varying abil-
ities. [S18] plan to expand the existing StoryBlocks system,
further supporting creative endeavors and problem-solving
while extending the application of this approach to new
domains. [S19] investigates the relationship between UML
elements and their connection to parts of speech to enhance
the parser’s accuracy. This includes the potential training
of the parser on an appropriate corpus and integration with
a more mature framework. [S20] aim to introduce features
that allow users to control speech speed and verbosity to
align with their audio comprehension needs. The plan also
includes making various workspace elements accessible and
providing audio feedback on hierarchical toolbox informa-
tion. Additionally, they are working on adding screen-reader
support to blocks for experienced screenreader users and
implementing a zoom feature for users with low vision.

[S21] intend to introduce additional features to enhance
user creativity and expand the curriculum further. [S22] ex-
plore new interaction paradigms, possibly domain-specific,
and laying the foundation for understanding the semiotics of
sound in model-driven solutions. [S26] prepare for more in-
person field testing of lessons created by novices to assess
their broader impact on student learning and engagement.
[S38] aspire to build a more comprehensive toolset, includ-
ing a wider range of target tools, to evaluate the speech in-
terface in real software engineering projects beyond diagram
drawing tasks. Their plans also encompass tool enhance-
ments and applications in other visual languages. [S29] aim
to further developing their system based on their findings to
provide a valuable UML tool for blind individuals working

in software development. [S24] aim to leverage more sophis-
ticated recognisers to mitigate factors that might compro-
mise the recognition process, reducing the voice recognition
failure rate.

[S32] plan to introduce new models, such as the UML
class model and entity-relationship model, while also adding
new features like support for tactile devices, customisa-
tions for domain-specific languages (DSL), and coordination
mechanisms. [S36] intend to enhance the screen reader
output by refining verbal descriptions and increasing the
quantity and variety of information available through the
screen reader. [S34] are working on providing users with
the option to select their preferred input method, whether
it is voice recognition, keyboard input, or a combination
of both for modeling activities. They are also looking to
introduce an intermediate layer that supports various speech
recognition APIs and develop an editor capable of convert-
ing XMI diagrams into graphical formats. [S28] plan to
conduct a comprehensive analysis of cognitive effectiveness,
building upon the key findings and improvements identified
in WebML. They aim to explore potential visual dialects that
could enhance WebML’s user-friendliness for diverse user
groups.

Conducting further experimentation: This is dis-
cussed in sixteen papers as their key future work. [S1] intend
to further explore and experiment with their prototype, as
the current paper primarily describes the initial prototype.
[S3] plan to validate the usefulness of their tool for visually
impaired individuals and continue assessing its impact on
learning. [S5] aim to conduct a more extensive evaluation
of the learning effects of P-CUBE and compare them to
conventional PC software. [S8] is preparing for a formal
evaluation of Blocks4All to thoroughly assess its effective-
ness. [S9] intend to expand their case study with a larger
pool of subjects and to design various experiments aimed
at evaluating the graphical view and usage by sighted users.
[S10] will commence the experimental phase to assess the
usability of their prototype. [S12] will proceed to conduct
a detailed evaluation of the twelve existing textual syntaxes
for UML in terms of their impact on accessibility.

[S15] intend to assess specific usability issues through a
real end-user test and observations by test facilitators. [S16]
plan to prototype and evaluate alternative navigation strate-
gies for the textual language of AWMo, allowing users to
navigate through the textual content in a non-sequential man-
ner. [S22] aim to extrapolate and implement the experiments
on a larger scale. [S25] plan to conduct further empirical
studies involving other PoN applications empirically vali-
dated using their respective coloured versions of diagrams
to explore the effectiveness of the PoN framework. [S28]
plan to design additional experiments to identify improve-
ments that would be most beneficial to various user groups.
[S30] will conduct usability experiments involving blind
and sighted students in a simulated academic environment
to validate and refine the developed prototype. [S32] plan
to perform controlled experiments with a more extensive
user base. [S35] plan to test their tool, particularly among

Khalajzadeh et al.: Preprint submitted to Elsevier Page 19 of 24

young individuals with visual impairments who are learning
computer science. [S37] plan to initiate formal studies of the
accessibility features to fine-tune the system and enhance
user access.

