
A Systematic Review of Scheduling Approaches on
Multi-tenancy Cloud Platforms

Jia Rua,∗, Yun Yanga, John Grundyb, Jacky Keungc, Li Haod

aSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne,
Australia 3122

bFaculty of Information Technology, Monash University, Melbourne, Australia 3145
cDepartment of Computer Science, City University of Hong Kong, Hong Kong SAR

dDepartment of Business Intelligence, Allianz Australia Insurance Limited, Sydney, Australia 2000

Abstract

Context: Scheduling in cloud is complicated as a result of multi-tenancy. Diverse ten-
ants have different requirements, including service functions, response time, QoS and
throughput. Diverse tenants require different scheduling capabilities, resource consump-
tion and competition. Multi-tenancy scheduling approaches have been developed for
different service models, such as Software as a Service (SaaS), Platform as a service
(PaaS), Infrastructure as a Service (IaaS), and Database as a Service (DBaaS).
Objective: In this paper, we survey the current landscape of multi-tenancy scheduling,
laying out the challenges and complexity of software engineering where multi-tenancy
issues are involved. This study emphasises scheduling policies, cloud provisioning and
deployment with regards to multi-tenancy issues. We conduct a systematic literature
review of research studies related to multi-tenancy scheduling approaches on cloud plat-
forms determine the primary scheduling approaches currently used and the challenges
for addressing key multi-tenancy scheduling issues.
Method: We adopted a systematic literature review method to search and review many
major journal and conference papers on four major online electronic databases, which
address our four predefined research questions. Defining inclusion and exclusion criteria
was the initial step before extracting data from the selected papers and deriving answers
addressing our inquiries.
Results: Finally, 53 papers were selected, of which 62 approaches were identified. Most
of these methods are developed without cloud layers’ limitation (43.40%) and on SaaS,
most of scheduling approaches are oriented to framework design (43.75%).
Conclusion: The results have demonstrated most of multi-tenancy scheduling solutions
can work at any delivery layer. With the difference of tenants’ requirements and func-
tionalities, the choice of cloud service delivery models is changed. Based on our study,
designing a multi-tenancy scheduling framework should consider the following 3 factors:
computing, QoS and storage resource. One of the potential research foci of multi-tenancy
scheduling approaches is on GPU scheduling.

Keywords: Systematic review, Survey, Cloud computing, Multi-tenancy, Scheduling

Preprint submitted to Information and Software Technology October 29, 2020

1. Introduction

Cloud computing enables resource sharing. However, different kinds of resources
reflect different levels of dynamic behaviours and a diversity of user demands. This
makes resource management very complex [1]. To make full use of the cloud’s scalability
and elasticity for cloud service providers, multi-tenancy is a key cloud characteristic
that enables providers to share the same service instance, computational resources and
storage among different tenants [2, 3]. In a multi-tenancy model, data and resources
are deployed in the same cloud and are controlled and distinguished via labelling. This
allows for the unique identification of resources owned by individual users [4]. Compared
with a multi-user model, multi-tenancy customises a single instance based on multiple
requirements of different tenants, as opposed to the multi-instance model, wherein each
tenant has their own virtualised instance of the application [2, 5, 6]

More and more Application Service Providers (ASPs) and enterprises, especially
Small to Medium sized Enterprises (SME), are using the SaaS delivery model. Databases
hosted on the SaaS environment provide infrastructure and technologies that can support
the instances running on applications with the same tables or schemes. Therefore shared
hardware and software infrastructures can reduce the cost of deployment and operations.
Multi-tenancy is a widely used technology in resource virtualisation and effectively help
scale down costs [7, 8]. Multi-tenancy can scale up and down computing resources, as
well as allocate resources according to the actual usage of the system/application, which
is most widely used for SaaS applications. The scheduling strategies used in the multi-
tenancy cloud take on a highlighted importance as they directly influence the runtime
performance of software applications. Eventually, scheduling policies should be able to
effectively improve the number of completed transactions (throughput), increase profit of
service party, reduce completion time, reduce cost which is undertaken by service party
when accepting applications and guarantee consistent Quality of Service (QoS) demands
of clients [9].

The aim of conducting this systematic review is to discover the main methods of
multi-tenancy scheduling and the previous challenges of multi-tenancy scheduling, as
well as to investigate the current state-of-the-art of multi-tenancy scheduling approaches
on cloud platforms and further research gaps and challenges. The main contributions of
this work are summarised as Where , How , and What :

• Where: to improve the system performance, which layer of the service model or
which component is used to schedule tenants, data and instances to the resource
pools?

• How: to improve the system performance or QoS, how do we modify scheduling
approaches or resource allocation in the multi-tenant based cloud?

• What: are the limitations and weaknesses of the current scheduling methods in
multi-tenant based cloud computing?

∗Corresponding author
Email addresses: jiaruweiwei@gmail.com (Jia Ru), yyang@swin.edu.au (Yun Yang),

john.grundy@monash.edu (John Grundy), Jacky.Keung@cityu.edu.hk (Jacky Keung),
liucoolhao@gmail.com (Li Hao)

2

We systematically collected and reviewed domain-relevant papers published between
2009 to 2018. We identified several research questions for this systematic review that
allow us to categorise existing research efforts to date. We restrict our attention to
evidence-based guidelines that have appeared in scholarly publications [10].

The rest of this paper is organised as follows: Section 2 introduces the background and
the overview of related work for this study. Section 3 briefly describes the methodology
used to conduct this systematic review, including the defined research questions. Section
4 presents the results from the systematic review followed by a discussion in Section 5.
Section 6 discusses the threats to validity in this study. Finally, Section 7 concludes our
work.

2. Background

2.1. Multi-tenancy Implications

Multi-tenancy is a specific characteristic of cloud applications that can change the un-
derlying economics of applications through sharing infrastructure, platform and services.
It allows each cloud application or “tenant”, each with their own customers, processes
and data, to obtain a single application instance [11]. A definition of multi-tenancy [12]
is: “Multi-tenancy refers to the architectural principle, where a single instance of the soft-
ware runs on a SaaS vendor’s servers, serving multiple client organisations (tenants).
Multi-tenancy is contrasted to a multi-instance architecture where separate software in-
stances (or hardware and software systems) are set up for different client organisations.”

2.2. Multi-tenancy Aware Cloud Applications

Multi-tenancy aware applications can be defined as follows, they are suggested by
Bezemer et al. [5, 13]: “A multi-tenant application lets tenants (users) share the
same hardware resources, by offering them one shared application and database instance,
while allowing them to configure the application to fit their needs as if it runs on a
dedicated environment.”

A multi-tenancy application looks and behaves similar to a single-tenant application,
but the key difference is that multiple tenants can share the same cloud application ser-
vices, platform and infrastructure. To achieve multi-tenancy awareness, sophisticated
multi-tenancy support is required, which needs to be incorporated into the entire de-
velopment and maintenance lifecycle of such applications [1, 14]. This support can be
classified into two phases: development phase and deployment phase [14]. In the devel-
opment phase, the multi-tenancy support is realised through high-degree configuration
for different tenants. In the deployment phase, the service instances are introduced and
deployed in the target cloud infrastructure according to different multi-tenancy require-
ments of the applications [14].

2.3. Overview of Related Reviews

Cloud computing makes it possible to flexibly procure, scale and release computa-
tional resources on demand in response to workload changes. The work in [15] surveys
the landscape of SLA-based cloud research to understand the state of the art and iden-
tify open problems. This work particularly aims at the resource allocation phase of the
SLA life cycle while highlighting implications on other phases. This work contributes to

3

the fundamentals of engineering cloud SLA and their autonomic management, motivat-
ing further research and industry oriented solutions [15]. Results indicate that minimal
number of SLA parameters are accounted for in most studies; heuristics, policies, and
optimisation are the most commonly used techniques for resource allocation; and the
Monitor-Analysis-Plan-Execute (MAPE) architecture style is predominant in autonomic
cloud systems.

In recent years, the valuable knowledge that can be retrieved from petabyte scale
datasets has led to the development of solutions to process information based on parallel
and distributed computing [16]. Apache Hadoop [17] has attracted strong attention due
to its applicability to processing data. The work in [16] provides a systematic literature
review to assess research contributions related to Apache Hadoop, aiming to identify gaps,
provide motivation for new research and to outline collaborations to Apache Hadoop.
Their analysis led to some relevant conclusions: many interesting solutions developed
in the studies were never incorporated into the framework; most publications lacked
sufficient formal documentation of the experiments conducted by authors, hindering their
reproducibility.

In cloud environments, resource allocation is an important issue due to the inherent
uncertainty and dispersion of resources, which is caused by heterogeneity, dynamism,
failures, etc. To provide efficient performance of workloads and applications, resource
management techniques need to be addressed effectively. The work in [18] depicts a broad
methodical literature analysis of autonomic resource management in the area of the cloud
in general and QoS-aware autonomic resource management specifically. This work [18]
helps researchers find the important characteristics of autonomic resource management
and crucial properties of self-management (self-healing, self-configuring, self-optimising,
and self-protecting), and helps to select the most suitable technique for autonomic re-
source management in a specific application along with significant future research direc-
tions. Efficient resource provision which can guarantee the satisfactory cloud services
to the end users, lays the foundation for the success of commercial competition [19].
According to the deployment sequence, the work in [19] tackles the different deployment
phases and the objectives of each phase. In [19], more than 150 articles from recent
years are surveyed and the state-of-the-art algorithms to realise these objectives, e.g.,
cost, service quality and utility, are reviewed. Techniques employed in these algorithms
are categorised and analysed systematically. Results show that almost all algorithms
concentrate on the deployment phase [19].

Multiple scheduling algorithms in cloud environments have been proposed to ensure
that short interactive jobs, large batch jobs and guaranteed-capacity production jobs run-
ning on these frameworks can deliver results quickly while maintaining a high throughput.
However, only a few works have examined the effectiveness of these algorithms. The work
in [20] conducts a systematic literature review of task scheduling algorithms that have
been proposed for big data platforms. The work in [20] analyses the design decisions
of different scheduling models proposed in the literature for Hadoop, Spark, Storm, and
Mesos over the period between 2005 and 2016, and compares the algorithms in terms of
performance, resources utilisation, and failure recovery mechanisms. The work in [20]
identifies 586 studies and reports about different types of scheduling models (dynamic,
constrained, and adaptive) and the main motivations behind them (including data lo-
cality, workload balancing, resources utilisation, and energy efficiency). A discussion of
some open issues and future challenges pertaining to improving the current studies is

4

provided.

3. Method

Figure 1 illustrates the main procedure used for our systematic review. We followed
the standard guidelines proposed by Kitchenham [10] and used a study protocol for our
research. We chose to use a Systematic Literature Review approach, rather than a more
general Systematic Mapping approach, to answer our focused research questions and to
carry our a detailed comparative analysis of discovered approaches. Due to page limits,
a detailed procedure describing the construction of our systematic review is provided
online 1.
	
