
A Revised Open Source Usability Defect Classification Taxonomy

Nor Shahida Mohamad Yusop1, John Grundy2, Jean-Guy Schneider3 and Rajesh Vasa3

1Faculty of Computer and
Mathematical Sciences,

Universiti Teknologi MARA
Selangor, Malaysia

nor_shahida@fskm.uitm.edu.my

2Faculty of Information Technology
Monash University

Melbourne, Australia
{john.grundy}@monash.edu

3Faculty of Science, Engineering and
Built Environment
Deakin University
Geelong, Australia
{jeanguy.schneider,

rajesh.vasa}@deakin.edu.au

Abstract
Context: Reporting usability defects is a critical part of improving software. Accurately classifying these reported
usability defects is critical for reporting, understanding, triaging, prioritizing and ultimately fixing such defects.
However, existing usability defect classification taxonomies have several limitations when used for open source
software (OSS) development. This includes incomplete coverage of usability defect problems, unclear criticality of
defects, lack of formal usability training of most OSS defect reporters and developers, and inconsistent terminology
and descriptions.
Objective: To address this gap, as part of our wider usability defect reporting research, we have developed a new
usability defect taxonomy specifically designed for use on OSS projects.
Method: We used Usability Problem Taxonomy (UPT) to classify 377 usability defect reports from Mozilla
Thunderbird, Firefox for Android, and the Eclipse Platform. At the same time, we also used the card-sorting
technique to group defects that could not be classified using UPT. We looked for commonalities and similarities to
further group the defects within each category as well as across categories.
Results: We constructed a new taxonomy for classifying OSS usability defects, called Open Source Usability Defect
Classification (OSUDC). OSUDC was developed by incorporating software engineering and usability engineering
needs to make it feasible to be used in open source software development. The use of the taxonomy has been
validated on five real cases of usability defects. However, evaluation results using the OSUDC were only
moderately successful.
Conclusion: The OSUDC serves as a common vocabulary to describe and classify usability defects with respect to
graphical user interface issues. It may help software developers to better understand usability defects and prioritize
them accordingly. For researchers, the OSUDC will be helpful when investigating both trends of usability defect
types and understanding the root cause of usability defect problems.

Keywords: usability defect reporting, usability defect taxonomy, empirical evaluation, open source software
development

1 Introduction
Usability is one of the prominent software quality
characteristics that measures the understandability,
learnability, operability and attractiveness of the software
products [1]. In the context of community open source
software in which no specific software development
processes were carried out, usability activities are often
ignored. Volunteers are more focused on functionality and
features rather than appearance, design aesthetic, and how
people will use the products [2]. As a result, open source
projects often have poor interfaces and complex user
interaction [2], [3].

Since usability is a key acceptance criterion of a software
product, usability-related issues need to be reported. In this
work, a usability issue is defined as any unintended
behaviour by the product that is noticed by the user and has
an effect on user experience. For example, consider a search
job that uses a lot of computer resources. If the effect of
high memory usage is only noticeable by software
developers, then we consider this problem to be a
performance defect. But, if a user experiences the slowness

of retrieving the search results and is frustrated by a delay,
in addition to performance it also affects usability.

However, reporting usability defects can be a challenging
task, especially in convincing developers that the usability
issue is indeed a real defect. The subjective nature of a
usability issue in addressing a user’s feelings, emotions, and
struggling requires a mutual definition so that developers do
not misinterpret the key information. In open source project
development where most volunteers are “non usability –
savvy” and work for limited time, a list of usability
keywords and options to classify usability defects is a
helpful solution to directly point to the causes and solutions
[4]. Currently, existing defect repositories, such as Bugzilla,
have used keyword functionality to label usability-related
defects. For instance, a defect can be labelled as uiwanted,
useless-UI, ux-affordance, uc-consistency and ux-efficiency.
However, such a high-level classification does not assist
developers to identify the underlying flaws or problems. In
fact, the lack of descriptions, examples and limited usability
terms make it difficult for non-expert Human Computer
Interaction evaluators to assign such labels for certain

John Grundy
to appear in Information and Software Technology (c) Elsevier 2020

usability defects [5]. Moreover, a recent literature review
exploring usability defect reporting practices has discovered
that usability defect reporting processes suffer from a
number of limitations, including mixed data, inconsistency
of terms and values of usability defect data, and insufficient
attributes to classify usability defects [6]. These limitations
encouraged us to revise existing usability defect
classification models to produce a model suitable for the
OSS domain. There are several reasons for categorizing
usability defects:

1) to more clearly disclose the probable causes of the
defect;

2) to highlight the impact of usability defects on the
task outcome;

3) to treat usability defect priority the same as the
other defects; and

4) to quantitatively track usability defects over time.

Based on our analysis of open source usability defect
reports, we integrated and revised some existing usability
defect classification models [8]–[10] to better incorporate
Software Engineering and usability engineering needs. We
also obtained and evaluated feedback on our new proposed
open source usability defect classification model by
requesting software development practitioners and novice
users to classify a sample of usability defects. From an
analysis of these classifications, we identified several
strengths and weaknesses in our approach. In this paper, we
report on the design and empirical evaluation of our new
OSS usability defect taxonomy. Key contributions of this
work include:

• a revised OSS usability defect taxonomy to classify
usability defects in OSS environment that have
limited usability engineering training and practices;
and

• an evaluation of the taxonomy by practitioners to
understand its strengths and weaknesses.

The rest of this paper is organized as follows. In Section 2,
we describe an overview of usability defect classification
schemes from the usability and software engineering
disciplines. Section 3 follows with the rationale for revising
existing usability defect classification schemes in open
source software development. Section 4 explains the
research process and methodology to construct the
taxonomy. In Section 5, we elaborate our new usability
defect classification model. We present our approach to
evaluate the model in Section 6, and the evaluation results
are presented in Section 7 and Section 8, respectively. We
outline threats to validity in Sections 9 and we discuss some
important issues in Section 10. The paper concludes with a
summary, implications, and future work in Section 11.

2 Existing Usability Defect Classification Schemes
Research on usability defect classification is often studied in
the field of human computer interaction (HCI). Earlier
efforts to classify usability defects were done by Nielsen [7].
Nielsen refined the nine heuristics he identified earlier using
factor analysis of 249 usability problems to derive a set of
heuristics with maximum explanatory power, resulting in a
revised set of 10 heuristics. Since Nielsen’s heuristics only

offer a high-level classification that only considers high
level views of difficulties users encountered with the user
interface, there are several limitations with using it to
classify usability problems, as reported in [8]: 1) insufficient
distinguishability, 2) lack of mutual exclusiveness, 3)
incompleteness, and 4) lack of specificity.

To overcome these limitations, Keenan et al. [8] developed
the Usability Problem Taxonomy (UPT) that classifies
usability defects into artefact and task components. The
artefact component consists of visualness, language, and
manipulation categories, while the task component consists
of task mapping and task facilitation categories. Each
category is composed of multi-level subcategories. For
example, language consists of two-level sub-categories; the
first level consists of naming/labelling, and other wording.
In the second level, other wording is further categorized into
feedback messages, error messages, other system messages,
on screen text, and user-requested information/ results. The
depth of classification along the components and categories
may result in one of three outcomes: full classification,
partial classification, and null classification.

However, Keenan’s approach to classification relies on a
high quality defect description which, as our earlier work
demonstrates [9], are rarely present in open source usability
defect reports. Our observations are that many open source
usability defect reports have defect descriptions that contain
a lack of contextual information, particularly on the user-
task. As a result, when using UPT to classify usability
defects, we have to make many assumptions and a self-
judgment about the task performed by the users that lead to
the problems. We believe UPT is useful for usability
evaluators to assess the usability defects during usability
evaluation with the presence of users, but not to classify
defects by just reviewing the usability defect description.

Andre et al. [10] have expanded the UPT to include other
usability engineering support methods and tools. By
adapting and extending Norman’s [11] theory of action
model, they developed Usability Action Framework (UAF)
that used different interaction styles. For example, the high-
level planning and translation phase contains all cognitive
actions for users to understand the user work goals, task and
intentions, and how to perform them with physical actions.
The physical action phase is about executing tasks by
manipulating user interface objects, while the assessment
phase includes user feedback and the user’s ability to assess
the effectiveness of physical actions outcome. Even if the
UAF was viewed as a reliable classification scheme that
supports dissimilarity of defect descriptions for the same
underlying design flaw, the complexity in determining
which phase of the interaction the problem occurred is a real
challenge for novice evaluators.