Conducting further research: Eight of the studies aim
to conduct further research. [S17] plan to conduct further
research on the accessibility of UML for visually impaired
and blind people. [S26] plan to look at the remaining projects
they have from teacher-intern collaborative teams, to gain a
deeper insight into the impacts of collaborative team design
that complements project development. [S27] plan to extend
the use of Flowgen across various aspects of the Vincia
collaboration and make refinements based on their growing
experience. [S30] recommend that future researchers inves-
tigate suitable interfaces and interaction styles for facilitating
collaboration between blind and sighted participants. [S31]
outline potential areas for future investigation by identifying
various types of data that could be collected once the tool
is fully developed. [S24] intend to investigate the impact of
incorporating multi-touch and remote collaboration methods
into OctoUML and assess their effectiveness in enhancing
the software design process. [S37] plan to extend their
approach to other hybrid text and block-based programming
languages, such as Pencil code. [S34] aim to establish a
systematic approach, similar to the PoN framework, for eval-
uating the usability of audio concrete syntax and interaction
models.

Expanding the solution to other types of UML di-
agrams: Expanding the solution to other UML diagram
types is another future direction discussed by three studies
including [S1]. [S13]’s current focus is on UML modelling,
but their ultimate objective is to broaden the applicability
of their work to encompass other widely-used diagramming
notations, including those used in mathematical graphing,
such as MATLAB. [S15]’s future work plans to take the
concept initially developed for UML and apply it to various
types of graphs commonly utilised in different applications,
e.g. PowerPoint.

Conducting usability tests with users from the in-
dustry: [S38] acknowledge the necessity for comprehensive
usability tests, with a preference for industry users’ involve-
ment as part of their future agenda.

Making the tool open-source: [S9] plan to transform
AWMo into an open-source project and release a technical
manual to provide support for individuals interested in con-
tributing to the tool.

Developing collaborative modelling: [S22] plan to con-
duct further research for collaborative modelling by voice.

Enabling the editing of diagrams: [S23] plan to con-
duct future investigations to enable the editing of diagrams.

RQ4 Summary. Most of the claimed strengths are
making MDE accessible and enabling collabora-
tion among sighted and visually impaired users. We
categorised the limitations discussed in the stud-
ies in eight categories: Limitations in the approach
(44.7%), Limitations in the evaluation (21%), Lim-
ited data analysis (5.2%), Complexity of the ap-
proach (2.6%), Small sample size (13.1%), Limited
data (2.5%), Requirement gathering (2.6%), and
Lack of user study (2.6%). Based on these limita-
tions, different studies propose future directions. We
have categorised the future directions into Extending
the tool (55.2%), Conducting further experimenta-
tion (42.1%), Conducting further research (21%),
Expanding the solution to other types of UML dia-
grams (7.8%), Conducting usability tests with users
from the industry (2.6%), Making the tool open-
source (2.6%), Developing collaborative modelling
(2.6%), and Enabling the editing of diagrams (2.6%).

5. Future Research Recommendations
Need for to explore new approaches: There is limited

research on the accessibility of low-code approaches, and the
existing research mainly focuses on UML and block-based
programming. There is a need for other low-code approaches
to be accessible to diverse users, mostly those with visual
impairments. The existing research mostly only pays atten-
tion to the readability of the diagrams, not their editability.
Therefore, there is a need to better support accessible editing
not only accessible reading of their models.

Need for more advanced accessibility extensions:
There is a need for other types of extensions to make low-
code approaches more accessible. Most of the current solu-
tions use text-to-visual or visual-to-text conversion, which
makes them quite complicated. Text-to-voice is another
approach, but which may make a solution non-accessible for
those with hearing impairments.

Limitations in evaluations: Most of the selected pri-
mary studies were only able to recruit a small set of partici-
pants. They were also not always able to recruit participants
with special needs and had to simulate the impairments. Re-
cruiting users with special needs for evaluations is required
for future research in this field. We encourage researchers to
build connections with industry, special needs schools, and
organisations to further enhance the research.