	
	
	
	
	
	
	
	 	

Define

review

questions

Define

search

terms

Inclusion and exclusion based

on titles, abstracts,

keywords, and

conclusions

Search

databases

Tabulate

data

Eliminate

redundancy

Synthesis

references

using statistical

technology

Search Process &

Data Collection

Inclusion and

Exclusion Criteria

Data Extraction

and Synthesis

Quality

assessment

Figure 1: Systematic review procedure

3.1. Research Questions

Constructing a systematic literature review requires a base set of research questions
that drive the research methodology [10]. Referring to key prior studies [21, 22], we have
identified four key research questions to investigate the approaches used for scheduling
methods on a multi-tenancy cloud platform. We adopt a typical approach - PICOC
criteria proposed by Petticrew et al. [23] to frame ourt systematic review questions. Using
this we formulate our review questions based on 5 attributes: Population, Intervention,
Comparison, Outcome, Context. Consequently, in our systematic review, we considered
these 5 attributes, as shown in Table 1, to construct our research questions.

RQ1: Scheduling on different service models
Multi-tenancy has different meanings in different service models of the cloud com-

puting. For instance, on the PaaS model (layer), applications are deployed on the same
server to improve resource utilisation, however, on the SaaS layer, tasks are dispatched
to multiple copies (instances) of the same software in a datacentre [24]. RQ1: How
can we achieve multi-tenancy scheduling by using different service delivery
models and layers?

RQ2: Scheduling with different objectives

1The detailed procedure used in constructing this review can be found in Section 1 of Part A at
https://github.com/Materials19/paper/blob/master/istslr2020online.pdf

5

Table 1: Review questions framed by PICOC criteria

Population Multi-tenancy scheduling approaches in the cloud
Intervention Methodology/tool/technology for scheduling on multi-

tenancy clouds
Comparison The difference of scheduling approaches, especially

showing evolution and improvement on traditional
scheduling methods on cloud computing

Outcome The effectiveness of scheduling approaches and imple-
mentation on multi-tenancy clouds

Context Within the research domain of multi-tenancy clouds’
scheduling, especially studies including experimental re-
sults

Services with customisable non-functional qualities are used to address the require-
ments of tenants, such as response time, throughput, security, availability and the re-
sulting price of a service. For example, GPUs have become prominent, both in high
performance computing and in many cloud services, for many big data analysis tasks.
Applications running on a GPU are different from those on a CPU. Thus, one can see
how the issue of maximising GPU utilisation is one which is essential to enhancing per-
formance and applicability. Due to the characteristics of sharing resources with multi-
tenancy approaches, load balancing in multi-tenancy differs from traditional computing
environments [25]. RQ2: Considering different needs, how do we schedule jobs
for different tenants?

RQ3: Task management related to scheduling on different domains
The entire scheduling process may include some other transactions, such as resource

provision and tenant placement. For example, dynamic scaling performance of service-
oriented applications hosted on the IaaS layer relies on the careful distribution of new
VMs across physical hosts. In the IaaS layer, abstraction of physical hardware will result
in resources being homogeneous and infinitely scaleable, providing linear increases in
performance [26]. RQ3: How are related task management issues handled for
multi-tenancy scheduling?

RQ4: Scheduling approaches on multi-tenancy clouds
To support dynamically increasing demands from multi-tenants, cloud service providers

have to deploy computing resources efficiently and cost-effectively to handle the fluctua-
tion of requests from tenants using different methods, including algorithms, framework,
etc. RQ4: What methods are used to schedule multi-tenancy cloud applica-
tions?

3.2. Search Strategy and Process

3.2.1. Proposing Search Terms

We first propose search terms to help us define topic relevancy and to classify articles’
research topics. According to the lessons presented in [21, 22], we set up some important
attributes and characteristics as search terms in this review. Our study background is
scheduling on multi-tenancy clouds, and all the terms are expanded around this issue.
The search terms are integrated by the Boolean “OR” or “AND” operation, which enables

6

each paper to at least have one of the relative terms. The “OR” operation groups different
terms and the “AND” operation conjoins different terms which form search strings. An
indicative search string used in our systematic review is shown in Figure 2. This is
specialised for each digital library to be searched.

	

Multi-tenancy

AND

Data management OR data placement

OR provision OR scheduling
OR process modeling

Figure 2: Search strings in our systematic review

3.2.2. Search Process

The search process was done in a manual manner to search for specific publications
between 2009 to 2018. Primary data collection is by directly finding published papers
(archival journals, and conference proceedings) from well-known and widely used online
electronic digital libraries2 We chose these four digital libraries as they provide a primary
source for articles, contain all high repute venues for Computer Science and Software
Engineering articles or relevance to our study, and have usable and accurate search
engines for our search strings. We checked the references of all selected articles for any
potentially relevant missed studies that should also be included in our search and analysis.

3.3. Inclusion and Exclusion Criteria

The main criterion of including journal and conference proceeding papers is based on
their topic coverage relevant to our review questions. In our initial selection, we consid-
ered papers that clearly address our review questions, based on their titles, abstracts,
keywords within the papers and their conclusions. Meanwhile, redundant publications
were eliminated. However, the titles, abstracts and conclusions are not always enough to
determine a paper’s final inclusion. Therefore, in the final selection phase we retrieved
the full context of those papers which were found to be relevant in the initial phase to
decide on their final selection. Multi-tenancy and scheduling had to be the primary focus
of the selected papers 3.

3.4. Quality Assessment

The quality of relevant papers can be accessed through the evidence presented in
those studies. The conclusions drawn from a systematic review are only as strong as
the evidence they are based on, so compiling an appropriate checklist to assess study

2Our selected digital libraries: ACM Digital Library (http://dl.acm.org), IEEE Xplore
(http://ieeexplore.ieee.org/Xplore/home.jsp), ScienceDirect (http://www.sciencedirect.com), and
SpringerLink (http://link.springer.com).

3The exclusion criteria is can be found in Section 2 of Part A at
https://github.com/Materials19/paper/blob/master/istslr2020online.pdf

7

quality is important [10, 27]. A quality assessment checklist compiled by Kitchenham
[10] was used to evaluate the quality of our located studies. Each question uses the same
3 level answer scale: “Yes” being a worth of 1 point value, “Partially” being worth of 0.5
and “No” being worth of 0. The total quality of each publication can be calculated by
summing the quality scores of checklist questions. As the score of a paper increases, the
paper will subsequently be better equipped to address the review questions in a more
complex and profound manner 4. The detailed quality assessment scores of all included
articles are presented online 5.

3.5. Data Extraction and Synthesis

The data extracted from the selected research papers provide a wide view of different
scheduling approaches on multi-tenancy clouds. Aiming to address the review questions
postulated in Section 3.1, we tabulate the data and analyse these data using a meta-
analysis method [10]. To actualise the extraction of data from our included papers more
explicitly, the data extraction schema used to collect the relevant data is provided online
6. To conclude the data collection and review question analysis process, we summarise
the quantitative data and then proceed to generalise and synthesise correlative answers
addressing these review questions. Our results are presented in the following section.

3.6. Articles Classification Scheme

Our classification scheme allows us to structure the literature in our work to map the
literature in general and to answer our review questions in particular [28]. Classifica-
tion of included papers considered several different schemes. Classification can simplify
and reduce the systematic review complexity as well as improve the accuracy of the
study. The classification scheme we developed is one of our novel contributions, provid-
ing a framework for categorising and describing scheduling approaches on multi-tenancy
clouds. We classified each paper’s approach using key words or phrases that describe the
characteristics of the scheduling approaches:

1. Classification on service model (layer)
Scheduling polices are employed on different service models (layers).

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

• Database as a Service (DBaaS)

2. Classification on research aspect
The main objective of this study is to find different multi-tenancy scheduling ap-

proaches. As discussed in Section 3.1, some relevant aspects are also considered relating
to deployment scheduling polices that impact scheduling effort.

4The quality assessment checklist can be found in Section 3 of Part A at
https://github.com/Materials19/paper/blob/master/istslr2020online.pdf

5Detailed quality assessment scores of included articles can be found in Part B at
https://github.com/Materials19/paper/blob/master/istslr2020online.pdf

6Data extraction schema can be found in Section 4 of Part A at
https://github.com/Materials19/paper/blob/master/istslr2020online.pdf

8

• Data management

• Data placement

• Process modelling

• Resource provision

• Scheduling

3. Classification on methodological orientation

• Algorithm

• Mechanism

• Framework or Architecture

• Model

• Others (System, Platform, Scheduler, etc.)

4. Results

Table 2: Distribution of reviewed papers in different digital libraries

Electronic
database

Number of
retrieved
papers

Number of
initial selected

papers

Number of
final included

papers

Percentage in
final inclusions

(%)
ACM Digital Library 1106 205 13 24.53
IEEE Xplore 589 197 33 62.27
ScienceDirect 728 125 5 9.43
SpringerLink 612 48 2 3.77
Total 3035 575 53 100.00

We used different search terms to find relevant papers in the scientific digital libraries
mentioned in Section 3.2.2. Using our search strings, we initially found 1106, 589, 728,
and 612 results from ACM Digital Library, IEEE Xplore, ScienceDirect, and SpringerLink
respectively. After initial selection based on the title, abstracts, keywords and conclusion,
575 relevant papers were assessed, 205 articles from ACM digital library, 197 articles from
IEEE, 125 articles from ScienceDirect, and 48 articles from SpringerLink.

In our second selection phase, we reviewed the full context of the relevant papers
selected in the initial phase according to the inclusion and exclusion criteria from Section
3.3. After eliminating redundant papers from different digital libraries, 53 papers were
finally selected, with an acceptance ratio of 9.53%. These included papers and the main
contributions of each paper are summarised online 7. The distribution of reviewed papers
from different databases is shown in Table 2. The 53 included papers were published in

9

Conference
30	(56.60%)

Journal
13	(24.53%)

Workshop
2	(3.78%)

Symposium
8	(15.09%)

Distribution	 of	publications by paper types

Figure 3: Distribution of papers by publication type

1

5

3
4

5
4

11

8
7

5

0

2

4

6

8

10

12

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

N
um

be
r	
of
	p
ub
lic
at
io
ns
	

Year	of		publications
total	No.	=	53

Distribution	 of	publications	 by	years

Figure 4: Distribution of papers by published year

40 different venues: 13 papers (24.53%) are from ACM Library, 33 papers (62.27%) are
from IEEE, 5 papers (9.43%) are from ScienceDirect and 2 (3.77%) from SpringerLink.

The types of included papers can be classified into 4 categories: journal papers,
conference papers, workshop papers and symposium papers. Figure 3 shows the specific
distribution of different types. Journal papers occupy 24.53%, conference papers occupy
56.60%, workshop papers occupy 3.78% and symposium papers occupy 15.09%. More
than half of the publications for scheduling approaches are from conferences.

Figure 4 shows the distribution of articles by year of publication. The trend in
this figure indicates that research into multi-tenancy scheduling on cloud platforms has
drawn more attention in recent years. Papers published in 2015 are the most included;
the second most included papers were published in 2016.

We summarise the distribution of the overall results of our publication quality assess-
ment, shown in Table 3. The score of most included papers is 8.0 (47.17%). According to
our quality assessment scores, included papers should present some clear technical find-
ings and provide experimental results as evidence to verify their proposed approaches.