Meanwhile, in ISO/IEC 25010 standard the quality of
software product can be measured using eight characteristics
(further divided into sub characteristics) – functional
suitability, performance efficiency, compatibility, usability,
reliability, security, maintainability, and portability. In the
context of product usability, ISO/IEC 25010 defines
usability as appropriateness recognisability, learnability,
operability, user error protection, user interface aesthetics,
and accessibility. However, the results from [12] indicated
that the classification of defects using main characteristics

and sub characteristics were not reliable due to the limited
information present in the defect reports. With little
information, the functionality and usability issues were
difficult to distinguish.

However, since 2000, many researchers have started to
actively use software engineering classification models to
classify usability defects. One of the most prominent
approaches is the adoption of a cause-effect model. For
example, Vilbergsdottir et al. [13] have developed a
Classification of Usability Problem (CUP) framework that
consists of two-way feedback; Pre-CUP that describes how
usability defects are found, and Post-CUP that describes
how usability defects are fixed. In Pre-CUP, usability
evaluators use nine attributes (Defect identifier, frequency,
trigger, context, description, defect removal activity, impact,
failure qualifier and expected phase) to describe usability
defects in detail. Once the usability defects have been fixed,
the developers record four attributes (actual phase, types of
fault removed, cause and error prevention technique) in
Post-CUP. Although the Post-CUP is useful for defects
triaging, in which similar issues can be mapped into specific
fixes, we postulate that some of the attributes in Pre-CUP
are not relevant for novice OSS reporters to report
informative usability defect descriptions. For example,
technical information about defect removal activity, failure
qualifier, expected phase, and frequency are difficult to
obtain, especially for those who have limited usability-
technical knowledge.

Khajouei et al. [14] argued that the lack of information on
the effects of usability defects in UAF will cause a long
discussion to convince developers of the validity of the
usability defects. They augmented the UAF to include
Nielsen’s severity classification and the potential impact of
usability defects on the task outcome, in order to provide
necessary information for software developers to understand
and prioritize problems.

Although Geng et al. [15] agreed that CUP can capture
important usability defect information and provide feedback
for usability software, CUP could not be used to analyse the
effect on users and task performance. Considering the
importance of the cause – effect relationship, they have
customized the ODC and UPT, as shown in Figure 1. They
developed cause-effect usability problem classification
model that consists of three causal attributes (artefact, task,
and trigger) and four effects attributes (learning, performing,
perception, and severity). However, in the absence of formal
usability evaluation in OSS projects, the trigger attribute as
suggested in the model cannot be sufficiently justified.
Additionally, the use of pre-defined values for some of the
attributes may introduce selection bias and users are likely
to select incorrect values.

Other usability problem classifications use a combination of
models to support practical use of classification in different
software development context [16]. This model-based
framework consists of three perspectives, in which each
perspective is facilitated by the use of models: artefact-
users-tasks-organization-situation model for Context of Use,
abstraction hierarchy model for Design Knowledge, and
function-behaviour-structure model for Design Activities -
in which the usability problem needs to be analysed through
the collective consideration of the three models. The

Context of Use perspective is to understand the cause of the
problem, either related to design factors (violated user
interface design guidelines) or non-design factors (user
preferences). If a usability problem is judged as “design
factors”, it should be further analysed from the Design
Knowledge and Design Activities perspectives. Such a
reference framework allows usability evaluators to develop
a specific classification scheme for a context. However,
poor involvement of usability evaluators in OSS projects
makes it rather impossible to adopt such a comprehensive
framework. In fact, contributors who participated
voluntarily in open source projects prefer to work more on
the main functionality of a certain application rather than
focusing on user-centric design [17].

Several other related work support usability-related issues
by focusing on GUI defects and functionality. Examples
include the GUI fault model [18], which categorize GUI
defects into interface and interaction defects, and Harkke et
al. [19] classified usability defects into 11 categories –
missing, misinterpreted, positive, inadequate, unexplored,
misplaced, unnecessary, technical deficiencies, problematic
change of work practice, preferenced, and misaligned.

Figure 1. Geng’s cause-effect usability problem

classification model [15].

3 Rationale for Revising Existing Usability Defect
Classification Schemes

From a software engineering perspective, cause-effect
classification models provide a deeper understanding of a
software problem. To the best of our knowledge, only one
usability cause-effect classification currently exists. Geng’s
classification [15], in our view, is not appropriate to classify
open source usability defects that often contain limited
information [20]–[22]. The trigger component in the causal
attributes can be limited. This is because in the absence of
formal usability evaluations in OSS development, it is
impossible to identify the usability evaluation methods that
trigger usability defects.

Even if formal usability evaluations were to be conducted,
OSS projects would still lack an effective mechanism to
conduct the evaluations, mainly for two reasons. First, many
of the volunteers who contribute to OSS development are
developers, who generally have limited knowledge and
skills required for usability evaluation. Second, in order to
formally conduct usability evaluations, extra commitment
from contributors is necessary, but volunteers may not be
able to spend the time on this.

Considering all of these limitations, we revised Geng’s
classification [15] to better suit an OSS environment and
adapted some elements of the ODC framework to address
cause and effect attributes. In the following paragraphs we
summarize the rationale for our revisions.

Defect category - In software development, quantitative
measurements such as the amount of memory used, the time
to load an application or response time is very crucial and
often gets immediate attention from software developers, as
opposed to subjective usability issues that cannot be
scientifically quantified and measured. To address this issue,
common open source defect repositories such as Bugzilla
have implemented keyword functionality to address usability
heuristics terms, such as consistency, jargon, and feedback
so that the concept of user interface and the underlying
implementation can be described effectively. Each usability
issue is tagged with the specific usability heuristic being
violated. In this way, software developers with limited
usability and interface design knowledge can learn about the
heuristics and understand how the same types of defects
could be resolved. However, current usability principles
being used by Bugzilla’s keyword functionality are too
broad [23]. Some keywords are hard to distinguish and may
lead to incorrect interpretation. Consider the following
Bugzilla keywords and definitions:1

Ux-affordance – controls should visually express how the
user should interact with them.

Ux-discovery – users should be able to discover
functionality and information visually exploring the
interface, they should not be forced to recall information
from memory. (This is often the nemesis of ux-minimalism
since additional visible items diminish the relative visibility
of other items being displayed)

Based on these definitions, the two keywords refer to the
ability of users to recognize and understand possible actions
based on visual cues of user interface. The unclear
separation between the keywords can lead to
misclassification of defects that will eventually affect the
identification of root cause and similar resolution strategies.
In fact, the single perspective classification as used by
Bugzilla is not relevant for classifying usability issues that
often consist of graphical user interface and action issues. In
this regard, a taxonomic classification such as UPT is a
recommended approach to classify usability defects from an
artefact and task aspect, respectively.

Effect – Previous studies have reported that usability defects
are treated at a lower priority compared to functional defects
[24]. In the existing ODC classification, severity is used to
measure the degree of the defect impact. However, due to
unclear usability category definitions, many usability defects
end up with low severity ratings [24]. From our analysis of
open source defect reports [9], we think unclear and missing
descriptions about user difficulty caused by the usability
defect is one of the reasons why software developers do not
prioritize the importance of fixing many reported usability
defects. The fact that only a small fraction of usability defect
reports contain impact information reveals the lack of

1 https://bugzilla.mozilla.org/describekeywords.cgi#ux-affordance

contextual information to convey information to software
developers about the user difficulty and how it impacts user
emotion from the perspective of usability engineering.
However, the use of only textual descriptions to capture user
difficulty could be a disadvantage as users are likely to
provide lengthy explanations that may be unhelpful to many
software developers. One way to reduce this limitation is to
create a set of predefined impact attributes so that the impact
can be objectively measured. For example, we can use rating
scale to measure emotion, while task difficulty could be
selected from a predefined set of attributes.

