

A Model-Driven Approach to Reengineering Processes in Cloud Computing

Mahdi Fahmideh
University of Southern Queensland, Australia

John Grundy

Monash University, Australia

Ghassan Beydoun
University of Technology Sydney, Australia

Didar Zowghi

University of Technology Sydney, Australia

Willy Susilo
University of Wollongong, Australia

Davoud Mougouei

University of Southern Queensland, Australia

Context.	 The	 reengineering	 process	 of	 large	 data-intensive	 legacy	 software	 applications	 (“legacy	 applications”	 for	 brevity)	 to	 cloud	
platforms	involves	different	interrelated	activities.	These	activities	are	related	to	planning,	architecture	design,	re-hosting/lift-shift,	code	
refactoring,	and	other	related	ones.	In	this	regard,	the	cloud	computing	literature	has	seen	the	emergence	of	different	methods	with	a	
disparate	 point	 of	 view	 of	 the	 same	 underlying	 legacy	 application	 reengineering	 process	 to	 cloud	 platforms.	 As	 such,	 the	 effective	
interoperability	and	tailoring	of	these	methods	become	problematic	due	to	the	lack	of	integrated	and	consistent	standard	models.			

Objective.	We	design,	implement,	and	evaluate	a	novel	framework	called	MLSAC	(Migration	of	Legacy	Software	Applications	to	the	Cloud).	
The	 core	 aim	of	MLSAC	 is	 to	 facilitate	 the	 sharing	 and	 tailoring	of	 reengineering	methods	 for	migrating	 legacy	 applications	 to	 cloud	
platforms.	 MLSAC	 achieves	 this	 by	 using	 a	 collection	 of	 coherent	 and	 empirically	 tested	 cloud-specific	 method	 fragments	 from	 the	
literature	 and	 practice.	 A	metamodel	 (or	meta-method)	 together	with	 corresponding	 instantiation	 guidelines	 is	 developed	 from	 this	
collection.	This	metamodel	can	also	be	used	to	create	and	maintain	bespoke	reengineering	methods	in	any	given	reengineering	to	cloud	
platforms	scenario	

Approach.	MLSAC	is	underpinned	by	a	metamodeling	approach	that	acts	as	a	representational	layer	to	express	reengineering	methods.	
The	design	and	evaluation	of	MLSAC	are	informed	by	the	guidelines	from	the	design	science	research	approach.		

Results.	Our	framework	is	an	accessible	guide	of	what	legacy-to-cloud	reengineering	methods	can	look	like.	The	efficacy	of	the	framework	
is	demonstrated	by	modeling	real-world	reengineering	scenarios	and	obtaining	user	feedback.	Our	findings	show	that	the	framework	
provides	 a	 fully-fledged	 domain-specific,	 yet	 platform-independent,	 foundation	 for	 the	 semi-automated	 representing,	 maintaining,	
sharing,	and	tailoring	reengineering	methods.	MLSAC	contributes	to	the	state	of	the	art	of	cloud	computing	and	model-driven	software	
engineering	 literature	 through	 (a)	 providing	 a	 collection	 of	mainstream	method	 fragments	 for	 incorporate	 into	 various	 scenarios	 of	
reengineering	processes	and	(b)	enabling	a	basis	for	consistent	creation,	representation,	and	maintenance	of	reengineering	methods	and	
processes	within	the	cloud	computing	community.	

Keywords.	Modeling,	Model-driven	software	engineering,	Reengineering	process,	Method	engineering,	Cloud	computing,	Legacy	software	
applications

1 Introduction
The	 reengineering	 processes	 for	 making	 legacy	
applications	 cloud-enabled	 involve	 different	 co-existing	

and	interacting	elements	such	as	tasks,	procedures,	people,	
resources,	and	many	more	[1],[2].	A	variety	of	facets	and	
concepts	 of	 those	 elements	 transpire	 such	 as	 legacy	
application	 code	 refactoring,	 interoperability	 across	
multiple	 cloud	 platforms,	 architecture	 design,	 and	 an	

John Grundy
to appear in Information and Software Technology (c) Elsevier 2022

optimized	 distribution	 of	 application	 components	 over	
cloud	 servers,	 to	 name	 a	 few	 [3].	 On	 the	 other	 hand,	 in	
practice,	 method	 engineers	 who	 oversee	 such	 processes	
need	to	know	many	of	these	concepts,	however,	in	practice,	
they	 apply	 only	 an	 appropriate	 subset	 to	 an	 ongoing	
reengineering	project	[4],[5],[6].	 If	method	engineers	are	
newcomers	to	the	cloud	computing	field,	it	may	not	always	
be	 clear	what	 exact	 tasks	 and	 responsibilities	 should	 be	
performed	 before,	 during,	 and	 after	 migrating	 legacy	
applications	 to	 the	 cloud.	 The	 complexity	 of	 such	 a	
transition	and	accounts	of	breakdowns	in	cloud	migration	
projects	have	been	highlighted	by	many	examples	[7],[8].	
Indeed,	 some	 IT-based	 organizations	 have	 even	 been	
unfortunate	and	forced	to	move	back	their	cloud-enabled	
applications	 to	 on	 premises,	 i.e.,	 de-migrated,	 after	 they	
failed	to	attain	anticipated	goals	[9].	Among	others,	failures	
are	 often	 rooted	 in	 the	 lack	 of	 timely	 expertise,	
inapplicability,	 and	 negligibility	 of	 past	 reengineering	
experience.	 Former	 cloud	 migration	 experiences	 are	
sometimes	deemed	general,	 limited	 to	 legacy	application	
type/domain,	 specific	 to	 a	 cloud	 platform	 provider,	 e.g.,	
Amazon,	 IBM,	Cisco,	 and	confined	 to	a	particular	 type	of	
service	 delivery	 model,	 e.g.,	 IaaS	 (Infrastructure	 as	
Service),	PaaS	(Platform	as	a	Service),	and	SaaS	(Software	
as	a	Service)	[3].	Moreover,	the	requirements	of	a	migration	
context	may	be	quite	project-specific	and	heterogeneous	in	
terms	of	the	choice	of	service	delivery	models,	security,	and	
scalability.	Naturally,	method	engineers	may	 find	off-the-
shelf	 reengineering	 methods	 individually	 incomplete	 in	
supporting	the	overall	reengineering	process	or	they	may	
encounter	 the	 issue	 of	 nonconformity	 among	 these	
methods	 due	 to	 competing	 requirements	 and	 their	
different	viewpoints	on	reengineering	processes.		
We	 refute	 the	 suggestion	 that	 the	 extant	 reengineering	
methods	(e.g.,	[3],[10])	for	cloud	migration	are	not	suitable	
or	 individually	 selectable,	 however,	 we	 benefit	 from	 a	
synergistic	 combination	 of	 these	 methods.	 Instead	 of	
proposing	 a	 new	 reengineering	 method	 or	 aiming	 for	
designing	 a	 comprehensive	 and	 universal	 one	 to	 be	
applicable	 to	 all	 reengineering	 scenarios,	 which	 is	 likely	
infeasible	[11],[12],[10],	we	advocate	the	development	of	a	
foundational	middle	 knowledge	 layer	 that	 pulls	 together	
various	 dispersed	 and	 ad-hoc	 methods	 describing	
reengineering	 processes	 to	 cloud	 platforms.	 As	 we	 will	
discuss,	 this	 view	 looks	 outward	 and	 claims	 that	 cloud-
specific	reengineering	methods	exhibit	similar	underlying	
concepts	and	axiomatic	commonalities,	 though	they	vary	
in	execution	details	such	as	the	choice	of	cloud	platforms	

and	 expressed	 terminologies.	 However,	 such	 conceptual	
links	 have	 not	 yet	 been	 exposed	 nor	 fully	 exploited	 to	
enable	 extensible	 and	 tailorable	methods	 for	 a	 legacy	 to	
cloud	 migration,	 despite	 the	 need	 shown	 by	 the	 earlier	
research	[3],[13],[14,	15].		
Against	 this	 backdrop,	 we	 leverage	 a	 model-driven	
software	engineering	(MDSE)	approach	[16],[17].	We	use	
metamodeling	[18],[19],	a	particular	component	of	MDSE	
[20],	 that	 is	 used	 to	model,	 integrate,	 and	maintain	 the	
different	 software	 engineering	 methods	 (or	
methodologies)	 [18],[21],[22].	 This	 has	 been	 an	
encouraging	factor	for	this	research	to	cumulatively	build	
on	the	prior	metamodeling	research	[23]	and	to	develop	a	
new	 metamodel	 specific	 to	 legacy	 application	
reengineering	to	the	cloud.		
Our	 proposed	 framework	 is	 called	Migration	 of	 Legacy	
Software	 Application	 to	 the	 Cloud	 (MLSAC)	 extends	 our	
earlier	 work	 in	 [13],[14]	 by	 providing	 (i)	 an	 improved	
version	 of	 the	 metamodel	 including	 new	 method	
fragments	 to	 provide	 end-to-end	 coverage	 of	
reengineering	lifecycle	process,	(ii)	a	tailoring	procedure	
and	 model-transformation	 rules	 to	 instantiate	 the	
metamodel	to	represent	situation-specific	reengineering	
methods,	and	(iii)	implementation	of	the	metamodel,	i.e.	
software	 tool,	 to	 put	 the	 framework	 into	 real-world	
applications	 of	 situational	 method	 creation	 and	
maintenance.	 MLSAC	 provides	 a	 unified	 view	 of	
reengineering	methods	with	the	following	benefits:		
(i)	 providing	 a	 collection	 of	 pre-made	 and	 reusable	
method	fragments	(or	process	fragments),	organized	
into	generic	models	that	allow	creating	cloud-specific	
bespoke	reengineering	methods	or	at	least	changes	to	
existing	(in-house	or	off-shelf)	methods;	and	
(ii)	 facilitating	 communication	 among	 software	
teams,	 consistent	maintenance,	 and	 interoperability	
of	evolving	reengineering	methods.		

Our	MLSAC	 idea,	which	 is	 in	 line	with	 the	 separation	of	
concerns	 design	 principle	 [24]	 in	 conventional	 software	
engineering	 and	 an	 a	 la	 carte	 selection	 and	 tailoring	
practice	in	(situational)	method	engineering	[25],	is	cloud	
platform	 agnostic.	 It	 enables	 method	 engineers	 to	
concentrate	on	the	method	design	and	leave	the	method	
operationalization	and	variations	for	a	particular	scenario	
open	to	the	software	team’s	decision	[18],[26].		
We	 applied	 the	 guidelines	 in	 Design	 Science	 Research	
(DSR)	 approach	 [27],[28]	 to	 design,	 implement,	 and	
evaluate	 MLSAC	 artefacts.	 DSR	 enables	 researchers	 to	

engage	problems	related	to	the	vanguard	of	the	market.	
Using	the	DSR	approach,	we	show	the	expressive	power	
of	 the	MLSAC,	 as	 a	 language	 infrastructure,	 in	 different	
real-world	reengineering	scenarios	such	as	EclipseSCADA	
in	 Australia	 and	 Hackystat	 SensorBase	 in	 the	 US.	
Additionally,	 we	 discuss	 the	 application	 of	 MLSAC	 in	 a	
range	of	reengineering	scenarios	by	our	industry	partners	
in	Australia.	The	evaluation	results	confirm	the	merits	of	
our	 framework	 in	 a	 practical	 context.	 These	 also	
highlighted	further	research	opportunities.		
The	 paper	 is	 laid	 out	 as	 follows.	 Section	 2	 presents	 a	
reengineering	scenario	showing	the	key	motivation	of	this	
research.	 This	 is	 followed	 by	 a	 discussion	 on	 the	
background	of	MDSE	and	metamodeling	underpinning	the	
theoretical	 foundation	 for	 the	 proposed	 framework	 in	
Section	3.	Section	4	delineates	the	design	of	the	framework	
in	 line	with	the	guidelines	to	conduct	our	DSR	approach.	
The	 application	 of	 MLSAC	 framework	 in	 a	 three-step	
evaluation	 is	 discussed	 in	 Section	 5.	 Related	 works	 are	
presented	and	compared	to	our	work	in	Section	6.	Finally,	
after	 the	discussion	on	 the	 threats	 to	 the	validity	of	 this	
research	in	Section	7,	this	paper	ends	in	Section	8	where	
the	ways	for	furthering	this	research	are	explained.		
	
2 Motivating Scenario
Imagine	 an	 exemplar	 scenario	 of	 a	 cloud	 migration	
project	 EclipseSCADA	 [29],	 a	 supervisory	 control	 and	
data	acquisition	legacy	application	that	was	moved	to	a	
private	 IaaS	 cloud	 named	 NeCTAR	 in	 Melbourne,	
Australia.	 EclipseSCADA	 is	 a	 type	 of	 Internet	 of	 Things	
(IoT)	based	system	[30],[31]	allowing	administrators	to	
monitor	 an	 industrial	 system	 remotely	 via	 sensors	 and	
actuators.	 The	 cost	 of	 application	 maintenance	 was	
relatively	high	as	 it	was	running	on	dedicated	 in-house	
platforms.	The	 top-level	management	was	 interested	 in	
moving	 EclipseSCADA	 workload	 from	 in-house	 hosted	
servers	to	flexible	and	cheaper	models	offered	by	cloud	
services.	EclipseSCADA’s	components	were	planned	to	be	
deployed	across	Melbourne	and	Tasmania	NeCTAR	cloud	
regions,	 i.e.,	 hardware	 components	 such	 as	 sensors	
deployed	in	Tasmania	servers	and	software	components	
were	 hosted	 in	Melbourne	 servers.	 A	method	 engineer	
took	the	responsibility	to	rule	out	a	base	method	to	guide	
the	 software	 team	 for	 refactoring	 and	 re-hosting	
EclipseSCADA	components	 in	 the	cloud.	Such	a	method	
could	ensure	the	consistency	of	reengineering	tasks	and	
the	 software	 team’s	 outputs.	 The	 method	 could	 be	
enacted	 by	 the	 team	 to	 enable	 EclipseSCADA	 to	 utilize	

NeCTAR	cloud	services.	The	developers	could	enact	this	
base	 method	 and	 choose	 tools,	 development	 libraries,	
and	 implementation	 techniques	 to	 operationalize	 the	
method.	 The	 design	 of	 such	 a	 base	 method	 that	 could	
ensure	a	safe	EclipseSCADA	reengineering	over	multiple	
iterations	was	a	challenging	exercise	due	to	issues	such	
as:		
Challenge	 1.	 The	 design	 of	 an	 overall	 base	
reengineering	method	would	need	knowledge	about	
several	 aspects	 such	 as	 understanding	 legacy	
application	 architecture,	 creating	 a	 new	
architecture	 model	 based	 on	 NeCTAR	 cloud,	
resource	 scaling,	 code	 refactoring	 according	 to	
NeCTAR,	 and	 so	 on.	 Unfortunately,	 the	 domain	
knowledge	about	cloud	migration	is	dispersed	in	the	
(multi-vocal)	 literature	 and,	 in	 some	 cases,	 it	 was	
incompatible	or	specific	to	cloud	platforms,	which	is	
not	reusable	to	design	a	new	method	for	this	project.	
Challenge	 2.	 The	 one-size-fits-all	 assumption	 to	
design	 a	 super	 engineering	 method	 was	 not	 a	
realistic	 option.	 Rather,	 a	 tailorable	 reengineering	
method	 to	 unanticipated	 requirements	 of	
EclipseSCADA	project	would	be	needed	and	updated	
if	new	requirements	arise.		