The distribution of papers based on our proposed classification scheme is shown in
Table 4. To gain an intuitive view, Table 5 shows the numerical results. In this review,
we can observe that more and more multi-tenancy scheduling approaches are proposed
without the cloud layer’s limitation (43.40% of included papers). Most solutions can be

7The main contributions of each paper can be found in Part B at
https://github.com/Materials19/paper/blob/master/istslr2020online.pdf

10

Table 3: Distribution of overall quality assessment of relevant studies

Score Number of papers Percentage (%)
5.0 1 1.89
5.5 0 0
6.0 2 3.77
6.5 7 13.21
7.0 7 13.21
7.5 11 20.75
8.0 25 47.17
Total 53 100.00

used in any IaaS, PaaS and SaaS, with only a few solutions being employed on DBaaS
(3.77% of included papers). However, most scheduling approaches that work on all layers
are algorithm-based (41.66% of 23 included papers). One introduces a new delivery model
- High Performance Computing as A Service (HPCaaS) and proposes a novel scheduling
algorithm on HPCaaS. The results also indicate that to improve multi-tenancy scheduling
performance, designing a better database or building a preferable table scheme are useful
ways (3.77%).

Table 4: Distribution of papers based on the proposed classification
schemes

Service
model

Research
aspect

Methodological
orientation

Used technology Publications

SaaS Scheduling Algorithm Load balancing P1 [29]

Model cluster-based duplication to allocate resource P2 [30]

SLA based weighing P3 [31]

Framework Database scheme design P1 [29]

Two duplication time strategies: lazy, proactive P2 [30]

Performance isolation and dynamic SLA control P3 [31]

Mechanism Weighted Round Robin (WRR) with a control feedback loop P4 [32]

Data man-
agement

Orchestrator Follow the Observe-Decide-Act (ODA) loop structure; a
software-level power capping for docker containers

P39 [33]

Framework Optimise user distributions and provision strategies P5 [34]

Exploit the microservice architecture P23 [35]

Resource
provision

Model Resource allocation based on tenant isolation, VM instance
allocation and load balancing

P6 [36]

Controller Consolidation of multiple VMs; meet the Service Level Ob-
jective (SLO)

P45 [37]

Data
placement

Framework Delete unnecessary replicas, ensure migration flexibility, cre-
ate missing replicas, fix overloaded servers and reduce num-
ber of active servers

P7 [38]

Resource estimation and business relations P8 [7]

Algorithm Robust Tenant Placement (RTP) and interleaving replicas
across nodes

P7 [38]

Tenant data formalisation P8 [7]

11

Table 4: continued

Service
model

Research
aspect

Methodological
orientation

Used technology Publications

PaaS Resource
provision

Mechanism Estimation method in Service Demand Law (SDL) combined
with request admission control

P9 [39]

Data
placement

Framework SLA negotiation by fixing a threshold for each query and
cost-effective query optimisation problem

P43 [40]

Algorithm Admission control; dynamic computing of tenants’ priority P9 [39]

Load balancing based on M/G/s/s+r queueing model P10 [41]

IaaS Resource
provision

Model Elastic Application Container (EAC) based lightweight re-
source management

P11 [42]

Scheduler Least-busy and load-aware VM placement P12 [26]

System Online resource demand prediction and prediction error han-
dling

P26 [43]

Data man-
agement

Framework Attribute-based constraints specification and enforcement P25 [44]

Use stochastic hill climbing algorithm to find multiple re-
source reservations & prevent performance interference

P33 [45]

Design of MetaDatabase schema and multi-tenant Resource-
Manager on Hadoop

P34 [46]

Based on fuzzy cloud controller and online process miner P40 [47]

Algorithm Meta-heuristics solution on augmented shuffled frog leaping P49 [48]

Address VM sharing in the context of Workflow-as-a-Service
(WaaS) by modeling the use of containers

P50 [49]

System Load balancing scheme; auto scaling mechanism P32 [50]

Scheduling Platform Extension of a Distributed Shared Objects (DSO) middle-
ware and redistribution of resources among different Java
Virtual Machine (JVM) instances

P13 [51]

Algorithm Workflow scheduling to map and manage the execution of
inter-dependent tasks

P48 [52]

Framework Design on Service-Oriented Architectures (SOAs) to leverage
rate limiters and request schedulers

P31 [53]

DBaaS Scheduling Algorithm Dynamic resource allocation, residual allocation and SLA
enforcement

P14 [54]

Framework 4 components: Monitor, Analyser, Predictor, Allocator; pe-
riodically re-allocates resource under SLA violation

P14 [54]

Model Model resource allocation as unbounded knapsack problem
using additional fairness constraint

P14 [54]

Resource
provision

Framework Input: performance-based Service Level Objectives (SLOs),
tenant workloads and hardware Stock Keeping Units
(SKUs); Output: an recipe combined with SLO compli-
ant tenant scheduling strategy and cost-minimising hardware
provisioning strategy

P15 [55]

HPCaaS Scheduling Algorithm based on capabilities of software-defined networking P47 [56]

N/A Resource
provision

Framework Tenancy Requirements Model mapping tenancy require-
ments with appropriate resources

P16 [57]

Capable system topologies based on a Monitor-Analyse-
Plan-Execute (MAPE) loop

P17 [58]

Graph processing; Progress-Aware Disk Prefetching (PADP)
policy

P44 [59]

Algorithm Prediction based provision & tenancy requirement matching P16 [57]

12

Table 4: continued

Service
model

Research
aspect

Methodological
orientation

Used technology Publications

Data man-
agement

Mechanism Customise compensation process in workflow system and ex-
tension of states transition model of Web Services Business
Activity (WS-BA)

P18 [60]

Scheduler Use Strings, decompose GPU scheduling into load balancing
and per-device scheduling, treat GPUs as first class schedula-
ble entities and manage GPU calls with a two-level scheduler

P19 [61]

Framework Provisioning, managing and controlling the services (DBaaS,
PaaS, SaaS and IaaS)

P24 [62]

Based on the datacentre policies; efficient VM scheduling
techniques to place the active VMs on minimum number of
physical servers

P36 [63]

Based on datacentre virtualisation & load balancing P38 [64]

Algorithm Based on dominant resource fairness; use Cgroup to control
resource utilisation

P35 [65]

Based on load balancing and specific multi-tenancy require-
ments (delay and priority)

P41 [66]

Utilise a priori knowledge of the dataflow tasks to provide
predictable scheduling behaviour

P51 [67]

Obtain the exact optimal number of task resources; optimise
resource provisioning

P52 [68]

System Based on Business Process Management System (BPMS);
control the execution of business processes

P37 [69]

Process
modelling

Mechanism Tenant placement and subsequent, fine-grained batch plan-
ning and optimising the workload

P20 [70]

Data
placement

Algorithm Optimise the sliding-scheduled application placement and
routing problem

P42 [71]

Scheduling Scheduler Monitor load on each application, build performance models,
compute a priority for pending GPU-based requests

P21 [72]

Algorithm Convert realistic task resource utilisation patterns into boxes P27 [73]

Characterise a resource isolation mechanism and share the
resources available within a process equally or in proportion
to some weights among tenants

P28 [74]

Use system level, application-transparent checkpointing
mechanism and save the progress of jobs

P30 [75]

Use checkpoint optimisation to tolerate and eliminate the
Byzantine faults; track server performance of virtual clusters

P53 [76]

System System level abstraction for GPU, utilise GPUs without
compromising fairness, deploy GPU requests across the mul-
tiple GPUs under Least-Attained-Service (LAS) of GPU re-
quest servicing

P22 [25]

Platform Based on virtualisation technology for computing, storage
and network resources

P29 [77]

Framework Virtualisation; consider I/O performance P46 [78]

13

Table 5: Overall results on methodological/research orientation

Topic No. of
papers

Percent
(%)

Research
aspects

No. of
methods

Percent
(%)

Method
type

No. of
methods

Percent
(%)

SaaS 11 20.75 Scheduling 7 43.75 Algorithm 5 31.25

Data management 3 18.75 Framework 7 43.75

Resource provision 2 12.50 Mechanism 1 6.25

Data placement 4 25.00 Model 1 6.25

Orchestrator 1 6.25

Controller 1 6.25

Total 16 100.00 Total 16 100.00

PaaS 3 5.66 Resource provision 3 75.00 Mechanism 1 25.00

Data placement 1 25.00 Framework 1 25.00

Algorithm 2 50.00

Total 4 100.00 Total 4 100.00

IaaS 13 24.53 Resource provision 3 23.08 Model 1 7.69

Scheduling 3 23.08 Platform 1 7.69

Data management 7 53.84 Algorithm 3 23.08

Framework 5 38.47

Scheduler 1 7.69

System 2 15.38

Total 13 100.00 Total 13 100.00

HPCaaS 1 1.89 Scheduling 1 100.00 Algorithm 1 100.00

Total 1 100.00 Total 1 100.00

DBaaS 2 3.77 Resource provision 1 25.00 Algorithm 1 25.00

Scheduling 3 75.00 Framework 2 50.00

Model 1 25.00

Total 4 100.00 Total 4 100.00

N/A 23 43.40 Resource provision 4 16.67 Framework 7 29.18

Data management 10 41.66 Algorithm 10 41.66

Process modeling 1 4.17 Mechanism 2 8.33

Data placement 1 4.17 Platform 1 4.17

Scheduling 8 33.33 Scheduler 2 8.33

System 2 8.33

Total 24 100.00 Total 24 100.00

Total 53 100.00 Total 62 100.00 Total 62 100.00

14

Multi-tenancy on PaaS

Operating System Instance

Application

Multi-tenancy on DBaaS

Database

Tenant
customisation

Tenant
customisation

Application

Multi-tenancy on SaaS

Application Instance

Tenant Tenant

Multi-tenancy on IaaS

Hardware

Operating
System

Operating
System

Figure 5: Multi-tenancy on different service layers

5. Detailed Results Analysis

In this section, we answer our four research questions (RQs) based on our collected
results.

5.1. RQ1: Scheduling on different service models

Multi-tenancy has different implementations on different cloud service models (layers)
as shown in Figure 5. In the PaaS model, multi-tenancy indicates that different appli-
cations share the same operating system instance. In the IaaS model, multi-tenancy
means that multiple operating system instances, usually in the form of virtual machines,
share the same physical hardware via a hypervisor. In the SaaS model, multi-tenancy
with the highest level of isolation indicates that one application instance is shared across
multiple tenants [41, 79]. However, Database-as-a-Service (DBaaS) is gaining important
momentum [54]. Most multi-tenancy problems are metadata driven and use metadata as
a way of configuring the platform and applications for each individual tenant [80]. Multi-
tenancy on DBaaS means different tenants have tenancy specific customisations which
present different requirements of tenants as metadata attributes on separate schemes in
shared database.

A key problem in DBaaS is how to efficiently share resources among tenants while
maintaining SLAs [8]. SLAs guarantee performance isolation to prevent one tenant from
adversely affecting the performance of other tenants in an unpredictable manner [54].
Moreover, DBaaS providers need to maximise resource utilisation for additional revenue
by dynamically allocating available resources to tenants who consume resources beyond
their SLAs. The scheduling in DBaaS can be summarised as a resource allocation problem

15

with a constrained optimisation to realise objective functions, such as static workloads
scheduling.