Causal – Since no formal usability evaluation is usually
conducted in OSS projects, usability problem triggers
cannot be identified. In OSS projects, usability defects are
most often reported from online user feedback facilities and
results of developer black-box testing. Considering this
limitation, instead of looking at trigger attributes, we study
the failure qualifier of the problem. This information could
help software developers to understand the reason why a
user considers the problem as a valid usability defect.

4 Research Process and Methodology
The OSUDC taxonomy was created following a three-phase
process and influenced by the design science methodology
[32]: 1) problem identification, 2) artefact design, and 3)
validation.

In the problem identification phase, we reviewed several
usability defect classification models in the literature, in
particular UPT [8], ODC [25], GUI fault model [18] and
usability-ODC framework [15]. While we wanted our
usability defect classification to be in line with software
engineering principles, we also wanted to develop a model
that is simple and easy to use by users with limited usability
knowledge.

In contrast to the previous classifications [8], [15], our
usability defect classification model is designed to address
usability defects reported in open source defects without a
formal usability evaluation method being used. Thus,
observable data such as time-on-task, number and types of
help sought, frequency of expressed frustration cannot be
obtained from the defect reports. In fact, in open source
usability defect reports, we could not identify testing
techniques used by the users that triggered the usability
defect. For these reasons, we revised the previous
classification models [8], [15], [18] to only consider
information normally available in the open source defect
reports.

In the artefact defect phase, we adapted the original ODC
framework to better understand usability defect causes and
effects and integrated it with usability practices. Figure 2
illustrates our high-level cause-effect usability defect
classification model. We collected 377 usability defects
from Mozilla Thunderbird, Firefox for Android, and Eclipse
Platform projects. In constructing a list of potential metrics
to be used for ODC attributes (cause and effect attributes),
the first author began by randomly reading a few samples of
defect reports in detail, trying to understand the defect
content structure. Most of the defect descriptions that were
read contained significant information about defect
reproduction, actual results (i.e. what is wrong with the

usability defects), expected results (i.e. what should be
fixed) and user difficulty expressions.

Based on this common information, usability defect
categories and failure qualifier were included as ODC-cause
attributes and user difficulty as ODC-effect attribute in our
first draft of a classification model. The rationale of using
failure qualifier and user difficulty is to help developers
understand the validity of the problem and help them to
prioritize defect resolution accordingly.

We started to classify one project at a time. We used user-
written statement criteria to signal usability defect
categories, failure qualifier, and user difficulty attributes. To
analyse the defect descriptions into the three attributes, we
conducted a card sort. Card sorting is a method to generate
information grouping of specific data items [26]. In our
case, we applied both closed and open card sorts. In a closed
card sort a set of pre-defined categories were used to
organize and map the defect descriptions into usability
defect categories [8], [15], and failure qualifier attributes
[27]. While in an open card sort no predefined groups were
used, instead the groups emerged and evolved to identify
common themes for user difficulty attributes.

Once we had identified more global definitions of categories
and subcategories, we then proceeded to more rigorously
classify the other two projects, and iteratively refined these
categories and their definitions. Finally, when the model
was established, the other three authors read half of the
sample independently, applying the final classification
model, and consulted the categories definitions and
terminology until a consensus was reached. We reached
agreement collaboratively as disagreements arose.

In the validation phase, we conducted a case survey
methodology [33] and we summarize our findings in Section
7. We focused on investigating the ease of use and
understandability of the OSUDC taxonomy rather than the
effectiveness and accuracy of the classification.

5 The OSUDC Taxonomy version 1.0
The OSUDC taxonomy provides a structured way of
characterizing usability defects for open source software
through three top-level elements, namely defect categories,
failure qualifier and user difficulty. These elements are
further refined to provide a common terminology that can be
used by researchers and practitioners to report and classify
usability defects. The remainder of this section provides an
overview of the three elements, including the changes and
additions to the original UPT.

5.1 Cause Attribute

This attribute is derived from ODC. In the original ODC,
cause attributes are measured using defect types and trigger.
Defect type gives information about type of defects
uncovered by different testing techniques, while trigger is a
condition that allows a defect to be discovered. However, in
our research we used defect types to group usability defects
that share common characteristics, and trigger was used to
understand the underlying usability design flaws. The
detailed description of defect types and trigger are given
below.

Figure 2. OSUDC Taxonomy based on [15]

5.2 Cause Attribute

This attribute is derived from ODC. In the original ODC,
cause attributes are measured using defect types and trigger.
Defect type gives information about type of defects
uncovered by different testing techniques, while trigger is a
condition that allows a defect to be discovered. However, in
our research we used defect types to group usability defects
that share common characteristics, and trigger was used to
understand the underlying usability design flaws. The
detailed description of defect types and trigger are given
below.

5.2.1 Usability Defect Categories

To classify usability defect categories, we used a closed card
sort. We began by classifying the written usability defect
description to a set of predefined usability defect categories
as in [8], [15]. Since we experienced some difficulties – lack
of specificity and insufficient definition when using [8],
[15], and lack of information in defect reports during our
preliminary analysis, we revised the original UPT by only
categorizing the defect types into two categories – interface
related defects and interaction related defects [18]. Interface
defects refer to defects affecting the structure and behaviour
of graphical user interface (GUI) aspects that affect the
overall look and feel of the application. Interaction defects
refer to defects affecting the interaction process when a user
interacts with a GUI. To reflect these two categories, we
reconstructed the original UPT’s primary and subcategories
as follow:
• The original UPT “language” category is removed and

all the subcategories are assigned to new category
“information presentation”, and the “manipulation”
category is moved to interaction defects.

• We extracted three primary categories of interface
defects - Visualness, information presentation, and
audibleness. Visualness refers to GUI presentation,
such as harmonious colours, object affordance and
layout coherence, respectively. We only retained two
subcategories of the original UPT (object appearance
and object layout), replaced “object movement”

Usability Defect Classification Model

Failure Qualifier

Wrong Missing

Incongruent mental
model Irrelevant

Better way Overlooked

Interface

Interaction

Usability Defect Categories

Emotion

Task

User Difficulty

Cause Attributes

Effect Attributes

subcategories with “object (screen) state”, and moved
two subcategories “presentation of information/
results” and “non-message feedback” to the
“information presentation” primary category.

• The primary category “information presentation” is
about information relevancy and credibility of data,
feedback message, on screen text, and results presented
in the user interface. It is divided hierarchically into six
subcategories. We adapted “data presentation”
subcategories in [18], reused “non-message feedback”,
“error, notification and feedback message” in UPT,
and added two subcategories “on screen text” and
“menu structure”.

• The primary category “audibleness” was adapted from
[15] to accommodate the audio, speech and voice
capability. We replaced the subcategories “prompt”
with “audio cues”.

• For interaction defects, we extracted three primary
categories – manipulation, task execution, and
functionality. In contrast to the original UPT, the
primary category “task mapping” and “task
facilitation” are refined.

• Manipulation is concerned with the user’s ability to
understand and manipulate user interface objects [8].
We adapted four subcategories as in the ODC-usability
framework – keyboard press, mouse click, finger
touch, and voice control. We added three
subcategories; scrolling mechanism, drag and drop,
and zooming to support touch-based interaction for
touch screen-based devices.

• Task execution focuses on the outcome of certain
tasks. We adapted three subcategories as in the fault
model [18] – action, reversibility, and feedback.
Referring to the original UPT, we considered the
subcategories “interaction”, “navigation”, and
“task/function automation” as “action” subcategories.
The subcategory “alternatives” was replaced by
“reversibility”, and the two subcategories “user error
tolerance” and “keeping the user on track” were
combined in “feedback” subcategory.

• Functionality refers to any problem due to the
capabilities provided by the product. We reused
functionality definitions from [19] – missing
functionality, misinterpreted functionality, inadequate
functionality, misplaced functionality, unnecessary
functionality, technical deficiencies, preference
functionality, and misaligned functionality.

The resulting model is illustrated in detail in Figure 3, and a
definition of each category used in the model is summarized
in Table 1. The detailed categories, subcategories, and
examples of such usability defects can be found in our
online supplementary materials:
http://bit.ly/Material_for_OSUDC.