The need for collecting and analysing users’ point
of view: There is limited knowledge of the actual chal-
lenges that low-code users with special needs have. There
is research conducted by (Albusays and Ludi, 2016) on
understanding the programming challenges faced by visually
impaired developers, but not on the accessibility and us-
ability of low-code IDEs. We recommend other researchers
conduct empirical studies through surveys and interviews
to understand the pain points of the low-code users. Other
data sources, such as low-code app reviews and software

Khalajzadeh et al.: Preprint submitted to Elsevier Page 20 of 24

repositories can also be used as a resource to investigate the
challenges the users face.

Improving low-code developers’ awareness: There is
an urgent need to make low-code IDE developers aware of
the accessibility issues. Low-code developers do not nec-
essarily have the same characteristics as the users of those
applications, in terms of suffering the same challenges and
impairments. There is a need to communicate the challenges
collected through the surveys and interviews conducted with
the low-code users.

Exploring the impact of the technology stack on
the accessibility of low-code platforms: Technological
advances such as cloud-based architectures, AI/ML, and
enhanced awareness about UI/UX significantly contribute
to the success of low-code approaches. Low-code platforms
that leverage state-of-the-art front-end technologies have a
greater potential to meet accessibility requirements. This
could be attributed to the existence of web-based accessibil-
ity guidelines, such as the Web Content Accessibility Guide-
lines (WCAG). In contrast, tools generated by platforms still
relying on obsolete technology stacks, such as the desktop
version of Eclipse-based Sirius, may face limitations in pro-
viding accessible solutions. This observation underscores
the necessity of adopting advanced technological stacks
to develop accessible low-code solutions. Further research
is needed to explore the impact of these technologies on
the accessibility of low-code platforms and to drive the
development of more inclusive and effective technologies.

6. Threats to validity
While this SLR adhered to the established methodol-

ogy for conducting SLRs in the software engineering field
(Keele, 2007), it is important to acknowledge that our re-
view does have several limitations primarily linked to our
search approach and the data extraction procedure. In this
section, we will explore potential factors that may affect the
credibility of our study.

The most apparent source of potential bias that could
impact the construct validity of this study pertains to the
limitations in the search and study selection process, as
outlined by (Shahin et al., 2014). A noteworthy challenge in
this context is the varied terminology and categorisation of
low-code approaches. To address and mitigate the potential
impact of this challenge on our search strategy, we carried
out multiple rounds of trial searches across five reputable
digital libraries. Additionally, we employed the PICOC cri-
teria to ensure a comprehensive search. This strategy proved
effective in identifying significant papers within the relevant
field. Nevertheless, it is important to note that the systematic
rejection of certain papers with unvalidated references in
their metadata, such as titles, abstracts, and keywords, is
an inherent aspect of systematic literature reviews and was
encountered during our study.

The key contribution of this study is to understand the ac-
cessibility approaches the current low-code platforms have

taken into account. To prevent systematic errors, we cre-
ated a data extraction template to ensure consistent data
collection and analysis, facilitating the response to the RQ
in our SLR; an independent reviewer extracted data from 10
percent of the selected primary studies independently and
compared the extracted data to check for contradicting infor-
mation; and we followed open coding technique (Glaser and
Strauss, 2017). All the attributes were reviewed and refined
by the two authors until both agreed. We employed different
graphical representations alongside textual explanations to
illustrate the data extraction outcomes. This approach aids
in strengthening the connection between the extracted data
and the drawn conclusions.

To mitigate selection bias, we adhered closely to the SLR
guidelines in our study, ensuring the inclusion of only those
studies that align with our defined scope. Any discrepancies
were resolved through internal discussions. Additionally, we
employed snowballing techniques to maximise the identifi-
cation of pertinent papers, thereby minimising the potential
for selection bias.