Assessing	 the	 merits	 and	 demerits	 of	 existing	
reengineering	methods	and	choose	the	superior	one	may	
not	be	a	feasible	practice.	Instead,	the	method	engineer	can	
selected	the	suitable	fragments	from	the	existing	methods	
and	 create	 a	 situation-specicic	 method	 to	 guide	 this	
reengineering	 scenario.	 Towards	 addressing	 these	
challenges,	 we	 offer	 MLSAC	 framework	 that	 provides	 a	
metamodel	 comprising	 of	 critical	 elements	 of	
reengineering	 processes	 and	 thus	 enables	 the	 method	
engineer	to	reuse,	tailor,	and	extend	this	metamodel	to	the	
variant		

of	 migration	 types	 such	 as	 re-hosting	 (lift	 and	 shift),	
moving	 from	 an	 existing	 cloud	 platform	 to	 another	
platform,	 or	 de-migration	 from	 the	 cloud	 to	 in-house	
platforms.		

3 Research Background
A	 key	 underlying	 principle	 of	 MDSE	 approach	 is	 the	
abstraction,	 making	 a	 separation	 between	 different	
essential	 and	non-essential	 aspects	of	 a	 software	 system	
during	 its	 design,	 development,	 and	 maintenance	
[16],[17].	 One	 solution	 to	 reach	 abstraction	 is	 to	 use	
models.	A	model	is	a	high-level	representation	of	a	domain	
[32].	It	is	used	to	manage	the	complexity	of	representation	
and	 facilitate	 understanding	 of	 the	 domain	 for	 people.	
Models	 express	 the	 structure	 and	 behaviour	 of	 the	
concepts	in	a	domain.	Towards	this,	models	may	include	a	
set	 of	 implying	 statements	 and	 constraints	 about	 the	
concepts	 and	 their	 relationships	 [33].	 Concepts	
characterise	 the	domain	and	relationships	describe	 links	
among	 these	 concepts.	 In	MDSE,	 the	 term	metamodel	 is,	
evidently,	a	qualified	variant	of	models.	The	metamodeling,	
is	the	act	of	creating	a	metamodel,	a	unified	view	of	a	fairly	
related	set	of	variant	models	[18].		
In	 this	 spirit,	 a	 metamodel	 (or	 meta-method)	 of	
reengineering	methods	specifies	phases,	tasks,	and	other	
elements	that	should	be	sequenced	and	performed	in	the	
reengineering	 process	 of	 legacy	 applications	 to	 cloud	

platforms	[32].	Such	a	metamodel	conforming	to	rules	and	
a	defined	syntax	allow	method	engineers	to	construct	and	
maintain	 customised	 reengineering	 methods.	
Nevertheless,	 creating	 such	 a	 metamodel,	 i.e.,	
metamodeling,	 required,	 first	 and	 foremost,	 to	 identify	
necessary	 reengineering	 method	 fragments.	 A	 method	
fragment	 is	 a	 structured,	 atomic,	 and	 re-usable	 piece	 of	
software	 development	 processes/methods	 [34].	 In	 this	
research,	 the	 method	 fragments	 are	 stored	 in	 MLSAC	
repository,	combined	to	make	a	new	method,	and	matched	
as	reengineering	contexts	vary	and	demand.	
We	 leverage	 the	 metamodeling	 foundation	 proposed	 by	
Object	Management	Group	(OMG)	[32].	As	shown	in	Figure	
1,	 these	 layers,	 which	 have	 been	 used	 to	 develop	 core	
technologies	 (e.g.	 unified	 modeling	 language	 (UML)),	
define	an	instance-of-relationship	as	follow	[32]:		
(i)	 M3-level	 (the	 meta-metamodel	 layer	 or	 meta-
object	 facility	 layer)	 is	 used	 to	 describe	 basic	
modeling	constructs	and	their	relationships;	
(ii)	M2-level	(metamodel	layer)	defines	concepts	and	
relationships	that	are	instances	of	concepts	from	M3	
and	they	define	a	modeling	language	to	enable	model	
creation/edition	at	M1;		
(iii)	 M1-level	 (model	 layer)	 instances	 of	 M2-level	
concepts	 that	 are	 used	 to	 describe	 a	 domain	 and	
provide	an	abstraction	of	M0-level	user	data;	and	

Figure	1.	OMG	four	abstraction	levels	of	hierarchy	

(iv)	 M0-level	 is	 an	 instance	 of	 M1-level,	 which	
describes	actual	user	data	in	a	domain	model	instance.
Each	 level	 of	 the	 OMG	 hierarchy	 (Figure	 1)	 provides	 a	
language	to	express	abstractions	and	relations	of	concepts	
at	the	lower	level.	The	derivation	of	a	model,	including	its		
concepts	and	relations,	from	its	upper	level,	is	referred	to	
as	 instantiation	 [35].	 Based	 on	 this	 modeling	 hierarchy,	
MLSAC	 is	 placed	 at	 M2-level	 (Figure	 1),	 i.e.,	 metamodel	
level	 aiming	 at	 the	 representation	 of	 reengineering	
methods	 that	are	situated	at	M1-level.	The	methods	 that	
are	enacted	by	software	teams	to	perform	reengineering	
scenarios	are	called	method	instance,	a.k.a.	endeavor,	and	
they	are	positioned	at	M0-level.	The	relationship	between	
MLSAC	metamodel	and	method	model	are	defined	via	the	
model	 transformation	 rules,	 which	 converts	 one	 model,	
i.e.,	source	model,	to	another	model,	i.e.,	target	model,	and	
thus	 enables	 the	 instantiation	 of	 the	 metamodel	 to	 a	
specific	method	[36],[37],[38].	
	

4 Design Science Research Approach
We	employed	 the	DSR	 approach	 [27],[28]	 for	 the	design	
and	evaluation	of	MLSAC.	The	DSR	aims	at	rigorously	and	
systematically	 developing	 new	 IT	 artefacts	 such	 as	
constructs,	 models,	 methods,	 frameworks,	 and	
instantiations	to	address	a	problem	of	high	significance	for	
research	and	practice.	In	this	paper,	the	IT	artefact	in	the	
focus	 of	 the	 DSR	 approach	 is	 MLSAC	 framework,	 which	
intends	 to	 support	 method	 engineers	 in	 creating	 and	
reusing	project-specific	 reengineering	methods	 for	 cloud	
migration.	 To	 organize	 this	 research	 effort,	 we	 used	 the	
typical	 DSR	 phases	 of	 design	 (subsection	 4.1,4.2,4.3,4.4)	
and	evaluation	(Section	5)	as	described	next.
4.1 Modeling quality factors and requirements
Following	the	DSR	approach,	any	novel	IT	artifact	should	
be	designed	and	evaluated	with	respect	to	its	pursuit	goals.	
In	 line	 with	 challenges	 1	 and	 2	 listed	 in	 Section	 2,	 we	
leverage	three	general	semiotic	quality	factors	(or	design	
principles),	 namely	 semantic	 quality,	 tailorability,	 and	
pragmatic	 quality,	 proposed	 by	 Lindland	 et	 al.	 [39],	 to	
design	and	evaluate	MLSAC.	The	basic	assumption	of	these	
factors	 is	 that	 a	model	 is	 expressed	 in	 some	 language	 to	
represent	 some	 domain	 and	 has	 some	 audience.	 In	 the	
context	 of	 this	 research	 these	 factors	 are	 defined	 as	
follows:	
(i)	 Semantic	 quality	 is	 the	 extent	 to	which	 a	model	 is	
sound	and	complete	in	capturing	domain	concepts	[39].	
Through	the	identification	of	frequently	used	concepts	

in	a	domain,	it	will	be	likely	that	the	resultant	model	is	
generic	 and	 inclusive.	Defining	 a	 threshold	 for	model	
completeness	depends	on	the	application	context	and	
modeling	 purpose.	 We	 leveraged	 the	 highlighted	
challenges	 in	 migrating	 legacy	 applications	 to	 cloud	
platforms	(e.g.,	[1],[4]),	as	a	yardstick	to	derive	an	initial	
set	of	method	fragments	and	their	relationships.	These	
challenges	 are	 related,	 for	 instance,	 to	 resource	
elasticity,	 multi-tenancy,	 multiple-cloud	 platform	
interoperability,	 application	 licensing,	 dynamicity	 and	
unpredictability,	and	legal	issues.	The	semantic	quality	
is	primarily	associated	with	challenge	1.			
(ii)	Tailorability	quality	is	the	extent	to	which	a	model	
can	be	specialized	to	the	fit	requirements	of	a	particular	
domain	 modeling	 [39].	 Undoubtedly,	 different	
reengineering	 scenarios	 entail	 different	methods.	 For	
example,	necessary	method	fragments	that	are	needed	
for	 incorporation	 into	 a	 reengineering	 process	 of	
moving	 large	 and	 distributed	 workloads	 from	 on-
premises	 data	 centres	 to	 public	 IaaS	 may	 vary	
compared	to	a	reengineering	process	to	enable	a	legacy	
application	 serving	 as	 a	 SaaS.	 The	 tailorability	 factor	
addresses	challenge	2.	
(iii)		Pragmatic	quality	is	the	extent	to	which	a	model	is	
perceived	to	be	applicable	by	its	audience	[39]	in	terms	
of	properties	such	as	clear	and	unambiguous	diagrams,	
notations,	 visualization	 of	 relationships,	 layout,	 etc.	
This	 quality	 factor	 concomitantly	 addresses	 both	
challenges	1	and	2.	

4.2 Metamodeling 	
Our	 metamodel	 derivation	 is	 based	 on	 our	 earlier	
conceptual	modeling	 endeavour	 and	 uses	 top-down	 and	
bottom-up	 steps	 [1],[13],[14],[40].	 That	 is,	we	 used	 top-
down	 steps	 to	 review	 the	 general	 cloud	 migration	
literature	 to	 get	 a	 broad	 understanding	 of	 legacy	
application	 reengineering	 processes	 to	 cloud	 platforms.	
We	also	used	bottom-up	 steps	 for	 analyzing,	 reconciling,	
and	 abstracting	 frequently	 occurring	 method	 fragments	
from	the	literature.	The	metamodeling	endeavor,	the	main	
concern	in	[13],[14],	was	iterative	and	it	consisted	of	the	
following	steps:		
(i)	 Preparing	 knowledge	 source.	 This	 step	 identified	 the	
knowledge	source	as	the	input	for	the	metamodeling	effort.	
We	 utilized	 the	 cloud	 computing	 literature	 as	 the	 main	
knowledge	source.	A	major	role	in	this	step	was	played	by	
Kitchenham	 	 et	 al.	 guidelines	 for	 conducting	 Systematic	
Literature	Review	(SLR)	[41]	of	cloud	migration	research.	

The	 criteria	 included	 (a)	 time	 filter	 selecting	 papers	
between	 2007	 and	 2019,	 (b)	 papers	 scope	 restricted	 to	
those	 properly	 describing	 the	 adaptation	 of	 legacy	
applications	to	cloud	platforms,	(c)	focus	forum	restricted	
to	 international	 Software	 Engineering	 or	 Information	
Systems	 related	 journals/conferences	 or	 multi-vocal	
literature	published	by	leading	companies	such	as	Oracle,	
IBM,	 and	Amazon.	 The	main	 keywords	 for	 the	 search	 of	
mainstream	 scientific	 digital	 libraries	 such	 as	 Google	
Scholar,	 IEEE	 Explore,	 ACM	 Digital	 Library,	 Elsevier,	
SpringerLink,	 and	 ScienceDirect	 were	 Cloud,	 Cloud	
Migration,	Legacy	Application,	Reengineering,	Method,	and	
Process	Models.	Different	search	strings	were	defined	using	
logical	 operators	 OR	 to	 cover	 synonyms	 for	 each	 search	
string	as	well	as	the	logical	operator	AND	to	link	together	
each	 set	 of	 synonyms.	 We	 selected	 studies	 from	 the	
literature	that	contained	well-described	validation	such	as	
case	 study,	 exemplar	 scenario,	 purposeful	 interview,	
questionnaire	 survey	 of	 domain	 experts,	 simulation,	
comparative	analysis,	and	theoretical	evaluation	[41],	[42].	
Based	on	this	criterion,	theory,	opinions,	white,	and	short	
papers	with	any	sort	of	validation	were	excluded	from	the	
identified	studies.	The	choice	of	this	criterion,	as	it	strived	
to	 benefit	 from	 the	 empirical	 knowledge	 of	 cloud	
migration,	could	contribute	to	the	reliability	of	the	derived	
metamodel	 from	 the	 literature.	 This	 step	 identified	 74	
(seventy-four)	studies	as	publicly	listed	in	[43].	We	refer	to	
them	 as	 the	 knowledgebase	 throughout	 this	 paper.	 Each	
study	has	a	unique	index	(from	[1..74]).	
(ii)	 Identifying	 method	 fragments.	 As	 discussed	 in	 [13],	
[14],	we	reviewed	each	paper	and	extracted	the	relevant	
text	 segments	 that	 could	 be	 considered	 as	 a	 method	
fragment.	 That	 is,	 a	 task	 is	 a	 discrete	 and	 small	 unit	 of	
migration	work	that	developers	execute.		A	task	execution	
achieves	 one	 or	 more	 specific	 goals,	 and	 it	 produces	 a	
tangible	work-product.	A	phase	is	a	logical	way	to	manage	
and	 classify	 tasks	 and	 work-product	 based	 on	 their	
relatedness.	On	the	other	hand,	some	text	segments	could	
be	labeled	as	a	design	principle,	which	is	incorporated	into	
the	cloud-enabled	legacy	application	architecture	design.		
We	tended	in	the	selection	of	method	fragments	that	were	
frequently	underlined	in	the	identified	studies,	sufficiently	
cloud-platform	independent,	and	relatively	applicable	to	a	
variety	of	reengineering	scenarios.	Method	fragments	that	
were	 too	 general	 or	 belonged	 to	 the	 general	 software	
reengineering	such	as	governance	and	umbrella	activities,	
risk	 management	 were	 omitted	 as	 they	 could	 make	 the	
metamodel	too	large	and	change	the	scope	of	this	research.	