5.2.2 Trigger

Another aspect of ODC is to help software developers
understand the root causes that trigger dissatisfaction of the
software product from the viewpoint of the users. Since in
OSS projects, usability is not formally evaluated with the
presence of actual users, it is quite difficult to explain to

software developers why certain aspects of the software
product become an issue for some users.

With this in mind, we believe an effective classification
model is the one that may explain why users are
experiencing problems. In the ODC model [25], trigger
measures the nature of testing being conducted in order to
highlight the kind of testing techniques necessary to
discover defects. However, in open source projects, such
information is not available. Therefore, when analysing
trigger attributes from defect description we used failure
qualifier from ODC as a set of predefined metrics.

In the usability evaluation context, the failure qualifier
attribute is used to capture more information about usability
defects through verbal communication with the test
participant or through the observation from the recorded
user test session [13]. For instance, the usability evaluator
can ask the test participants why they did not notice the
presence of a menu or if they think some elements on the
user interface are missing. On the contrary, our approach
determines the failure qualifier based on a statement written
in the defect report. To reflect this, we have refined the
definitions of the failure qualifier attributes to suit our
usage, as shown in Table 2. We assume that this ODC
failure qualifier would be a good ground on which to base
the users’ justification on how they discovered the usability
defects.

5.3 Effect Attribute

In many defect classification models [15], [25], [27],
severity rating is commonly used as a metric to measure the
potential effect of usability defects on the intended user.
Since usability defects severity tend to be unfairly treated by
software developers [24], we argue that defect severity is
not a reliable metric for analysing usability defects for
software quality improvement.

In Geng’s classification [15], the effect attribute is studied
from the perspective of three components – problem in
learning, problem in performing given tasks, and user
perception. Each of these components has multiple sub-
components. For example, the learning component contains
three sub-components - learnability, memorability, and
retention over time. The performance component has two
sub-components - effectiveness and efficiency. These values
are measured by examining time, effort, success rate and
level of happiness showed by users when performing
assigned tasks during usability testing. Since usability
defects in OSS projects are not directly observable from
usability test data, such metrics cannot be used in our model.
In software development we recognize that the impact the
defect has on the user and likelihood of occurrence is
important to prioritize defect fixes. However, previous
research has found that such information is rarely present in
defect reports, or if it is reported, the information is not clear
[9], [20], [21]. For this reason, we examined the effect of
usability defects as the user difficulty, in terms of human
emotion and task performance only.

In this research, we examined statements and phrases of
defect reports to decide which statements constitute impact
on human emotion and impact on task performance. Using
open card sort, the first author reviewed statements and

generated labels of emotion and task difficulty, then merged
and sorted the lists into meaningful descriptive labels, and
created a set of codes. In our analysis, we interpreted impact
of task performance based of the software quality attributes,
such as accessibility, understandability, noticeability, loss of
data, complexity, and visibility. For human emotion such as
confusion, frustration and annoyance, our interpretation was
based on the terms such as “distract”, “annoy”, “frustrate”.

If such terms are not present in defect reports, we analysed
the phrases such as [28]:

• “I am confused about …”
• “I’m not sure …”
• “I don’t know …”
• “I can’t figure out …”
• “I am having a problem …”
• “I assume …”
• “How do I …”

Table 1. Definition of key defect categories
Defect Definition
Interface Any unpleasant graphical user interface aspects that affect the overall look and feel of the application.
Visualness Any difficulty encountered by the user when they view objects (icon, menu item, scroll bar, button, favicon), symbol, and images

present in (or missing) the user interface.
Object (screen)
appearance

Refers to how individual objects look, sound, or appear to other senses. These problems involve object affordance such as the use of
colours, size, and animation.

Object (screen) layout Refers to layout coherence and how user interface objects are laid out on the screen. These problems involve spatial organization, such
as the use of balance and symmetry, the alignment and spacing of elements, the grouping of related elements, the placement of screen
objects, and consistent use of the GUI elements across applications.

Object (screen) state Any difficulty encountered by the user when they cannot recognize or are unclear about the effect of object state change, including the
change to its behaviour and appearance.

Information
presentation

Any difficulty encountered by the user when they view, read, and interpret the information or data presented in the user interface.

Data presentation Refers to how data is presented, structured, and controlled.
Object (screen)
naming and labelling

Any difficulty in language such as words/ terminology used as names on objects (such as buttons, title bars, field labels) and screens
[8]. These problems also include inconsistencies of naming and labelling standard.

Non-message
feedback

Any difficulty that is due to distracting, annoying, and confusing feedback [8], and insignificant use of visual cues that appears while
using user interface.

Error, notification and
feedback message

Any difficulty in language such as words used in phrases and sentences in error, notification, and feedback message. These problems
also include the ability of users to understand and interpret the meaning of information presented in the message.

On screen text and
results

Refers to completeness, accuracy and credibility of information in on screen text/ instructions, online help and tutorials, and results of
user queries.

Menu structure Refers to organization of menus and grouping of related options.
Audibleness Any unpleasant audio like sound management and sound alerts.
Voice and sound Refers to any problem related to audio cues at the interface like giving distracting, disturbing, and annoying sounds, or missing sound

alerts when the message comes to the screen.
Text and feedback in
speech

Refers to any problem when there is difficulty in understanding speech signs and translating these to text.

Interaction Any difficulty encountered by the user when they interact with the application
Manipulation Any defects that occur when the user has trouble with some aspects of manipulating objects on the user interface
Keyboard press Any difficulty encountered by the users when they use keyboard to interact with the user interface. These problems include the

problematic use of access keys as a shortcut to issue menu commands.
Mouse click Any difficulty encountered when the user has difficulty to use mouse to click, including left/ right mouse clicking, double clicking
Finger touch Any difficulty encountered by the users when they touch areas of the screen to move the pointer, press button, and manipulate image.
Voice control Any difficulty encountered by the users when they use voice signals to activate user interface or invoke certain tasks.
Scrolling mechanism Any difficulty encountered by the users when they use vertical scrollbars to move data up and down, and horizontal scrollbars to move

the data left and right within the view.
Drag and drop Any difficulty encountered by the users when they select and drag an object and drop it into another location in the interface.
Zooming Any difficulty to change gradual image scaling operation.
Task execution Any defects encountered by the users that inhibit a user from completing an intended action.
Action Any defects that occur as a result of executing a task.
Reversibility Refers to the ability of the application to allow user to explore the interface and make mistake and roll back the action such as multi-

level undo operation, and the ability to cancel long-running actions.
Feedback Refers to the ability of the application to always keep users informed about what is going on for every user event, such as prompt a

warning, status, and error message.
Functionality Any problem that is due to the facilities provided by the product to user.
Missing An element of the system that is necessary for the users’ work is not available at all. The task/ work cannot be performed with the

presented system. The functionality has not been implemented.
Misinterpreted Refer to the terminology or symbols/ functions are not correctly understood by the user. One may think about a different meaning of

the symbol, feature, function or information from the designed purpose.
Inadequate A required element of the system is present, but the implementation is not sufficient for the task at hand. Functionality has been

designed and implemented into the system, but it lacks a proper fit with the work and practices of users preventing or significantly
hindering the performance.

Misplaced The needed element is available and adequate but in a cumbersome format or requires unnecessary effort to find and use. The feature
is implemented somewhere or somehow, but not available at a required place and point in time.

Unnecessary Users do not use, notice, behaviourally or verbally ignore a function or a piece of information that has been implemented.
Technical deficiencies The system is implemented with error/ bugs.
Preferenced A way of doing something in the system is preferred to an alternative way.
Misaligned The feature would require a change in the work practice to be useful. The way in which functionality is meant to be used differs from

the existing or traditional use.

Figure 3. Hierarchical structure of defect types, effect and failure qualifier. The colours indicate the different source we

adapted in our classification model.

!

!

!