7. Conclusion
We presented an SLR of 38 selected primary studies

related to addressing the issue of accessibility of low-code
platforms. We created a taxonomy of different methods
researchers have used to make their low-code approaches
more accessible for users with special needs. Our analysis
of 38 included primary studies allows us to conclude that
there is very limited research on the accessibility of low-code
approaches for users with special needs. The current research
mainly focuses on UML or block-based programming, and
they are limited to reading the diagrams rather than their
modification. Future research should focus on making low-
code platforms accessible for users with special needs, in-
cluding visually impaired or blind users, users with cognitive
impairments and so on.
Acknowledgment. Grundy is supported by ARC Laureate
Fellowship FL190100035.
Declarations
Conflict of Interest. The authors declare that they have no
conflict of interest.
Data Availability Statement. The data is provided online
Khalajzadeh and Grundy (2024).

References
Adrian, B., Hinrichsen, S., Nikolenko, A., 2020. App development via low-

code programming as part of modern industrial engineering education,
in: Advances in Human Factors and Systems Interaction: Proceedings
of the AHFE 2020 Virtual Conference on Human Factors and Systems
Interaction, July 16-20, 2020, USA, Springer. pp. 45–51.

Albusays, K., Ludi, S., 2016. Eliciting programming challenges faced by
developers with visual impairments: exploratory study, in: Proceedings
of the 9th International Workshop on Cooperative and Human Aspects
of Software Engineering, pp. 82–85.

Bock, A.C., Frank, U., 2021. Low-code platform. Business & Information
Systems Engineering 63, 733–740.

Khalajzadeh et al.: Preprint submitted to Elsevier Page 21 of 24

Bottoni, P., De Marsico, M., Di Tommaso, P., Levialdi, S., Ventriglia,
D., 2004. Definition of visual processes in a language for expressing
transitions. Journal of Visual Languages & Computing 15, 211–242.

Brown, A., Stevens, R., Pettifer, S., 2004. Issues in the non-visual presen-
tation of graph based diagrams, in: Proceedings. Eighth International
Conference on Information Visualisation, 2004. IV 2004., IEEE. pp.
671–676.

Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G., Chisholm, W.,
Slatin, J., White, J., 2008. Web content accessibility guidelines (wcag)
2.0. WWW Consortium (W3C) 290, 1–34.

Chisholm, W., Vanderheiden, G., Jacobs, I., 1999. W3c web content
accessibility guidelines. URL: http://www/w3/org/TR/WCAG10. Cited
.

Costello, K., Rimhol, M., 2021. Gartner forecasts worldwide low-code
development technologies market to grow 23% in 2021.

Craig, J., Cooper, M., Pappas, L., Schwerdtfeger, R., Seeman, L., 2009.
Accessible rich internet applications (wai-aria) 1.0. W3C Working Draft
.

El-Attar, M., 2023. Evaluating the accessibility of a pon-enabled misuse
case notation by the red–green colorblind community. Software and
Systems Modeling 22, 247–272.

Glaser, B.G., Strauss, A.L., 2017. The discovery of grounded theory:
Strategies for qualitative research. Routledge.

Green, T.R.G., Petre, M., 1996. Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 131–174.

Grillo, F.D.N., de Mattos Fortes, R.P., Lucrédio, D., 2012. Towards col-
laboration between sighted and visually impaired developers in the con-
text of model-driven engineering, in: Joint Proceedings of Co-located
Events at the 8th European Conference on Modelling Foundations and
Applications (ECMFA 2012), Lyngby, pp. 241–251.

Grundy, J., Khalajzadeh, H., McIntosh, J., Kanij, T., Mueller, I., 2020. Hu-
manise: Approaches to achieve more human-centric software engineer-
ing, in: International Conference on Evaluation of Novel Approaches to
Software Engineering, Springer. pp. 444–468.

Hale, C., 2022. Low-code could replace "traditional" coding within months.
techradar .

Kavcic, A., 2005. Software accessibility: Recommendations and guidelines,
in: EUROCON 2005-The International Conference on" Computer as a
Tool", IEEE. pp. 1024–1027.

Keele, S., 2007. Guidelines for performing systematic literature reviews in
software engineering. Technical report, Ver. 2.3 EBSE Technical Report.
EBSE .

Khalajzadeh, H., Grundy, J., 2024. Accessibility of Low-Code Approaches:
a Systematic Literature Review. URL: https://doi.org/10.5281/zenodo.
12751028, doi:10.5281/zenodo.12751028.

