
Is Deep Learning Better than Traditional Approaches in
Tag Recommendation for Software Information Sites?

Pingyi Zhoua, Jin Liua,b,∗, Xiao Liuc, Zijiang Yangd, John Grundye

aSchool of Computer Science, Wuhan University, Wuhan, China.
bKey Laboratory of Network Assessment Technology, Institute of Information Engineering, Chinese

Academy of Sciences, Beijing, China.
cSchool of Information Technology, Deakin University, Geelong, Australia.

dDepartment of Computer Science, Western Michigan University, Kalamazoo, Michigan, USA.
eFaculty of Information Technology, Monash University, Melbourne, Australia.

Abstract

Context: Inspired by the success of deep learning in other domains, this new tech-

nique been gaining widespread recent interest in being applied to diverse data analysis

problems in software engineering. Many deep learning models, such as CNN, DBN,

RNN, LSTM and GAN, have been proposed and recently applied to software engi-

neering tasks including effort estimation, vulnerability analysis, code clone detection,

test case selection, requirements analysis and many others. However, there is a percep-

tion that applying deep learning is a ”silver bullet” if it can be applied to a software

engineering data analysis problem. Object: This motivated us to ask the question as

to whether deep learning is better than traditional approaches in tag recommendation

task for software information sites. Method: In this paper we test this question by

applying both the latest deep learning approaches and some traditional approaches on

tag recommendation task for software information sites. This is a typical Software

Engineering automation problem where intensive data processing is required to link

disparate information to assist developers. Four different deep learning approaches –

TagCNN, TagRNN, TagHAN and TagRCNN – are implemented and compared with

∗Corresponding author
Email address: jinliu@whu.edu.cn (Jin Liu)

1zhou pinyi@whu.edu.cn
2jinliu@whu.edu.cn
3xiao.liu@deakin.edu.au
4zijiang.yang@wmich.edu
5john.grundy@monash.edu

Preprint accepted to Journal of Information and Software Technology January 7, 2019

three advanced traditional approaches – EnTagRec, TagMulRec, and FastTagRec. Re-

sults: Our comprehensive experimental results show that the performance of these

different deep learning approaches varies significantly. The performance of TagRNN

and TagHAN approaches are worse than traditional approaches in tag recommendation

tasks. The performance of TagCNN and TagRCNN approaches are better than tradi-

tional approaches in tag recommendation tasks. Conclusion: Therefore, using appro-

priate deep learning approaches can indeed achieve better performance than traditional

approaches in tag recommendation tasks for software information sites.

Keywords: Deep Learning, Data Analysis, Tag Recommendation, Software

Information Site, Software Object

1. Introduction

Deep learning has been proven to be effective for some software engineering tasks,

such as API embedding representation [1], modeling source code [2], code clone detec-

tion [3], semantically enhanced software traceability [4], and predicting semantically

linkable knowledge in developer online forums [5]. Various deep learning models have5

been proposed, including commonly used ones such as Convolutional Neural Networks

(CNN) [6], Deep Belief Networks (DBN) [7], Recurrent Neural Networks (RNN) [8],

Long Short Term Memory Networks (LSTM) [9], Gated Recurrent Unit Neural Net-

works (GRU) [10], and Generative Adversarial Networks (GAN) [11]. Each model has

its own typical application scenarios and requires different amounts of training time.10

Thus choosing an appropriate model and balancing efficiency and effectiveness are a

key challenge to apply deep learning successfully for a software engineering problem

[2, 5, 12]. Nevertheless, given the huge increase in recent papers on the topic, there are

increasing numbers of researchers who seem to believe that deep learning is superior

to more traditional techniques for data analysis and even regard it as perhaps one of15

Brooks’ ”silver bullets” for solving Software Engineering problems [13].

In a recent ASE’16 paper [5], Xu et al. applied CNN to predict semantically link-

able knowledge in developer online forums. A question and its answers in a software

information site such as StackOverflow can be considered as a knowledge unit. T-

2

wo knowledge units are linkable if they are semantically related. Since the problem of20

predicting semantically linkable knowledge units can be reduced to a multiclass classi-

fication problem, the deep learning model CNN is a good choice and indeed it achieves

good performance. However, in an FSE’17 paper [12], Fu and Menzies repeated the

study using support vector machine (SVM) with differential evolution (DE). DE is a

more traditional hyper-parameter optimization method. The empirical study showed25

that SVM with DE method achieves similar performance with CNN, but its training

time is 84 times faster than that of CNN. Based on their result, they concluded that tra-

ditional methods can be as good as, or even better than, the best current deep learning

approaches for some data intensive software engineering problems.

However, a single case study is not general enough to determine the pros and cons30

of applying deep learning in software engineering. In this paper we conduct further

comparative evaluation on tag recommendation for a software information site which is

a typical Software Engineering problem requiring intensive data processing. Software

information sites [14], [15], [16] offer indispensable platforms for software developers

to search solutions, share experience, offer help and learn new techniques [17], [18],35

[19], [20, 21]. The contents posted on these software information sites, such as a

question with answers in a developer Q&A community (e.g. StackOverflow6)

and a project in an open source software community (e.g. GitHub7), are regarded

as software objects [14], [15]. As the software information sites evolve, the number

of software objects grows significantly. To facilitate search and classification, it is a40

common practice for software developers to add tags. High quality tags are expected

to be concise and can describe the most important features of the software objects.

Unfortunately tagging is inherently a distributed and uncoordinated process [14].

The quality of tags depends not only on a developer’s understanding of the software

object but also on the developer’s language skills and preferences. As a result, the45

number of different tags grows rapidly along with continuous addition of software

objects. For example, there are more than 20 million questions and 46 thousand tags in

6http://www.stackoverflow.com
7http://github.com

3

StackOverflow. Among such a large number of different tags, many of them are

different but redundant. it is becoming harder to maintain software information sites.

In this paper, we apply 4 different contemporary deep learning approaches to the50

tag recommendation task. These approaches are called TagCNN, TagRNN, TagHAN

and TagRCNN respectively. TagCNN, TagRNN, TagHAN and TagRCNN are based

on Convolutional Neural Networks (CNN) [22], Recurrent Neural Networks (RNN)

[23], Hierarchical Attention Networks (HAN) [24], and Recurrent Convolutional Neu-

ral Networks (RCNN) [25], respectively. These four deep learning models have been55

widely used for many disparate text classification tasks. Three traditional approach-

es – EnTagRec [15], TagMulRec [26], and FastTagRec [27] that have previously been

proposed for tag recommendation tasks – are used as comparison approaches. Our

research focuses on whether there is a deep learning approach that can achieve better

performance than traditional approaches for tag recommendation for software infor-60

mation sites. Through our extensive experiments we demonstrate a valid comparison

between deep learning and traditional approaches in tag recommendation tasks. Our

initial hypothesis was that traditional approaches have been well tuned for tag recom-

mendation and thus should be able to beat the four deep learning methods. To our

surprise, our empirical study shows that we actually have found two better approaches65

than traditional approaches.

The main contributions of this paper include:

• With the growing trend towards applying deep learning techniques in software

engineering, we conduct an empirical study to examine whether deep learning

is really superior to traditional approaches for a representative data intensive70

software engineering task – tag recommendation for software information sites.

Our experiments on a broad range of datasets containing a total of 11,352,714

software objects demonstrate the effectiveness of some deep learning methods.

The result shows that appropriate deep learning methods can indeed outperform

well-tuned traditional methods in tag recommendation for software information75

sites.