Interface

Interaction

Manipulation

Audibleness

Information
presentation

Visualness

Object (screen) appearance

Object (screen) layout

Object (screen) state

Data presentation

Object (screen) naming and
labeling

Non-message feedback

Error, notification and
feedback message

Voice and sound

Audio cues

Text and feedback in speech

Keyboard press

Mouse click

Finger touch

Voice control

Scrolling mechanism

Defect

Task execution

Action

Reversibility

System Task Feedback

Drag and drop

On screen text and results

Zooming

Menu structure

Functionality

Missing

Misinterpreted

Inadequate

Misplaced

Unnecessary

Technical deficiencies

Preferenced

Misaligned

User Difficulty

Failure Qualifier

Human emotion

Overlooked

Better way

Irrelevant

Incongruent
mental model

Missing

Wrong

Task

Adapted from Lelli et al., 2015

Adapted from Keenan, 1999

Adapted from Geng et al., 2014

Adapted from Harkke et al., 2015

Classification adaptation:

Adapted from Vilbergsdóttir et al., 2006

Our proposed categories

We started the examination with the Mozilla Thunderbird
dataset. Once the Mozilla Thunderbird dataset was
classified, the process was repeated with the Firefox for
Android and Eclipse Platform datasets. If there were
inconsistencies, the draft codes were modified and refined
again. Finally, the appropriateness of the resulting codes and
definitions were thoroughly discussed. Overall, when

reporting a particular usability defect, reporters tended to
address a single difficulty at a time, and reporters provided
little evidence to substantiate their difficulties claim. Table 3
and Table 4 define each of these user difficulty attributes
and list some example phrases from open source defect
reports.

Table 2. Failure Qualifier – Sample phrases from usability defect reports [13]

Qualifier Definition Representative quotes from sample
Wrong When the reporter notices that something has gone

wrong while performing a task or some elements
on the user interface are violating usability
principles and standards.

1. The New project wizard has an icon based on the closed project icon, which is
not how it would appear to the user.

2. On reload, the lock icon should immediately disappear when the old document
has finally gone away, not when reload has just been tapped upon

Missing When the reporter fails to find something in the
user interface that he/ she expected to be present,
or the results of performing certain task did not
meet his/ her expectations.

1. When initiating a WebRTC call, Firefox for Android currently doesn't pop up a
permission request to use the camera/microphone. We need this to pref on.

Irrelevant When the user interface contains information
objects, steps to accomplish task or functionality
that do not contribute to system services and are
unnecessary

1. This is needless functionality and annoying….)
2. It is pointless to show the button that lists all your tabs when you only have one

open. In fact, it really is pointless to show them unless you have more tabs than
your Window can hold.

Better way When the reporter suggests that something in the
user interface could have been done differently, or
suggests a different way of doing a certain task

1. It’s nice to change the dialog resizable and scrollable in the tabs' contents for
temporarily (The Account Settings is so).

2. I would prefer that if someone wants to re-populate the dialog text from
selected text, they simply type ^F again.

Overlooked When the reporter overlooks an entity in the user
interface, or does not know how to perform a
certain task

1. It happened to me a couple of times that I thought that I closed all editors by
mistake

2. Didn’t know how to change it back or that it's even possible
Incongruent
mental model

When the user interface is unclear because it does
not match the reporter's mental model, previous
experiences, or they notice inconsistencies with
other similar applications

1. I haven't found a official DL link for Royale but the one I now used looks most
"official".

2. I expected to be able to enter my username and my password as usual, not
having the keyboard overlapping text input fields.

Table 3. Effect on human emotion and quotes for each. Bold indicates emotion that affected human emotion
Emotion Definition Representative quotes from sample
Distraction Anything that draws a user’s attention away from

their current focus or desired focus of the user
interface or doing a certain task

1. The user is confronted with too many cool items and their "grab bars". It is
distracting, and it is unlikely that this granularity of repositioning is required.

2. The lock animation that I'm currently seeing is distracting. It makes me take a
second look at the screen to find out why something has just moved.

Confusion The feeling of being unclear about the software
function

1. This leaves the novice user in an unexpected state.
2. I find the navigation arrows in the toolbar confusing.

Annoyance Frustration or hardship induced by using the user
interface or software functionality that leads to
irritation, frustration and anger

1. I find it frustrating to navigate to the file when I know the name and just want it
opened.

2. Some people (me) find vibrate on every single click to be quite a nuisance.

Table 4. Effect on task performance and quotes for each. Bold indicates software qualities that affected task performance
Task Definition Representative quotes from sample
Complexity The difficulties about understanding and using the

software product and its components, in which the
user has to perform irrelevant actions or needs to
perform extra steps to accomplish a task

1. I was able to copy the file on to my windows machine, edit it using
Thunderbird on that machine, and then re-copy it to the EeePC, but that
should not be necessary.

2. It generally takes about 2-4 taps to figure out where the checkbox tap
target is at …

Visibility The poor capability of user interface or product
components to keep users informed about what is
going on, through appropriate feedback, obvious
prompts and cues within reasonable time

1. The cvs and resource icons are hard to distinguish as well.
2. … active editor (tab) hard to detect (see screenshot)

Performance The effect on task execution such as peed
efficiency, availability, accuracy, throughput,
response time, recovery time, resource usage

1. Clicking on the 'Plug-in Details' or 'Configuration Details' buttons in the
About dialog are time-consuming operations when the product in question
has a large number of plug-ins

2. When a file type is selected the dialog is frozen for a very long time and no
busy cursor is shown.

Accessibility The difficulties the user has to access, use and
benefit from certain functions in the user interface.
The degree to which a product, device, service, or
environment is available to as many people as
possible

1. Therefore, I can't do any searches
2. … thus a new user will not be able to click anything on that page at all.

Loss of data An unexpected error made by the user when
performing a task, in which information is
destroyed by failures, or neglect in storage,
transmission, or processing.

1. No thanks for making me lose everything, my tabs, bookmarks etc by
adding an extra search app, which I do not need.

2. This will cause data loss and perceived instability in the IDE

Understandability The difficulties about understanding the user
interface metaphors and product functionality

1. If you close all the views in the perspective, it remains open, but looks very
bare, and it's not clear what the user can do next.

2. … The new user has no idea what a perspective is.

6 OSUDC Evaluation
The goal of this evaluation is to verify the readability and
understandability of our proposed usability defect reporting
categories. In particular, the outcome of the evaluation
focuses on the key aspects of ease of learning, ease of use,
completeness, and clarity of the proposed terms and
definitions, rather than just the effectiveness of the
taxonomy to accurately classify usability defects. We
evaluated the OSUDC taxonomy with respondents from
various backgrounds. In order to do this, we used a web-
based survey as a tool of evaluation. The following
subsections describe evaluator selection, problem selection,
and the protocol used in conducting the OSUDC evaluation.

6.1 Evaluator Selection

Our evaluators were recruited from the researchers’
industrial contacts and students. The evaluators had varying
levels of experience in industry and academic software
development environments. Participation was voluntary and
evaluators could discontinue participation at any time during
the research activity. The consent to participate in the survey
was implied by the return of the anonymous questionnaire.
However, a precise response rate cannot be determined, as
the total number of the evaluators who received the
invitation is unknown.

We obtained approval from the Swinburne University of
Technology Human Research Ethics Committee (SUHREC)
prior conducting this survey (Approval number: SHR
Project 2016/325).

6.2 Problem Selection

We randomly selected five usability defects (five reports
from Eclipse Platform, three reports from Mozilla
Thunderbird, and two reports from Firefox for Android)
from the 377 usability defects that had been examined
during the analysis phase prior to building the revised open
source usability defect classification.

6.3 Protocol

We evaluated the classification model using self-
administered evaluation survey designed in Google form
survey (https://forms.gle/mCP7YbgcysT88uEu6). The
survey was first conducted in May 2017. However, due to a
low number of responses (12 evaluators), we reopened the
survey in January 2020. In the survey, each evaluator was
given the following material:

• OSUDC taxonomy document – to understand how the
taxonomy works, sample problem classifications, and
glossary of terms.

• Link to the survey – the survey had three sections. In
the first section, the evaluators were required to fill out
a small questionnaire about personal background. This
pre-questionnaire contains a total of six questions. In
the second section, evaluators were given 5 usability
defects to be analysed according to the OSUDC
taxonomy. Each usability defect contains a total of four
to six questions depending on an evaluator’s answer
(s). In the third section, the evaluator was asked to give

feedback based on their experience of using the
proposed taxonomy.

• Consent Information Statement – to indicate evaluator
consent to participate in the study.