Khalajzadeh, H., Simmons, A.J., Abdelrazek, M., Grundy, J., Hosking, J.,
He, Q., 2020. An end-to-end model-based approach to support big data
analytics development. Journal of Computer Languages 58, 100964.

Kirchhof, J.C., Jansen, N., Rumpe, B., Wortmann, A., 2023. Navigating
the low-code landscape: A comparison of development platforms., in:
LowCode workshop at the ACM/IEEE 26th International Conference
on Model-Driven Engineering Languages and Systems.

Kitchenham, B., Madeyski, L., Budgen, D., 2022. Segress: Software engi-
neering guidelines for reporting secondary studies. IEEE Transactions
on Software Engineering 49, 1273–1298.

Luque, L., Brandão, L.O., Tori, R., Brandão, A.A., 2014. Are you
seeing this? what is available and how can we include blind students
in virtual uml learning activities, in: Proc. XXV Brazilian Conference
of Informatics in Education, pp. 204–213.

Maplesden, D., Tempero, E., Hosking, J., Grundy, J.C., 2015. Performance
Analysis for Object-Oriented Software: A Systematic Mapping. IEEE
Transactions on Software Engineering 41, 691–710. doi:10.1109/TSE.
2015.2396514.

Moody, D., 2009. The “physics” of notations: toward a scientific basis for
constructing visual notations in software engineering. IEEE Transac-
tions on software engineering 35, 756–779.

Mountapmbeme, A., Ludi, S., 2021. How teachers of the visually impaired
compensate with the absence of accessible block-based languages, in:
Proceedings of the 23rd International ACM SIGACCESS Conference
on Computers and Accessibility, pp. 1–10.

Mountapmbeme, A., Okafor, O., Ludi, S., 2022. Addressing accessibility
barriers in programming for people with visual impairments: A literature
review. ACM Transactions on Accessible Computing (TACCESS) 15,
1–26.

Saleh, F., El-Attar, M., 2015. A scientific evaluation of the misuse case
diagrams visual syntax. Information and Software Technology 66, 73–
96.

Sarioğlu, A., Metin, H., Bork, D., 2023. How inclusive is conceptual
modeling? a systematic review of literature and tools for disability-
aware conceptual modeling, in: Proceedings of the 42nd International
Conference on Conceptual Modeling (ER 2023), Springer.

Seifermann, S., Groenda, H., 2016. Survey on textual notations for
the unified modeling language, in: 2016 4th International Conference
on Model-Driven Engineering and Software Development (MODEL-
SWARD), IEEE. pp. 28–39.

Shahin, M., Liang, P., Babar, M.A., 2014. A systematic review of software
architecture visualization techniques. Journal of Systems and Software
94, 161–185. doi:10.1016/J.JSS.2014.03.071.

Torres, M.J.R., Barwaldt, R., 2019. Approaches for diagrams accessibility
for blind people: a systematic review, in: 2019 IEEE Frontiers in Educa-
tion Conference (FIE), IEEE. pp. 1–7.

Vincent, P., Iijima, K., Driver, M., Wong, J., Natis, Y., 2019. Magic quadrant
for enterprise low-code application platforms. Gartner report .

Watson, C., Cooper, N., Palacio, D.N., Moran, K., Poshyvanyk, D., 2022.
A systematic literature review on the use of deep learning in software
engineering research. ACM Transactions on Software Engineering and
Methodology (TOSEM) 31, 1–58.

Wiley, 2022. How wiley promotes your research | wiley. URL:
https://authorservices.wiley.com/author-resources/Journal-Authors/

Promotion/wiley-promotion.html.
Wohlin, C., 2014. Guidelines for snowballing in systematic literature

studies and a replication in software engineering. ACM International
Conference Proceeding Series doi:10.1145/2601248.2601268.

World Health Organization, 2023a. Blindness and vision impairment.
URL: https://www.who.int/news-room/fact-sheets/detail/

blindness-and-visual-impairment#:~:text=Globally%2C%20at%20least%

202.2%20billion,near%20or%20distance%20vision%20impairment.