• We tackle the problem of automated tag recommendation in large software infor-

4

mation sites. We propose 4 different new deep learning methods for this prob-

lem – TagCNN, TagRNN, TagHAN and TagRCNN – and compare their effi-

ciency and effectiveness against three traditional approaches – EnTagRec, Tag-80

MulRec, and FastTagRec. Our comprehensive experiments demonstrate that our

deep learning methods TagCNN and TagRCNN are better than these traditional

approaches.

• We identify some guidelines for other software engineering tool developers from

our experiences in the tag recommendation task that we help will be useful in85

developing their own deep learning-based solutions for data intensive software

engineering tasks.

The rest of this paper is organized as follows: Section 2 presents the background

and related works on tag recommendation for software information site and deep learn-

ing. Section 3 explains in detail the four deep learning methods. Section 4 describes the90

experimental settings of our study, including research questions, datasets, experimental

design, and evaluation measures, and also the experimental results and limitations. In

Section 5, we share some of the important lessons that we learned in implementing

these deep learning methods, and discuss threats to the validity of our study. Finally

Section 6 concludes the paper.95

2. Background and Related Work

2.1. Tag Recommendation for Software Information Sites

Tags provide a type of metadata to search, describe, identify, bookmark, classify,

and organize software objects in software information sites [16]. They are widely used

in the developer Q&A and open source communities. A software object in developer100

Q&A community, such as StackOverflow, includes title, body, tags, comments

and so on. A software object in open source community, such as Freecode, includes

software project name, project description, tags and so on. When a developer posts

a question in a Q&A community or shares a project in an open source community,

software information sites usually require developers to classify their contents with105

5

multiple tags at the time of posting. For example, StackOverflow suggests that

developers attach at least three but no more than five tags per posting. Freecode

allows developers to create more than ten tags for each posting.

Since software developers are free to choose tags, the words used for tags are ar-

bitrary. Tags that are intended to represent the same meaning frequently use different110

words such as spaces vs. no spaces, upper cases vs. lower cases, acronym vs. full

spelling, hyphens vs. no hyphens. Such phenomenon makes it difficult for software

developers to search for existing tags, thus become more likely to use their own word-

ing, which leads to even more synonymous tags with different spelling. Automated tag

recommendation can alleviate the problem by recommending tags that have been used115

for semantically similar software objects.

Tag recommendation has been a popular research topic in the fields of social net-

work and data mining [28, 29, 30, 31, 32]. Automatic tag recommendation in software

engineering was first proposed by Al-Kofahi et al. in 2010 [16]. Al-Kofahi et al. pro-

posed a method called TAGREC to automatically recommend tags for work items in120

IBM Jazz. TAGREC was based on the fuzzy set theory and considered the dynam-

ic evolution of a system. Later a method called TAGCOMBINE [14] was proposed

to automatically recommend tags for software objects in software information sites.

It consists of three components: a multi-label ranking component, a similarity based

ranking component, and a tag-term based ranking component. The multi-label ranking125

approach adopted by TAGCOMBINE limits its application to relatively small datasets.

For a large-scale software information site such as StackOverflow, TAGCOM-

BINE has to train more than forty thousand binary classifier models and the size of

each training set has more than ten million objects.

A more recent approach called EnTagRec [15] outperforms TAGCOMBINE in130

terms of Recall and Precision metrics. EnTagRec consists of two components: Bayesian

inference component and Frequentist inference component. However, EnTagRec is not

scalable as well, as it also utilizes all information in software information sites to rec-

ommend tags for a software object. Lately, a state-of-the-art tags recommendation

method TagMulRec was proposed by Zhou et al. in 2017 [26]. For a given software135

object, TagMulRec prunes the large-scale categories (tags) into a much smaller set

6

of target category candidates for similarity distance computation. In addition, neither

TAGCOMBINE nor EnTagRec adapts to the dynamic evolution of software informa-

tion sites. In contrast, TagMulRec is scalable and is able to handle continuous updates

in the software information sites. However, TagMulRec only utilizes a small portion140

of software information sites that is most relevant to a given software object. Recently,

an advanced method called FastTagRec [27] outperforms TagMulRec in terms of effi-

ciency and effectiveness. FastTagRec exploits a neural network approach that is based

on single-hidden layer neural network and the rank of constraint of words. In order

to avoid the limitation of TagMulRec, FastTagRec utilizes shared parameters among145

features and tags to utilize all information in software information sites.

In this paper, we only recommend tags which already exist in software information

sites. All of the methods used to recommend tags in this paper are based only on the

textual content of the software object, thus avoiding the ”cold-start problem” [33] and

”content-based tag recommendation” core issues in the machine learning community.150

We will consider these issues in our future works.

2.2. Deep Learning

Deep learning is an increasingly popular technique from machine learning building

upon the concept of artificial neural networks. Feedforward neural networks represent

a traditional neural network structure and lay the foundation for deep learning model155

structures [34]. Based on feedforward neural networks, deep learning model structures

feature more complex network connections in a larger number of layers. However, the

number of parameters in a fully connected feedforward neural network grows extreme-

ly large as the width and depth of the network increase. To address this limitation,

researchers and industrial practitioners have proposed various deep learning model160

structures targeting different types of practical problems. For example, convolution-

al neural networks (CNN) have been the dominant approach for computer vision (CV)

tasks [35]. For natural language process (NLP) tasks, recurrent neural networks (RNN)

are particularly well suited for processing sequential text data [36]. Hierarchical atten-

tion networks (HAN) [24] can select qualitatively informative words and sentences165

based on hierarchical structure (words form sentences, sentences form a document) in

7

text classification task. However, RNN aims to put more weight on recent information,

where later words are more dominant than earlier ones. Recurrent convolutional neural

network (RCNN) [25] is proposed to address this limitation for text classification tasks.

However, all of the above models depend on word vector models, that can translate a170

word into a numerical vector to provide input translation. The widely-used word vector

methods include Word2Vec [37], FastText [38] and Glove [39]. Word2Vec is a shallow

with two-layer neural networks model architecture which includes the continuous bag-

of-words (CBOW) architecture and the continuous skip-gram architecture to produce a

distributed representation of words. The FastText method is based on the CBOW mod-175

el of the Word2Vec method. Glove method utilizes global word-word co-occurrence

statistics from a corpus to produce a vector space with meaningful substructure.

Deep learning has made great progress in natural language processing, machine

vision and other fields. Recently, deep learning has also been demonstrated in its ef-

fectiveness when applied to various types of recommender systems. These include180

video recommendation [40], App recommendation [41], news recommendations [42],

etc. Many different types of deep learning techniques (CNN, RNN, HAN, Restricted

Boltzmann Machine, Generative Adversarial Networks, Deep Reinforcement Learn-

ing, and etc) are applied to these recommendation systems [43, 44, 45, 46, 47, 48].

For comparison purpose, in this paper, we have applied popular deep learning models185

(CNN, RNN, HAN and RCNN) to the software object tag recommendation in soft-

ware information sites. Comprehensive experimental results have been demonstrated

for comparison purposes.

2.3. Deep learning in software engineering

Such state-of-the-art deep learning algorithms have recently seeded promising new190

methods in the software engineering field [1, 2, 3, 4, 5]. Since deep learning techniques

have been successfully applied in various domains such as computer vision and natural

language processing, great attention has been attracted from researchers and industrial

practitioners in software engineering [49, 50, 51, 5, 26]. Various deep learning models

have been applied to solve different software engineering tasks, such as API embedding195

representation, modeling source code, code clone detection, semantically enhanced

8

software traceability, predicting semantically linkable knowledge in developer online

forums and so on. Deep learning models play two different categories of roles in these

software engineering tasks. In the first category, deep learning models are used as a

pre-processor. For example, Nguyen et al. proposed utilizing word2vec, a kind of deep200

learning model, to represent API as vectors for API usages and applications [1]. In

the second category, deep learning models are used as a solution. For example, Xu et

al. adopt neural language model and convolutional neural networks (CNN) to capture

word and document-level semantics of knowledge units [5].