The evaluators were required to read five defect reports and
assess the types of defects, as well as identify the presence
of information about emotion, task difficulty, and failure
qualifier. The categories of the defect type, emotion, task
difficulty, and failure qualifier components of our OSUDC
taxonomy are shown in Figure 3. When assessing the defect
reports, the evaluator can choose more than one category for
emotion and task difficulty component. This is because
some usability issues, such as getting a feedback pop-up
window appear in the middle of a task, may cause
distraction and increase annoyance. The evaluators were not
monitored and could classify the problems in any order,
revisiting any problems they wished. There was no time
limit imposed on the evaluators.

7 Results

7.1 Evaluator Demographic Information

A total of 41 evaluators from 26 to 55 years of age
participated in the evaluation of the OSUDC taxonomy. As
shown in Table 5, most of the evaluators are computing
students and academic researchers, accounting for 48.8%
and 29.3%, respectively. Almost 80% of the evaluators had
received training or certification related to usability
evaluation/ HCI/ UX. However, as indicated in Table 6, the
majority of evaluators had limited familiarity in handling
usability defects.

Table 5. Demographic information of the evaluators
Job responsibility Evaluators
Academic researcher 29.3%
Computing students (undergraduate/ postgraduate) 48.8%
Software developer with experience in both user
interface and software development

12.2%

HCI/ UX/ usability expert 7.3%
End user with HCI/ UX/ usability knowledge 2.4%

Table 6. Evaluators’ familiarity with usability defects
Extremely familiar 2.4%
Moderately familiar 26.8%
Somewhat familiar 29.3%
Slightly familiar 41.5%
Not at all familiar 0.0%

7.2 Fleiss’ Kappa Analysis

To measure the reliability of evaluators’ agreement to
classify usability defect reports using the OSUDC
taxonomy, we used Fleiss’ kappa [29]. The Fleiss’ kappa is
an extension of Cohen’s kappa to measure inter-rater
agreement between three or more evaluators. We used the
Real Statistics Data Analysis Tool2 installed in an Excel
spreadsheet to calculate the Fleiss’ kappa values.

2 http://www.real-statistics.com/reliability/fleiss-kappa/

Table 7. Overall kappa for defect category, emotion, task difficulty, and failure qualifier

Overall Kappa

(K)
Asymptotic Standard

Error
Z P

Value
Lower 95% Asymptotic CI

Bound
Upper 95% Asymptotic CI

Bound
Defect
Category

0.304 0.011 27.066 0.000 0.282 0.326

Emotion 0.008 0.008 0.938 0.348 -0.009 0.024
Task Difficulty 0.021 0.007 2.882 0.004 0.007 0.035
Failure
Qualifier

0.042 0.008 5.536 0.000 0.027 0.057

Table 8: Agreement in interface classification
Report Total agreement in subcategories Total

Number of
Evaluators

Visualness Information Presentation
Appearance Layout State Data

presentation
Error,

notification
and message

feedback

Non
message
feedback

Object
naming

and
labelling

Menu
structure

On
screen

text
results

1 6 22 5 0 0 0 2 1 0 36
2 6 7 2 0 0 0 0 4 1 20
3 25 4 0 3 3 1 1 1 2 40
4 1 1 1 3 0 0 1 1 0 8
5 2 3 3 4 1 0 0 3 2 18

Table 9: Agreement in interaction classification

Report Total agreement in subcategories Total
Number of
Evaluators

Manipulation
Task execution Functionality

Keyboard
Press

Mouse
click

Finger
touch

Scrolling
mechanism

Drag
and
drop

Zooming Voice
control Action

Reversibility Feedback

1 0 5 1 3 1 6 0 0 0 0 2 18
2 0 15 0 12 3 0 1 2 1 1 1 36
3 0 0 1 1 0 0 0 1 0 0 0 3
4 15 1 4 1 0 0 0 11 1 0 4 37
5 0 1 0 0 0 0 1 21 2 1 7 33

For the classification of the defect category component,
kappa was computed at the primary category level only
(interface or interaction). Since the number of observations
within each primary category varied, analysis at the
subcategory level would have invalidated the kappa values.
Landis and Koch [30] suggested that the Kappa result be
interpreted as follows: values < 0 indicate no agreement,
0.00 - 0.20 poor agreement, 0.21-0.40 fair agreement, 0.41 –
0.60 moderate agreement, 0.61-0.80 good agreement, and
0.81 – 1.00 strong agreement.

The Fleiss’ kappa results for each OSUDC component are
reported in Table 7. As can be seen, there was a fair
agreement between the evaluators’ assessment on the defect
category component, with a kappa value of 0.304 and a 95%
confidence interval (CI) between 0.282 and 0.326. As for
agreement on the emotion, task difficulty, and failure
qualifier components, the Fleiss’ kappa (K) < 0.200
represents poor strength of agreement. Reasons for this
may be our choice of too many values defined for emotion,
task difficulty, and failure qualifier component that
adversely influenced the results, as reported in [27]. Since
we only measured the agreement of defect types at the
primary category, which has only three possible nominal
values (interface, interaction, and both), it is much easier for
the evaluators to understand and learn the defect types
component rather than the eight and seven nominal values of
the task difficulty and failure qualifier, respectively.

In addition to Fleiss’ kappa analysis for the overall levels of
agreement, we also inspected the classification data from a
non-statistical perspective. We discovered that more than 30

evaluators agreed on report#1 and report#2 as interface
problem and report#2, report#4, and report#5 as interaction
problem. Table 8 shows the number of evaluators who
classified the five reports in the same subcategories in the
interface component. As can be seen, among the 40
evaluators who agreed that report#3 as interface problem, 25
of them agreed that issues described in defect report #3 are
related to visual appearance aspect. For defect report #1,
from the 36 evaluators, 22 of them agreed it as a layout
problem.

Similarly, the entries in Table 9 are the number of evaluators
who classified the five reports in the same subcategories in
the interaction component. Although more than 35
evaluators agreed to classify report#2 and report#4 as
interaction problems, only 15 of the evaluators agreeing that
the problem was related to mouse click and keyboard press
issue, respectively. For defect report #5, 21 out of 33
evaluators agreed that the issue is due to defective action.

8 Experiences and Feedback
This section presents and discusses the results from the post-
evaluation questionnaire filled out by the evaluators at the
end of our survey. The post-evaluation questionnaire had
one closed question and one open-ended question. The
closed question was measured on a 5-point Likert scale
using the satisfaction-based statements as follows:

• Easy to learn – the degree to which an evaluator is
satisfied that the OSUDC is easy to be learned with no
training or demonstration

• Easy to use – the degree to which an evaluator is
satisfied that the OSUDC is simple, user friendly, and
flexible to be used

• Completeness – the degree to which an evaluator is
satisfied that the OSUDC contains all required categories
and components to be able to classify usability defects

• Clarity – the degree to which an evaluator is satisfied
that the definitions and examples of OSUDC are clearly
written so that it is easily understandable

Figure 4. Responses on the four satisfaction aspects

The responses are depicted in Figure 4. Based on the “Very
satisfied” and “satisfied” rating, we see that about 60% of
the evaluators were satisfied with the OSUDC. However,
some evaluators’ comments indicate difficulty to understand
the meaning of the terms and differentiate some options.
This can be seen from the following comments:

 “A bit confusing. Maybe should have some visualization
examples for sample defects”

“Seems great. I'm not familiar with other approaches so it
might be miles better than others or just a small step
forward. It was difficult to decide on some options”

“Some examples to explain the taxonomy would be helpful”

“It would be helpful if the explanation in the classification
scheme were explained in a layman term”

“Quite complex for non-technical users”

“The learning information should be in more detail”

Among the four satisfaction aspects, only one evaluator was
dissatisfied with the ease of learning and clarity of OSUDC.
These evaluators expressed their dissatisfaction comments
in the accompanying open-ended question, as below:

“The model took a long time to get used to – due to
uncertainty about the best category to select, it took me
approximately 2 hours to classify the 5 projects – but I got
quicker towards the end, so it will probably be okay for
someone using it frequently”

Concerning the ease-of-use aspect, fifteen evaluators rated
neutral in satisfaction. Possibly, the use of the Google
survey as a medium of evaluation had a negative effect on
the evaluator’s experience. Switching back and forth
between the Google form and the OSUDC reference
document can increase the sense of annoyance because the
numerous defect categories are unintuitive, making the
understanding and selection of an appropriate category more

difficult. If using a self-developed classification tool, a pop-
up window could be used to display the definitions and
examples when a category is selected. This could possibly
increase the flexibility of using the OSUDC. One evaluator
expressed this concern as follows:

“Rather than opening the guidelines in a different tab, it
could list them at the side (and appear all the time) for ease
of reference.”