World Health Organization, 2023b. Disability. URL: https://www.who.

int/news-room/fact-sheets/detail/disability-and-health#:~:text=An%

20estimated%201.3%20billion%20people%20%E2%80%93%20or%2016%25%20of%

20the%20global,experience%20a%20significant%20disability%20today.

Zhuang, W., Gan, X., Wen, Y., Zhang, S., 2022. Easyfl: A low-code
federated learning platform for dummies. IEEE Internet of Things
Journal 9, 13740–13754.

Zubair, M.S., Brown, D.J., Hughes-Roberts, T., Bates, M., 2023. Designing
accessible visual programming tools for children with autism spectrum
condition. Universal Access in the Information Society 22, 277–296.

Khalajzadeh et al.: Preprint submitted to Elsevier Page 22 of 24

https://doi.org/10.5281/zenodo.12751028
https://doi.org/10.5281/zenodo.12751028
http://dx.doi.org/10.5281/zenodo.12751028
http://dx.doi.org/10.1109/TSE.2015.2396514
http://dx.doi.org/10.1109/TSE.2015.2396514
http://dx.doi.org/10.1016/J.JSS.2014.03.071
https://authorservices.wiley.com/author-resources/Journal-Authors/Promotion/wiley-promotion.html
https://authorservices.wiley.com/author-resources/Journal-Authors/Promotion/wiley-promotion.html
http://dx.doi.org/10.1145/2601248.2601268
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment#:~:text=Globally%2C%20at%20least%202.2%20billion,near%20or%20distance%20vision%20impairment.
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment#:~:text=Globally%2C%20at%20least%202.2%20billion,near%20or%20distance%20vision%20impairment.
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment#:~:text=Globally%2C%20at%20least%202.2%20billion,near%20or%20distance%20vision%20impairment.
https://www.who.int/news-room/fact-sheets/detail/disability-and-health#:~:text=An%20estimated%201.3%20billion%20people%20%E2%80%93%20or%2016%25%20of%20the%20global,experience%20a%20significant%20disability%20today.
https://www.who.int/news-room/fact-sheets/detail/disability-and-health#:~:text=An%20estimated%201.3%20billion%20people%20%E2%80%93%20or%2016%25%20of%20the%20global,experience%20a%20significant%20disability%20today.
https://www.who.int/news-room/fact-sheets/detail/disability-and-health#:~:text=An%20estimated%201.3%20billion%20people%20%E2%80%93%20or%2016%25%20of%20the%20global,experience%20a%20significant%20disability%20today.
https://www.who.int/news-room/fact-sheets/detail/disability-and-health#:~:text=An%20estimated%201.3%20billion%20people%20%E2%80%93%20or%2016%25%20of%20the%20global,experience%20a%20significant%20disability%20today.

A. List of Primary Studies

Table 9: List of review articles
ID Title Author(s) Venue Year
S1 Self-Directed Creation and Editing of

UML Class Diagrams on Mobile Devices
for Visually Impaired People

Fabian Wildhaber, Nadim Salloum, Marcel
Gygli, Andrea Kennel

IEEE Tenth International
Model-Driven Requirements
Engineering (MoDRE)

2020

S2 P-CUBE: Block Type Programming Tool
for Visual Impairments

Shun Kakehashi, Tatsuo Motoyoshi, Ken’ichi
Koyanagi, Toru Ohshima, Hiroshi Kawakami

Conference on Technologies
and Applications of Artificial
Intelligence

2013

S3 System Operation Improvement of P-
CUBE2 for Visually Impaired People

Mariko Tsuda, Tatsuo Motoyoshi, Kei Sawai,
Hiroyuki Masuta, Takumi Tamamoto, Ken’ichi
Koyanagi, Toru Oshima

World Automation Congress
(WAC)

2018

S4 Classification of UML Diagrams to Sup-
port Software Engineering Education

José Fernando Tavares, Yandre M. G. Costa,
Thelma Elita Colanzi

International Conference
on Automated Software
Engineering Workshops
(ASEW)

2021

S5 Improvement of P-CUBE: Algorithm edu-
cation tool for visually impaired persons

Shun Kakehashi, Tatsuo Motoyoshi, Ken’ichi
Koyanagi, Toru Oshima, Hiroyuki Masuta, Hi-
roshi Kawakami