3. Our Approach205

In this section, we first formally present the tag recommendation problem. We then

propose four deep learning methods–TagCNN, TagRNN, TagHAN and TagRCNN– to

solve the same problem.

3.1. Problem Formulation

A software information site is a set S = {o1, . . . , on}, where oi(1 ≤ i ≤ n)210

denotes a software object. For a developer Q&A site, the attributes of oi consist of an

identifier id, a body b, a title tt, and a set of tags T . For an open source site, the attribute

of oi consists of project name na, project description d, a set of tags T . If we treat the

combination of the title tt and body b of a software object in a Q&A site as a project

description d. We can assume that any software object oi contain a description d and a215

set of tags T . These tags in a software information site S is a set T A = {t1, . . . , tm}

and the tags associated with an object oi is a subset of T A. The research question in

tag recommendation task is the following: given a large set of existing software objects

that are attached with tags, how to automatically recommend a set of appropriate tags

for a new software object oi.220

3.2. TagCNN

We firstly propose a new deep learning-based TagCNN method for tag recommen-

dation, as depicted in Figure 1. TagCNN is based on CNN [52, 53], a technique that

has been proven successful for text classification domains elsewhere. This suggests

9

Figure 1: The Overall Architecture of TagCNN.

10

it could be a good choice for the tag recommendation domain. The major steps of225

TagCNN include the following:

1. Given a software object oi, let xi ∈ Rdim be the dim-dimensional word vector

corresponding to the i-th word in the description oi.d. A description of length n

is represented as

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn, (1)

where ⊕ is the concatenation operator, and xi:i+j refers to the concatenation of

words xi, xi+1, · · · , xi+j . It can be represented by a n ∗ dim matrix in Figure 1.

These word vectors were trained by Mikolov’method [37].

2. A convolution operation involves a filter f ∈ Rh·dim that is applied to a region

of h words to produce a new feature. For example, a feature ci is generated from

a region of words xi:i+h−1 by

ci = tanh(f · xi:i+h−1 + b). (2)

Here b ∈ R is a bias term and tanh is a non-linear hyperbolic tangent function.

If h is bigger than n, we apply a matrix zero padding of size (h − n) ∗ dim to

input layer.

c = tanh(f · (x1:n ⊕ zero((h− n) ∗ dim)) + b). (3)

Each possible region of words in the description {x1:h, x2:h+1, · · · , xn−h+1:n}

apply this filter to produce a feature map

c = [c1, c2, · · · , cn−h+1] , (4)

with c ∈ Rn−h+1.230

3. TagCNN applies a 1-max-pooling operation over the feature map and take the

maximum value ĉ = max {c} as the feature corresponding to this particular

filter. The first step is to capture the most important feature for each feature map.

The pooling process naturally deals with variable description lengths. TagCNN

uses multiple filters with different region sizes to get multiple features. These235

features form the penultimate layer z = [ĉ1, ĉ2, · · · , ĉm].

11

4. Loss function and activation function play different roles in deep learning net-

work structure. Activation function provides the nonlinear modeling ability of

the network. Loss function is used to measure the prediction quality of the net-

work model. Sigmoid function maps a real value to an interval of (0, 1), so that

it can be used in output layer for two classifications. Softmax function is a gen-

eralization of logistic function that squashes (maps) a T -dimensional vector z of

arbitrary real values to a T -dimensional vector σ(z) of real values in the range

(0, 1) that add up to 1. So, softmax function can be used for multi-classification

task according the size of |T |. Since the number of tags is greater than 2, soft-

max layer is used as the output layer in our paper. The penultimate layer z is

passed to the fully connected softmax layer. TagCNN uses the softmax func-

tion to compute the probability distribution over tags. In probability theory, the

output of the softmax layer is used to represent a probability distribution over

different possible tags [54].

P = softmax(W · z +B). (5)

Here W is the weight vector and B is a bias term in the fully connected layer.

Each dimension of P ∈ RT A represents the probability that the corresponding

tag is recommended to the software object. The k tags with highest probability

ranking are recommended to the software object oi.240

3.3. TagRNN

We now propose a new TagRNN method that is based on RNN techniques. Recur-

rent Neural Networks (RNN) [23] are one of the most popular architectures used for

NLP-based problems. Again, this suggests they could be a good choice of technique

Figure 2: The Overall Architecture of TagRNN.

12

for the tag recommendation domain. Figure 2 shows the overall TagRNN structure for245

tag recommendation, which involves the following major steps.

1. The description oi.d is a text sequence {x1, x2, · · · , xn} in the given software

object oi. n is the length of oi.d and xi ∈ Rdim is the dim-dimensional word

vector corresponding to the i-th word in oi.d. We can get the vector representa-

tion (embeddings) xi of the i-th word by the pre-trained word vectors [37].250

2. TagRNN is able to process a text sequence of arbitrary length by recursively

applying a transition function to its internal hidden state vector hi ∈ RH of the

input sequence. The activation of hidden state hi at the i-th step is computed

as a rectified linear function Relu [55] of the current input xi and the previous

hidden state hi−1255

hi =

 0 i = 0

Relu(U · hi−1 + V · xi + b) otherwise
. (6)

Here V ∈ RH∗dim is weight vector, U ∈ RH∗H is a weight parameter and

b ∈ RH is a bias term. The output at the last step hn can be regarded as the

representation the description oi.d.

3. TagRNN has a fully connected layer followed by a softmax non-linear layer that

predicts the probability distribution over tags.

P = softmax(W · hn +B). (7)

The k tags with highest probability ranking are recommended to the software

object oi.260

3.4. TagHAN

We propose a new TagHAN method that is based on HAN models. Hierarchical at-

tention networks (HAN) [24] can select qualitatively informative words and sentences

in an NLP analysis task [24]. The overall architecture of TagHAN is given in Fig-

ure 3. It contains several parts: a word encoder, a word-level attention layer, a sentence265

13

Figure 3: The Overall Architecture of TagHAN.

14

encoder and a sentence-level attention layer. We describe the details of different com-

ponents in the following.

3.4.1. GRU-based sequence encoder

We first introduce the gated recurrent unit (GRU) [56] that is the basic unit in word

and sentence encoder. Figure 4 shows the structure of GRU. GRU uses a gating mech-

anism to track the state of sequences. There are two types of gates: the reset gate

ri(ri ∈ RH) and the update gate zi(zi ∈ RH). They together control how information

is updated to the state. At the i-th word or sentence, GRU computes the new state as

hi = (1− zi)⊙ hi−1 + zi ⊙ h̃i. (8)

This is a linear interpolation between the previous state hi−1(hi−1 ∈ RH) and the

current new state h̃i(h̃i ∈ RH). ⊙ denotes element-wise multiplication. The gate zi

decides how much past information is kept and how much new information is added.

zi is updated by:

zi = σ (Wzxi + Uzhi−1 + bz) . (9)

σ is the sigmoid activation function [57], here Wz(Wz ∈ RH∗dim) is weight vector,

Uz(Uz ∈ RH∗H) is a weight parameter, bz ∈ RH is a bias term and xi(xi ∈ Rdim) is

the input word vector. The candidate state h̃i is computed in a way similar to a RNN:

h̃i = tanh (Whxi + ri ⊙ (Uhhi−1) + bh) , (10)

Here ri is the reset gate which controls how much the past state contributes to the

candidate state, Wh(Wh ∈ RH∗dim) is weight vector, Uh(Uh ∈ RH∗H) is a weight

Figure 4: The structure of GRU.