Multi-tenancy applications are deployed on the servers which provide computing re-
sources. PaaS providers isolate code from different applications on the same OS instance
to improve resource utilisation, which brings new challenges to load balancing as the
server is shared by several applications, and response times may not be guaranteed due
to the competition for shared resources [24]. The key scheduling problem in PaaS is how
to realise efficiency provision resource through algorithms or mechanisms. These algo-
rithms are used to dynamically estimate resources and calculate different tenants’ priority.
In IaaS, the scheduling problem focuses on VM placements and the redistribution of re-
sources among different JVM instances. Additionally, multi-tenancy architecture is often
used in SaaS. For example, a two-tier SaaS scaling and scheduling architecture working
at service and application levels to save resources and avoid duplicating as proposed in
[30].

According to Table 4 and Table 5, more and more scheduling approaches are de-
signed without a delivery layer limitation (occupying 38.71% in all approaches). For
instance, P46 proposes a novel disk scheduling framework - PriDyn (DYNamic PRIor-
ity) on any delivery layers. This framework provides differentiated services to various I/O
applications co-located on a single host based on their latency attributes and desired per-
formance. This demonstrates that all I/O applications executing in VMs in multi-tenant
environments will suffer degradation in disk throughput irrespective of their latency re-
quirements, depending upon the number and the types of I/O patterns of concurrent
applications running on other active VMs hosted on the same server.

According to Table 4 and Table 5, a new delivery layer – High Performance Computing
as a Service (HPCaaS) is proposed. The cloud enables the HPC users to have access to
supercomputing resources on demand and in a cost-efficient manner [56]. The providers
of HPCaaS, who often own the service platform, administrate and maintain the virtual
resources. They can either own the hardware or rent it from a cloud service provider.
Desirable characteristics of the cloud such as on-demand access, resource pooling and
cost effectiveness, have tempted industries and academia to embrace this technology
into their businesses, including the HPC users. Nevertheless, standard clouds do not
satisfy certain unique requirements of HPC such as batch processing, direct access to
hardware, the ability to bypass the OS kernel, and high-performance execution [56]. For
instance, P47 uses this feature to design and implement an innovative SDN empowered
task scheduling system for HPCaaS, called ‘ASETS’. P47 also proposes a novel algorithm
for this system called SETSA (SDN Empowered Task Scheduling Algorithm) [81]. This
algorithm takes advantage of the SDN capabilities and schedules the tasks to the available
VMs such that the virtualised network bandwidth is maximised on an elastic HPCaaS
architecture with a shared file system and on-demand number of nodes.

• Outstanding Limitations and Challenges

Virtualisation is one of the key enabling technologies for cloud computing. Although
it facilitates improved utilisation of resources, virtualisation can lead to performance
degradation due to the sharing of physical resources like CPU, memory, network inter-
faces, disk controllers, etc. Multi-tenancy can cause highly unpredictable performance
for concurrent I/O applications running inside virtual machines that share local disk

16

storage in cloud [78]. Disk I/O requests in a typical cloud setup may have varied re-
quirements in terms of latency and throughput as they arise from a range of heteroge-
neous applications having diverse performance goals. This necessitates providing differ-
ential performance services to different I/O applications [78]. In future, multi-tenancy
frameworks should provide on demand access to scalable resources, offering
better utilisation of physical resources and enabling energy savings [78]. For instance,
the frameworks should include a proactive approach where it would be possible to ascer-
tain in advance whether a particular I/O application can be handled on a given system
based on its state before actual scheduling of the I/O requests. Such a framework can
enable meta-scheduling of I/O applications and enable QoS based placement algorithms
at a larger datacentre level [78].

Emerging Workflow as a Service (WaaS) platforms offer scientists a simple, easily
accessible, and cost-effective way of deploying their applications in the cloud at any time
and from anywhere [49]. Such workflows can be modeled as Directed Acyclic Graphs
(DAGs). Once a DAG is pre-processed, the scheduling process of its tasks can begin
on WaaS platforms, which are emerging with the vision of providing scientists with the
ability to deploy their applications for execution in the cloud in a simple and cost-effective
manner [49]. An important aspect, as is for any multi-tenant cloud-based framework, is
how to efficiently manage the execution of workflows belonging to different
users and with different QoS requirements. Design of multi-tenant frameworks on
WaaS to manage the execution of a continuous workload of heterogeneous workflows is
a key needed future direction. To achieve this, they leverage the compute, storage, and
network resources offered by IaaS providers [49].

Further research focus should explore the deployment of multiple simultaneous
containers on a single VM, in order to execute multiple tasks in parallel. Investigating
the effects of sharing resources among multiple workflows and using containers on the
consumption of energy is also very important. Finally, it would be beneficial to collect
and make use of workflow execution data to better estimate the runtime of tasks,
to address security and privacy issues that arise from their multi-tenant nature, and to
develop failure recovery strategies at various levels of the framework. Different pricing
models that WaaS providers could adopt to charge their users could also be investigated
[49].

5.2. RQ2: Scheduling with Different Objectives

Multi-tenancy scheduling enables multiple instances of an application to occupy and
share resources from a large pool, allowing different users to have their own version of the
same application running and coexisting on the same hardware but in isolated virtual
spaces [1] with different objectives, such as performance isolation, resource isolation,
QoS, load balancing, etc.

5.2.1. Performance Isolation

There are four isolation levels in a multi-tenancy pattern [82]. Native multi-tenancy
is the most common one [7]. In native multi-tenancy patterns, all web applications share
the same infrastructure, and tenants share the same application instances. Furthermore,
tenant data is created to carry the subscription and configuration information. Multi-
Tenancy Management System (MTMS) prepares resources for it and provisions it to

17

certain database server if the provisioning condition is satisfied. This is a normal tenant
data provisioning process.

To guarantee isolated performance, it is essential to control the resources used by a
tenant. The layers of the execution platform that are responsible for controlling resource
usage, normally do not have knowledge about entities defined at the application level
and thus they cannot distinguish between different tenants. Furthermore, it is hard to
predict how tenant requests propagate through the multiple layers of the execution envi-
ronment down to the physical resource layer. The intended abstraction of the application
from the resource controlling layers does not allow one to solely solve this problem in
the application [39]. A method proposed in [39] combines resource demand estimation
techniques with a request-based admission control to address this problem. Some meth-
ods try to place tenants onto a defined set of nodes in a way such that their workload
profiles do not interfere with others to avoid mutual performance influences. However,
this is only possible if the workload profiles for the tenants are predictable [32]. Control
feedback loops have been developed to ensure isolation with a priority-based scheduling
mechanism to dynamically adjust the priorities of a tenant [32].

5.2.2. Resource Isolation

When tenants compete inside a process, traditional and well-studied resource man-
agement techniques in the operating system and hypervisor are unsuitable for protecting
tenants from each other. In such cases, aggressive tenants can overload the process and
gain an unfair share of resources. In the extreme, this lack of isolation can lead to a
denial-of-service to well-behaved tenants and even system wide outages. It is crucial to
provide resource isolation to ensure that a single tenant cannot get more than its fair
share of resources, to prevent aggressive tenants or unpredictable workloads from caus-
ing starvation, high latencies, or reduced throughput for others. However, it is difficult
to provide isolation in these systems because multiple tenants execute within the same
process [74]. P28 presents Two-Dimensional Fair Queueing (2DFQ), which spreads re-
quests of different costs across different threads and minimises the impact of tenants with
unpredictable requests. A request scheduling algorithm is proposed in P28 to produce
fair and smooth schedules in systems that can process multiple requests concurrently.

5.2.3. Database Management

Most cloud scheduling algorithms and database solutions address their problems in-
dependently, but most cloud components and functionalities are interconnected. Specif-
ically, a task scheduling algorithm needs to consider database partitioning to provide an
efficient solution for performance and scalability [29]. More specifically, a task assigned
to a processor should host the appropriate data partitions, otherwise data updates and
migration among caches and processors can be very expensive. The most scalable multi-
tenancy architecture requires a SaaS scheduler that can dispatch tasks to multiple copies
of the same software in a datacentre. As the same version of the software is used, user
customisation must be stored in databases, and thus an integrated solution must address
both scheduling and database partitioning [29]. Considering database partitioning and
consistency, tenant data should focus on tenant placement, which should be partitioned
well in the back-end database to support real-time high performance computing [29].

18

5.2.4. QoS Performance

QoS on the multi-tenant SaaS potentially includes response time, throughput and
least resource cost. Response time especially has attracted more attention, such as work
in [72] which focused on clusters delivering acceptable response times, and work in [41]
which concentrated on the mean response times of applications. SLAs are used to con-
figure service resources according to different service requirements [31]. Indeed, defining
performance objectives and above all, guaranteeing them is very challenging. Database
queries have different levels of complexity, so defining a unique performance objective
for all queries is not realistic [40]. Different tenants may have very different SLA re-
quirements that need to be met by the same shared cloud application. For example, an
SLA-based scheduling algorithm [31] guarantees the service quality of tenants and im-
proves the system performance using request load as the measure of resource utilisation.
P43 defines a negotiation framework such that the tenant and the provider could define
this threshold together in a rather fair way. The aim is to find a performance objective
that is satisfactory or at least acceptable by the tenant and reachable (i.e. technically
achievable and financially profitable) for the provider. In the SLA, P43 also fixes the
pricing policy, which is used to adjust the price according to the real performance and
the parameter values.

SLA defines the parameter objective, calculation method, parameter threshold and
violated action. An SLA template should contain parties of the agreement, the cor-
relative information and service level objectives (SLO). SLO is the main body of SLA
specifications which includes objective validity period, SLA parameters, metrics related
to SLA parameters and so on [31]. Services that are elastically provisioned in the cloud
are able to use platform resources on demand. Instances can be spawned to meet the
SLO during periods of increasing workload and removed when workload drops. Enabling
elastic provisioning saves the cost of hosting services in the cloud, since cloud users only
pay for the resources that are used to serve their workload [37]. P45 identifies and
controls the different sources of unpredictability and builds Hubbub-Scale - an elasticity
controller that is reliable in the presence of performance interference and achieves high
resource utilisation without violating the SLO.

DBaaS providers want to support high performance to each tenant, but without
introducing a heavy trade-off between cost and performance. A DBaaS provision and
scheduling framework proposed in [55] is one of the solutions, which optimises operating
costs while adhering to desired performance based SLOs.

5.2.5. Multi-tenancy GPU Scheduling

A GPU is treated as a device chosen by the applications. There are some key chal-
lenges of GPU scheduling:

1. Static collisions: Applications running on a multi-GPU node may compete for the
same GPU, thus not able to leverage the availability of multiple on-node GPU accel-
erators. This will lead to the serialisation of GPU requests that otherwise could have
been served in parallel [61].

2. Character collision: Applications are unaware of each other’s GPU usage and their
relative GPU intensities, and thus they cannot assess the performance implications of
sharing a single GPU [61].

19

3. Static and character collisions become even more important when nodes have hetero-
geneous GPUs, each with different capabilities in terms of their compute and memory
levels of GPU utilisation. This is particularly for web application-driven capacities,
and memory bandwidths [25].

4. Single applications have difficulties achieving high utilisation by end user requests.
[25].

In current multi-tenancy GPU scheduling challenge is static GPU provisioning, where
applications explicitly and programmatically select their desirable GPU devices to run.
GPU scheduling problem can be decomposed into load balancing and per-device schedul-
ing [61]. Device-level scheduling efficiently uses all of a GPU’s hardware resources, in-
cluding its computational and data movement engines. Load balancing goes beyond
obtaining high throughput, to ensure fairness through prioritising GPU requests that
have attained least service.