IEEE Symposium on Robotic
Intelligence in Informationally
Structured Space (RiiSS)

2014

S6 Inclusion in computing and engineer-
ing education: Perceptions and learning
in diagram-based e-learning classes with
blind and sighted learners

Leandro Luque, Leônidas de Oliveira Brandão,
Elisabeti Kira, Anarosa Alves, Franco Brandão

IEEE Frontiers in Education
Conference (FIE)

2017

S7 An Auditory Interface to Workspace
Awareness Elements Accessible for the
Blind in Diagrams‚Äô Collaborative
Modeling

Márcio Josué Ramos Torres, Regina Barwaldt,
Paulo Cesar Ramos Pinho, Luiz Oscar Homann
de Topin, Tiago Fossati Otero

IEEE Frontiers in Education
Conference (FIE)

2020

S8 Blocks4All: Overcoming accessibility bar-
riers to blocks programming for children
with visual impairments

Lauren R. Milne, Richard E. Ladner Conference on Human Factors
in Computing Systems (CHI)

2018

S9 Accessible modeling on the web: A case
study

Filipe Del Nero Grillo, Renata Pontin de Mattos
Fortes

Procedia Computer Science 2014
S10 Tabgo: Towards accessible computer sci-

ence in secondary school
Ken H. Andriamahery-Ranjalahy, Léa Berquez,
Nadine Jessel, Philippe Truillet

Springer Nature Switzerland 2021
S11 Accessibility of block-based introductory

programming languages and a tangible pro-
gramming tool prototype

Emmanuel Utreras, Enrico Pontelli International Conference on
Computers Helping People
with Special Needs (ICCHP)

2020

S12 Towards collaboration on accessible UML
models

Stephan Seifermann, Henning Groenda Mensch und Computer 2015
S13 UML modeling for visually-impaired per-

sons
Brad Doherty, Betty HC Cheng International Workshop on Hu-

man Factors in Modeling /
Modeling of Human Factors
(HuFaMo) at MODELS

2015

S14 Exploring accessible programming with
educators and visually impaired children

Ana Cristina Pires, Filipa Rocha, Antonio José de
Barros Neto, Hugo Simão, Hugo Nicolau, Tiago
Guerreiro

Interaction Design and Chil-
dren Conference (IDC)

2020

S15 UML4ALL syntax – A textual notation for
UML diagrams

Claudia Loitsch, Karin Muller, Stephan Seifer-
mann, Jörg Henß, Sebastian Krach, Gerhard Ja-
worek, Rainer Stiefelhagen

Computers Helping People
with Special Needs (ICCHP)

2018

S16 Tests with blind programmers using
AWMo: An accessible web modeling tool

Filipe Del Nero Grillo, Renata Pontin de Mattos
Fortes

Universal Access in Human-
Computer Interaction. Design
and Development Methods for
Universal Access (UAHCI)

2014

S17 Can We Work Together? On the Inclu-
sion of Blind People in UML Model-Based
Tasks

L. Luque, E. S. Veriscimo, G. C. Pereira, L. V. L.
Filgueiras

Inclusive Designing 2014

S18 StoryBlocks: A tangible programming
game to create accessible audio stories

Varsha Koushik , Darren Guinness, Shaun K.
Kane

Human Factors in Computing
Systems Proceedings (CHI)

2019
S19 An approach for synchronizing UML mod-

els and narrative text in literate modeling
Gunnar Schulze, Joanna Chimiak-Opoka, Jim Ar-
low

International Conference on
Model Driven Engineering
Languages and Systems
(MODELS)

2012

S20 Accessible block-based programming for
k-12 students who are blind or low vision

Meenakshi Das, Daniela Marghitu, Mahender
Mandala, Ayanna Howard

Universal Access in Human-
Computer Interaction. Access
to Media, Learning and Assis-
tive Environments (UAHC)

2021

Continued on next page

Khalajzadeh et al.: Preprint submitted to Elsevier Page 23 of 24

Table 9 – continued from previous page
ID Title Author(s) Venue Article
S21 MUzECS: Embedded blocks for exploring

computer science
Matthew Bajzek, Heather Bort, Omokolade Hun-
patin, Luke Mivshek, Tyler Much, Casey O’Hare,
Dennis Brylow