15

parameter, bh ∈ RH is a bias term. If ri is zero vectors, then it forgets the previous

state. The reset gate is updated as follows:

ri = σ (Wrxi + Urhi−1 + br) . (11)

Here Wr(Wr ∈ RH∗dim) is weight vector, Ur(Ur ∈ RH∗H) is a weight parameter,

br ∈ RH is a bias term.270

3.4.2. Hierarchical Attention

For a software object o, we assume that the description o.d has L sentences si and

each sentence contains mi words. xip represents the p-th word’s vector corresponding

to the i-th sentence in o.d. We can get the vector representation xip by the pre-trained

word vectors [37]. TagHAN projects the description o.d into a vector representation.275

In the following, we will present how we build the vector progressively from word

vectors by using the hierarchical structure.

Word Encoder. We use a bidirectional GRU to get annotations of words by sum-

marizing information from both directions for words. The bidirectional GRU contains

the forward GRU which reads the sentence si from xi1 to xim and a backward GRU

which reads from xim to xi1 :

hip =
−−−→
GRU(xip), p ∈ [1,m] , (12)

(h′
ip =

←−−−
GRU(xip), p ∈ [1,m] . (13)

We obtain an annotation for a given word xip by concatenating the forward hidden

state hip and back hidden state h′
ip, i.e.,

[
hip, h

′
ip

]
, which summarizes the information

of the whole sentence centered around xip.280

Word Attention. Not all words contribute equally to the representation of the

sentence meaning. Hence, we introduce attention mechanism to extract such words

that are important to the meaning of the sentence and aggregate the representation of

those informative words to form a sentence vector. Specifically:

uip = tanh
(
Ww

[
hip, h

′
ip

]
+ bw

)
, (14)

16

aip =
exp(u⊤

ipuw)∑
k exp(u

⊤
ipuw)

, (15)

si =
∑
p

aip
[
hip, h

′
ip

]
. (16)

That is, we first feed the word annotation
[
hip, h

′
ip

]
through one-layer perception to

get uip as a hidden representation of
[
hip, h

′
ip

]
, then we measure the importance of the

word as the similarity of uip with a word level context vector uw and get a normalized

importance weight aip through a softmax function. After that, we compute the sentence

vector si as a weight sum of the word annotations based on the weights.285

Sentence Encoder. For a description o.d, we can get the vector in a similar way.

We use a bidirectional GRU to encode the sentence:

hi =
−−−→
GRU(si), i ∈ [1, L] , (17)

h′
i =
←−−−
GRU(si), i ∈ [L, 1] . (18)

We concatenate hi and h′
i to get an annotation of sentence i, i.e., [hi, h

′
i].

Sentence Attention. To reward sentences that are important to correctly tag a soft-

ware object, we again use attention mechanism and introduce as sentence level context

vector us and use the vector to measure the importance of the sentences. Specifically:

ui = tanh (Ws [hi, h
′
i] + bs) , (19)

ai =
exp(u⊤

i us)∑
i exp(u

⊤
i us)

, (20)

v =
∑
i

ai [hi, h
′
i] . (21)

Here, v is the vector that summarizes all the information of sentences in a description

of software object.

17

3.4.3. Tag Recommendation

The vector v is a high level representation of a description of software object and

can be used as features for tag recommendation. Finally, TagHAN has a fully connected

layer followed by a softmax non-linear layer that predicts the probability distribution

over tags.

P = softmax(Wcv + bc). (22)

The k tags with highest probability ranking are recommended to the software object o.290

3.5. TagRCNN

Figure 5: The Overall Architecture of TagRCNN.

Finally, we propose TagRCNN, a new tag recommendation method that is based on

RCNN. As RNN aims to put more weight on recent information, where later words are

more dominant than earlier ones, a Recurrent Convolutional Neural Network (RCN-

N) [25] can be used to address this limitation. The overall architecture of TagRCNN is295

shown in Figure 5. The input of TagRCNN is the description d of a software object o,

which is a sequence of words w1, w2, · · · , wn. The output of TagRCNN contains tags.

We use p(t | o, θ) to denote the probability of the software object being labeled tag t,

where θ is the parameters in the model and o is a given software object. We describe

the details of each step in the following.300

18

1. TagRCNN uses a recurrent structure, a bi-directional recurrent neural network,

to capture the contexts of a word. TagRCNN combines a word and its context to

represent a word. We define cl(wi)(cl(wi) ∈ R|c|) as the left context of word

wi and cr(wi)(cr(wi) ∈ R|c|) as the right context of word wi. Both cl(wi)

and cr(wi) are dense vector with |c| float value elements. In the experiments of

this paper, |c| is set to 50. The left context cl(wi) of word wi is calculated by

Equation 23, where e(wi−1)(e(wi−1) ∈ R|e|) is the word embedding of word

wi−1, which is a dense vector with |e| float value elements. cl(wi−1) is the left

context of the previous word wi−1. The left context for the first word in any

description uses the same shared parameters cl(w1). W l(W l ∈ R|c|×|c|) is a

matrix that transforms the hidden layer into next hidden layer and W sl(W sl ∈

R|c|×|e|) is a matrix that is used to combine the semantic of the current word with

the next word’s context. f is a non-linear activation function. The right context

cr(wi) is get in a similar manner, as shown in Equation 24. The right contexts of

the last word in a description share the parameters cr(wn)

cl(wi) = f(W lcl(wi−1) +W sle(wi−1)). (23)

cr(wi) = f(W rcr(wi+1) +W sre(wi+1)). (24)

Here W r(W r ∈ R|c|×|c|) and W sr(W sr ∈ R|c|×|e|) are weight matrixes.

2. TagRCNN defines the representation of word wi in Equation 25, which is the

concatenation of the left context cl(wi), the word embedding e(wi) and the right

context cr(wi). The recurrent structure can obtain all cl in a forward scan of a

description and cr in a backward scan of the description.

xi = [cl(wi) : e(wi) : cr(wi)]. (25)

After obtaining the representation xi(xi ∈ R|e|+2|c|) of the word wi, TagRCNN

applies a linear transformation together with the tanh activation function to xi

and send the result to the next layer.

y
(2)
i = tanh(W (2)xi + b(2)). (26)

19

y
(2)
i (y

(2)
i ∈ R|H|) is the latent semantic vector, in which each semantic factor

will be analyzed to determine the most useful factor for representing the descrip-

tion. |H| is a hyper-parameter. In our experiments of this paper, |H| is set to

100. W (2)(W (2) ∈ R|H|×(|e|+2|c|)) is a weight matrix and b(2)(b(2) ∈ R|H|) is305

a bias vector.

3. When all of the representation of words are calculated, a max-pooling layer is

applied.

y
(3)
i =

n
max
i=1

y
(2)
i . (27)

The max function is an element-wise function. The q-th element of y(3)i (y
(3)
i ∈

R|H|) is the maximum in the q-th element of y(2)i . The pooling layer converts

descriptions with various lengths into a fixed-length vector. With the pooling

layer, TagRCNN captures the information throughout the entire description of

software object. The max-pooling layer attempts to find the most important latent

semantic factors in a description. The last part of TagRCNN is an output layer.