(iii)	 Harmonizing	 method	 fragments.	 The	 variant	
definitions	of	the	same	method	fragments	were	reconciled.	
Among	 several	 definitions	 of	 an	 overarching	 method	
fragment,	 a	 hybrid	 one	 encompassing	 all	 variant	
definitions	 was	 chosen.	 For	 example,	 in	 studies	
[S4],[S9],[S32]	 (as	 listed	 in	 [43])	 the	 choice	 of	 cloud	
computing	 platform	 has	 been	 defined	 in	 three	 ways,	
though	underlying	the	same	logic:	“this	step	will	select	the	
best	 supplier	 based	 on	 value,	 sustainability,	 and	 quality”	
[S4];	as	identify	a	set	of	potential	cloud	computing	platforms	
based	 on	 a	 project’s	 nature,	 data	 confidentiality	 and	
sensitivity	requirements,	budget	constraints	and	long-term	
organizational	 objectives”	 [S9];	 and	 as	 selecting	
appropriate	 technology	 for	 the	 modernized	 system	 and	
technology	 that	 can	 run	alongside	and	 communicate	with	
the	 legacy	 system”	 [S32].	 A	 hybrid	 definition	 that	 could	
cover	all	these	interpretations	was	chosen	for	the	method	
fragment	Choose	cloud	platform/provider	as	“Define	a	set	of	
suitability	 criteria	 that	 characterize	 desirable	 features	 of	
cloud	 platforms.	 The	 criteria	 include	 provider	 profile	
(pricing	 model,	 constraints,	 offered	 QoS,	 electricity	 costs,	
power,	 and	 cooling	 costs),	 organization	 migration	
characteristics	 (migration	 goals,	 available	 budget),	 and	
application	requirements.	Based	on	the	criteria	identify	and	
select	suitable	cloud	providers”.	
(iv)	Organizing	method	 fragments	 into	phases.	Reconciled	
method	fragments	in	the	previous	step	were	grouped	into	
one	

	
	
	 	

	
Figure	2.a	Method	fragments	of	Plan	phase		

Figure	2.b	Method	fragments	of	Design	phase	

	
	 	

	
Figure	2.c	Method	fragments	of	Enable	phase	

	
	

Figure	2.d	Method	fragments	of	Maintain	phase	

of	the	generic	reengineering	phases:	Plan,	Design,	Enable,	
and	 Maintain.	 The	 Plan	 phase	 is	 to	 understand	 the	
organizational	 context	 in	 which	 legacy	 applications	
operate.	The	Design	phase	defines	a	new	cloud-enabled	
architecture	for	the	legacy	applications.	The	Enable	phase	
lists	 the	 tasks	 such	 as	 incompatibility	 resolutions	 and	
network	 configuration	 to	 implement	 the	 cloud-enabled	
architecture	that	is	defined	in	Design	phase.	The	maintain	
phase	 deploys	 and	 monitors	 the	 performance	 of	
application	components	running	over	cloud	platforms.		
(v)	 Conceptual	 representation.	Our	metamodeling	 effort	
resulted	 in	 several	 UML	 object	 models,	 as	 shown	 in	
figures	 2.a,	 2.b,	 2.c,	 and	 2.d.	 These	 include	 key	
relationships,	associations’	cardinalities,	and	stereotypes	
such	 as	 phase,	 task,	 and	 work-product.	 Together,	 they	
constitute	 a	 set	 of	 commonly	 occurring	 method	
fragments	for	incorporating	into	a	typical	reengineering	
method.	The	operationalization	of	the	method	fragments	
is	 deferred	 to	 implementation	 time	 and	 subjected	 to	
developers’	choice	of	techniques	and	tools.	For	example,	
whilst	method	fragment	Develop	Integrator	(Figure	2.b)	
informs	 developers	 of	 incorporating	 mechanisms	 to	
address	 the	 interoperability	 and	 portability	 of	
applications,	 a	 Docker	 container,	 i.e.,	 a	 form	 of	
virtualization	 technology,	 can	 be	 used	 to	 realize	 this	
method	fragment.
4.3 Model transformation rules
The	 model	 transformation	 rules	 instantiate	 MLSAC	
metamodel	at	M2-level	to	generate	new	specific	method	
instances	at	M1-level	according	to	MOF	framework	(Fig.	
1).	This	instantiation	is	a	vertical	transformation	from	the	

higher	level	of	abstraction,	i.e.,	MLSAC	metamodel,	to	the	
lower-level	model,	i.e.,	MLSAC	metamodel	instance	[35].	
We	 defined	 the	 transformation	 rules	 based	 on	 our	
knowledge	 source	 (Appendix	 A).	 These	 rules	 act	 as	
guidelines	and	provide	semantics	for	the	transformation	
of	 the	 metamodel	 to	 a	 specific	 reengineering	 method	
instance.	 They	 guarantee	 a	 consistent	 transformation	
from	 the	 metamodel	 (M2-level)	 to	 a	 model	 (M1-level)	
[38].	 The	 transformation	 rules	 are	 implemented	 as	 a	
distinct	 module	 in	 MLSAC	 architecture	 using	 database	
tables	 describing	 relationships	 among	 method	
fragments.	 The	 transformation	 rules,	 like	 semi-MOF	
transformation	 notations	 [44],	!!(µ$%&'!) 	indicate	 a	
set	 of	method	 fragments	 ∊	MLSAC 	metamodel.	 Table	 1	
shows	 a	 sample	 of	 rules.	 For	 example,	 Rule	 R00	
formalizes	the	instance	creation	of	Plan	phase	in	MLSAC	
to	a	specific	process	model	where:	

Transformation	rule:	Rule	R00	(Plan	phase):	
Rule	syntax:	!!(µ$%&'!()*+(ℎ*-.)			
Rule	meaning:	The	set	of	tasks	defined	in	MLSAC	
Plan	 phase	 are	 instantiated	 to	 Plan	 phase	 of	 a	
new	method	
Rule	construct:	<PlanPhaseClass>	::	=	(Analyze	business	
requirements	 Class	AND	Analyze	migration	 cost	 Class	
AND	Analyze	migration	 feasibility	 Class	AND	Analyze	
network	 change	 Class	 AND	 Analyze	 organizational	
changes	Class	AND	Analyze	stakeholders	change	Class	
AND	Analyze	technical	requirements	Class	AND	Define	
Plan	Class	AND	Recover	legacy	application	knowledge	
Class)		

Table	1.	An	excerpt	of	transformation	rules	for	instantiation	of	MLSAC	method	fragments	to	a	reengineering	process	
Rule	id	 Rule	name	 Rule	meaning	 Rule	syntax	
R00	 ResolveIncompatibilities	

method	 fragment	 of	
MLSAC	

ResolveIncompatibilities::=(<	
ResolveIncompatibilities	
MethodFragmentClass>)	

!!(µ$%&'!)	

R01	 Instance	model	of	MLSAC	 The	 set	 of	 all	 MLSAC	 metamodel	
instances,	 i.e.,	 methods,	 conforming	 to	
MLSAC	metamodel,	µ$%&'!		

Ƭ(µ$%&'!):={:	(µ$%&'!) |≡ µ$%&'!	}8

R01.1	 MLSAC	 metamodel	
fragment	

MLSAC	metamodel	method	fragment	 is	
consisting	 of	 name	 and	 relationships	
with	 other	 method	 fragments	 such	 as	
sequence,	 association,	 specialization,	
and	aggregation	

!!(µ$%&'!) ∷= $%&'!_$-.ℎ0123456-7.);	
MLSAC_MethodFragment	::=(<MethodFragmentName>	AND	
<MethodFragmentRelationship)	

R04	 Method	 fragment	 subset	
MLSAC	metamodel		

All	 method	 fragments	 defined	 in	 each	
class	 of	 phases	 are	 a	 subset	 of	MLSAC	
metamodel		

!!(µ$%&'!_9:479ℎ4;-)^	!!(µ$%&'!_<-;=579ℎ4;-)	^	
!!(µ$%&'!)_>74?:-9ℎ4;-	^	!!(µ$%&'!_$4=7.4=79ℎ4;-)	

R04.3	 Plan	phase	M1	method	 Plan	phase	of	a	method,	which	contains	
method	 fragments	 and	 their	 relations	
from	 Plan	 phase	 class	 of	 MLSAC	
metamodel,	is	a	part	of	a	design	method	

(!!(µ$%&'!_9:479ℎ4;-)	^	r(µ$%&'!_9:479ℎ4;-)) ∊ :
Ƭ(µ$%&'!_9:479ℎ4;-)	

R05.1	 Relationships	 of	 method	
fragments	

Relationships	 of	 all	method	 fragments,	
as	defined	in	each	class	of	phases,	are	a	
subset	of	MLSAC	metamodel	

(3(!!(µ$%&'!"#$%"&$'())^	3(!!(µ$%&'!_<-;=579ℎ4;-))	^	
3(!!(µ$%&'!)_>74?:-9ℎ4;-))	^	
3(!!(µ$%&'!!$)%*$)%"&$'())⊂	µ$%&'!)	

Each	cloud	migration	type,	such	as	I,	II,	III,	IV,	and	V	[3],	
entails	the	incorporation	of	some	specific	tasks	into	the	
reengineering	 process.	 To	 this	 end,	 the	 relationship	
matrix	is	used	to	classify	method	fragments	and	to	guide	
the	 metamodel	 instantiation.	 As	 such,	 the	 method	
engineer	 is	 informed	 of	 method	 fragments	 that	 are	
required	 for	 inclusion	 into	 a	 reengineering	 method	
instance.	Table	2	shows	a	sample	of	situations	 in	which	
method	fragments	are	associated	with	a	given	migration	
type.	 These	 relationships	 are	 based	 on	 the	 knowledge	
source	and	are	coded	as	transformation	rules	in	MLSAC.	
For	 example,	 according	 to	 the	 knowledge	 source,	
reflected	in	studies	[S41]	and	[S42]	(see	[43]),	deploying	
legacy	application	components	on	cloud	servers	via	IaaS	
service	delivery	model,	 i.e.,	migration	type	V,	requires	a	
new	architecture	model	specifying	a	topology	of	migrated	
components	 and	 their	 communication	 with	 in-house	
components.	 Hence,	 Design	 cloud	 solution	 method	
fragment	 is	mandatory	 for	 inclusion	 in	a	newly	created	
reengineering	method	 in	all	migration	 types.	To	ensure	
this,	Rule	R01	is	defined:	
Transformation	 rule:	 Rule	 R01	 (Plan,	 Design,	 Enable,	
Maintain	phases):	
Rule	 syntax:	 !!(µ$%&'!()*+(ℎ*-.) 	^	
!!(µ$%&'!0.-12+(ℎ*-.)^	!!(µ$%&'!0.-12+	(ℎ*-.)^	
!!(µ$%&'!4*1+5*1+(ℎ*-.)	
Rule	 meaning:	 The	 set	 of	 mandatory	 task	 method	
fragments	defined	in	MLSAC	Plan	phase	is	instantiated	to	
all	phases	of	a	new	reengineering	process	

Rule	syntax:	<PlanPhaseClass>	::	=	(Plan	phase	Class	AND	
Design	phase	Class	AND	Enable	phase	Class	AND	Maintain	
phase	Class	AND	Analyze	business	requirements	Class	AND	
Analyze	 migration	 cost	 Class	 AND	 Analyze	 migration	
feasibility	 Class	AND	Analyze	 network	 change	 Class	AND	
Analyze	 organizational	 changes	 Class	 AND	 Analyze	
stakeholders	 change	 Class	 AND	 Analyze	 technical	
requirements	Class	AND	Choose	cloud	provider	Class	AND	
Cloud	 solution	 architecture	model	 Class	 AND	Define	 plan	
Class	 AND	 Deploy	 application	 components	 Class	 AND	
Handle	 transient	 fault	 Class	 AND	 Legacy	 application	
architecture	 Class	 AND	 Migration	 plan	 Class	 AND	
Migration	requirements	Class	AND	Synchronize	application	
components	 Class	 AND	 Test	 network	 connectivity	 Class	
AND	Test	security	Class)	

The	 relationships	 between	 method	 fragments	 (]igures	
2.a,	 2.b,	 2.c,	 and	 2.d)	 such	 as	 follows,	 association,	
specialization	 and,	 and	 aggregation,	 respectively,	 are	
represented	 by	 notations	 .	 They	
have	 been	 de]ined	 in	 MLSAC	 based	 on	 the	 knowledge	
source	 and	 metamodeling	 steps.	 They	 are	 stored	 in	
MLSAC	 repository	 and	 are	 used	 during	 MLSAC	
metamodel	 instantiation	 and	 tailoring.	 For	 example,	
follows	 relation	 means	 that	 the	 default	 execution	
sequence	 of	 method	 fragments	 in	 a	 typical	 migration	
scenario.	As	shown	in	Table	3,	the	relation	between	the	
method	 fragments	 Identify	 incompatibilities	 and	Choose	
cloud	 platform	 signi]ies	 that	 once	 a	 cloud	 platform	 is	
chosen,	 examining	 potential	 incompatibilities	 between	
legacy	application	components	and	this	platform	should	

Table	2.	An	excerpt	of	relationships	matrix	for	selection	of	method	fragments	based	on	migration	types	(√:	Mandatory,	(√):	Situational,	×	Unnecessary),	
from	[1]	

Method	fragment	
Migration	type*	

Situation	I	 II	 III	 IV	 V	

Adapt	data	
×	 (√

)	
(√
)	

(√
)	

(√)	 The	incorporation	of	this	fragment	for	the	migration	types	II,	III,	IV,	V	depends	on	the	
choice	of	a	cloud	platform	and	inconsistencies	between	legacy	application	platform	and	
cloud	platform.	

Analyze	 business	
requirements	

√	 √	 √	 √	 √	 Mandatory	

Choose	 cloud	
platform/provider	

√	 √	 √	 √	 √	 Mandatory	

Cloud	 solution	
architecture		

√	 √	 √	 √	 √	 Mandatory	

Decouple	 application	
components		

(√
)	

(√
)	

(√
)	

(√
)	

(√)	 The	incorporation	of	this	principle	depends	on	new	designed	architecture	model	and	the	
distribution	of	application	components	in	the	cloud.		

Develop	integrators	

(√
)	

(√
)	

(√
)	

(√
)	

(√)	 The	 incorporation	 of	 this	 fragment	 depends	 on	 the	 choice	 of	 a	 cloud	 platform	 and	
required	effort	to	refactor/modify	legacy	codes.	If	the	code	refactoring,	as	supported	by	
refactor	 codes,	 is	 costly,	 then	 developing	 integrators/adaptors	 can	 be	 served	 as	 an	
alternative	solution	to	hide	incompatibilities.	

Enable	elasticity	 (√
)	

(√
)	

×	 ×	 (√)	 The	incorporation	of	this	fragment	in	the	migration	types	I,	II,	and	V	depends	on	a	need	
for	the	application	elasticity.		

Encrypt/decrypt	
database		

×	 (√
)	

(√
)	

(√
)	

(√)	 The	 incorporation	 of	 this	 fragment	 in	 the	 migration	 types	 depends	 on	 security	
requirements.	

Handle	transient	faults		 √	 √	 √	 √	 √	 Mandatory	
Identify	incompatibilities		 √	 √	 ×	 √	 √	 Mandatory	
Isolate	tenant	availability	 ×	 √	 ×	 ×	 ×	 This	is	a	mandatory	fragment	for	migration	type	II.	
*Migration	type	I:	deploying	business	logic	of	a	legacy	application	on	cloud	via	IaaS	service	delivery	model,	type	II:	replacing	or	reengineering	legacy	
components	with	SaaS	delivery	model,	type	III:	deploying	legacy	database	components	on	cloud	data	storages,	type	IV:	converting	legacy	database	
components	to	cloud	database	solutions,	and	type	V:	deploying	whole	legacy	application	stack	on	cloud	via	IaaS	service	delivery	model	

be	 the	 next	 task.	 The	 evidence	 to	 this,	 based	 on	 the	
knowledge	source,	is:	

“An	 application	 is	 analyzed	 to	 assess	 its	
compatibility	 with	 the	 potential	 cloud	 computing	
environment.	For	example,	it	may	be	the	case	that	a	
target	PaaS	cloud	does	not	support	frameworks	or	
speciJic	technologies	being	used	by	an	application.	If	
such	 issues	 are	 identiJied,	 then	 these	 need	 to	 be	
resolved	Jirst”	[S36].		

	

The	 full	 list	 of	 these	 recommended	 relationships	 is	
publicly	available	at	GitHub	[45].	Arguably,	the	execution	
order	 of	 method	 fragments	 is	 context-dependent	 and	
con]ined	to	each	individual	reengineering	scenario.	Thus,	
it	 is	not	feasible	to	capture	all	possible]lows	in	MLSAC.	
Moreover,	method	engineers	are	not	restricted	to	follow	
the	prede]ined	sequences	in	MLSAC	when	creating	a	new	
method	for	their	own	reengineering	scenario.		