5.2.6. Load Balancing

Most of the current QoS-aware load balancing policies are not suitable in a multi-
tenancy environment since they are not aware about the mutual intervention among
applications within the server. Thus, some applications’ response time would exceed
their threshold due to the lower throughput on the server [41]. Tenant-based load bal-
ancing considers isolation parallelism in web applications, requests from users are totally
independent of each other [36].

Load balancing is a key service in the cloud and refers to the routing of packets from
a source to a chosen destination [50]. Auto scaling helps in scaling a system horizontally
in presence of a load spike by adding more instances of the application that can serve
incoming requests. When load reduces or goes back to its normal state, some of the
running instances of the application can then be stopped to ensure that the cloud tenant
does not incur extra costs for running idle instances (since most public clouds charge
by the time an instance runs). Auto scaling is best implemented as part of the load
balancer service itself [50]. For example, P32 presents HAvEN - a system for holistic
load balancing and auto scaling in a multi-tenant cloud environment that is naturally
distributed and hence scalable.

• Outstanding Limitations and Challenges

Each of the different isolation strategies require further work to improve them for
multi-tenancy cloud applications. Some scheduling mechanisms have been introduced
with concerns to their isolation capabilities, and all these can provide a certain degree of
isolation, but these have low efficiency, especially when system becomes overcommitted
due to constant priorities for each tenant. More efficient performance isolation is
needed in many domains. There is also a strong need for finer-grained resource
isolation.

Different tenants may have have vastly differing SLA requirements in terms of Quality
of Service needs. Further work is needed to address the balancing of different
tenant SLAs in a multi-tenancy cloud platform. A further important problem is how
DaaS providers can better balance multi-tenancy with performance-based
SLOs and how they deploy resources to tenants [55].

20

Future work should address memory issues with multi-tenancy GPU clouds,
and in addition, explore the use of runtime binary translation (of GPU kernels)
to further broaden the potential targets a load balancer can choose for running GPU
requests (e.g., by running requests on otherwise idle CPUs) [35].

From the datacentre layer, to achieve better load balancing among data par-
titions to optimise the overall database performance, a more effective algorithm is
highly desirable. This should migrate, distribute and duplicate tenants among parti-
tions through monitoring the load [29].

Further work is needed to support better auto-scaling in multi-tenancy cloud envi-
ronments. Such auto-scaling algorithms need to fully support multi-tenancy and
consider the utilisation levels of different resources in the cloud as part of their
load balancing and auto scaling algorithms.

5.3. RQ3: Task Management Related to Scheduling on Different Domains

Table 6: Distribution of research domains
Research aspects Publications
Data placement
(Total: 6)

P7, P8, P9, P10, P42, P43

Data management
(Total: 20)

P5, P18, P19, P23, P24, P25, P32, P33, P34, P35,
P36, P37, P38, P39, P40, P41, P49, P50, P51, P52

Resource provision
(Total: 10)

P6, P9, P11, P12, P15, P16, P17, P26, P44, P45

Scheduling
(Total: 17)

P1, P2, P3, P4, P13, P14, P21, P22, P27, P28, P29,
P30, P31, P46, P47, P48, P53

Process modelling
(Total: 1)

P20

Table 6 describes the distribution of different research domains of included papers.
In Table 6, we clearly see that related data management methods and resource provision
approaches can also help optimise multi-tenancy scheduling (occupying 55.56% in all
the research objectives). Paper P9 presents a resource allocation strategy and a data
placement algorithm simultaneously. P9 uses an estimation method in Service Demand
Law (SDL) to predict the resources demands with the aim of realising dynamic resource
allocation and also uses a admission control mechanism to dynamically compute tenants’
priority with the aim of flexibly placing tenants on cloud nodes. For example, P33
proposes a workload-aware resource reservation framework, named Argus, which targets
multiple resource reservations and aims to prevent performance interference, in terms of
fair throughput violation, in NoSQL stores [45]. Specifically, Argus focuses on cache and
disk reservations. It enforces the cache reservation by splitting the cache space among
tenants. It approximates the disk usage by throughput of the underlying file system and
uses a request scheduler to enforce throughput reservation.

5.3.1. Data Management

From the data management perspective, framework design is an effective way to
achieve efficient scheduling. When designing, service providers need to design and imple-
ment a specific class, and create an object of the class, which serves the requirements of

21

multiple users efficiently. A workflow system builds, executes, manages, and evolves its
own process-oriented business applications, which is a reflection of data management [60].
Combining a workflow system with a SaaS mechanism provides a flexible and affordable
environment for modem enterprise composite application development. The compensa-
tion process is a series of operation nodes to roll back the faulting transaction, which
is suitable to handle special demand of compensation. Customisation of compensation
process is an important concern when building a multi-tenancy scheduling framework.

Cloud hosted NoSQL data stores is for economic reasons often shared amongst mul-
tiple tenants simultaneously. The NoSQL provider consolidates multiple tenants’ access
into a shared NoSQL instance and provides a dedicated view for each tenant. This
multi-tenancy has tenants’ data and workloads coexisting in the same node, which under
certain conditions can lead to performance degradation of one tenant caused by another.
To better schedule applications among tenants, ones may investigate the multi-tenant in-
terference in a common NoSQL store and enforce cache reservation by splitting the cache
space and disk reservation by scheduling requests to a distributed file system (DFS) [45].

5.3.2. Scheduling

The scheduling strategies used in multi-tenancy cloud then become important, as
they directly influence the runtime performance of software applications. Servers with
multiple deployed applications need a proper request scheduling policy to guarantee their
QoS. It is essential to design algorithms on SaaS, aiming to dynamically estimate the
needed resources of each tenant while weighing SLAs and determining how the schedul-
ing algorithms on IaaS focus more on resource usage and distribution on different VM
instances. In addition, QoS-aware scheduling algorithms should be concerned with the
mutual interactions among applications deployed on the same server and load balanc-
ing [41]. Scheduling approaches focusing on multi-tenant, instance-intensive workflows
should consider three other aspects: (1) the quality of service experience (QoSE) of ten-
ants in different SLAs, (2) the average execution time of multiple workflow instances,
and (3) the execution cost saving for service providers [83].

5.3.3. Resource Provisioning

Resource provisioning means the selection, deployment, and run-time management of
software (e.g., database management servers, and load balancers) and hardware resources
(e.g., CPU, storage, and network) for ensuring guaranteed performance for applications
[84]. Before resource provisioning can be completed, one needs to calculate the resource
requirements (such as CPU, memory and storage) for the multi-tenancy in a shared
application instance. This must satisfy some constraints (such as response time, avail-
ability, business transaction rate, and database request rate while minimising the cost)
without violating SLA requirements. This is a very complex task to both perform and
to engineer software applications to support [82]. Moreover, cost-effective scalability is
not achieved if idle processors and other resources are unused but are charged to applica-
tion providers. Over and under provisioning of cloud resources are still major problems.
Current cloud virtualisation mechanisms do not provide cost-effective pay-per-use model
for SaaS applications and just-in-time scalability is not achieved by simply deploying
SaaS applications to cloud platforms. Due to elasticity, it is necessary to calculate the
number of VMs needed when the SaaS platform is running and its tenants are consuming
virtualised resources [36].

22

5.3.4. Data Placement and Process Modelling

In SaaS applications on in-memory databases, there is the challenge of the trade-off
between low operational cost for the provider and performance as perceived by tenants:
only so much consolidation can occur without significant impact on responsiveness. To
manage this trade-off, the service provider must address two issues: resource modeling
and data placement. Estimation of shared resource consumption in the presence of
multi-tenancy on a single server is important, which can be solved by characterising the
dominating resources (CPU, RAM, disk I/O) and quantifying how much each tenant
utilises them [38]. Finally, it is important to model users’ requirements with a set of
services. Services should be modeled in a customisable way so that each tenant can
customise the services according to their specific requirements [85].

• Outstanding Limitations and Challenges

From the data management perspective, quantifying the impact of writes on
reads and modelling the I/O behaviour through offline sampling needs further
research. Resource reservation also should consider the memory usage for writes. In-
creasing the size of the write buffer will boost the write performance but harms read
performance as the size of cache block decreases. It is beneficial to set the sizes of cache
and write buffer according to different workload characteristics [45].

From resource management perspective, the lack of end-to-end visibility and com-
plex request execution structures make it challenging to regulate two key metrics in an
SOA across multiple tenants: the end-to-end throughput (and thereby, the load at every
process) and the end-to-end latency. To regulate system load, the resource manage-
ment system must correctly attribute overload to a specific subset of tenants, and
limit of the entire chain of API invocations for only those tenants, with minimal impact
on others. Approaches to end-to-end latency goals requires further work, including
making better local request scheduling decisions despite limited visibility into the full
request execution graph [53].

5.4. RQ4: Scheduling Approaches on Multi-tenancy Clouds

Table 7: Distribution of method types

Research
aspects

Publications

Algorithm
(Total: 22)

P1, P2, P3, P7, P8, P9, P10, P14, P16, P27, P28, P30, P35,
P41, P42, P47, P48, P49, P50, P51, P52, P53

Framework
(Total: 22)

P1, P2, P3, P5, P7, P8, P14, P15, P16, P17, P23, P24, P25,
P31, P33, P34, P36, P38, P40, P43, P44, P46

Mechanism
(Total: 4)

P4, P9, P18, P20

Model
(Total: 3)

P6, P11, P14

Others
(Total: 11)

System: P22, P26, P32, P37; Scheduler: P12, P19, P21;
Platform: P13, P29; Orchestrator: P39; Controller: P45

23

As shown in Table 7, to achieve multi-tenancy scheduling, optimising the design of
algorithms and frameworks (70.97% of reported approaches) is one of the most commonly
used methods for the development of efficient multi-tenancy scheduling. Moreover, to
support the proposed multi-tenancy frameworks, researchers have also proposed some
algorithms to meet a framework’s functional requirements (Such as P1, P2 and P3).
For instance, a framework proposed in P14 periodically re-allocates resource to tenants,
aiming to maximise the resource utilisation while tolerating a low risk of SLA violations,
especially for highly dynamic workload, and in this framework, a dynamic resource alloca-
tion algorithm for DBaaS is proposed if there is a higher variance intensity. Additionally,
an extensible dynamic provisioning framework presented in P16 began with a Tenancy
Requirements Model (TRM). The model in P16 is based on the mapping of functional
and non-functional tenancy requirements with appropriate resources, their parameters,
and health monitoring policy allows dynamic re-provisioning for existing tenants based
on either changing tenancy requirements or health grading predictions.