Similar to traditional neural networks, it is defined as:

y(4) = W (4)y(3) + b(4). (28)

Here y(4)(y
(4)
i ∈ R|T A|) is the output vector. W (4)(W (4) ∈ R|T A|×|H|) is a

weight matrix and b(4)(b(4) ∈ R|T A|) is a bias vector.

4. TagRCNN applies the softmax function to y(4) to get the probability distribution

over tags. The k tags with highest probability ranking are recommended to the

software object o.

P =
exp(y

(4)
i)∑n

q=1 exp(y
(4)
q)

. (29)

4. Experimental Design

In order to investigate whether any of our proposed deep learning-based tag recom-310

mendation approaches can outperform three traditional approaches we conducted an

empirical study to answer the following two research questions:

20

• RQ1: Which of the four proposed methods – TagCNN, TagRNN, TagHAN and

TagRCNN – is better than the three traditional approaches – EnTagRec, TagMul-

Rec, and FastTagRec – for the software site tag recommendation problem?315

• RQ2: Is the computational cost of the model training for the proposed method

acceptable?

4.1. Datasets and Experiment Setup

Our experiments datasets come from ten software information sites. We evaluat-

ed our four deep learning methods and three traditional approaches on one large-scale320

software information site StackOverflow, 3 medium-scale software information

sites Askubuntu, Serverfault, Unix and 6 small-scale sites Codereview,

Freecode, Database Administrator, Wordpress, AskDifferent and

Software Engineering.

For StackOverflow, we selected software objects posted before July 1st, 2014,325

the same date setting as used in [26] to facilitate comparison in our empirical study.

For the other 9 datasets, we consider all the software objects posted before Dec 31st,

2016. We define a site as a large-scale site if the number of software objects in the site

is more then 1 million, as a medium-scale site if the number of software objects in the

site is between 100k to 1 million, and as a small-scale site if the number of software330

objects in the site is less than 100k.

We used the same data preprocessing rules as in [26]. First, there is no conversion

operation applied to tags other than that all tags are converted to lowercase. Then we

remove rare tags and software objects. A tag is rare if its number of appearances is

less than or equal to a predefined threshold ts. A software object is removed if all its335

tags are rare. The threshold value ts 50 was used in prior work [14, 15, 26]. In this

paper, we also set the threshold values of ts to 50 for ten software information sites.

Table 1 summarizes the number of tags and software objects after removing the rare

ones under threshold values 1 and 50. It can be observed from Table 1 that the number

of software objects ranges from about 40K to more than ten million for these software340

information sites. When the threshold value is changed from 1 to 50, 1.811% of the

objects are removed and 66.004% of the tags are removed from these sites. Second,

21

for these remaining software objects in Table 1, we further remove code snippets and

screen shots form their descriptions. The two preprocessing steps were also used in

prior work [14, 15, 26]. That is, only the text in the description is preserved. After345

the two preprocessing steps, these preprocessed datasets are used to train and test tag

recommendation models.

In order to be consistent with previous researches [14, 15, 26, 27], in our experi-

ments, we also performed a ten-round validation on each dataset to evaluate TagCNN,

TagRNN, TagHAN and TagRCNN. For each preprocessed dataset, we randomly select-350

ed 10,000 software objects and treated them as a test set V . The remaining software

objects in a dataset were treated as a training set and used to recommend tags for the

10,000 selected ones. For an information site, all text in the training set is used to train

word vectors by Word2Vec [37]. In our experiments, we set the dimension of word

vector to 300 for large-scale site, 200 for medium-scale sites, and 100 for small-scale355

sites. For an object o with |T | tags in training set, we code tag ti using one-hot encod-

ing and get |T | training instances {(o.d, t1), ..., (o.d, t|T |)}. When a new tag is added,

we add the size of the output layer for new tags. As the penultimate layer to the output

layer is the full connection layer, the model only needs to add these weight vectors

associated with new tags.360

For the TagCNN method, we set the region sizes to (2, 3, 4, 5), and 25 filters

for each region size. For the TagRNN method, the hyper-parameter |H| is set to 128

for small-scale and medium-scale sites and 256 for large-scale site. For the TagHAN

method, the hyper-parameter |H| of GRU is set to 50. For the TagRCNN method, the

hyper-parameter |H| is set to 100 and the hyper-parameter |c| is set to 50. For the365

TagCNN, TagHAN and TagRCNN method, in order to reduce memory requirements

and speed up the training time, the max sequence length msl is set to 400 for a large-

scale site and 600 for medium-scale and small-scale sites. If the word sequence length

in the description d of an object o is over the max sequence length msl, we only take

the first msl words of the description d. For the TagRNN method, we don’t set the370

max sequence length and use all words in the description of an object as the input of

the model.

For each software object oi ∈ V , we recommend k tags to form a tag set TRk
i . We

22

Table 1: Statistics of the ten datasets on different rare tag threshold values

Site Name ts #software object #tags

StackOverflow
1 11203032 44265

50 11193348 18952

Askubuntu
1 248630 3041

50 246138 1146

Serverfault
1 232996 3482

50 231319 1312

Unix
1 104744 2407

50 103243 770

Codereview
1 39989 909

50 39811 302

Freecode
1 47978 9018

50 43644 274

Database Administrator
1 51031 969

50 50687 293

Wordpress
1 71338 770

50 70491 403

AskDifferent
1 77978 1049

50 77503 469

Software Engineering
1 42782 1628

50 41531 418

repeated the process ten times and compare TagCNN, TagRNN, TagHAN and TagR-

CNN against TagMulRec. All experiments were conducted on a 64-bit, Intel Core375

i7 3.6G desktop computer with 64G RAM running Ubuntu 16.04. We used the open

source software library Tensorflow8 to implement our methods TagCNN, TagRNN,

TagHAN and TagRCNN. These code, parameters and configurations of these methods,

and all datasets in experiments can be accessed via the link https://pan.baidu.com/s/1pKCpodP.

8http://www.tensorflow.org

23

4.2. Evaluation Metrics380

To be consistent with the experiments reported in [15, 26, 27], we use the top-k

prediction recall, the top-k prediction precision, and the top-k prediction F1-score

when evaluating the performance of TagCNN, TagRNN, TagHAN and TagRCNN. The

Top-k prediction recall is the percentage of tags selected out of the recommended lists

TRk
i in the software objects true tags. Given a software object oi, the top-k prediction385

recall Recall@ki is computed by Equation 30. Given a set V of software objects, the

top-k prediction recall Recall@k is computed by Equation 31.

Recall@ki =

Recall@ki =
|TRk

i ∩oi.T |
K , | oi.T |> k.

Recall@ki =
|TRk

i ∩oi.T |
|oi.T | , | oi.T |≤ k.

(30)

Recall@k =

∑|V |
i=1 Recall@ki
| V |

(31)

The Top-k prediction precision is the percentage of a software objects tags that

are in the recommended list TRk
i . Given a software object oi, the top-k prediction

precision Precision@ki is defined by Equation 32. Given a set V of software objects,390

the top-k prediction precision Precision@k is computed by Equation 33.

Precision@ki =
| TRk

i ∩ oi.T |
k

(32)

Precision@k =

∑|V |
i=1 Precision@ki

| V |
(33)

However, higher precision rate is not the main target in our scenario. The Precision@ki

is inversely proportional to the k value. The k value indicates the number of tags that

we want to recommend to the developer. For example, if a software object has two tags

and they are both among the top five tags recommended to the developer (namely the k395

value is 5), the precision value is 40%. However, if the k value increases to 10, then the

precision value will only be 20%. Therefore, lower precision rate in this work does not

imply there are many wrong tags but the number of tags recommended to the developer

is larger. Clearly, a good precision rate in our work indicates that a reasonable number

24

of tags has been recommended to the developer, which is much more user friendly than400

recommending a long list of tags.