4.4 Architecture overview

We	 implemented	 the	 MLSAC	 prototype	 system	 using	
technologies	 Microsoft	 .Net	 Framework	 2015,	 C#	
programming	 language,	and	Microsoft	Access	Database.	
Feedback	collected	from	our	partners	helped	us	test	and	
improve	MLSAC	which	is	now	publicly	available	at	GitHub	
[45]	 and	 brie]ly	 described	 below.	 Figure	 3	 depicts	 a	
snapshot	of	MLSAC’s	three-layer	architecture.		
The	user	interface	layer	has	19	interactive	forms	enabling	
a	method	engineer	to	create,	update,	and	import/export	
the	metamodel	and	method	instances.	The	business	logic	
layer	 operationalizes	 vertical	 model	 transformations	
from	 MLSAC	 metamodel.	 Since	 we	 used	 the	 object-
oriented	paradigm	to	design	MLSAC	architecture;	 three	
levels	of	MOF,	i.e.,	metamodel,	method	model,	and	method	
model	instance	were	mapped	to	the	notion	of	class,	each	
with	 its	properties	and	operations	 in	 the	business	 logic	
layer.	The	main	classes	in	this	layer	are	method_fragment,	
metamodel,	method	model	(reengineering	process	model),	
method_instance,	 modeling	 component,	 and	 tailoring	
(Figure	3).	For	example,	 the	method_fragment	 class	has	

the	 following]ields:	 identi]ier,	 type,	 name,	 de]inition,	
relationships,	and	migration	type.	An	excerpt	of	that	is:	

MethodFragmentClaas::=	 <Method_fragment_Id,	
Method_fragment_name,	Method_fragment_type,	
Method_fragment_de]inition,	
Method_fragment_relation,	 Method_fragment_	
migration_type>		

where:		
Method_fragment_Id	represents	 the	 identi]ier	of	
the	method	fragment;	
Method_fragment_name	refers	to	the	name	of	the	
method	fragment;	
Method_fragment_type	 indicates	 whether	 the	
method	 fragment	 is	 phase,	 task,	 work-product,	
and	principle;		
Method_fragment_deJinition	explains	the	steps	to	
execute	 and	 aspects	 related	 to	 the	 method	
fragment;	
Method_fragment_relation	 speci]ies	 the	 relation	
to	other	fragments	such	as	being	precedence	and	
successors;	and		
Method_fragment_migration_type	 de]ines	 the	
situations	 for	 which	 the	 method	 fragment	 is	
recommended	 to	 be	 sequenced	 in	 the	
reengineering	method.		

Table	3.	Sample	relationships	between	the	method	fragments	in	the	metamodel	(L:	knowledge	source	[43]	M:	during	metamodeling	steps)	

Relationship	
Type	

Relationship	sub-
type	

Method	fragment	1	 Method	fragment	2	
Source	

Name	 Type	 Name	 Type	
Association	 Uses	 Analyze	 migration	

requirements	
Task	 Choose	cloud	provider	 Task	 L	

Association	 Uses	 Design	cloud	solution		 Task	 Plan	migration	 Task	 L	
Association	 Follows	 Choose	cloud	provider	 Task	 Identify	incompatibilities	 Task	 L	
Association	 Produces	 Design	cloud	solution		 Task	 Cloud	solution	

architecture		
Work-
Product	

L	

Aggregation	 IsAGroupOf	 Analyze	context	 Task	 Plan	 Phase	 M	
Specialization	 isAKindOf	 Re-factor	codes	 Task	 Resolve	incompatibilities	 Task	 M	
Specialization	 isAKindO’	 Develop	integrators	 Task	 Resolve	incompatibilities	 Task	 M	
Specialization	 isAKindOf	 Adapt	data	 Task	 Resolve	incompatibilities	 Task	 M	

The	 layer	 also	de]ines	 a	modeling	 component	providing	
functions	 for	 deriving	 new	 bespoke	 method	 instances	
from	 the	 metamodel.	 The	 tailoring	 class	 implements	
functions	for	creating	methods.	The	method	engineer	can	
re]ine	 a	 method	 fragment	 from	 M2-level	 to	 M0	 level	
through	associating	it	with	operationalization	techniques	
as	de]ined	by	the	technique	method	fragments.		

The	 MLSAC	 is	 implemented	 using	 a	 relational	
database	management	 system	(RDBMS).	A	 collection	of	
relational	 tables	 is	 used	 to	 keep	 and	 update	 method	
modeling.	 Regarding	 MOF	 framework,	 a	 method	
fragment	 is	 stored	 at	 three	 levels	 of	 M0,	 M1,	 and	 M2	
(Figure	1).	That	is,	MLSAC	metamodel,	itself,	is	expressed	
as	 a	 collection	 of	method	 fragments	 that	 are	 stored	 in	
Metamodel	 table.	 The	 metamodel	 enables	 describing	
reengineering	methods.	Instances	of	MLSAC	metamodel	
that	are	positioned	at	M1-level	and	enacted	instances	that	
are	 positioned	 at	 M0-level	 are,	 respectively,	 stored	 in	
Method	 and	 MethodInstance	 tables.	 Moreover,	
information	 about	 the	 operationalization	 of	 method	
fragments,	i.e.,	supportive	techniques,	positioned	at	M0-
level,	 is	 stored	 in	 SupportiveTechniques	 table.	 Some	
further	 exemplar	 applications	 of	 MLSAC	 prototype	
namely	 (i)	 creating	 and	 con]iguring	 a	 reengineering	
method	via	MLSACA	metamodel,	 (ii)	migrating	a	 legacy	
application	data	layer	to	cloud	(NovaTec	case),	and	(iii)	
migrating	 full	 legacy	 application	 stack	 to	 the	 cloud	
(Accenture	case)	are	available	at	[45].	

5 Framework Evaluation
The	 MLSAC	 framework	 aims	 at	 providing	 a	 language	
infrastructure	to	be	used	for	representation,	unification,	
and	 sharing	 cloud-specific	 reengineering	methods. We	
iteratively	evaluated	and	revisited	MLSAC	in	the	view	of	
quality	 factors	 (Section	 4.1)	 as	 shown	 in	 Table	 4	 and	
discussed	in	what	follows.	

Table	4.	MLSAC	evaluation		
Evaluation	scenario	 Quality	factor	

Semanti
c	

Tailorabilit
y	

Pragmati
c	

EclipseSCADA	case	(section	
5.1)	 -	 √	 -	

Hackystat	case	(section	5.2)	 -	 √	 -	
User	 evaluation	 (section	
5.3)	 √	 √	 √	

5.1 Maintaining reengineering methods
This	 evaluation	 focused	 on	 the	 tailorability	 factor	 of	
MLSAC.	In	the	EclipseSCADA	exemplar	scenario	stated	in	
Section	 2,	 the	 developers	 aimed	 at	 deploying	 the	
application	 stack	 on	 the	 NeCTAR	 to	 reach	 flexible	 fees	
based	on	required	computing	resources.		
Evaluation	procedure.	The	method	engineer	performs	
the	 following	 tailoring	 procedure	 to	 instantiate	 the	
metamodel	to	represent	and	maintain	the	EclipseSCADA	
reengineering	method’s	content.	
Step	 i.	 Three	 input	 parameters	 to	 MLSAC	 are	 method	
name/description,	 the	 choice	 of	 migration	 types,	 and	
phases.	This	 scenario	 is	 subsumed	under	 the	migration	
type	V,	i.e.	a	virtual-machine-based	application	migration	
to	 the	 NeCTAR	 cloud	 IaaS	 model	 [3].	 The	 method	
engineer	 merely	 focuses	 on	 the	 Plan	 phase	 and	 skips	
other	phases.	
Step	 ii.	 Input	 parameters	 are	 used	 to	 inform	 a	 vertical	
transformation	from	MLSAC’s	metamodel	–	as	the	source	
model	 at	 M2-level	 –	 to	 a	 new	 reengineering	 method	

	
Figure	3.	MLSAC	overall	architecture	

instance	 at	 M1-level.	 Relevant	 method	 fragments	
associated	 with	 the	 selected	 migration	 type	 V	 and	 the	
Plan	 phase	 are	 retrieved	 from	 the	 MLSAC	 repository	
according	to	the	transformation	guidelines	for	inclusion	
in	 the	 new	 method	 instance.	 These	 fragments	 are	
suggestive	by	the	MLSAC	repository	for	inclusion	in	the	
base	 reengineering	 method	 :	 Analyze	 context,	 Recover	
legacy	 application	 knowledge,	 Analyze	 migration	
requirements,	Define	plan.	This	derivation	can	be	codified	
using	the	following	pseudo-code	(if-then	expression):	
Model_Instance	Function	MetamodelInstantiation	(mt,	
p)		
{	
QUERY_STRING	←	{};//query	string	to	retrieve	method	
fragments	from	the	repository		
MIGRATION_TYPE	←		mt;	//the	choice	of	migration	type	
PHASE		←	p;	//the	choice	of	phase	
if	(MIGRATION_TYPE	==	Type	I)	then		
QUERY_STRING	←	“TYPE	I”	
else	if	(MIGRATION_TYPE	==	Type	II)	then	
QUERY_STRING	←	“TYPE	II”	
else	if	(MIGRATION_TYPE	==	Type	III)	then	
QUERY_STRING	←	“TYPE	III”	
else	if	(MIGRATION_TYPE	==	Type	IV)	then	
QUERY_STRING	←	“TYPE	IV”	
else	if	(MIGRATION_TYPE	==	Type	V)	then	
QUERY_STRING	←	“TYPE	V”	
if	(PHASE	==	Plan_Phase	then	
QUERY_STRING	←	+	“Plan_Phase”	
if	(PHASE	==	Design_Phase	then	
QUERY_STRING	←	+	“Design_Phase”	
if	(PHASE	==	Enable_Phase	then	
QUERY_STRING	←	+	“Enable_Phase”	
if	(PHASE	==	Maintain_Phase	then	
QUERY_STRING	←	+	“Maintain_Phase”	
PROCESS_INSTANCE←retrieve	(QUERY_STRING)		
return	PROCESS_INSTANCE	

}	
This	method,	containing	the	set	of	method	fragments	and	
their	definitions	that	are	reused	from	the	metamodel,	is	
shown	 in	 Figure	 4.a.	 The	 graphical	 user	 interface	 in	
Figure	4	has	three	main	sections.	The	upper	section	has	
the	general	description	of	the		

	
Figure	4.a	An	instantiated	reengineering	method	from	the	metamodel

	
Figure	4.b	Defining	an	implementing	technique	for	Test	interoperability	task	method	fragment	

	
Figure	4.c	Specifying	sequences	among	task	method	fragments	

reengineering	 method,	 e.g.,	 name	 and	 migration.	 The	
bottom-left	section	shows	the	method	fragments	reused	
from	 the	 MLSAC	 metamodel.	 The	 bottom-right	 section	
(Figure	 4)	 gives	 information	 about	 a	 selected	 method	
fragment	once	the	method	engineer	clicks	 it	 in	 the	tree	
view.		
Step	 iii.	 The	 method	 engineer	 can	 perform	 different	
optional	sub-steps	to	tailor	the	base	reengineering	model	
instance	to	meet	scenario	requirements	(Figures	4.b	and	
4.c).	These	include	(a)	adding	new	method	fragments	to	
the	 method	 if	 the	 pre-existing	 method	 fragments	 in	
MLSAC	 repository	 are	 insufficient	 to	 support	
requirements	 of	 the	 reengineering	 scenario,	 (b)	
extending	the	existing	method	fragments	of	MLSAC	with	
new	 ones	 through	 the	 inheritance	 mechanism,	 (c)	
specifying	 alternative	 techniques	 to	 operationalise	 the	
method	fragments	(Figure	4.b),	and	(d)	defining	arbitrary	
sequences	among	the	method	fragments	(Figure	4.c).	For	
example,	the	method	engineer	defines	three	custom	sub-
classes	 of	 Define	 plan	 task	 method	 fragments	 namely	
Determine	 application	 disposition,	 Plan	 migration,	 and	
Define	migration	road	map.	According	to	OMG	modeling	
framework	 (Figure	 1)	 [32],	 the	 abovementioned	 sub-
steps	are	horizontal	transformations	where	the	method	
model	at	M1-level,	as	the	source	model,	is	evolved	to	its	

next	operational	target	model	to	include/exclude	method	
fragments	as	required	in	the	migration	scenario.		
Step	 iv.	Once	 tailored,	 the	method	model	 can	 be	 either	
stored	 in	 MLSAC	 database	 or	 exported	 as	 an	 XML	
document	 to	 be	 later	 shared	 with	 developers	 for	 the	
enactment.	 Figure	 5	 shows	 such	 an	 instance	 of	 the	
relationships	 between	 MLSAC	 metamodel,	
EclipseSCADA_Method,	and	TaskTechniques.	

5.2 Creating and tailoring new reengineering
methods 	
MLSAC	 is	 generic	 and	 provides	 a	 skeleton	 for	
reengineering	 methods	 for	 better	 method	 design	 and	
maintenance.	Variations	to	its	element	operationalization	
for	 a	 particular	 scenario	 are	 left	 open	 to	 developers’	
decision.	 We	 examined	 the	 tailorability	 of	 MLSAC	 in	
Hackystat	project	 [46].	This	 illustrated	how	an	existing	
reengineering	 method	 for	 an	 open-source	 legacy	
application,	 called	 Hackystat	 SensorBase	 service,	
positioned	 at	 M1-level,	 can	 be	 created,	 reused,	 and	
maintained	via	MLSAC	instantiation.		