IEEE Blocks and Beyond
Workshop

2015

S22 Towards a modelling workbench with flex-
ible interaction models for model editors
operating through voice and gestures

Jo~ao Fonseca de Carvalho, Vasco Amaral Annual Computers, Software,
and Applications Conference
(COMPSAC)

2021

S23 Viable haptic UML for blind people Claudia Loitsch, Gerhard Weber International Conference on
Computers Helping People
with Special Needs (ICCHP)

2012

S24 Using voice commands for uml modelling
support on interactive whiteboards: In-
sights and experiences

Rodi Jolak, Boban Vesin, Michel R.V. Chaudron Conferencia Iberoamericana en
Software Engineering (CIbSE)

2017

S25 Evaluating the accessibility of a PoN-
enabled misuse case notation by the
red–green colorblind community

Mohamed El-Attar Software and Systems Model-
ing

2022

S26 Investigating the Impact of Computing vs
Pedagogy Experience in Novices Creation
of Computing-Infused Curricula

Amy Isvik, Veronica Cateté, Tiffany Barnes Innovation and Technology in
Computer Science Education
(ITiCSE)

2021

S27 Flowgen: Flowchart-based documentation
for C++ codes

David A. Kosower, J.J. Lopez-Villarejo 16th Computer Physics Com-
munications

2015
S28 Analysing the cognitive effectiveness of the

WebML visual notation
David Granada, Juan Manuel Vara, Marco Bram-
billa, Verónica Bollati, Esperanza Marcos

Software and Systems Model-
ing

2017
S29 Presenting UML Software Engineering Di-

agrams to Blind People
Alasdair King, Paul Blenkhorn, David Crombie,
Sijo Dijkstra, Gareth Evans, John Wood

International Conference on
Computers for Handicapped
Persons

2004

S30 On the Inclusion of Blind People in UML
e-Learning Activities

Leandro Luque, Leônidas de Oliveira Brandão,
Romero Tori, Escola Politécnica, Anarosa Alves
Franco Brandão

Brazilian Journal of Computers
in Education

2015

S31 Towards collaboration between sighted and
visually impaired developers in the context
of model-driven engineering

Filipe Del Nero Grillo, Renata Pontin de Mattos
Fortes, Daniel Lucr´edio

Graphical Modeling Language
Development (GMLD) work-
shop at ECMFA

2012

S32 Mode12gether: a tool to support coopera-
tive modeling involving blind people

Leandro Luque, Christoffer L. F. Santos, Davi
O. Cruz, Leonidas O. Brandao, Anarosa A. F.
Brandao

Brazilian Conference of Soft-
ware

2016

S33 Cross-modal collaborative interaction be-
tween visually-impaired and sighted users
in the workplace

Oussama Metatla, Nick Bryan-Kinns, Tony
Stockman, Fiore Martin

International Conference on
Auditory Display

2012

S34 ModelByVoice-towards a general purpose
model editor for blind people.

Joao Lopes, Joao Cambeiro, Vasco Amaral International Workshop on Hu-
man Factors in Modeling /
Modeling of Human Factors
(HuFaMo) at MODELS

2018

S35 Drawing and Understanding Diagrams: An
Accessible Approach Dedicated to Blind
People

Frederic Serin and Katerine Romeo International Conference on
Human-Computer Interaction

2022

S36 Accessible Blockly: An Accessible Block-
Based Programming Library for People
with Visual Impairments

Aboubakar Mountapmbeme, Obianuju Okafor,
Stephanie Ludi

ACM SIGACCESS
Conference on Computers
and Accessibility (ASSETS)

2022

S37 Design considerations to increase block-
based language accessibility for blind pro-
grammers via blockly

Stephanie Ludi, Mary Spencer Journal of Visual Language and
Sentient Systems

2017

S38 Adding speech recognition support to uml
tools

Samuel Lahtinen, Jari Peltonen Journal of Visual Languages
and Computing

2004

Khalajzadeh et al.: Preprint submitted to Elsevier Page 24 of 24