The Top-k prediction F1-score combines Top-k prediction recall and Top-k predic-

tion precision. Given a software object oi, the Top-k prediction F1-score F1-score@ki

is defined by Equation 34. Given a set V of software objects, the top-k prediction

F1-score F1-score@k is defined by Equation 35.405

F1− score@ki = 2 · Precision@ki ·Recall@ki
Precision@ki +Recall@ki

(34)

F1− score@k =

∑|V |
i=1 F1− score@ki

| V |
(35)

4.3. Experimental Results

In this section, we present our experimental results to answer the aforementioned

research questions.

4.3.1. RQ1: Which of the four proposed methods – TagCNN, TagRNN, TagHAN and

TagRCNN – is better than the three traditional approaches – EnTagRec, Tag-410

MulRec, and FastTagRec, for the software site tag recommendation problem?

Motivation. Our four approaches (TagCNN, TagRNN, TagHAN and TagRCNN) are

based on four different deep learning models that are very different from the three tradi-

tional approaches EnTagRec, TagMulRec, and FastTagRec. The answer to this research

question would shed light on whether any of the chosen contemporary deep learning415

techniques can improve the performance of our software site tag recommendation task.

Approach. For each preprocessed dataset, we applied our four approaches and the

three traditional approaches to train tag recommendation models respectively and then

used the test set V to evaluate the performance of these models. We compared the

Recall@k, Precision@k and F1-score@k (k = 5 and 10) metrics of different ap-420

proaches.

Results. Tables 2, 3, and 4 give the results in terms of Recall@k, Precision@k and

F1-score@k (k = 5 and 10) metrics, respectively. In these tables, Column 1 lists

the names of the software information sites and Column 2, 3, 4 lists the results of the

25

three traditional approaches EnTagRec, TagMulRec, and FastTagRec. For the approach425

EnTagRec, we list the experimental results on small-scale sites. Columns 5, 6, 7 and

8 list the results of our four approaches TagCNN, TagRNN, TagHAN and TagRCNN.

The highest scores for each row in these tables are marked in bold.

It can be observed that TagCNN and TagRCNN outperform traditional approaches

in terms of Recall@k, Precision@k, F1-score@k on all the k settings in all the430

ten software information sites. For one large-scale and three medium-scale software

information sites, TagRCNN almost achieved the best performance. For six small-

scale software information sites, TagCNN achieved the best performance. Wilcoxon

signed-rank test [58, 59] confirms that the performance improvements of TagCNN and

TagRCNN methods are statistically significant (p-value < 0.001).435

However, the performance of TagRNN and TagHAN approaches are not as good

as these traditional approaches on some software information sites. For the TagRNN

method, we assume that the reason for the lack of good results is that TagRNN aims

to put more weight on recent information, where later words are more dominant than

earlier ones. Because TagHAN method is based on the hierarchical structure of de-440

scription text. For the TagHAN method, we assume that the reason for the failure to

achieve good results is that the length of the description text in most software objects

is short. For TagCNN and TagRCNN methods, we assume that the reason for the good

results is that both of two methods contain the convolutional layer and max-pooling

layer. The convolutional operation can eliminate bias and the max-pooling operation445

can fairly determine discriminative phrases in a text [25].

In addition, to evaluate the K most popular tags method which is a obvious method,

we randomly extract 100k software objects with tags from stack-overflow data set. The

example experimental results on the K (K = 5 and 10) most popular tags is shown in

Tables 5. The experimental results shows that the performance of the K most popular450

tags method is poor compared with other methods.

26

Our experimental results show that TagCNN and TagRCNN, which are based on deep

learning models CNN and RCNN respectively, significantly outperform the three tra-

ditional approaches EnTagRec, TagMulRec, and FastTagRec on all ten software infor-

mation sites. TagRNN and TagHAN, which are based on deep learning models RNN

and HAN respectively, are not as good as these traditional approaches on some of the

software information sites.

Table 2: Four deep learning approaches vs. three traditional approaches in terms of Recall@k (k

= 5 and 10)

Recall@5

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 0.640 - 0.698 0.711 0.672 0.731 0.877

Askubuntu 0.603 - 0.684 0.656 0.603 0.624 0.849

Serverfault 0.622 - 0.666 0.708 0.633 0.650 0.851

Unix 0.604 - 0.627 0.793 0.580 0.617 0.795

Codereview 0.718 0.707 0.758 0.956 0.459 0.571 0.765

Freecode 0.659 0.641 0.588 0.902 0.332 0.374 0.756

Database Administrator 0.666 0.672 0.692 0.958 0.625 0.667 0.805

Wordpress 0.605 0.801 0.632 0.873 0.622 0.646 0.797

AskDifferent 0.708 0.878 0.689 0.947 0.639 0.663 0.838

Software Engineering 0.594 0.564 0.582 0.936 0.439 0.501 0.700

Recall@10

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 0.749 - 0.774 0.804 0.765 0.822 0.924

Askubuntu 0.721 - 0.770 0.791 0.714 0.737 0.898

Serverfault 0.716 - 0.753 0.828 0.740 0.756 0.896

Unix 0.682 - 0.722 0.899 0.690 0.727 0.848

Codereview 0.788 0.773 0.820 0.980 0.539 0.675 0.814

Freecode 0.758 0.751 0.692 0.949 0.416 0.484 0.816

Database Administrator 0.778 0.794 0.816 0.978 0.742 0.777 0.884

Wordpress 0.725 0.864 0.765 0.945 0.731 0.760 0.863

AskDifferent 0.827 0.940 0.815 0.978 0.741 0.768 0.897

Software Engineering 0.704 0.697 0.708 0.961 0.535 0.599 0.764

4.3.2. RQ2: Is the computational cost of the model training for the proposed method

acceptable?

Motivation. The four deep learning-based models (TagCNN, TagRNN, TagHAN and455

TagRCNN) and the three models based on traditional approaches (EnTagRec, TagMul-

Rec, and FastTagRec) all need to be trained before they can be used for tag recom-

27

Table 3: Four deep learning approaches vs. three traditional approaches in terms of Precision@k

(k = 5 and 10)

Precision@5

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 0.343 - 0.386 0.396 0.305 0.301 0.487

Askubuntu 0.271 - 0.346 0.329 0.311 0.311 0.441

Serverfault 0.305 - 0.344 0.369 0.343 0.335 0.466

Unix 0.294 - 0.309 0.399 0.303 0.302 0.416

Codereview 0.377 0.371 0.398 0.520 0.256 0.281 0.421

Freecode 0.383 0.379 0.343 0.530 0.211 0.218 0.478

Database Administrator 0.313 0.324 0.332 0.479 0.315 0.318 0.404

Wordpress 0.265 0.348 0.278 0.397 0.283 0.285 0.374

AskDifferent 0.372 0.365 0.357 0.506 0.342 0.344 0.450

Software Engineering 0.253 0.245 0.252 0.436 0.217 0.221 0.325

Precision@10

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 0.205 - 0.217 0.232 0.182 0.171 0.279