There are many ways to achieve multi-tenancy scheduling, such as virtualisation,
prediction, interference, theoretical scheduling and boxing technologies. For instance,
virtualisation is a technique that facilitates the sharing of resources in datacentres, which
transforms a huge collection of bare-metal hardware into cloud infrastructure with high
flexibility, predictable performance, reliability, controllability and security. Among the
recent advances of network virtualisation, P38 uses the software-defined networking
(SDN) and its underlying Distributed Virtual Switch (DVS). SDN is a revolutionary
innovation in computer networks in the sense that network control is decoupled from
the data forwarding function and is directly programmable. The OpenFlow protocol is a
fundamental element for building SDN solutions. It is an industry-standard SDN com-
munications protocol, allowing operators to address complex network behaviour, while
optimising performance and allowing operators to leverage a richer set of capabilities.
The proposed framework in P38 takes advantage of the application of DVS, and leverages
the adoption of OpenFlow protocols to accommodate heterogeneous network communi-
cation patterns by supporting arbitrary traffic matrices among VMs in virtual private
clouds (VPCs). The framework generates multi-tenancy oriented private clouds, offering
great flexibility to cloud users. The framework achieves global load balancing on the
underlying physical network, thus delivering predictable performance. Moreover, it is
adaptive to a dynamic network environment. For example, P27 converts realistic task
resource utilisation patterns into resource boxing to directly explore theoretical and ap-
plied scheduling in cloud computing. P27 designs resource boxing to convert real task
patterns to theoretical scheduling inputs. Theoretical scheduling studies optimal alloca-
tion of boxes to machines in adherence to an objective function. In terms of computing,
boxes and machines are represented as tasks that execute within machines.

Most frameworks are employed at the SaaS level. Since duplication if the application
may result in significant resource waste, some proposed frameworks focus on the applica-
tion level. Designing a framework should consider three factors: computing , QoS and
storage resource . Under the constraint of a certain number of database servers, how
to place an incoming tenant in a distributed computing environment in order to balance
the servers [7]. A potential solution is consumption of computing resources in database
servers regarding several aspects: maintaining database middleware, tenant access data
via applications, cross-tenant (selected or inserted request access multiple tenant data
isolation) access [7]. To better enable providers to model services with QoS and non-

24

Complete multi-tenancy

Tenant B

Single multi-tenancy
database

 Multi-tenancy application
(Multi instances)

Multi-tenancy
infrastructure

Database
Tenant

A
Tenant

B

 Multi-tenancy application
(Multi instances)

Multi-tenancy
infrastructure

Multi-tenancy
database

Single multi-tenancy
application instance

 Application

Multi-tenancy
infrastructure

Multi-tenancy
Database

Tenant BTenant A

 High Scheduling efficiency Low

 Low Flexibility/adaptability High

 High Effort of resource provision Low

Tenant A Tenant BTenant A Tenant BTenant A

Figure 6: Achievement of multi-tenancy

functional properties [34]. A potential solution is to use algorithms to compute efficient
tenant distributions that take requirements of tenants into account [34].

• Outstanding issues and challenges

Multi-tenancy for cloud applications can help service providers lower costs through
economical scalability, improve resource utilisation and reduce service customisation
time, through sharing hardware resources by multiple users [86]. To achieve multi-
tenancy, we can focus on many different components, such as application code, operating
system, data storage software and computing resources (referring to Table 4).

Figure 6 describes what components can be shared. Even in data storage (referring
to single multi-tenancy database mode), there are many different shared options, such as
separate database, shared database and separate schemas, shared database and shared
schema, etc. Complete multi-tenancy can efficiently realise specific tenant behaviour
and each tenant or each group of tenants adopt their own service to achieve their own
specific behaviour. Each tenant is served by its own instance and it may result in load
unbalance on an application service [1, 41]. However, this kind of multi-tenancy can
provide better resource provision through the construction of multi-tenancy frameworks
which focus on dynamic resource allocation (best-fit resources for different tenancy re-
quirements) [57] and by optimising tenants’ distributions and provisioning strategies [34].
Due to the previously discussed aspects of complete multi-tenancy, the flexibility of this
type of multi-tenancy is subsequently less than other tenancy models. In comparison, in
single multi-tenancy application instance modes, a single instance service can be adopted
to deploy once and have the same behaviour for all the tenants. It does not need spe-
cial consideration regarding multi-tenancy. In addition, application deployment is much
easier for service providers, as only one service instance of the application needs to be
deployed [2]. When updating the application, the service will only be updated once

25

for all the tenants. Since all the tenants share all the data and tenants cannot specify
their requirements, the scheduling effort and system performance are not good enough,
therefore making scaling have fewer infrastructure implications.

According to our analysis results, multi-tenancy scheduling frameworks usually use
virtualisation technology, but often do not support the features of the full virtualisation
stack [63]. Thus, in the future, researchers should focus more heavily on full virtu-
alisation technology. From the perspective of resource boxing technology, boxes are
unable to capture the dynamicity of resource utilisation patterns inherited within cloud
computing. Failure to capture this behaviour results in reduced applicability due to the
disconnect between the evaluation of theoretical scheduling derived from real world oper-
ations. In other words, there is a requirement to find an accurate representation of
execution patterns that are composed of boxes. Such a technique would allow for
a direct application of the theoretical scheduling algorithms to real-life execution patterns
[73]. Further work about resource boxing should consider more extreme workflow
patterns to evaluate the accuracy of resource boxing. Currently, only few works focus
on the platform design so far. Future scholars should seek to investigate the scalability
of a resource provisioning platform. These novel platforms will be applied on a
large-scale datacentre infrastructure to serve large number of tenants and applications
with diverse resource requirements.

5.5. Key future directions

Other authors use very different approaches to achieve multi-tenancy scheduling,
such as resource allocation (P28) and tenant placement (P1). Although concerned with
performance, some works present solutions covering important related areas, for example,
data management (P25), database scheme design (P34) and resource reservation (P33),
which reflects indirectly on scheduling performance in multi-tenancy cloud environments.
Thus, scheduling in multi-tenancy clouds can also be addressed by some of these studies.
Ultimately, some approaches develop mechanisms for design of models in web service
business activity (P18 and P20), and some develop systems based on business process
management systems (P37), or abstraction of GPU computation (P22).

For improved support for scheduling in multi-tenancy clouds, the following major
research challenges still need to be solved:

• Due to the variety of tenants’ resource demands and the difficulty in predicting
the resource demand of tenant’s workload/application, there is a need for a
resource management technique that can easily make the right decisions re-
garding dynamic scaling of resources and workloads/applications.

• Currently it is difficult to achieve performance isolation for multi-tenancy on dif-
ferent service layers. To resolve this problem, there is a need for isolation of
resources and better abstraction of applications. It is crucial to provide
resource isolation to ensure tenants to fair share resources. To isolate resources, we
need to better determine which part of the resources are to be isolated depending
on tenants’ requirements, such as database, performance and resource isolation.

• There is a need to develop scheduling approaches that optimise both QoS
targets: tenant-centric (deadline and throughput) and resource-centric (reliability,
availability, and utilisation).

26

DBaaS

IaaS PaaS SaaS

Dynamic resource allocation
Residual allocation
SLA enforcement

Model resource allocation by
additional fairness constraint

Scheduling

SLP compliant tenant scheduling
strategy design

Cost minimising hardware
provisioning strategy design

Resource provision

Request admission control
Service demand law estimation

Resource provision

SLA negotiation
Cost effective query optimisation
Design of a threshold for query

Admission control
Dynamic computing tenant’s

priority
M/G/s/s+r queueing model based

load balancing

Data placement

Distributed shared objects
middleware extension

JVM instances based resources
redistribution

Workflow scheduling based
mapping and managing inter-
dependent tasks’ execution
Service oriented architecture

design

Scheduling

Attribute based constraints
enforcement

Stochastic climbing algorithm
based multiple resource

reservation
Performance interference

prevention
Meta database schema design
Hadoop multi-tenancy resource

manager
Fuzzy cloud controller
Online process miner

Shuffled frog leaping based meta
heuristics algorithm design
VM sharing in the context of

workflow as a service
Use of containers modelling

Load balancing scheme
Auto scaling mechanism

Data management

Elastic application container based
lightweight resource management

Least busy and load aware VM
placement

Online resource demand
prediction

Prediction error handling

Resource provision

On Premises

Load balancing
Cluster based duplication

modellinging
SLA based weighing

Database scheme design
Duplication time strategy design

Performance isolation
Dynamic SLA control

Weighted round robin scheduling

Scheduling

Observe-decide-act loop structure
based orchestrator

Docker containers managing
Distribution and provision strategy

optimising
Micro-service architecture

exploition

Data management

tenant isolation based resource
allocation

VM instance allocation
Load balancing

Multiple VMs controller
Service level objective based

controller

Resource provision

Unnecessary replicas deletion
Resource estimation

Business relations modelling

Data placement

Capabilities of software defined networking scheduling
strategy design

Application load monitoring
Computing priorities for pending GPU based requests

Performance models building
Realistic task resource utilisation patterns converting

Resource isolation mechanism design
Application transparent checkpointing mechanism design

Checkpoint optimisation to tolerate and eliminate
Byzantine faults

Server performance of virtual clusters tracking
GPU abstraction

GPU requests deploying
Least attained service of GPU request servicing

Virtualisation technology based resources computing
I/O performance consideration

Scheduling

Workflow system’s compensation process customisation
Web service business activity states transition model

GPU scheduling decomposing
Datacentre policies based VM scheduling

Active VMs placement on minimum number of physical
servers

Datacentre based virtualisation
Load balancing

Dominant resource fairness based resource allocation
A priori knowledge of the dataflow tasks based

predictable scheduling behaviour providing
Optimal number of task resources exaction

Business process management system design
Control the execution of business processes

Data management

Tenancy requirements model mapping
Monitor-analyse-plan-execute loop based capable

system resources topologies design
Progress aware disk prefetching policy design

Prediction based resource provision and matching

Resource provision

Sliding-scheduled application placement optimisation
Routing problem optimisation

Data placement

Tenant placement optimisation
Fine grained batch planning and optimising

Process modelling

Figure 7: Research road map for multi-tenancy scheduling

• There is a need to develop GPU scheduling for multi-tenants. The dif-
ficulty of GPU scheduling involves static collisions and character collision. GPU
scheduling problem can be decomposed into load balancing and per-device schedul-
ing.

• In centralised distributed systems, it is very difficult to manage the large number
of tenant requests in multiple service queues, which further leads to performance
degradation. New multi-tenancy scheduling approaches need to be more
decentralised.

Figure 7 shows a proposed future research map for work in multi-tenancy scheduling.
In this figure, we can see that if we would like to improve multi-tenancy scheduling
performance, which service model can be improved, what aspects can be focused on, and
what technologies can be used. For instance, On SaaS, we can enforce data management
to improve scheduling performance. Inside, we can manage docker containers and exploit
micro-service architecture.

27

6. Threats to Validity

The results of this SLR might have been affected by some limitations such as bias in
the selection of primary studies, inaccuracy in performing data extraction, and assessing
quality of the studies.

The primary threat of this review is potential publication selection bias. We ad-
dressed the issue of bias in study selection through comprehensive searching from search
databases commonly used in existing SLRs (e.g. [87]). The procedure that we adopted
in this study follows the guidelines of Kitchenham et al. [10], which helps to minimise
the possibility of missing evidence. The searching phase of this work also faced some
limitations due to the limited availability of suitable search options in the search engine
and online databases. For example, the IEEE Xplore does not support a lengthy search
string. In the case of IEEE Xplore, it is clearly mentioned that the maximum number
of search terms is 15. Hence, to overcome this issue, we created several sub-strings,
which were executed separately and the results from each execution was recorded and
then accumulated [87]. Our search was organised as a multi-step process including man-
ual and automatic searches. To ensure the selection was unbiased, we defined a review
protocol. During the search strategy, we accessed relevant papers based on the appropri-
ateness of the search strings. If the title, abstract and keywords were not very clear and
straightforward, we chose to underestimate the importance of these research papers and
subsequently excluded them from the review. Moreover, the keywords used to retrieve
literature may be extended to the fields of distributed or large-scale database, distributed
data, machine learning and grid computing that have light correlation with big data and
cloud computing. Due to time restrictions, we only considered some commonly used
databases: IEEE Xplore, ACM Library, ScienceDirect and SpringerLink. Although this
may result in bias and present a threat to validity, the primary conferences and journals
of this domain have been searched to reduce such limitations. We also did not take into
account of surveys, technical reports, theses and non-published papers.