9 Threats to Validity
We have considered four main types of possible threats that
can affect the validity of our OSUDC, which we discuss
below.

9.1 External Validity

One possible threat to the external validity of this validation
survey is generalization of the findings. There are two
factors to consider. First, the background of the participants
in this survey that have limited knowledge and experience in
usability defects. As shown in Table 5, only one respondent
claimed to be very familiar with usability defects, while 23
respondents were moderately familiar (based on their self-
assessed moderate and somewhat familiar ratings).
Therefore, the understandability level about usability defects
is unclear overall. Second, since our research design strategy
included recruiting evaluators through researcher’s
industrial contacts, there could have been evaluators who
volunteered to take part in this survey with a specific
purpose (e.g., personal reasons), which may influence how
they responded to the survey. This might affect their
understanding on some of the usability-technical terms used
in the OSUDC definitions. However, the sample
classification we provided in the reference document may
have helped the evaluators to understand the classification
process.

9.2 Internal Validity

The selection of usability defect reports is a key threat to
internal validity. In our study we analysed 377 usability
defect reports from Bugzilla for Mozilla Thunderbird,
Firefox for Android, and Eclipse Platform projects that were
tagged with usability-related keywords. We did not consider
defect reports that were not tagged with usability-related
keywords although in our observation they were related to
usability issues. We expect that our findings also apply to
other OSS projects, even if this limitation may not be fully
representative of other OSS projects. However, the elements
identified in OSUDC cover a vast spectrum of elements
from both usability (adaptation of UPT) and software
(adaptation of ODC) engineering domains. Hence, we can
stipulate that our OSUDC elements are generalizable and
reflective of OSS projects in general.

9.3 Construct Validity

Construct validity concerns the relation between the studied
concept and theory behind it. To mitigate this threat, we
have used multiple sources of information in constructing
the OSUDC, such as systematic literature review [6],
international standards, and industrial practitioner opinions.

Thus, the solution is formulated from a wide spectrum of
sources.

9.4 Conclusion Validity

One concern is regarding the misinterpretation of terms and
cases when the researchers analysed the 377 usability defect
reports. This creates a risk of bias for the categories and
elements proposed in the OSUDC that could be mitigated by
involving practitioners and usability experts instead of
solely academic researchers. Although some evaluators
involved in the OSUDC validation have industrial
experiences, their understanding of the 5 cases is limited by
simply reading the usability defect descriptions than direct
involvement in finding the defects. It can be difficult for
someone to select a category and give reason for selecting it
if he/she was not directly involved in the discovery of the
defects. Therefore, it remains future work to have open
source communities and practitioners who are directly
involved in the defect reporting process apply the OSUDC.

10 Discussion
 For the purpose of practical usability defect reporting in
conjunction with our proposed OSUDC, we recommend
four characteristics for capturing usability defects:

1. State the types of usability problem encountered.
2. Justify the impact of the usability defects on user and

task, possibly by relating to human emotion and
software quality attributes. Perhaps, the human
emotions could use scale rating so that it could be
objectively quantified.

3. State how the problem is identified.
4. Use predefined attributes with accompanying open

text; so that non-technical reporters can have ideas
what information should be included, and further
explanation can be supplied in open text input.

The feedback we obtained from the post-questionnaires
provides a good insight into the needs of non-technical users
when analysing and understanding usability defects.
Especially in OSS project development, where usability
experts are not always available, the classification scheme to
be introduced must be simple to cater the needs of open
source communities that are not “usability-savvy”. To
address the abundance of technical words and make a clear
OSUDC attribute definition, for example, we could supply
some snippets from existing usability defect descriptions. In
this way, we could minimize the risk of misunderstanding
the OSUDC attributes that lead to incorrect classification.
Furthermore, the results of our evaluation reveal potential
deficiencies in the current open source defect report content
as it relates to usability defects.

Although we received positive feedback from the majority
of evaluators (based on the Satisfied and Very Satisfied
rating in Figure 4), the classification result is disappointing.
The level of agreement between our 41 evaluators was only
fair for the defect types component, while agreement on
emotion, task difficulty and failure qualifier component was
poor. While fair agreement of overall defect type
classification is certainly helpful, we expected there to be
considerably more consistency between evaluators for most
subtypes. This is because in defining our subtype categories

and providing descriptions to users, we tried to be very clear
about differences between each. In addition, for the
evaluation we chose representative 5 example usability
defect reports that were varied in type/subtype, with text
descriptions being not too detailed but not very terse either.

We considered three possible key factors that affected the
lack of significant results that we obtained for this
evaluation. First, as pointed out by Keenan [8], poor quality
of defect descriptions can potentially affect classification
results. From our observation of 377 usability defect reports
being studied, most of these reports are composed of simple
text. While [20], [32] suggested that a high quality defect
report should contain long textual descriptions, our findings
show that the median length of usability defect descriptions
studied only have 65 words. With regards to task difficulty,
results from our previous study, [9] indicate that within the
65 words length of description, less than 30% of defect
reports explained the impact of the problems on human
emotion and task. Therefore, the lack of contextual
information in the usability defect descriptions that we used
in the study, representative of the whole set of 377, possibly
makes it still difficult for evaluators to interpret and classify
the task difficulty and failure qualifier components.

The second factor that produces insignificant evaluation
results was likely due to the absence of training and a demo
prior to conducting the evaluation. We provided evaluators
with our classification taxonomy and examples, but no
specific training and demo of using it. Previous studies have
demonstrated the necessity of initial training to increase
users’ familiarity and understanding of certain tools, aspects,
and concepts [8], [27], [33]. We also acknowledge the need
for more evaluator training, especially for novice usability
evaluators, to help them better identify and rate usability
defects. In future work, we will ensure that the evaluators
receive more training in the use of the OSUDC and we will
be more selective in recruiting evaluators that have
sufficient knowledge of the software, domain, and usability-
related context, respectively.

The third factor may be caused by the effect of having many
relatively inexperienced or novice usability evaluators. As
summarized in Table 5, nearly half of them were computing
students with limited HCI knowledge. Closer analysis of
these student respondents found that more than 90% of them
never received any usability-related training, and less than
25% of them have used ODC, RCA or UAF. The lack of
knowledge in usability/ HCI terms and concepts is one of
the obstacles for the evaluators to produce more accurate
analysis.

The fourth factor may be due to the use of insufficient
examples and incomplete definitions of emotion, task
difficulty, and failure qualifier components. Using manual
classification during the development of OSUDC taxonomy,
our analysis and interpretation might be inaccurate.
Although the definitions have been reviewed and agreed by
all the authors, the different interpretations from evaluators
are inevitable, especially for those who first used this
taxonomy. More research is needed to strengthen the model.
For example, by using machine-learning tools such as Weka
and RapidMiner, we hope that the glossary of terms for each
category can be expanded and made more accurate.

11 Summary
This study presented the OSUDC taxonomy to classify and
analyse usability defects. In the absence of formal usability
evaluation in most OSS projects and limited information
available in most usability defect descriptions, we revised
the existing defect classification schemes to accommodate
these limitations. We integrated the Geng’s classification
model and ODC framework to reflect the important element
of classifying usability defects from the perspective of
usability and software engineering. In our OSUDC, we
introduced a cause-effect classification model that contains
three main classification attributes, namely (1) usability
defect categories, (2) failure qualifier, and (3) user
difficulty.

The OSUDC was validated through an online survey.
Overall, we obtained useful feedback and we refined the
OSUDC based on the feedback received. Although the
majority of evaluators have limited usability knowledge
(refer Table 6), their feedback was important for us to
understand the needs of such people who are not “usability
experts” to be able to accurately classify usability defects.
However, the feedback from the evaluators needs to be
further explored in a further validation through interview
sessions to get more details about their opinions, challenges,
and difficulties when using the OSUDC taxonomy. We
found some categories and values of the OSUDC to overlap
and were found to be unclear to some of our evaluators. We
thus refined the definitions of those categories to make them
more understandable.