Figure	5.	Example	of	tables	storing	the	metamodel	and	its	EclipseSCADA	instantiation	

Figure	6.a	Hackystat	reengineering	method	document,	the	entry	for	MLSAC	method	fragments	

Figure	6.b	an	excerpt	of	Hackystat	reengineering	method	stored	in	MLSAC	repository	and	exported	in	XML	format	

The	Hackystat	method	that	establishes	a	set	of	guidelines	
and	 practices	 to	 be	 enacted	 by	 the	 software	 team	 for	
migrating	 Hackystat	 SensorBase	 legacy	 application	 to	
SaaS	 is	described	 in	natural	 language	 (Figure	6.a).	This	
way	 of	 representation	 is	 inherently	 ambiguous,	
incomplete,	and	non-modular	which	causes	difficulties	in	
the	 method	 maintenance.	 For	 example,	 if	 the	 method	
engineer	needs	to	change	the	Hackystat	method	content,	
she	should	manually	update	and	check	the	entire	method	
document	to	ensure	the	consistency	of	method	content.	
This	is	a	very	time-consuming	and	error-prone	task.		
The	solution	that	MLSAC	offers	to	address	this	challenge	
is	that	the	method	engineer	can	automatically	reuse	the	
method	 fragments	 provided	 by	 MLSAC	 to	 create	 and	
tailor	 Hackystat	 method.	 That	 is,	 she	 can	 instantiate	 a	
base	 SaaS-specific	 method	 from	 MLSAC	 metamodel	
including	essential	method	 fragments	 for	 incorporation	
into	 the	reengineering	process	of	Hackystat	application	
to	 SaaS.	 She	 can	 then	 customize	 and	 extend	 this	 base	
method,	 for	example,	by	adding	new	method	fragments	
to	 be	 sequenced	 into	 this	 reengineering	 exercise.	
Furthermore,	 the	method	 engineer	 traces	 the	 origin	 of	
the	 content,	 e.g.,	 guidelines	 and	 practices,	 that	 are	
reported	 in	 the	 document	 of	 Hackystat	 method	 to	 the	
base	method.	This	indicates	the	extent	to	which	the	newly	
created	base	method	preserves	the	semantic	of	Hackystat	
method.		
The	 above	 steps	 are	 the	 vertical	model	 transformation	
according	 to	 MOF	 framework	 where	 the	 method	
fragments	 in	MLSAC,	as	 the	source	model	positioned	at	
M2-level,	are	instantiated	to	represent	Hackystat	method,	
as	the	target	model	positioned	at	M1-level.		
Finally,	 the	method	 is	 stored	 in	 the	MLSAC	 repository.	
Developers	can	now	reuse,	customize,	and	enact	this	M1-
level	 method	 for	 a	 given	 scenario	 at	 M0-level	 (Figure	
6.a,b).	The	Hackystat	scenario	was:	
Hackystat	is	an	open-source	application	developed	to	
collect	process	and	product	metrics	founded	university	
of	Hawaii	in	the	US.	It	also	supports	the	analysis	and	
visualization	 of	 these	 metrics	 at	 different	 levels	 of	
abstraction.	 In	 this	application,	 the	data	are	 sent	 to	
Hackystat	 services	 using	 plugins	 installed	 on	 data	
sources.	The	data	is	received	by	Sensor	base,	the	root	
service	 of	 the	 application,	 which	 is	 responsible	 for	
persistence	 management	 and	 handling	 of	
configurations	along	with	notification	operations.	The	
other	services,	DailyProjectData	and	Telemetry	work	
via	 interaction	 with	 Sensorbase.	 These	 are	 used	 to	

compute	 daily,	 weekly,	 monthly	 and	 yearly	
abstractions	of	data.	ProjectBrowser	and	TickerTape	
are	client	components	used	to	present	metrics	through	
graphical	 user	 interfaces	 and	 post	 information	 on	
external	 applications	 like	 Nabaztag	 Rabbit	 and	
Twitter.	The	developers	aim	to	reengineer	Hackystat	
to	serve	as	SaaS.	It	is	expected	to	have	the	capability	
to	 scale	 for	 the	 required	 computing	 and	 storage	
resources.	 In	 this	 scenario,	 Hackystat’s	 services	 are	
aimed	to	move	to	Amazon	EC2	elastic	computing	and	
Google	app	engine”.	[46],	page.82	

Evaluation	 procedure.	 MLSAC	 retrieves	 the	 base	
reengineering	 method	 model	 listing	 mandatory	 SaaS-
specific	method	 fragments	 (migration	 type	 II	 [3])	 from	
the	repository.	These	include	method	fragments	such	as	
Isolate	 tenant	availability,	 Isolate	 tenant	customizability,	
Isolate	 tenant	 data,	 Isolate	 tenant	 performance,	Handle	
transient	 faults,	 Identify	 incompatibilities,	 Analyze	
business	 requirements,	 Analyze	 migration	 cost,	 and	
Analyze	 migration	 feasibility.	 The	 interaction	 forms	 in	
MLSAC	enable	the	method	engineer	to	tailor,	e.g.,	adding,	
removing,	 extending,	 or	 modifying,	 this	 base	 method	
regarding	 the	 characteristics	 of	 this	 reengineering	
scenario.	 For	 example,	 in	 the	 document	 of	 Hackystat	
method	 the	 task	 called	Requirement	 identification	 is	 to	
find	 high-level	 requirements	 initiating	 the	 migrating	
Hackystat	to	the	cloud.	The	task	is	stored	as	the	method	
fragment	 Analyze	 migration	 requirements	 in	 the	 base	
method	instantiated	from	MLSAC	metamodel.	Hackystat	
report	describes	M1	level	task	Identification	of	potential	
cloud	hosting,	which	is	to	list	candidate	cloud	platforms	
that	 may	 address	 confidentiality	 and	 sensitivity	
requirements.	 Subsequently,	 potential	 incompatibilities	
between	 the	 legacy	 application	 and	 candidate	 cloud	
platforms	 are	 analyzed	 in	 a	 task	 named	 Analysing	
applications’	compatibility.	The	method	engineer	

structures	and	stores	this	fragment	in	MLSAC	repository	
as	 the	 M2-level	 method	 fragment	 Identify	
incompatibilities	in	Design	phase.	The	details	of	this	task	
are	stored	in	the	method	fragment’s	definition	part.	She	
can	 add	 new	 method	 fragments	 to	 the	 method	 as	
upcoming	 requirements	 arise	 during	 the	 project.	 For	
example,	she	defines	an	operationalization	technique	for	
the	method	fragment	Enable	elasticity	in	Enable	phase.	In	
this	scenario,	she	uses	three	existing	resource	provision	
techniques	 based	 on	 the	 existing	 literature	 [47-49]	
(Figure	7):	(i)	Reactive	scaling	where	developers	define	a	
set	 of	 threshold-based	 scaling	 rules	 for	 resource	
acquisition	and	release	which	requires	a	deep	knowledge	
of	 the	 application	 resource	 utilisation	 patterns,	 (ii)	
Proactive	scaling	where	developers	use	observation	and	
prediction	 techniques	 to	 anticipate	 workload,	 and	 (iii)	
Hybrid	 scaling	 where	 a	 combination	 of	 reactive	 and	
proactive	techniques	are	used	to	determine	when	to	get	a	
resource	during	a	period	of	application	execution.	These	
techniques	 are	 then	 assigned	 to	 enable	 elasticity.	
Developers	 enact	 this	 base	 method	 for	 a	 scenario	 of	
migrating	 open-source	 software,	 named	 Hackystat,	 to	
two	cloud	platforms	Amazon	EC2	and	Google	App	Engine.	

As	the	result	of	the	evaluation,	the	refinement	was	made	
to	 Choose	 cloud	 service	 platform	 defined	 in	 the	 Design	
phase	to	include	high-level	criteria	for	the	cloud	platform	
selection.	According	to	Hackystat,	the	criteria	were	added	

to	 the	definition	of	 the	 task:	budgetary	constraints	of	 a	
project,	 support	of	business	domain	of	 the	project,	 and	
legal	requirements.		

5.3 User evaluation
We	sought	the	opinions	of	two	industry	partners	about	
MLSAC	adherence	to	all	the	quality	factors.		We	recruited	
a	 purposive	 sample	 [50]	 of	 interviewees	 to	 examine	 if	
MLSAC	 satisfies	 the	 quality	 factors.	 Two	 independent	
experts,	called	E1	and	E2,	from	two	different	companies	
were	selected	based	on	the	criteria	(i)	having	real-world	
experience	in	cloud	migration	and	(ii)	speaking	English	
fluently.	The	users	had	been	 involved	 in	multiple	cloud	
migration	projects	and	therefore	potential	bias	towards	
their	 evaluation	of	 framework	was	not	 considered	as	a	
threat.	The	profiles	of	users	were	as	follows:	
•E1	was	a	senior	.Net	developer	and	technical	lead	
at	 digital	 consulting	 firm	 Deloitte	 Digital	 in	
Sydney,	 Australia,	 with	 expertise	 in	 developing	
SaaS	 applications.	 He	 had	 been	 involved	 as	 a	
technical	 lead	 in	 reengineering	 legacy	 customer	
relationship	management	 (CRM)	 applications	 to	
serve	as	SaaS.		
•E2	was	a	full	stack	iOS	engineer	at	Nudge	group	
in	Sydney,	Australia,	with	expertise	in	services	for	
cloud-based	 application	 development,	 in	
particular,	 NoSQL	 and	 Amazon	 Web	 Service	

Figure	7.	Defining	resource	scaling	implementation	techniques	in	MLSAC	repository	to	be	used	in	method	fragments		

(AWS).	He	was	the	technical	lead	in	implementing	
a	 real-time	 and	 location-based	 social	 network	
mobile	application	in	the	online	dating	domain.			

We	organized	face-to-face	individual	meetings	and	each	
took	about	180	minutes	including	follow-up	discussions.	
The	 research	 objectives,	 description	 of	 quality	 factors,	
and	 example	 screenshots	 of	MLSAC	were	 presented	 to	
them.	Each	expert	user	was	asked	to	model	the	in-house	
reengineering	method	for	a	scenario	that	she/he	wanted	
to	provide	for	the	software	team	to	enact.	The	following	
criteria	 were	 set	 to	 select	 a	 scenario	 for	 the	 MLSAC	
evaluation:	(i)	having	clear	goals	of	reengineering	such	as	
the	 improving	 scalability,	 or	 performance	 of	 legacy	
applications,	 and	 (ii)	 involving	 with	 cloud-specific	
concerns	during	reengineering	such	as	 interoperability,	
platform	selection,	and	server	latency	[3],[51].	Scenarios	
1	and	2,	classifying	under	the	migration	types	IV/V	and	IV	
respectively,	were	as	follows:	

Case	study	1:	 reengineering	a	 legacy	CRM	application	 to	
SaaS.	 	The	CRM	application	was	 unable	 to	 support	 new	
business	requirements	such	as	scalability	for	the	growing	
number	of	application	users	(processing	more	than	2000	
user	 transactions	 per	 second).	 SaaS	 version	 of	 the	 CRM	
could	 be	 a	 viable	 solution	 to	 address	 this	 critical	
requirement.	A	generic	method	could	provide	an	overall	
road	map	for	making	CRM	application	SaaS-enabled.		

Case	study	2:	migrating	a	real-time	geosocial	networking	
application	to	the	cloud.	The	application	was	recognizing	
the	 geographical	 zone	 of	 a	 registered	 person	 in	 the	
application	 and	 suggests	 upcoming	 events	 in	 that	 zone.	
The	application	data	layer	was	using	a	relational	database	
hosted	on	local	servers.	Over	time,	the	relational	data	was	
found	 lacking	 in	 scalability	 since	 the	 database	 size	was	
growing	and	search	queries	were	becoming	complicated.	
The	 application	 also	 lacked	 a	 real-time	 response	 to	
features	 such	 as	 instantaneous	 upload/download	
operations	 for	 resources	 used	 frequently.	Migrating	 the	
database	components	to	No-SQL	and	running	the	business	
logic	components	in	Amazon	cloud	servers	could	improve	
the	query	performance.	

	

Table	5.	Summary	of	domain	expert	evaluation	results		
Factor
s	 Assessment	question	 Evaluation	results		

Se
m
an
tic
	

	

Does	 MLSAC	 repository	 provide	 necessary	 and	
relevant	 method	 fragments	 for	 representing	
reengineering	processes	to	cloud	platforms?	

Yes,	the	repository	provides	major	generic	tasks	and	it	is	fully	customizable	so	it	
can	be	extended	easily	based	on	project	needs	(E1).	
Yes,	 an	 advantage	 of	 the	 prototype	 is	 its	 extensibility	 and	 customizability	 for	
different	needs	(E2).	

Have	 names/definitions	 been	 used	 in	 the	 forms	
been	clear	and	helpful?	

Yes.	Name	and	definitions	are	generic	and	easy	to	follow.	The	current	version	[of	
MLSAC]	is	understandable	enough	for	a	technical	lead	to	finish	the	reengineering	
process.	However,	the	user	interface/user	experience	can	be	enhanced	(E1).	
Yes	(E2)	

Are	 visualizations	 e.g.,	 the	 tree-view	 structure	 is	
understandable	 and	 helpful	 for	 organizing	
processes?		

Yes,	 tree-view	 is	 easy	 to	understand	and	helps	 to	 come	up	with	an	organized	
structure	of	the	plan	but	the	order	and	relation	of	tasks	are	not	very	intuitive.	It	
would	be	nice	if	I	could	change	the	order	of	tasks	easier	(e.g.,	drag	and	drop).	I	
also	noticed	that	the	newly	defined	tasks	or	subtasks	are	always	appended	to	the	
end	of	the	corresponding	branch	and	it	is	not	currently	possible	to	change	the	
order	(E1).	
Yes,	nevertheless,	it	would	be	good	if	the	visualization	was	able	to	show	iterative	
development.	This	notion	could	be	realized	by	showing	a	simple	icon	in	the	tasks	
(E2).		

Is	the	classification	of	method	fragments	based	on	
the	migration	types	is	correct?	

Yes	(E1)	
Yes,	 the	 flexibility	of	 the	 framework	allows	modifying	 the	 classification	of	 the	
method	fragments	(E2).	
	

Ta
ilo
ra
bi
lit
y	

Does	 MLSAC	 provide	 sufficient	 support	 of	
necessary	parameters	for	process	tailoring?		

Yes,	because	the	prototype	provides	customization	support	if	required.	However,	
it	would	be	nice	if	the	user	could	have	access	to	a	list	of	suggestive	tasks	classified	
under	different	domains	like	Mobile	cloud,	etc.	(E1).		
No,	a	hybrid	process	is	hard	to	support	by	the	current	prototype	(for	example,	
both	types	I	and	V)	and	cannot	be	easily	defined	by	the	current	version.	As	such,	
users	 need	 to	 choose	 a	 migration	 type	 that	 is	 conceptually	 similar	 to	 the	
migration	type	(E2).		

Are	the	defined	steps	in	MLSAC	easy	to	perform	for	
process	
creation/configuration/maintenance/sharing?	

Yes,	but	I	would	also	like	to	have	a	“share	with	email	option”	instead	of	exporting	
and	attaching	an	XML	file	separately.	In	addition,	it	would	be	very	nice	if	I	could	
configure	to	share	the	database	of	MLSAC	and	export	data	in	cloud	spaces	used	
by	everyone	who	needs	to	be	exposed	to	the	generated	data	(E1).	
Yes,	but	a	Web-based	version	of	the	prototype	could	be	more	efficacious	(E2).		

Does	MLSAC	reduce	efforts	for	process	tailoring?			 Yes,	but	there	is	a	lack	of	support	for	reusable	templates	to	be	used	as	a	starting	
point	 based	 on	 different	 architecture	 design	 styles	 which	 can	 lead	 to	 better	
efficiency	by	saving	time	and	increasing	user	satisfaction	(E1).			
Yes,	 however,	 it	 would	 be	 great	 if	 the	 prototype	 could	 support	 pre-defined	
templates	 for	different	 legacy	 system	 types	 such	 as	 finance,	 insurance,	 and	e-
commerce	(E2).		

Does	 MLSAC	 provide	 a	 suitable	 environment	 for	
process	 tailoring	 in	a	given	migration	 scenario	 to	
the	cloud?	

Certainly,	there	is	room	for	improvement	but	the	main	features	are	there	(E1).		
Yes,	 in	 comparison	 with	 other	 existing	 tools	 like	 Microsoft	 Project,	 MLSAC	
provides	 a	 pre-built	 rich	 repository	 of	 important	 items	 required	 for	 creating	
migration	strategies.	This	feature	protects	users	from	missing	some	important	
considerations	for	cloud	migration	(E2).		

Does	MLSAC	facilitate	reuse	 in	designing	bespoke	
reengineering	processes?	

Yes	(E1).	
Yes.	The	pre-built-in	repository	is	helpful	(E2).	

Is	 MLSAC	 useful	 for	 sharing	 reengineering	
processes	among	development	teams?	

Yes	(E1).	
As	 a	 suggestion,	 it	 would	 be	 good	 if	 the	 prototype	 could	 be	Web-based	with	
support	 for	 multiple	 user	 support.	 Users	 could	 simultaneously	 work	 on	 the	
method	and	share	it.	With	the	current	version	of	the	prototype,	there	is	a	need	to	
multiple	 saves	 and	 restore	 the	 XML	 file	 of	 a	 method,	 which	 may	 cause	
inconsistency	of	 the	method	content.	Furthermore,	 it	would	be	good	if	MLSAC	
would	 be	 able	 to	 keep	 track	 of	 method	 changes	 such	 as	 adding,	 removing,	
modifying	tasks	during	the	method	lifetime	(E2).	
	