Askubuntu 0.166 - 0.198 0.203 0.188 0.187 0.233

Serverfault 0.179 - 0.198 0.222 0.205 0.200 0.245

Unix 0.169 - 0.182 0.231 0.184 0.183 0.222

Codereview 0.211 0.207 0.218 0.268 0.153 0.170 0.224

Freecode 0.245 0.239 0.219 0.297 0.138 0.151 0.258

Database Administrator 0.188 0.194 0.201 0.246 0.190 0.189 0.222

Wordpress 0.163 0.186 0.173 0.219 0.170 0.172 0.203

AskDifferent 0.222 0.201 0.216 0.263 0.202 0.203 0.240

Software Engineering 0.153 0.151 0.157 0.225 0.135 0.136 0.177

28

Table 4: Four deep learning approaches vs. three traditional approaches in terms of F1−score@k

(k = 5 and 10)

F1−score@5

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 0.444 - 0.476 0.509 0.420 0.426 0.626

Askubuntu 0.374 - 0.437 0.439 0.410 0.415 0.581

Serverfault 0.403 - 0.435 0.485 0.445 0.442 0.602

Unix 0.395 - 0.397 0.531 0.398 0.406 0.546

Codereview 0.494 0.485 0.502 0.674 0.329 0.376 0.543

Freecode 0.485 0.476 0.434 0.668 0.258 0.275 0.586

Database Administrator 0.426 0.438 0.449 0.639 0.419 0.430 0.538

Wordpress 0.368 0.484 0.386 0.546 0.389 0.396 0.509

AskDifferent 0.488 0.514 0.471 0.660 0.446 0.453 0.586

Software Engineering 0.355 0.340 0.352 0.595 0.290 0.307 0.443

F1−score@10

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 0.310 - 0.329 0.360 0.294 0.283 0.429

Askubuntu 0.270 - 0.303 0.323 0.297 0.299 0.370

Serverfault 0.287 - 0.304 0.350 0.321 0.316 0.385

Unix 0.271 - 0.282 0.367 0.291 0.292 0.352

Codereview 0.333 0.325 0.335 0.421 0.239 0.271 0.351

Freecode 0.364 0.360 0.332 0.453 0.208 0.230 0.392

Database Administrator 0.201 0.310 0.323 0.393 0.303 0.304 0.355

Wordpress 0.266 0.305 0.283 0.356 0.276 0.280 0.328

AskDifferent 0.350 0.330 0.342 0.415 0.317 0.321 0.378

Software Engineering 0.252 0.248 0.257 0.365 0.216 0.221 0.287

Table 5: The K most popular tags method in terms of Recall@k, Precision@k, and F1-

score@k (K = 5 and 10)

Dataset Recall@5 Precision@5 F1−score@5

StackOverflow 0.096 0.054 0.067

Dataset Recall@10 Precision@10 F1−score@10

StackOverflow 0.138 0.078 0.097

29

mendation. For training these deep learning-based models, we first train word vectors

through Word2Vec as the input of these models. The cost of training word vectors

is included into the computational cost of these deep learning-based models training.460

Training of EnTagRec, TagMulRec, FastTagRec, TagCNN, TagRNN, TagHAN and

TagRCNN, is done only once and off-line. After model training, using these models

to recommend tags takes negligible time on-line. Understanding the training time cost

helps us to better understand the scalability of each approach.

Approach. For the four deep learning-based models TagCNN, TagRNN, TagHAN465

and TagRCNN, we record the start time and the end time of the program for training

word vectors and models to obtain the training time. For the three traditional models

EnTagRec, TagMulRec and FastTagRec, we record the start time and the end time of

the program for training models to obtain the training time.

Results. Table 6 gives the training cost of EnTagRec, TagMulRec, FastTagRec, TagC-470

NN, TagRNN, TagHAN and TagRCNN models. Compared with TagMulRec on ten

sites, the average training cost of TagRNN is 2.1 times that of TagMulRec, the average

training cost of TagHAN is about 5.8 times that of TagMulRec, the average training

cost of TagCNN is about 5.7 times that of TagMulRec and the average training cost of

TagRCNN is about 19.3 times that of TagMulRec. Compared with four deep learning-475

based approaches on six small-scale sites, the average training cost of EnTagRec is

about 169 times that of TagRNN, 64 times that of TagHAN, 53 times that of TagCNN

and 14 times that of TagRCNN. Compared with FastTagRec on ten sits, the average

training cost of TagRNN is 9.2 times that of FastTagRec, the average training cost of

TagHAN is 25.3 times that of FastTagRec, the average training cost of TagCNN is 27.8480

times that of FastTagRec and the average training cost of TagRNN is 101.4 times that

of FastTagRec. Because the training cost is a one-time expense, we conclude that the

training costs of TagCNN and TagRCNN are acceptable.

Training of tag recommendation models can be done off-line and only needs to be

done once. TagCNN and TagRCNN are practical for use on the various-scale datasets

30

Table 6: Four deep learning approaches vs. three traditional approaches in terms of the training

model time

Training Time(s)

Site Name TagMulRec EnTagRec FastTagRec TagCNN TagRNN TagHAN TagRCNN

StackOverflow 41808 - 28783 213303 84433 190156 203770

Askubuntu 908 - 372 5466 1682 4601 5111

Serverfault 246 - 87 1467 537 1392 5879

Unix 621 - 101 3585 1038 2812 8772

Codereview 495 51959 83 2860 857 2329 6956

Freecode 95 55963 48 581 452 1319 1494

Database Administrator 311 73765 32 1776 566 1580 6737

Wordpress 361 91229 34 2059 633 1771 9065

AskDifferent 211 99204 90 1273 227 551 6417

Software Engineering 205 54160 44 1194 441 1295 7751

5. Discussion485

In this section, we will first share some of the important lessons that we learned in

implementing the work in this paper, followed by the discussion on threats to Validity.

5.1. Implementation of Deep Learning-based Methods

Many typical software engineering problems can be regarded as classification prob-

lems. Classification problems include binary classification problems, multiple classi-490

fication problems and multi-label classification problems. For example, defect predic-

tion [60], code clone detection [3], missing issue-commit link recovery [61] are binary

classification problems, where one object is associated to one of the two categories;

predicting semantically linkable knowledge in developer online forums [5], and pro-

gram classification problem [62] are multiple classification problems, where one object495

is associated to one of the multiple categories (large than two); automated tag recom-

mendation for software information sites [16, 14, 15, 26] is a multi-label classification

problem, where one object could be associated with several categories simultaneously.

Obviously, the research problem in this paper is a multi-label classification problem.

For classification problems, high quality vector representations of the observed object500

or artifact can significantly improve the deep learning-based model accuracy [37, 63].

However, for a typical software engineering problem that is regarded as classification

31

problem, how to best represent the software object or artifact with a high quality vector

is still a major challenge.

In this paper, for each software object, we utilized four different deep neural net-505

work structures (TagCNN, TagRNN, TagHAN and TagRCNN) to obtain different vec-

tor representations for use by each different deep learning-based model. TagRNN aims

to put more weight on recent information where later words are more dominant than

earlier ones, and hence the vector representation of a software object obtained by the

TagRNN method is also a representation that puts more weight on recent information.510

TagHAN method is based on the hierarchical structure of text and the quality of the

vector will not be ideal if the text is short. Therefore, the major reason for our failure

to achieve a high quality vector representation of a software object with the TagHAN

method is that the length of the description text in most software objects is short. For

TagCNN and TagRCNN methods, the quality of the vector representation of a software515

object is high as both of these methods contain the convolutional layer and the max-

pooling layer. The convolutional operation can eliminate bias and the max-pooling

operation can fairly determine discriminative phrases in a text [25].