The secondary potential threat is inaccuracy in our data extraction. We used a data
extraction schema mentioned in Section 3.5 and a quality assessment described in Section
3.4. The evaluation of quality level of primary studies was considerably subjective.
For instance, some studies did not explicitly define the variables or measures used in
their research design. To reduce the likelihood of erroneous results, different researchers
conducted separate extractions and evaluate the quality assessment independently, as
well as clearly report the observations and evidences of each included paper related to
the review questions.

7. Conclusion

Multi-tenancy is a new software architectural pattern with a single instance of ap-
plications (or customising the data and configuration) running on service provider’s in-
frastructure. In this study, we have systematically reviewed research studies related
to multi-tenancy scheduling on cloud platforms, which attempts to investigate applied
methods and key research trends to solve multi-tenancy scheduling issues in an emerging
area of software engineering in cloud environment.

The results have demonstrated that most of multi-tenancy scheduling solutions (43.40%)
without delivery layers limitation, which can work at any layer. It introduces a new de-

28

livery model - HPCaaS. With the difference of tenants’ requirements and functionalities,
the choice of cloud platforms are changed from SaaS to DBaaS. IaaS more focuses on
virtual machines placement on servers to realise resource provision. Based on our study,
designing a multi-tenancy scheduling framework should consider the following three fac-
tors: computing, QoS and storage resource. Yet multi-tenancy scheduling algorithms are
most used to dynamically estimate needed resource, and compute tenants’ priority or
other QoS. To combine with scheduling algorithms and database solution, scheduler on
SaaS is a better choice. Some related task management issues can achieve multi-tenancy
scheduling, such as data management, data placement, and some other approaches focus
on data operation, such as building database or data partition.

Additionally, multi-tenancy scheduling approaches mostly consider load balancing
problem and QoS parameters, such as response time through negotiating SLA violations
and system performance. Nowadays, GPU are treated as explicitly selected devices in
high performance applications. GPU scheduling can be decomposed into load balancing
and per-device scheduling and further direction of GPU scheduling is static GPU provi-
sioning. We have provided a comprehensive overview of different scheduling approaches
dedicated multi-tenant based cloud platform, which is important for future development
of multi-tenant based applications for cloud computing.

In our own future work, we will evaluate the performance of several multi-tenancy
scheduling algorithms and make comparisons of these algorithms using empirical methods
to evaluate these scheduling methods.

Acknowledgment

This research is supported by a scholarship from Swinburne University of Technology.
Grundy is supported by ARC Laureate Fellowship FL190100035.

References

[1] R. Jia, J. Grundy, J. Keung, Software engineering for multi-tenancy computing challenges and
implications, in: Proceedings of ACM International Workshop on Innovative Software Development
Methodologies and Practices, ACM, 2014, pp. 1–10.

[2] C.-P. Bezemer, A. Zaidman, Multi-tenant saas applications: maintenance dream or nightmare?,
in: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE), ACM, 2010, pp. 88–92.

[3] M. Almorsy, J. Grundy, I. Müller, An analysis of the cloud computing security problem, in: Pro-
ceedings of 30th IEEE Conference on Asia-Pacific Software Engineering (APSEC), Cloud Workshop,
IEEE, 2010.

[4] K. Wood, M. Anderson, Understanding the complexity surrounding multitenancy in cloud com-
puting, in: Proceedings of 8th IEEE International Conference on e-Business Engineering (ICEBE),
2011, pp. 119–124.

[5] C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, A. Hart, Enabling multi-tenancy:
An industrial experience report, in: Proceedings of IEEE International Conference on Software
Maintenance (ICSM), IEEE, 2010, pp. 1–8.

[6] G. C. Frederick Chong, R. Wolter, Multi-tenant data architecture, in:
http://msdn.microsoft.com/en-us/library/aa479086.aspx.

[7] K. Tang, Z. B. Jiang, W. Sun, X. Zhang, W. S. Dong, Research on tenant placement based on
business relations, in: Proceedings of 7th IEEE International Conference on e-Business Engineering
(ICEBE), IEEE, 2010, pp. 479–483.

29

[8] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, J. Rittinger, Multi-tenant databases for software as a
service: schema-mapping techniques, in: Proceedings of ACM SIGMOD International Conference
on Management of Data, ACM, 2008, pp. 1195–1206.

[9] R. Jia, J. Keung, An empirical investigation on the simulation of priority and shortest-job-first
scheduling for cloud-based software systems, in: Proceedings of 22nd IEEE International Conference
on Software Engineering Conference (ASWEC), IEEE, 2013, pp. 78–87.

[10] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK, Keele University 33
(2004) 2004.

[11] L.-J. Zhang, J. Fiaidhi, I. Bojanova, J. Zhang, Enforcing multitenancy for cloud computing envi-
ronments, IT Professional 14 (1) (2012) 0016–18.

[12] D. Banks, J. Erickson, M. Rhodes, Multi-tenancy in cloud-based collaboration services, Information
Systems Journal.

[13] C.-P. Bezemer, A. Zaidman, Challenges of reengineering into multi-tenant SaaS applications, Delft
University of Technology, Tech. Rep. TUD-SERG-2010-012.

[14] R. Mietzner, T. Unger, R. Titze, F. Leymann, Combining different multi-tenancy patterns in service-
oriented applications, in: Proceedings of IEEE International Conference on Enterprise Distributed
Object Computing (EDOC’09), IEEE, 2009, pp. 131–140.

[15] F. Faniyi, R. Bahsoon, A systematic review of service level management in the cloud, ACM Com-
puting Surveys (CSUR) 48 (3) (2016) 43.

[16] I. Polato, R. Ré, A. Goldman, F. Kon, A comprehensive view of Hadoop research-a systematic
literature review, Journal of Network and Computer Applications 46 (2014) 1–25.

[17] T. White, Hadoop: The definitive guide, O’Reilly Media, 2012.
[18] S. Singh, I. Chana, QoS-aware autonomic resource management in cloud computing: a systematic

review, ACM Computing Surveys (CSUR) 48 (3) (2016) 42.
[19] J. Zhang, H. Huang, X. Wang, Resource provision algorithms in cloud computing: A survey, Journal

of Network and Computer Applications 64 (2016) 23–42.
[20] M. Soualhia, F. Khomh, S. Tahar, Task scheduling in big data platforms: A systematic literature

review, Journal of Systems and Software 134 (2017) 170–189.
[21] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from applying the sys-

tematic literature review process within the software engineering domain, Journal of systems and
software 80 (4) (2007) 571–583.

[22] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, Systematic literature
reviews in software engineering–a systematic literature review, Information and software technology
51 (1) (2009) 7–15.

[23] M. Petticrew, H. Roberts, Systematic reviews in the social sciences: A practical guide, Wiley. com,
2008.

[24] T. Zhao, H. Sun, Y. Tang, X. Liu, A load balancing algorithm in multi-tenancy environment, in:
Proceedings of ACM/IFIP/USENIX International Middleware Conference, ACM, 2013, p. 16.

[25] D. Sengupta, R. Belapure, K. Schwan, Multi-tenancy on gpgpu-based servers, in: Proceedings of
7th ACM International Workshop on Virtualization Technologies in Distributed Computing, ACM,
2013, pp. 3–10.

[26] W. Lloyd, S. Pallickara, O. David, M. Arabi, K. Rojas, Dynamic scaling for service oriented ap-
plications: Implications of virtual machine placement on IaaS clouds, in: Proceedings of IEEE
International Conference on Cloud Engineering (IC2E), IEEE, 2014, pp. 271–276.

[27] D. Azhar, E. Mendes, P. Riddle, A systematic review of web resource estimation, in: Proceedings of
8th International Conference on Predictive Models in Software Engineering, ACM, 2012, pp. 49–58.

[28] D. Maplesden, E. Tempero, J. Hosking, J. Grundy, Performance analysis for object-oriented soft-
ware: A systematic mapping, IEEE Transactions on Software Engineering 41 (7) (2015) 691–710.

[29] W.-T. Tsai, Q. Shao, Y. Huang, X. Bai, Towards a scalable and robust multi-tenancy SaaS, in:
Proceedings of 2nd ACM Asia-Pacific Symposium on Internetware, ACM, 2010, pp. 1–15.

[30] W.-T. Tsai, X. Sun, Q. Shao, G. Qi, Two-tier multi-tenancy scaling and load balancing, in: Proceed-
ings of 7th IEEE International Conference on e-Business Engineering (ICEBE), 2010, pp. 484–489.

[31] X. Cheng, Y. Shi, Q. Li, A multi-tenant oriented performance monitoring, detecting and scheduling
architecture based on SLA, in: Proceedings of IEEE Joint Conference on Pervasive Computing
(JCPC), IEEE, 2009, pp. 599–604.

[32] R. Krebs, A. Mehta, A feedback controlled scheduler for performance isolation in multi-tenant
applications, in: Proceedings of 3rd IEEE International Conference on Cloud and Green Computing
(CGC), IEEE, 2013, pp. 195–196.

[33] A. Asnaghi, M. Ferroni, M. Santambrogio, DockerCap: A software-level power capping orchestra-

30

tor for docker containers, in: Proceedings of 15th IEEE International Symposium on Distributed
Computing and Applications for Business Engineering (DCABES), IEEE, 2016, pp. 90–97.

[34] C. Fehling, F. Leymann, R. Mietzner, A framework for optimized distribution of tenants in cloud
applications, in: Proceedings of 3rd IEEE International Conference on Cloud Computing (CLOUD),
IEEE, 2010, pp. 252–259.

[35] S. Kalra, Prabhakar, Towards dynamic tenant management for microservice based multi-tenant
SaaS applications, in: Proceedings of the 11th ACM International Conference on Innovations in
Software Engineering, ACM, 2018, pp. 1–5.

[36] J. Espadas, A. Molina, G. Jiménez, M. Molina, R. Ramı́rez, D. Concha, A tenant-based resource
allocation model for scaling Software-as-a-Service applications over cloud computing infrastructures,
Future Generation Computer Systems 29 (1) (2013) 273–286.

[37] N. Rameshan, Y. Liu, L. Navarro, V. Vlassov, Hubbub-scale: Towards reliable elastic scaling under
multi-tenancy, in: Proceedings of 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), IEEE, 2016, pp. 233–244.

[38] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plattner, M. Franklin, D. Jacobs, RTP:
robust tenant placement for elastic in-memory database clusters, in: Proceedings of ACM Interna-
tional Conference on Management of Data, ACM, 2013, pp. 773–784.

[39] R. Krebs, S. Spinner, N. Ahmed, S. Kounev, Resource usage control in multi-tenant applications, in:
Proceedings of 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), IEEE, 2014, pp. 122–131.

[40] S. Yin, A. Hameurlain, F. Morvan, Sla definition for multi-tenant dbms and its impact on query
optimization, IEEE Transactions on Knowledge and Data Engineering 30 (11) (2018) 2213–2226.