Pr
ag
m
at
ic
	

Do	 you	 believe	 MLSAC	 is	 a	 practical	 tool	 for	 its	
audiences?	 In	 what	 ways	 do	 you	 think	 MLSAC	
would	create	value	for	the	audience?	Please	explain	
why.	

The	method	fragments	are	complete.	Due	to	the	fact	that	the	repository	is	fully	
customizable,	I	believe	it	does	provide	all	necessary	components	and	I	can’t	think	
about	a	major	improvement	(E1).	
The	prototype	is	simple	and	easy	to	use	to	the	point	of	meeting	major	objectives	
of	 a	method	 customization	process;	 however,	 it	 could	be	 further	 enhanced	 to	
include	more	features	and	a	more	professional	look	and	feel.		
The	prototype	system	saves	time	for	creating	migration	strategies	by	proving	a	
pre-built-in	repository.	Visualization	instead	of	documentation	helps	to	a	better	
understanding	of	the	process.	XML	output	can	be	integrated	with	other	tracking	
and	visualization	systems	(E2).	

Evaluation	procedure.	The	E1	and	E2	individually	used	
MLSAC	 to	 derive	 their	 in-house	 methods	 via	 reusing	
MLSAC	metamodel	method	fragments.	In	each	scenario,	
the	users	could	configure	 the	method	 including	phases,	
tasks,	 operationalization	 techniques,	 and	 sequences	 to	
meet	 the	 scenario	 requirements.	 For	 example,	 Figure	8	
shows	 the	 corresponding	 conceptual	 representation	 of	
the	 method	 for	 Deloitte	 Digital	 via	 MLSAC	 method	
fragments.	 During	 the	 interviews,	 we	 used	 a	
questionnaire	 form	 (Appendix	 A)	 to	 capture	 the	 users’	
feedback	in	line	with	the	quality	factors.	The	feedback	of	
users	is	presented	in	Table	5.	
Results.	 The	 overall	 feedback	 from	 the	 users	 was	
positive	along	with	suggestions	for	the	improvements	of	
the	metamodel.	Both	E1	and	E2	mentioned	that	providing	
such	a	rich	repository	of	the	method	fragments	with	the	
possibility	for	an	extension	with	new	method	fragments	
are	 excellent	 features	 of	 MLSAC.	 They	 believed	 that	
MLSAC	 positively	 contributes	 to	 the	 quality	 of	 the	
reengineering	process	as	its	comprehensiveness	feature	
helps	 method	 engineers	 avoid	 missing	 any	 important	
method	 fragments	 for	 inclusion	 into	 a	 reengineering	
project.	 E1	 highlighted	 that	 MLSAC	 is	 helpful	 for	
practitioners	 who	 may	 not	 be	 familiar	 with	 cloud	
migration	concepts.	E2	noted	that	MLSAC	is	a	move	from	
a	 text-based	presentation	 to	 a	well-structured	one	 that	
potentially	 facilitates	 method	 integration	 with	 other	
process	modeling	tools.	Regarding	the	adherence	to	the	
semantic	quality	factor,	both	experts	agreed	that	MLSAC	
covers	 major	 method	 fragments	 that	 are	 incorporated	
into	 a	 typical	 reengineering	 scenario.	 They	 also	
acknowledged	 the	 clarity	 of	 names,	 definitions,	 and	
classifications	used	in	MLSAC.	
The	users	raised	some	deficiencies	 in	MLSAC	regarding	
the	pragmatic	quality	factor,	specifically	to	user	interface	
design.	For	example,	E1	suggested	adding	a	drag	and	drop	
feature	 for	moving	method	 fragments	among	phases	 to	
give	better	 flexibility	 in	working	with	 the	 tool.	Both	E1	
and	 E2,	 jointly,	 requested	 adding	 pre-built	 reusable	
templates	 relevant	 to	 specific	 domains	 such	 as	 mobile	
cloud	computing,	finance,	or	insurance	as	it	seems	MLSAC	
to	 be	 generic.	 Such	 templates	 would	 facilitate	 method	
creation,	 increase	 reusability,	 and	 reduce	 the	 tailoring	
effort	 for	 a	 given	 domain.	 They	 also	 suggested	 adding	
versioning	 control	 allowing	 multiple	 users	 to	
concurrently	work	on	the	same	method	in	a	way	that	if	a	
user	 changes	 the	 method	 content,	 then	 MLSAC	 can	
automatically	integrate	this	change	into	new	a	version	of	

the	method	instance.	Such	concurrent	access	to	a	method	
is	not	 supported	by	MLSAC	at	 the	 current	 stage	of	 this	
research.	 Furthermore,	 E2	 suggested	 adding	 warning	
messages	when	users	define	an	illogical	sequence	among	
method	fragments	that	is	against	common	reengineering	
scenarios,	i.e.	knowledge	source.	The	above	suggestions,	
yet	applicable,	but	are	outside	of	the	main	objectives	of	
the	 current	 research	 and	 are	 noted	 as	 possibilities	 for	
future	works.	

5.4 Findings	
MLSAC’s	metamodel	captures	a	collection	of	typical	and	
reusable	 method	 fragments	 for	 incorporation	 into	
typical	 cloud-specific	 reengineering	 processes.	 The	
method	 fragments	 have	 been	 carefully	 identified	 from	
the	cloud	computing	literature	and	iteratively	evaluated	
and	revised	towards	its	purported	quality	factors	

.	 We	 report	 on	 these	 quality	 factors	 as	 a	 set	 of	
observations.	
Firstly,	 an	 observation	 regarding	 the	 semantic	 quality	
factor	 is	 that	 we	 cannot	 expect	 to	 achieve	 complete	
coverage	 of	 method	 fragments	 since	 every	
reengineering	 process	 may	 have	 its	 own	 detailed	
technical	 method	 fragments.	 However,	 the	 semi-
formalism	 and	 modularity	 of	 the	 metamodel	 allow	
refining	 it	 to	 new	 method	 fragments	 if	 new	
requirements	 arise.	 Apart	 from	 that,	 during	 the	 third	
evaluation	 (Section	 5.3),	 we	 found	 that	 development	
teams	 may	 have	 their	 in-house	 methods	 for	 cloud	
migration	 projects.	 Our	 industry	 partners	 commonly	
agreed	that	MLSAC	can	be	served	as	a	good	checklist	and	
guidelines	 to	 assess	 the	 semantic	 quality	 of	 their	 in-
house	methods.	Furthermore,	an	observation	regarding	
the	evaluation	is	that	MLSAC	has	been	more	capable	of	
representing	 commonalities	 and	 frequent	 concepts	 in	
reengineering	 processes	 rather	 than	 representing	
commonalities	 in	 the	 orders/sequences	 of	 method	
fragments.	We	believe	that	the	definition	of	order	for	the	

method	 fragments	 is	 situation-specific,	 fluid,	 and	
attuned	to	the	context	of	a	project.		
Secondly,	 an	 observation	 related	 to	 the	 tailorability	
quality	 factor	 is	 that	achieving	an	appropriate	 level	of	
abstraction	for	the	development	process	description	is	
a	 challenge.	 This	 is	 related	 to	 the	 granularity	 level	
chosen	 to	 represent	 a	 domain’s	 concepts	 [52].	On	 the	
one	hand,	we	had	a	tension	to	keep	method	fragments	
inclusive,	generic,	and	applicable	to	represent	different	
reengineering	 scenarios.	 On	 the	 other	 hand,	 the	
abstraction,	 inevitably,	 has	 caused	 the	 possibility	 of	
missing	 potential	 fine-granular	 and	 platform-specific	
method	fragments	in	the	repository.	Re-structuring	and	
storing	 an	 existing	 reengineering	 method,	 which	 is	
typically	 presented	 in	 a	 textual	 format,	 into	 MLSAC	
might	 be	 a	 cumbersome	 task	 initially	 as	 discussed	 in	
Section	 5.2.	 However,	 once	 the	 method	 is	 stored,	 its	
tailoring	 and	 maintenance	 will	 be	 more	 effective	 as	
MLSAC	provides	modularity	and	separation	of	concerns	
between	method	design	and	method	operationalization.	

	
Figure	8.	The	representation	of	the	corresponding	reengineering	process	for	Deloitte	Digital	through	reusing	MLSAC	metamodel		

6 Related Work
A	wide	range	of	modeling	languages	has	been	proposed	
in	 the	 cloud	 computing	 literature.	 While	 they	 overlap,	
they	apply	several	diverse	modeling	viewpoints	to	cloud-
based	application	development.	We	used	 the	 taxonomy	
proposed	by	Bergmayr	et	al.	[53]	to	classify	the	areas	of	
concerns	 and	 capabilities	 of	 the	 languages	 and	 to	 also	
compare	 our	 proposed	 framework	 with	 the	 existing	
works.	The	taxonomy	defines	aspects	of	modeling	design	
for	cloud	service	deployment,	elasticity,	cloud	services,	and	
application	architecture.	We	discarded	studies	related	to	
conventional	legacy	application	reengineering	as	they	fail	
to	address	technical	and	non-technical	issues	specific	to	
reengineering	for	the	cloud.	For	example,	reengineering	
methods	proposed	by	Sneed	et	al.	[54],	Bianchi	et	al.	[55],	
Stroulia	et	al.	[56],	to	name	a	few,	are	too	general	and	do	
not	 provide	 method	 fragments	 pertinent	 to	 cloud	
migration,	such	as	the	heterogeneity	of	cloud	services	and	
legacy	 applications,	 multitenancy,	 dynamic	 scalability,	
and	data	security	[3],[51].		
Reengineering	 to	 cloud	 platforms	 shares	 similar	
characteristics	 and	 challenges	 with	 other	 themes	 of	
legacy	 software	 reengineering	 to	 Internet-based	
platforms.	 For	 example,	 in	 SOA	 hyped	 organizations,	
migration	projects	 aim	 to	enable	new	service	 chains	 to	
third	 parties.	 The	 integration	 and	 interoperability	 of	
multiple,	redundant,	and	dispersed	data	with	the	service	
providers	are	certainly	needed.	The	key	contribution	of	
the	 work	 by	 Razavian	 and	 Lago	 [57]	 is	 to	 design	 a	
conceptual	 model	 to	 classify	 tasks	 involved.	 These	
include	 code	 analysis,	 architecture	 recovery,	 service	
design,	 and	 implementation	 to	 integrate	 legacy	
applications	 to	 Web	 Services.	 An	 advantage	 of	 our	
framework	 over	 this	 work	 and	 other	 similar	 SOA	
reengineering	studies,	e.g.,	[57],[58],[59],[60],[61],	is	that	
it	 cates	 for	 cloud-specific	 reengineering	 challenges	 that	
have	 been	 less	 visible	 in	 SOA.	 These	 include	 multi-
tenancy,	 scalability,	 statelessness,	 multiple	 cloud	
interoperability,	 application	 licensing,	 legal	 issues,	 and	
unpredictability	of	cloud	services.	Moreover,	our	MLSAC	
framework	incorporates	task	method	fragments	identify	
incompatibilities	in	design	phase	(Figure	2.b)	and	resolve	
incompatibilities,	 which	 itself	 includes	 sub-tasks	 adapt	
data,	refactor	code,	and	develop	integrator	in	Enable	phase	
(Figure	 2.c)	 into	 addressing	 integration	 and	
interoperability	 between	 on-premise	 software	 systems	
and	 cloud	 services.	 The	 operationalization	 of	 these	
method	fragments	can	be	augmented	by	the	integration	

techniques	 presented	 in	 [57],[58],[59],[60],[61].	 The	
following	further	elaborates	how	our	MLSAC	framework	
is	positioned	in	the	literature	and	the	way	it	supersedes	
notable	related	works.	

6.1 Modeling related to cloud service
deployment
Modeling	 enables	 developers	 to	 represent	 the	 target	
configuration	and	deployment	of	cloud	applications	that	
are	 a	 composition	 of	 cloud	 services.	 From	 this	
perspective,	modeling	 languages	 are	 used	 to	 represent	
the	 location	 of	 services,	 availability	 zones,	 and	 storage	
services.	 Generated	 models	 are	 processed	 by	 tools	 to	
initiate	 service	 provisioning	 of	 computing	 and	 storage	
services	based	on	deployment	topology.	Feature	models	
and	ontologies	 are	 a	means	 to	 represent	 a	 deployment	
environment.	 For	 instance,	 computation	 and	 storage	
services	 can	 be	 captured	 as	 features	 of	 a	 cloud	
environment.	 MULTICLAPP	 [62]	 and	 the	 approach	 of	
Nhan	 et	 al.	 [63]	 adopt	 feature	models	 to	 configure	 the	
target	cloud	environment	by	selecting	the	required	cloud	
services.	 In	 contrast,	MLSAC’s	 objective	 is	 to	 provide	 a	
broad	 and	 general-purpose	 method	 model,	 including	
cloud	 service	 deployment-related	 method	 fragments,	
which	 is	 fundamentally	 at	 a	 higher	 level	 of	 abstraction	
compared	 to	 the	 above	 works.	 These	 works	 can	 be	
viewed	 as	 means	 to	 operationalize	 method	 fragment	
Configure	environment	in	the	Maintain	phase	of	MLSAC’s	
metamodel	(Figure	2.d).	

6.2 Modeling related to elasticity
Elasticity	modeling	provided	by	cloud	platforms	is	used	
to	define	upper	and	 lower	bounds	 for	service	 instances	
and	 elasticity	 rules	 based	 on	which	 new	 resources	 are	
provisioned	 and	 released.	 CloudMIG	 [64]	 provides	 a	
modeling	 environment	 to	 describe	 elasticity	 rules	 for	
hardware	level,	e.g.,	CPU	and	storage.	On	the	other	hand,	
RESERVOIR-ML	[65]	and	StratusML	[66]	offer	a	language	
for	 defining	 elasticity	 rules	 at	 a	 service	 level.	 Unlike	
CloudMIG	[64],	RESERVOIR-ML	[65],	and	StratusML	[66],	
we	 narrowed	 our	 view	 to	 the	 process	 lifecycle	 aspect.	
MLSAC	itself	defines	enable	elasticity	method	fragment	in	
Enable	phase	(Figure	2.c).	However,	 it	does	not	provide	
an	 implementation	 technique	 for	 elasticity,	 whereas	
CloudMIG,	 RESERVOIR-ML,	 and	 StratusML	 define	
techniques	to	realize	it.	As	stated	earlier,	the	realization	
of	 method	 fragments	 goes	 beyond	 our	 metamodeling	
goal.	

6.3 Modeling related to cloud services
The	 modeling	 can	 be	 used	 to	 represent	 QoS	 policies,	
constraints,	 and	 requirements	 such	 as	 scaling	 latency,	
24/7	 availability,	 and	 data	 security	 to	 be	 satisfied	 by	
cloud	services.	For	example,	models	express	terms	such	
as	response	time	<	3	sec	or	Data	storage	is	only	within	the	
Netherlands.	 The	 application	modeling	 in	 this	 group	 of	
studies	 is	 to	 ensure	 if	 service	provisioning	 satisfies	 the	
service	consumer’s	QoS.	There	are	 few	examples	 in	 the	
literature	 supporting	 modeling	 concepts	 for	 capturing	
service	 levels	 using	 either	 a	 structured	 language	 or	
natural	 language.	 GENTL	 [63]	 is	 capable	 of	 describing	
QoS	 constraints.	 Using	 predefined	 stereotypes	 and	
relational	 operators	 such	 as	 =,>,		
<,	 and	 key-value	 pairs,	 MULTICLAPP	 [62]	 allows	
capturing	QoS	constraints.	TOSCA	[66],	on	the	other	hand,	
enables	developers	to	define	policies	for	expressing	QoS	
that	a	cloud	service	can	declare	to	expose.	These	works	
largely	omit	the	method	modeling	perspective,	which	is	
central	to	our	research	project.	