Despite our overall disappointing evaluation outcome
around levels of agreement in classification of defect types
and subtypes, we believe that our OSUDC can help software
developers to better understand usability defects and
prioritize them accordingly. For researchers, the OSUDC
will be helpful when investigating the trend of usability
defect types and understanding the root cause of usability
defect problems. However, further deployment and
evaluation of the OSUDC by open source users is required
to verify this.

Key future work is to further modify the taxonomy to clarify
when to use each defect type and subtype, and provide users
with more detailed examples of its application. In addition,
we want to re-run the evaluations with more upfront training
in using the taxonomy, and recruit more users with usability
experience. We also want to try out our taxonomy with more
open source usability defect developers and reporters, to
provide further feedback on its refinement and explanation.
Finally, we are using the OSUDC in a new OSS usability
reporting tool under development [34]. We will also trial
this with OSS developers and reporters to determine how
effective the OSUDC is when used in this way.

Acknowledgements
Support for the first author from the Fundamental Research
Grant Scheme (FRGS) under Contracts FRGS/1/2018/ICT
01/UITM/02/1, Universiti Teknologi MARA (UiTM), ARC
Discovery Projects scheme project DP140102185 and
Laureate Fellowship FL190100035, and from the Deakin

Software and Technology Innovation Lab and Data61 for all
authors, is gratefully acknowledged.

References
[1] I. Padayachee, “ISO 9126 external systems quality

characteristics , sub- characteristics and domain specific
criteria for evaluating e-Learning systems,” in The
Southern African Computer Lecturers’ Association,
University of Pretoria, South Africa., 2010.

[2] A. Raza, L. F. Capretz, and F. Ahmed, “Improvement of
Open Source Software Usability: An Empirical Evaluation
from Developers’ Perspective,” Adv. Softw. Eng., vol.
2010, pp. 1–12, 2010.

[3] L. Despalatović, “The Usability of Free / Libre / Open
Source Projects,” Int. J. Comput. Inf. Technol., vol. 02,
no. 05, pp. 958–963, 2013.

[4] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting
Usability Defects : Limitations of Open Source Defect
Repositories and Suggestions for Improvement,” in
Proceedings of the 24th Australasian Software
Engineering Conference, 2015, pp. 38–43.

[5] A. Faaborg and D. Schwartz, “Using a Distributed
Heuristic Evaluation to Improve the Usability of Open
Source Software,” in 28th ACM Conference on Human
Factors in Computing Systems, 2010.

[6] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting
Usability Defects: A Systematic Literature Review,” IEEE
Trans. Softw. Eng., vol. 43, no. 9, pp. 848–867, 2017.

[7] J. Nielsen and R. Molich, “Heuristic evaluation of user
interfaces,” in Proceedings of the SIGCHI conference on
Human factors in computing systems Empowering people,
1990, pp. 249–256.

[8] S. L. Keenan, H. R. Hartson, D. G. Kafura, and R. S.
Schulman, “The Usability Problem Taxonomy : A
Framework for Classification and Analysis,” Empir.
Softw. Eng., vol. 4, pp. 71–104, 1999.

[9] N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa,
“Analysis of the Textual Content of Mined Open Source
Usability Defect Reports,” in 24th Asia-Pasific Software
Engineering Conference (APSEC), 2017.

[10] T. S. Andre, H. Rex Hartson, S. M. Belz, and F. a.
Mccreary, “The user action framework: a reliable
foundation for usability engineering support tools,” Int. J.
Hum. Comput. Stud., vol. 54, pp. 107–136, 2001.

[11] D. A. Norman, “Cognitive engineering,” User centered
Syst. Des., pp. 31–61, 1986.

[12] A. Vetro, N. Zazworka, C. Seaman, and F. Shull, “Using
the ISO/IEC 9126 product quality model to classify
defects: a Controlled Experiment,” in International
Conferenece on Evaluation and Assessment in Software
Engineering, 2012, pp. 87–96.

[13] S. G. Vilbergsdóttir and E. L. Law, “Classification of
Usability Problems (CUP) Scheme : Augmentation and
Exploitation,” in Proceedings of the 4th Nordic
conference on Human-computer interaction: changing
roles, 2006, pp. 14–18.

[14] R. Khajouei, L. W. P. Peute, a. Hasman, and M. W. M.
Jaspers, “Classification and prioritization of usability
problems using an augmented classification scheme,” J.
Biomed. Inform., vol. 44, no. 6, pp. 948–957, 2011.

[15] R. Geng, M. Chen, and J. Tian, “In-process Usability
Problem Classification, Analysis and Improvement,” in
The 14th International Conference on Quality Software,

2014, pp. 240–245.
[16] D.-H. Ham, “A model-based framework for classifying

and diagnosing usability problems,” Cogn. Technol. Work,
vol. 16, pp. 373–388, 2014.

[17] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of
Involvement of HCI Experts in Distributed Software
Development: Practical Issues,” Online Communities Soc.
Comput., vol. 4564, pp. 32–40, 2007.

[18] V. Lelli, A. Blouin, and B. Baudry, “Classifying and
qualifying GUI defects,” in IEEE 8th International
Conference on Software Testing, Verification and
Validation, 2015.

[19] V. Harkke and P. Reijonen, “Are We Testing Utility ?
Analysis of Usability Problem Types,” in Design, User
Experience, and Usability: Design Discourse, 2015.

[20] T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S.
Just, and A. Schro, “What Makes a Good Bug Report ?,”
IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 618–643,
2010.

[21] S. Davies and M. Roper, “What’s in a bug report?,” in
Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement - ESEM ’14, 2014, pp. 1–10.

[22] D. M. Nichols and M. B. Twidale, “Usability processes in
open source projects,” Softw. Process Improv. Pract., vol.
11, no. 2, pp. 149–162, Mar. 2006.

[23] A. Faaborg and D. Schwartz, “Using a Distributed
Heuristic Evaluation to Improve the Usability of Open
Source Software,” in CHI Conference on Human Factors
in Computing Systems, 2010, pp. 4–5.

[24] C. Wilson and K. P. Coyne, “The whiteboard: Tracking
usability issues: to bug or not to bug?,” Interactions, pp.
15–19, 2001.

[25] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,
B. K. Ray, and D. S. Moebus, “Orthogonal Defect
Classification - A Concept for In-Process Measurements,”
IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956,
1992.

[26] J. R. Wood and L. E. Wood, “Card Sorting: Current
practices and beyond,” J. Usability Stud., vol. 4, no. 1, pp.
1–6, 2008.

[27] S. G. Vilbergsdottir, E. T. Hvannberg, and E. L. C. Law,
“Assessing the reliability, validity and acceptance of a
classification scheme of usability problems (CUP),” J.
Syst. Softw., vol. 87, pp. 18–37, 2014.

[28] R. W. Reeder and R. A. Maxion, “User interface defect
detection by hesitation analysis,” in Proceedings of the
International Conference on Dependable Systems and
Networks, 2006, pp. 61–70.

[29] J. L. Fleiss, “Measuring nominal scale agreement among
many raters,” Psychol. Bull., vol. 76, no. 5, pp. 378–382,
1971.

[30] J. R. Landis and G. G. Koch, “The Measurement of
Observer Agreement for Categorical Data,” Biometrics,
1977.

[31] T. R. Nichols, P. M. Wisner, G. Cripe, and L.
Gulabchand, “Putting the Kappa Statistic to Use,” Qual.
Assur. J., no. January 2010, pp. 64–65, 2010.

[32] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C.
Koduru, “An empirical analysis of bug reports and bug
fixing in open source Android apps,” in Proceedings of
the European Conference on Software Maintenance and
Reengineering, CSMR, 2013, pp. 133–143.

[33] A. Bruun and J. Stage, “Barefoot usability evaluations,”
Behav. Inf. Technol., vol. 33, no. 11, pp. 1148–1167, Feb.
2014.

[34] N. S. M. Yusop, J. Grundy, J. G. Schneider, and R. Vasa,
“Preliminary evaluation of a guided usability defect report
form,” in Proceedings - 25th Australasian Software
Engineering Conference, ASWEC 2018, 2018.