[41] H. Sun, T. Zhao, Y. Tang, X. Liu, A QoS-aware load balancing policy in multi-tenancy environment,
in: Proceedings of 8th IEEE International Symposium on Service Oriented System Engineering
(SOSE), IEEE, 2014, pp. 140–147.

[42] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, R. Han, Elastic application container: A lightweight
approach for cloud resource provisioning, in: Proceedings of 26th IEEE International Conference
on Advanced information networking and applications (AINA), IEEE, 2012, pp. 15–22.

[43] Z. Shen, S. Subbiah, X. Gu, J. Wilkes, Cloudscale: elastic resource scaling for multi-tenant cloud
systems, in: Proceedings of 2nd ACM Symposium on Cloud Computing, ACM, 2011, pp. 1–14.

[44] K. Bijon, R. Krishnan, R. Sandhu, Mitigating multi-tenancy risks in IaaS cloud through constraints-
driven virtual resource scheduling, in: Proceedings of 20th ACM Symposium on Access Control
Models and Technologies, ACM, 2015, pp. 63–74.

[45] J. Zeng, B. Plale, Workload-aware resource reservation for multi-tenant NoSQL, in: Proceedings of
IEEE International Conference on Cluster Computing (CLUSTER), IEEE, 2015, pp. 32–41.

[46] H. Won, M. C. Nguyen, M.-S. Gil, Y.-S. Moon, Advanced resource management with access control
for multitenant Hadoop, Journal of Communications and Networks 17 (6) (2015) 592–601.

[47] G. Acampora, M. L. Bernardi, M. Cimitile, G. Tortora, A. Vitiello, A fuzzy-based autoscaling
approach for process centered cloud systems, in: Proceedings of IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), IEEE, 2017, pp. 1–8.

[48] P. Kaur, S. Mehta, Resource provisioning and work flow scheduling in clouds using augmented
shuffled frog leaping algorithm, Journal of Parallel and Distributed Computing 101 (2017) 41–50.

[49] M. Rodriguez, R. Buyya, Scheduling dynamic workloads in multi-tenant scientific workflow as a
service platforms, Future Generation Computer Systems 79 (2018) 739 – 750.

[50] R. Poddar, A. Vishnoi, V. Mann, HAVEN: Holistic load balancing and auto scaling in the cloud,
in: Proceedings of 7th IEEE International Conference on Communication Systems and Networks
(COMSNETS), IEEE, 2015, pp. 1–8.

[51] J. Simao, N. Rameshan, L. Veiga, Resource-aware scaling of multi-threaded java applications in
multi-tenancy scenarios, in: Proceedings of 5th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Vol. 1, 2013, pp. 445–451.

[52] B. P. Rimal, M. Maier, Workflow scheduling in multi-tenant cloud computing environments, IEEE
Transactions on Parallel and Distributed Systems 28 (1) (2017) 290–304.

[53] L. Suresh, P. Bodik, I. Menache, M. Canini, F. Ciucu, Distributed resource management across
process boundaries, in: Proceedings of ACM International Symposium on Cloud Computing, ACM,
2017, pp. 611–623.

[54] J. Zhu, B. Gao, Z. Wang, B. Reinwald, C. Guo, X. Li, W. Sun, A dynamic resource allocation
algorithm for Database-as-a-Service, in: Proceedings of IEEE International Conference on Web
Services (ICWS), IEEE, 2011, pp. 564–571.

[55] W. Lang, S. Shankar, J. M. Patel, A. Kalhan, Towards multi-tenant performance SLOs, in: Pro-

31

ceedings of 28th IEEE International Conference on Data engineering, IEEE, 2012, pp. 702–713.
[56] S. Jamalian, H. Rajaei, Asets: A sdn empowered task scheduling system for hpcaas on the cloud,

in: Proceedings of IEEE International Conference on Cloud Engineering (IC2E), IEEE, 2015, pp.
329–334.

[57] A. Gohad, K. Ponnalagu, N. C. Narendra, Model driven provisioning in multi-tenant clouds, in:
Proceedings of IEEE SRII Global Conference (SRII), IEEE, 2012, pp. 11–20.

[58] T. Ritter, B. Mitschang, C. Mega, Dynamic provisioning of system topologies in the cloud, in:
Enterprise Interoperability V, Springer, 2012, pp. 391–401.

[59] M. R. Rahman, I. Gupta, A. Kapoor, H. Ding, OPTiC: Opportunistic graph processing in multi-
tenant clusters, in: Proceedings of IEEE International Conference on Cloud Engineering (IC2E),
IEEE, 2018, pp. 113–123.

[60] X. Ding, R. Luo, M. Hui, A multi-tenant oriented customizable compensation mechanism for work-
flows, in: Proceedings of 3rd IEEE International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), IEEE, 2010, pp. 951–955.

[61] D. Sengupta, A. Goswami, K. Schwan, K. Pallavi, Scheduling multi-tenant cloud workloads on
accelerator-based systems, in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE Press, 2014, pp. 513–524.

[62] Rangavittala, Sanjay, S. Salvi, Enhanced multi-tenant architecture for DaaS, PaaS, IaaS and SaaS
in Edu-Cloud: Simplifying the service provisioning in Edu-Cloud by multi-tenant architecture, in:
Proceedings of 6th ACM International Conference on Computer and Communication Technology,
ACM, 2015, pp. 51–56.

[63] N. Jain, Lakshmi, PCOS: Prescient cloud I/O scheduler for workload consolidation and performance,
in: Proceedings of International Conference on Cloud Computing and Big Data (CCBD), IEEE,
2015, pp. 145–152.

[64] J. Duan, Y. Yang, A load balancing and multi-tenancy oriented data center virtualization frame-
work, IEEE Transactions on Parallel and Distributed Systems 28 (8) (2017) 2131–2144.

[65] R. Jia, J. Grundy, Y. Yang, J. Keung, H. Li, Providing fairer resource allocation for multi-tenant
cloud-based systems, in: Proceedings of 7th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2015, pp. 306–313.

[66] E. P. Neto, G. Callou, F. Aires, An algorithm to optimise the load distribution of fog environments,
in: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE,
2017, pp. 1292–1297.

[67] A. Shukla, Y. Simmhan, Model-driven scheduling for distributed stream processing systems, Journal
of Parallel and Distributed Computing 117 (2018) 98 – 114.

[68] P. Nghiem, S. Figueira, Towards efficient resource provisioning in MapReduce, Journal of Parallel
and Distributed Computing 95 (2016) 29 – 41.

[69] G. Rosinosky, S. Youcef, F. Charoy, An efficient approach for multi-tenant elastic business pro-
cesses management in cloud computing environment, in: Proceedings of 9th IEEE International
Conference on Cloud Computing (CLOUD), IEEE, 2016, pp. 311–318.

[70] C. Momm, W. Theilmann, A combined workload planning approach for multi-tenant business appli-
cations, in: Proceedings of 35th IEEE International Conference Workshops on Computer Software
and Applications Conference Workshops (COMPSACW), IEEE, 2011, pp. 255–260.

[71] A. Dalvandi, M. Gurusamy, K. C. Chua, Application scheduling, placement, and routing for power
efficiency in cloud data centers, IEEE Transactions on Parallel and Distributed Systems 28 (4)
(2017) 947–960.

[72] M. Rafique, S. Cadambi, K. Rao, A. R. Butt, S. Chakradhar, Symphony: A scheduler for client-
server applications on coprocessor-based heterogeneous clusters, in: Proceedings of IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), IEEE, 2011, pp. 353–362.

[73] B. Primas, P. Garraghan, K. Djemame, N. Shakhlevich, Resource boxing: converting realistic
cloud task utilization patterns for theoretical scheduling, in: Proceedings of 9th IEEE/ACM 9th
International Conference on Utility and Cloud Computing (UCC), IEEE, 2016, pp. 138–147.

[74] J. Mace, P. Bodik, M. Musuvathi, R. Fonseca, K. Varadarajan, 2DFQ: Two-dimensional fair queuing
for multi-tenant cloud services, in: Proceedings of ACM International Conference on Special Interest
Group on Data Communication (SIGCOMM), ACM, 2016, pp. 144–159.

[75] J. Li, C. Pu, Y. Chen, V. Talwar, D. Milojicic, Improving preemptive scheduling with application-
transparent checkpointing in shared clusters, in: Proceedings of 16th ACM Middleware Conference,
ACM, 2015, pp. 222–234.

[76] S. Chinnathambi, A. Santhanam, J. Rajarathinam, Senthilkumar, Scheduling and checkpointing
optimization algorithm for byzantine fault tolerance in cloud clusters, Cluster Computing 22 (6)

32

(2018) 14637–14650.
[77] Z. Li, L. Wang, Y. Zhang, T. Truong-Huu, E. S. Lim, P. M. Mohan, S. Chen, S. Ren, M. Gurusamy,

Z. Qin, Integrated QoS-aware resource provisioning for parallel and distributed applications, in:
Proceedings of 19th IEEE International Symposium on Distributed Simulation and Real Time
Applications, IEEE Press, 2015, pp. 171–178.

[78] N. Jain, Lakshmi, Pridyn: enabling differentiated i/o services in cloud using dynamic priorities,
IEEE Transactions on Services Computing 8 (2) (2015) 212–224.

[79] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne, S. Weerawarana, P. Fre-
mantle, Multi-tenant SOA middleware for cloud computing, in: Proceedings of 3rd IEEE Interna-
tional Conference on Cloud computing (cloud), IEEE, 2010, pp. 458–465.

[80] J. den Haan, Multi-tenancy and Model Driven Engineering, necessary assets of a Platform-as-a-
Service, http://www.theenterprisearchitect.eu/blog/2010/04/27/multi-tenancy-and-model-driven-
engineering-necessary-assets-of-a-platform-as-a-service/.

[81] S. Jamalian, H. Rajaei, Data-intensive hpc tasks scheduling with sdn to enable hpc-as-a-service, in:
Proceedings of 8th IEEE International Conference on Cloud Computing, IEEE, 2015, pp. 596–603.

[82] T. Kwok, A. Mohindra, Resource calculations with constraints, and placement of tenants and
instances for multi-tenant SaaS applications, in: Proceedings of International Conference on Service-
Oriented Computing (ICSOC), Springer, 2008, pp. 633–648.

[83] L. Cui, T. Zhang, G. Xu, D. Yuan, A scheduling algorithm for multi-tenants instance-intensive
workflows, Applied Mathematics & Information Sciences 7 (1) (2013) 99–105.

[84] B. Nagesh, Guruprasad, Resource provisioning techniques in cloud computing environment-a survey,
IJRCCT 3 (3) (2014) 395–401.

[85] W.-T. Tsai, Q. Shao, X. Sun, Real-time service-oriented cloud computing, in: Proceedings of 6th
World Congress on Services, 2010, pp. 473–478.

[86] M. Almorsy, J. Grundy, A. Ibrahim, Adaptable, model-driven security engineering for SaaS cloud-
based applications, Automated Software Engineering (2013) 1–38.

[87] A. B. Soomro, N. Salleh, E. Mendes, J. Grundy, G. Burch, A. Nordin, The effect of software
engineers’ personality traits on team climate and performance: A systematic literature review,
Information and Software Technology 73 (2016) 52–65.

33