6.4 Modeling related to application architecture
In	 [67],[68]	 metamodels	 have	 principally	 been	
employed	to	ease	legacy	application	code	refactoring	to	
enable	interactions	with	cloud	services	and	to	facilitate	
interoperability	across	multiple	cloud	platforms.	This	is	
based	 on	 feature-oriented	 techniques	 for	 managing	
requirements	variability	and	transformation	techniques	
to	 instantiate	 an	 application	 description	 into	 multiple	
cloud	 platforms.	 The	 MULTICLAPP	 [62]	 proposes	 a	
cloud-based	application	development	in	three	phases.	In	
the	 application	 modeling	 phase,	 UML	 is	 used	 to	
represent	 a	 cloud	 platform-independent	 model	 of	 the	
application.	The	model	is	transformed	to	class	skeletons	
and	 subsequently	 to	 an	 XML-coded	 deployment	 plan	
containing	target	cloud-	information.	Metamodels	have	
also	been	developed	to	address	the	issue	of	application	
interoperability	 over	 multiple	 cloud	 platforms.	 These	
include	CloudML	[69],	C3	 [70],	WSDL	metamodel	 [71],	
Cloud-Agnostic	Middleware	[72],	OCCI	metamodel	[73]	
and	 many	 others.	 For	 instance,	 the	 CloudML	 [69]	
proposes	 an	 extension	 of	 SOAML	 (Service-oriented	
architecture	 Modeling	 Language)	 to	 model	 network	
resources	required	by	applications	from	cloud	services.	
The	CloudML	engine	generates	script	models	using	the	
JClouds	 APIs	where	 they	 define	 necessary	 adapters	 to	
allow	 the	application	deployable	across	multiple	 cloud	
platforms.	 In	 MODAClouds	 [68],	 three	 layers	 of	

application	 models	 are	 defined	 as	 follows:	 (i)	
computation	 independent	 models	 (CIM)	 to	 represent	
non-functional	 requirements,	 (ii)	 cloud	 provider	
independent	 models	 (CPI)	 to	 include	 generic	 cloud	
concepts,	and	(iii)	cloud	provider	model	(CPM)	in	which	
details	of	a	chosen	cloud	platform	are	added	to	models.	
In	contrast	to	the	above	works,	our	metamodel	broadens	
its	view	throughout	the	reengineering	process	instead	of	
code	level,	though	one	can	utilize	the	above	techniques	
during	MLSAC	 instantiation	 to	a	specific	 reengineering	
method.		
Frey	 et	 al.	 [74]	 propose	 using	 OMG’s	 Knowledge	
Discovery	 Metamodel	 to	 extract	 a	 utilization	 model	 of	
legacy	 application	 architecture,	 including	 statistical	
properties	such	as	service	invocation	rates	over	time	and	
submitted	datagram	sizes	per	request.	Such	models	are	
then	 automatically	 transformed	 to	 multiple	 cloud	
platforms.	 The	 work	 by	 Zhou	 et	 al.	 [75]	 is	 to	 identify	
application	components	that	their	deployment	on	cloud	
servers	 makes	 business	 value.	 Its	 five-step	 approach	
creates	 an	 ontology	 of	 the	 application	 architecture	 to	
decompose	 it	 into	 candidate	 services.	 These	 candidate	
services	are	recommended	to	users	for	deployment	and	
execution	 on	 cloud	 platforms.	 In	 another	 work	 by	
Hamdaqa	 et	 al.,	 [76]	 a	 metamodel	 is	 suggested	 to	
represent	 main	 design	 principles,	 configuration	 rules,	
and	 semantic	 interpretation	 related	 to	 a	 cloud-based	
architecture.	 This	 facilitates	 a	 high-level	 architecture	
design	 of	 applications	 independent	 of	 cloud	 platforms.	
We	believe	these	works	could	provide	further	supportive	
techniques	 for	 operationalization	 of	 MLSAC	 method	
fragment	 named	 Design	 cloud	 solution	 under	 Design	
phase	(Figure	2.d).	

7.	Research	threats	
As	demonstrated	 in	 the	current	 literature	 [34],[77]	 the	
design	 and	 evaluation	 of	 metamodels	 for	 software	
research	 threats	against	achieving	 the	expected	quality	
factors	 that	we	set	 in	Section	4.1	and	countermeasures	
we	applied	to	minimize	these	threats.			

7.2.1	Construct	validity	
The	 construct	 validity	 concerns	 the	 adequacy	 of	
measures	 used	 to	 test	 a	 concept	 studied	 [78].	 The	
construct	 validity	 in	 our	 research	 is	 related	 to	 the	
evaluation	of	MLSAC	framework	adherence	to	the	quality	
factors	 and	 if	 these	 factors	 have	 been	 clearly	 defined	
(Section	5).	For	example,	the	user	evaluation	in	Section	

5.3	was	based	on	the	questionnaire	form	(Appendix	A).	A	
noticeable	 issue	 related	 to	 construct	 validity	 is	 if	 the	
questionnaire	 is	 understandable	 and	 unambiguous	 for	
the	 users	 to	 evaluate	MLSAC.	We	 have	minimized	 this	
threat	 by	 designing	 questions	 that	 originated	 from	 the	
literature	 on	 cloud	migration	 and	method	 engineering	
and	selecting	qualified	users	with	hands-on	experience	in	
legacy	 application	 reengineering	 cloud	 platforms	 to	
evaluate	the	framework	(Section	5.3).	
	
7.2.2	Internal	validity	
Internal	 validity	 concerns	 situations	 that	 may	 have	
affected	 the	 research	 outcome,	 but	 the	 researcher	 had	
not	been	aware	of	[78].	Firstly,	concerning	the	semantic	
quality	 factor,	MLSAC	 development	 has	 been	 based	 on	
the	 collected	 results	 from	 the	 large	 number	 of	 studies	
published	on	the	application	reengineering	to	the	cloud	
where	each	 study	 could	have	 its	 cloud-specific	method	
fragments	[3].	Our	metamodeling	endeavour	through	use	
of	a	rigorous	procedure	as	discussed	in	Section	4.2	is	still	
circumscribed	with	the	risk	of	subjective	interpretation	
of	 the	 authors	 for	 the	 inclusion,	 exclusion,	 and	
classification	 of	 method	 fragments	 to	 derive	 the	
metamodel.	To	alleviate	an	imperfect	analysis,	we	sought	
the	 active	 involvement	 of	 domain	 experts	 during	 the	
iterative	 MLSAC	 development	 and	 evaluations	 to	
enhance	 our	 understanding	 and	 assumptions	 about	
reengineering	processes.		
Secondly,	 as	 for	 the	 tailorability	 quality	 factor,	 the	
evaluation	in	Section	5.3	might	have	been	undergone	by	
the	 inferential	 capabilities	 of	 users	 working	 with	 the	
prototype	 system.	 In	 addition,	 bias	 might	 have	 been	
introduced	in	the	evaluation	results	due	to	involvement	
of	one	of	the	authors	in	assisting	the	users	in	conducting	
the	MLSAC	evaluation.	With	these	concerns	in	mind,	we	
have	tried	our	best	to	identify	qualified	experts	with	real-
world	 experience	 in	 cloud	 migration	 to	 carry	 out	 the	
framework	evaluation.	As	the	users	have	been	involved	
in	multiple	cloud	migration	projects	and	we	have	double-
checked	with	them	the	accuracy	of	evaluation	results,	we	
believe	the	likeliness	of	bias	is	negligible.		

7.2.3	External	validity	
External	 validity	 threats	 relate	 to	 the	 extent	 to	 which	
research	 outcomes	 can	 be	 generalized	 [78].	 Regarding	
the	semantic	quality	factor,	our	metamodeling	effort	has	
tended	 to	 capture	 commonly	 used	 method	 fragments	
grounded	might	 be	 some	 less	 commonly	 cited	method	

fragments	that	are	important	but	not	included	in	MLSAC.	
We	 do	 not	 claim	 that	 MLSAC	 can	 represent	 the	
reengineering	methods	for	all	possible	scenarios.		
Other	than	that,	there	is	no	claim	about	the	inclusivity	of	
MLSAC’s	 procedure	 for	 different	 scenarios	 of	 method	
tailoring.	The	evaluation	findings	summarised	in	Table	5	
are	essentially	based	on	user	opinions.	This	may	limit	the	
generalizability	 of	 the	 MLSAC	 in	 adhering	 to	 the	
tailorability	 quality	 factor	 if	 it	 is	 aimed	 to	 be	 used	 in	
further	 case	 studies	 of	 reengineering	 scenarios.	
However,	we	ensured	that	the	tailoring	procedure	logic	
is	platform-independent,	and	it	can	be	extended	to	new	
steps.	 Finally,	 an	 important	 limitation	 to	 the	
generalizability	 of	 the	 pragmatic	 quality	 is	 originated	
from	the	fact	that	we	have	evaluated	MLSAC	based	on	our	
observations,	 the	 analysis	 of	 the	 existing	methods,	 and	
opinions	from	two	domain	experts.	We	could	attain	more	
confidence	in	adherence	to	the	pragmatic	quality	factor	
by	evaluating	MLSAC	in	more	and	larger	cross-sectional	
backgrounds.”	

8 Summary and Future Work
Using	 the	DSR	 approach,	we	 presented	MLSAC,	 a	 novel	
framework	to	create,	maintain,	share,	and	tailor	method	
fits	for	migrating	legacy	applications	to	cloud	platforms	in	
actual	 practice.	 MLSAC	 provides	 an	 extensible	 set	 of	
method	 fragments,	 derived	 from	 the	 literature,	 in	 a	
fashion	that	they	complemented	each	other	to	address	the	
most	 critical	 aspects	 of	 cloud	migration	 processes.	 The	
three-step	evaluation	of	MLSAC	shows	its	practical	value.	
We	 do	 not	 anticipate	 major	 refinements	 to	 the	
methodological	approach	to	design	and	evaluate	MLSAC;	
however,	 we	 deem	 several	 future	 opportunities	 for	
augmenting	MLSAC	according	to	the	quality	factors.		
Firstly,	the	tailorability	of	MLSAC	can	be	improved	by	the	
ecosystem	 encompassing	 it.	 This	 includes	 a	 new	 set	 of	
guidelines	 to	 employ	 the	 metamodel.	 A	 further	
improvement	 is	 to	 define	 the	 development	 roles	 and	
responsibilities	 associated	 with	 the	 method	 fragments	
allowing	method	 engineers	 to	 track	 the	progress	 of	 the	
reengineering	process.	
Secondly,	to	increase	the	level	of	method	reusability,	we	
plan	 to	 enable	 method	 engineers	 to	 explore	 MLSAC	
repository	 to	 identify	 family-related	 method	 fragments	
through	 advanced	 visualization	 functions	 such	 as	
querying	and	filtering.	Reusing	a	synergistic	combination	
of	individual	methods	or	collection	of	method	fragments	

can	serve	as	a	basis	for	creating	new	hybrid	reengineering	
methods.	For	example,	a	reengineering	method	might	be	
particularly	 designed	 to	 organize	 migrating	 legacy	
application	 database	 layers	 to	 Microsoft	 Azure	 SQL	
database.	 On	 the	 other	 hand,	 other	 methods	 might	 be	
suitable	to	be	accommodated	for	deploying	an	application	
stack	on	AWS.	Method	fragments	from	both	methods	can	
be	 combined	 to	 create	 a	 new	 hybrid	 reengineering	
method	 to	 complement	 each	 other	 and	 address	 the	
overall	reengineering	process.	
Fourthly,	the	evaluation	of	a	newly	created	method	is	the	
last	stage	of	a	method	tailoring	effort	[34].	This	is	not	yet	
supported	by	our	framework.	It	is	a	promising	direction	
to	provide	techniques	for	semi-automated	reasoning	on	a	
method	 validity.	 For	 example,	 this	 feature	 can	 uncover	
inconsistencies	between	selected	and	combined	method	
fragments	and	identify	missing	important	ones	according	
to	the	requirements	of	a	reengineering	scenario.	A	higher	
level	 of	 automated	 validation	 can	 be	 achieved	 by	
providing	 consistent	management	 rules	and	constraints	
in	MLSAC.		
Finally,	in	line	with	the	pragmatic	quality	factor,	MLSAC	is	
currently	limited	to	the	tree	view	control,	i.e.,	a	common	
user	 interface	 control	 to	 visualize	 complex	 data	
structures,	 to	 represent	 the	 metamodel	 and	 method	
instances.	 It	may	raise	difficulties	 in	method	design	and	
visualization,	 particularly,	 for	 specifying	 the	 sequences	
among	method	elements	(Figure	4.c).	We	plan	to	add	new	
controls	 such	 as	 box,	 connector,	 and	 visual	 concrete	
syntax	to	enhance	the	usability	of	the	framework.	

ACKNOWLEDGMENTS
We	 would	 like	 to	 thank	 our	 industry	 partners	 who	
provided	detailed	and	constructive	feedback	in	different	
stages	 of	 this	 research.	 We	 would	 like	 to	 express	 our	
special	thanks	to	anonymous	reviewers	whose	comments	
improved	this	paper.	Finally,	the	work	of	Professor	John	
Grundy	was	supported	by	the	ARC	Laureate	Fellowship	
under	Grant	FL190100035.	
Appendix	A	
The	 list	 of	 questions	 that	 domain	 experts	 were	 asked	
about	MLSAC	during	the	evaluation.	This	was	organized	
into	six	steps:	
Step	 i.	 Evaluate	 the	 quality	 of	 MLSAC	 repository	
containing	 relevant	 domain	 elements	 for	 representing	
the	current	in-house	models.	

Step	ii.	Evaluate	the	definitions	and	clarity	of	the	method	
fragments.	
Step	 iii.	 Click	 the	 Create	 New	 Method	 and	 follow	 the	
wizard	steps	to	create	the	in-house	method.	
Step	 iv.	 Once	 the	 base	 method	 is	 created	 by	 MLSAC,	
browse,	 and	 analyze	 to	 check	 if	 it	 covers	 relevant	
fragments	 that	would	 be	 needed	 for	 the	 incorporation	
into	the	defined	scenario.		
Step	 v.	 Check	 if	 the	 definition	 of	 method	 fragments,	
representation,	and	symbols	are	understandable.	
Step	 vi.	 Evaluate	 the	 simplicity	 of	 MLSAC	 to	 tailor	 the	
created	models.	Try	to	modify	the	method	by:	
Step	vii.i.	Adding	new	method	fragments	(e.g.,	phase,	task,	
and	work-product).	
Step	 vi.ii.	 Modifying	 the	 existing	 definitions	 of	 method	
fragments.	
Step	 vi.iii.	 Defining	 realization	 mechanisms/techniques	
and	assigning	them	to	method	fragments.	
Step	 vi.iv.	 Removing	 method	 fragments	 that	 are	 not	
necessary	for	inclusion	in	the	method	if	needed.	
Step	 vi.v.	 Defining	 relationships	 among	 method	
fragments	as	required.	
	
 	

REFERENCES	
[1] M. Fahmideh, F. Daneshgar, G. Beydoun, and F. Rabhi,

"Challenges in migrating legacy software systems to the
cloud: an empirical study," Information Systems, vol. 67,

pp. 100-113, 2017.
[2] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S.

R. Vergilio, and A. J. E. S. E. Egyed, "Reengineering
legacy applications into software product lines: a
systematic mapping," vol. 22, no. 6, pp. 2972-3016, 2017.

[3] M. Fahmideh, F. Daneshgar, G. Low, and G. Beydoun,
"Cloud migration process—A survey, evaluation
framework, and open challenges," Journal of Systems and
Software, vol. 120, pp. 31-69, 2016.

[4] M. Shuaib, A. Samad, S. Alam, and S. T. Siddiqui, "Why
adopting cloud is still a challenge?—A review on issues
and challenges for cloud migration in organizations," in
Ambient Communications and Computer Systems:
Springer, 2019, pp. 387-399.

[5] F. De Angelis and A. Polini, "Evaluation of Cloud
Portability of legacy applications," in 2018 IEEE/ACM
International Conference on Utility and Cloud
Computing Companion (UCC Companion), 2018: IEEE,
pp. 232-237.

[6] A. Menychtas et al., "ARTIST Methodology and
Framework: A novel approach for the migration of legacy
software on the Cloud," in Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2013
15th International Symposium on, 2013: IEEE, pp. 424-
431.

[7] M. K. Pratt, "Why cloud migration failures happen and
how to prevent them," in Availabe at:
https://searchcio.techtarget.com/feature/Cloud-
migration-failures-and-how-to-prevent-them (last access
2020), TechTarget Ed., 2020.

[8] M. Bayern, "Organizations fail to implement basic cloud
security tools," TechrePublic, vol. Available at:
https://www.techrepublic.com/article/organizations-fail-

to-implement-basic-cloud-security-tools/ (last access
2020), 2019.

[9] J. Wilson, "User Attitudes about Securing Hybrid- and
Multi-Cloud Environments," IHS Markit Technology-
White Paper, no. Available at:
https://www.fortinet.com/content/dam/fortinet/assets/ana
lyst-reports/ar-2019-ihsm-fortinet-wp-q2.pdf (last access
2020), 2020.

[10] M. Fahmideh, F. Daneshgar, and F. Rabhi, "Cloud
migration: methodologies: preliminary findings," in
European Conference on Service-Oriented and Cloud
Computing–CloudWays 2016 Workshop, 2016d.

[11] R. Rai, G. Sahoo, and S. J. S. Mehfuz, "Exploring the
factors influencing the cloud computing adoption: a
systematic study on cloud migration," vol. 4, no. 1, p. 197,
2015.

[12] Y. Bounagui, H. Hafiddi, and A. Mezrioui,

"Requirements definition for a holistic approach of cloud

computing governance," in 2015 IEEE/ACS 12th
International Conference of Computer Systems and
Applications (AICCSA), 2015: IEEE, pp. 1-8.

[13] M. Fahmideh, F. Daneshgar, F. Rabhi, and G. Beydoun,
"A generic cloud migration process model," European
Journal of Information Systems, vol. 28, no. 3, pp. 233-
255, 2019.

[14] M. Fahmideh, Low Graham, Ghassan Beydoun,
"Conceptualising Cloud Migration Process," Available
at:
https://arxiv.org/ftp/arxiv/papers/2109/2109.01757.pdf,
vol. 1, p. 0, 2016.

[15] A. Alkhalil, R. Sahandi, and D. J. I. J. o. B. I. S. John, "A

decision process model to support migration to cloud
computing," vol. 24, no. 1, pp. 102-126, 2017.

[16] S. Beydeda, M. Book, and V. Gruhn, Model-driven
software development. Springer, 2005.

[17] M. Fahmideh and R. Ramsin, "Strategies for Improving
MDA-Based Development Processes," in Intelligent
Systems, Modelling and Simulation (ISMS), 2010
International Conference on, 2010: IEEE, pp. 152-157.

[18] C. Gonzalez-Perez and B. Henderson-Sellers,
Metamodelling for software engineering. Wiley
Publishing, 2008.

[19] B. Henderson-Sellers, "Bridging metamodels and
ontologies in software engineering," Journal of Systems
and Software, vol. 84, no. 2, pp. 301-313, 2011.

[20] M. Brambilla, Jordi Cabot, and Manuel Wimmer,
"Model-driven software engineering in practice," vol. 3,

no. 1, pp. 1-207, 2017.
[21] M. Cervera, M. Albert, V. Torres, and V. J. I. S.

Pelechano, "On the usefulness and ease of use of a model-
driven Method Engineering approach," vol. 50, pp. 36-50,
2015.

[22] H. Moradi, B. Zamani, and K. J. F. G. C. S. Zamanifar,
"CaaSSET: A Framework for Model-Driven
Development of Context as a Service," vol. 105, pp. 61-
95, 2020.

[23] R. Hebig, D. E. Khelladi, and R. Bendraou, "Approaches
to co-evolution of metamodels and models: A survey,"
IEEE Transactions on Software Engineering, vol. 43, no.
5, pp. 396-414, 2017.

[24] W. L. Hürsch and C. V. Lopes, "Separation of concerns,"
1995.

[25] B. Fitzgerald, G. Hartnett, and K. Conboy, "Customising
agile methods to software practices at Intel Shannon,"

European Journal of Information Systems, vol. 15, no. 2,
pp. 200-213, 2006.

[26] F. Karlsson and P. J. Ågerfalk, "Method configuration:
adapting to situational characteristics while creating
reusable assets," Information and software technology,
vol. 46, no. 9, pp. 619-633, 2004, doi:
http://dx.doi.org/10.1016/j.infsof.2003.12.004.

[27] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S.

Chatterjee, "A design science research methodology for

information systems research," Journal of management
information systems, vol. 24, no. 3, pp. 45-77, 2007.

[28] S. Gregor and A. R. Hevner, "Positioning and presenting
design science research for maximum impact," MIS
quarterly, vol. 37, no. 2, pp. 337-356, 2013.

[29] P. Church, H. Mueller, C. Ryan, S. V. Gogouvitis, A.
Goscinski, and Z. J. J. o. C. C. Tari, "Migration of a
SCADA system to IaaS clouds–a case study," vol. 6, no.
1, p. 11, 2017.

[30] M. Fahmideh, A. Ahmad, A. Behnaz, J. Grundy, and W.
Susilo, "Software Engineering for Internet of Things: The
Practitioner's Perspective," IEEE Transactions on
Software Engineering, 2021.

[31] M. Fahmideh and D. Zowghi, "An exploration of IoT
platform development," Information Systems, vol. 87, p.
101409, 2020.

[32] C. Atkinson and T. Kuhne, "Model-driven development:
a metamodeling foundation," Software, IEEE, vol. 20, no.
5, pp. 36-41, 2003.

[33] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained,
"The model driven architecture: practice and promise,"

ed: Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 2003.

[34] B. Henderson-Sellers and J. Ralyté, "Situational Method
Engineering: State-of-the-Art Review," J. UCS, vol. 16,
no. 3, pp. 424-478, 2010.

[35] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack,
"Model migration with epsilon flock," in International
Conference on Theory and Practice of Model
Transformations, 2010: Springer, pp. 184-198.

[36] O. m. group, "Software process engineering metamodel
specification," Adopted Specification of the Object
Management Group, Inc; Version, vol. 1, 2006.

[37] T. Mens and P. Van Gorp, "A taxonomy of model
transformation," Electronic Notes in Theoretical
Computer Science, vol. 152, pp. 125-142, 2006.

[38] S. Sendall and W. Kozaczynski, "Model transformation
the heart and soul of model-driven software

development," 2003.
[39] O. I. Lindland, G. Sindre, and A. Solvberg,

"Understanding quality in conceptual modeling,"
Software, IEEE, vol. 11, no. 2, pp. 42-49, 1994.

[40] M. Fahmideh, P. Jamshidi, and F. Shams, "A procedure
for extracting software development process patterns," in
Computer Modeling and Simulation (EMS), 2010 Fourth
UKSim European Symposium on, 2010: IEEE, pp. 75-83.

[41] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman, "Systematic literature reviews
in software engineering – A systematic literature review,"
Information and software technology, vol. 51, no. 1, pp.
7-15, 2009, doi:
http://dx.doi.org/10.1016/j.infsof.2008.09.009.

[42] T. Greenhalgh and R. Taylor, "How to read a paper:
Papers that go beyond numbers (qualitative research),"

BMj, vol. 315, no. 7110, pp. 740-743, 1997.

[43] M. Fahmideh, "Auxiliary material- the list of studies
related to reengineering legacy applications to cloud,"
Available at:
https://www.researchgate.net/publication/353287595_A
uxiliary_material-
_the_list_of_studies_related_to_reengineering_legacy_a
pplications_to_cloud, 2021.

[44] G. Wachsmuth, "Metamodel adaptation and model co-
adaptation," in European Conference on Object-Oriented
Programming, 2007: Springer, pp. 600-624.

[45] MLSAC, publicly available at:
https://github.com/MahdiFahmideh/MLSAC. 2019.

[46] M. A. Chauhan and M. A. Babar, "Towards Process

Support for Migrating Applications to Cloud
Computing," in Cloud and Service Computing (CSC),
2012 International Conference on, 22-24 Nov. 2012
2012, pp. 80-87, doi: 10.1109/csc.2012.20.

[47] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, "A
review of auto-scaling techniques for elastic applications
in cloud environments," Journal of Grid Computing, vol.
12, no. 4, pp. 559-592, 2014.

[48] G. Galante and L. C. E. d. Bona, "A survey on cloud
computing elasticity," in Utility and Cloud Computing
(UCC), 2012 IEEE Fifth International Conference on,
2012: IEEE, pp. 263-270.

[49] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano,
"Auto-scaling techniques for elastic applications in cloud
environments," Department of Computer Architecture
and Technology, University of Basque Country, Tech.
Rep. EHU-KAT-IK-09-12, 2012.

[50] O. C. Robinson, "Sampling in interview-based qualitative
research: A theoretical and practical guide," Qualitative
research in psychology, vol. 11, no. 1, pp. 25-41, 2014.

[51] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch,
"How to adapt applications for the Cloud environment,"
(in English), Computing, vol. 95, no. 6, pp. 493-535,
2013/06/01 2013, doi: 10.1007/s00607-012-0248-2.

[52] B. Henderson-Sellers and C. Gonzalez-Perez,

"Granularity in conceptual modelling: application to
metamodels," in Conceptual Modeling–ER 2010:
Springer, 2010, pp. 219-232.

[53] A. Bergmayr et al., "A systematic review of cloud
modeling languages," ACM Computing Surveys (CSUR),
vol. 51, no. 1, p. 22, 2018.

[54] H. M. Sneed, "Planning the reengineering of legacy
systems," Software, IEEE, vol. 12, no. 1, pp. 24-34, 1995,

doi: 10.1109/52.363168.
[55] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio,

"Iterative reengineering of legacy systems," Software
Engineering, IEEE Transactions on, vol. 29, no. 3, pp.
225-241, 2003, doi: 10.1109/tse.2003.1183932.

[56] E. Stroulia, M. El-Ramly, and P. Sorenson, "From legacy
to web through interaction modeling," in Software
Maintenance, 2002. Proceedings. International
Conference on, 2002: IEEE, pp. 320-329.

[57] M. Razavian and P. Lago, "A lean and mean strategy: a
data migration industrial study," Journal of Software:
Evolution and Process, pp. n/a-n/a, 2013, doi:
10.1002/smr.1613.

[58] A. Umar and A. Zordan, "Reengineering for service

oriented architectures: A strategic decision model for
integration versus migration," Journal of Systems and
Software, vol. 82, no. 3, pp. 448-462, 2009, doi:
http://dx.doi.org/10.1016/j.jss.2008.07.047.

[59] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J.
Hage, "A method engineering based legacy to SOA
migration method," in Software Maintenance (ICSM),
2011 27th IEEE International Conference on, 25-30 Sept.

2011 2011, pp. 163-172, doi:
10.1109/icsm.2011.6080783.

[60] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and
J. Hage, "How do professionals perceive legacy systems
and software modernization?," in Proceedings of the 36th
International Conference on Software Engineering, 2014,
pp. 36-47.

[61] K. A. Nasr, H. G. Gross, and A. van Deursen, "Realizing

service migration in industry—lessons learned," Journal
of Software: Evolution and Process, vol. 25, no. 6, pp.
639-661, 2013.

[62] J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, "A
UML Profile for modeling multicloud applications," in
European Conference on Service-Oriented and Cloud
Computing, 2013: Springer, pp. 180-187.

[63] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F.

Leymann, "A GENTL approach for cloud application
topologies," in European Conference on Service-
Oriented and Cloud Computing, 2014: Springer, pp. 148-
159.

[64] S. Frey and W. Hasselbring, "The cloudmig approach:
Model-based migration of software systems to cloud-
optimized applications," International Journal on
Advances in Software, vol. 4, no. 3 and 4, pp. 342-353,
2011.

[65] B. Rochwerger et al., "The reservoir model and
architecture for open federated cloud computing," IBM
Journal of Research and Development, vol. 53, no. 4, pp.
4: 1-4: 11, 2009.

[66] O. Standard, "Topology and orchestration specification
for cloud applications version 1.0," ed: Technical report,
OASIS Standard, 2013.

[67] J. Wettinger et al., "Integrating Configuration

Management with Model-driven Cloud Management
based on TOSCA," in CLOSER, 2013, pp. 437-446.

[68] D. Ardagna et al., "MODAClouds: a model-driven
approach for the design and execution of applications on
multiple clouds," presented at the Proceedings of the 4th
International Workshop on Modeling in Software
Engineering, Zurich, Switzerland, 2012.

[69] E. Brandtzæg, S. Mosser, and P. Mohagheghi, "Towards

CloudML, a model-based approach to provision resources

in the clouds," in 8th European Conference on Modelling
Foundations and Applications (ECMFA), 2012, pp. 18-
27.

[70] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F.
Leymann, and R. Konrad, "Compliant cloud computing

(c3): Architecture and language support for user-driven
compliance management in clouds," in Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on,
2010: IEEE, pp. 244-251.

[71] R. Sharma and M. Sood, "A model driven approach to
cloud saas interoperability," International Journal of
Computer Applications, vol. 30, no. 8, pp. 1-8, 2011.

[72] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L.

C. Anderson, "Toward cloud-agnostic middlewares," in
Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems
languages and applications, 2009: ACM, pp. 619-626.

[73] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S.
Tata, "A precise metamodel for open cloud computing
interface," in Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on, 2015: IEEE, pp. 852-859.

[74] S. Frey and W. Hasselbring, "Model-based migration of
legacy software systems to scalable and resource-efficient
cloud-based applications: The cloudmig approach," in
CLOUD COMPUTING 2010, The First International
Conference on Cloud Computing, GRIDs, and
Virtualization, 2010, pp. 155-158.

[75] H. Zhou, H. Yang, and A. Hugill, "An ontology-based
approach to reengineering enterprise software for cloud

computing," in Computer Software and Applications
Conference (COMPSAC), 2010 IEEE 34th Annual, 2010:
IEEE, pp. 383-388.

[76] M. Hamdaqa, Livogiannis, T., Tahvildari, L., "A
Reference Model for Developing Cloud Applications,"
2011: In: Proceedings of CLOSER 2011, pp. 98--103.

[77] T. Dyba, N. B. Moe, and E. Arisholm, "Measuring
software methodology usage: challenges of
conceptualization and operationalization," in 2005
International Symposium on Empirical Software
Engineering, 2005, 2005: IEEE, p. 11 pp.

[78] C. Wohlin, M. Höst, and K. Henningsson, "Empirical
research methods in software engineering," in Empirical
methods and studies in software engineering: Springer,
2003, pp. 7-23.

	
	