Given our experiences in implementing these deep learning methods, we see that

a high quality vector representation of a software object or artifact can greatly im-520

prove performance of typical software engineering problems which can be formulat-

ed as classification problems. Further research is needed in software engineering to

improve representation of such software artifacts and relationships for deep learning-

based applications [64].

5.2. Threats to Validity525

There are several threats that can potentially affect the validity of our experimental

results.

Experimental Errors. Threats to internal validity relate to errors in our experi-

mental data, approaches implementation and settings. We have double checked our

experimental datasets, approaches implementation or re-implementation and settings,530

however there could be experimental errors that we did not detect.

32

Biased Results. Our tag recommendation task assumes that existing tags in a soft-

ware information site are correct. However, human errors are inevitable. We do apply

some filtering rules, such as removing rare tags and software objects, to alleviate the

problem. These filtering rules have also been used in past research [14, 15], [26, 27].535

However, this issue, such as how to deal with large number of synonymous tags, cannot

be completely solved.

Generalizability. In this paper, we evaluated our four approaches and three tradi-

tional approaches on ten software information sites. There are more than 11,000,000

software objects in the ten datasets, and the number of software objects in the ten540

datasets ranges from about 40K to more than ten million. Even so, more case studies

are needed to reduce this external validity threat. In the future, more software informa-

tion sites need to be used.

Evaluation Metrics. In this paper, Recall@k, Precision@k and F1-score@k are

used as our evaluation metrics for the algorithms. Recall@k and Precision@k have545

been used in the past to evaluate the performance of tag recommendation for software

information sites [14, 15, 16] and for social media and network [65, 66, 67, 68]. The

computational costs of constructing tag recommendation models are also used in this

paper. Because of differences in operating systems, hardware, the development en-

vironment and others, the computational costs may be not suitability in repeated our550

experiments.

Scalability. We applied our algorithms to one large software information site, S-

tackOverflow. Further scalability evaluation is needed to determine if both the online

tag recommendation speed and offline training costs are acceptable for very large soft-

ware information sites.555

Model Components. We only utilized the text part of the description of software

objects. We removed code snippets and screenshots from the description. We will look

to utilize these code snippet and screenshot in the description to extend our models in

our future work.

33

6. Conclusion560

In this paper, we proposed four new deep learning-based methods TagCNN, TagRN-

N, TagHAN and TagRCNN for automated tag recommendation for large software in-

formation sites. The purpose of our study is to investigate whether there are deep learn-

ing methods that can achieve better performance than traditional approaches used for

the tag recommendation task for software information sites. Our experimental results565

have shown that:

• For the tag recommendation task, two of our approaches TagCNN and TagR-

CNN, which are based on deep learning models CNN and RCNN respective-

ly, achieved significant performance improvement over the three traditional ap-

proaches EnTagRec, TagMulRec, and FastTagRec. In contrast, the other two570

approaches TagRNN and TagHAN, which are based on deep learning models

RNN and HAN respectively, were outperformed by these traditional approaches.

• Training of recommendation models can be done off-line and only needs to be

done once. Although TagCNN and TagRCNN require longer training time than

TagMulRec, the overhead is acceptable for real-world practice.575

In summary, based on the results of this study, we believe the use of deep learning

can help to find a better approach for some typical Software Engineering problems.

Several open challenges remain. Software artifacts and relationships must be processed

and represented in a vectorized form suitable for the chosen deep learning algorithm.

For large data sets, the deep learning algorithm needs to be scaled across multiple580

machines and training may be a very time and compute intensive step. Even if this

training is done off-line, if retraining is needed often, the scalability of the approach

may be in question. As discussed above, we need to apply our new deep learning-

based models to further software information sites and extend it to process rich content

including code, design models and images, to more precisely determine its performance585

relative to more traditional data analytical approaches. Finally, we need to develop

other deep learning-based models for other data intensive software engineering tasks,

such as link recommendation, effort estimate, vulnerability detection and so on, to

34

determine how these perform in practice.

7. Acknowledgments590

The authors would like to acknowledge the support provided by the grands of

the National Natural Science Foundation of China (61572374, U1636220,61472423,

61602258), Open Fund of Key Laboratory of Network Assessment Technology from

CAS, the Academic Team Building Plan for Young Scholars from Wuhan University

(WHU2016012).595

References

[1] T. D. Nguyen, A. T. Nguyen, H. D. Phan, T. N. Nguyen, Exploring api embed-

ding for api usages and applications, in: Proceedings of the 39th International

Conference on Software Engineering, IEEE Press, 2017, pp. 438–449.

[2] V. J. Hellendoorn, P. Devanbu, Are deep neural networks the best choice for mod-600

eling source code?, in: Proceedings of the 2017 11th Joint Meeting on Founda-

tions of Software Engineering, ACM, 2017, pp. 763–773.

[3] M. White, M. Tufano, C. Vendome, D. Poshyvanyk, Deep learning code frag-

ments for code clone detection, in: Proceedings of the 31st IEEE/ACM Interna-

tional Conference on Automated Software Engineering, ACM, 2016, pp. 87–98.605

[4] J. Guo, J. Cheng, J. Cleland-Huang, Semantically enhanced software traceability

using deep learning techniques, in: Proceedings of the 39th International Confer-

ence on Software Engineering, IEEE Press, 2017, pp. 3–14.

[5] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, S. Li, Predicting semantically link-

able knowledge in developer online forums via convolutional neural network, in:610

Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-

ware Engineering, ACM, 2016, pp. 51–62.

35

[6] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep con-

volutional neural networks, in: Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.615

[7] A.-r. Mohamed, G. E. Dahl, G. Hinton, Acoustic modeling using deep belief

networks, IEEE Transactions on Audio, Speech, and Language Processing 20 (1)

(2012) 14–22.

[8] A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep recurrent

neural networks, in: Acoustics, speech and signal processing (icassp), 2013 ieee620

international conference on, IEEE, 2013, pp. 6645–6649.

[9] T. N. Sainath, O. Vinyals, A. Senior, H. Sak, Convolutional, long short-term

memory, fully connected deep neural networks, in: Acoustics, Speech and Signal

Processing (ICASSP), 2015 IEEE International Conference on, IEEE, 2015, pp.

4580–4584.625

[10] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent

neural networks on sequence modeling, arXiv preprint arXiv:1412.3555.

[11] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep

convolutional generative adversarial networks, arXiv preprint arXiv:1511.06434.

[12] W. Fu, T. Menzies, Easy over hard: a case study on deep learning, in: Joint630

Meeting on Foundations of Software Engineering, ACM, 2017, pp. 49–60.

[13] F. P. Brooks, No silver bullet, IEEE Computer 20 (4) (1987) 10–19.

[14] X. Xia, D. Lo, X. Wang, B. Zhou, Tag recommendation in software informa-

tion sites, in: Proceedings of the 10th Working Conference on Mining Software

Repositories, IEEE Press, 2013, pp. 287–296.635

[15] S. Wang, D. Lo, B. Vasilescu, A. Serebrenik, Entagrec: An enhanced tag recom-

mendation system for software information sites., in: ICSME, 2014, pp. 291–300.

36

[16] J. M. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, T. N. Nguyen, Fuzzy

set approach for automatic tagging in evolving software, in: Software Mainte-

nance (ICSM), 2010 IEEE International Conference on, IEEE, 2010, pp. 1–10.640

[17] M.-A. Storey, C. Treude, A. van Deursen, L.-T. Cheng, The impact of social me-

dia on software engineering practices and tools, in: Proceedings of the FSE/SDP

workshop on Future of software engineering research, ACM, 2010, pp. 359–364.

[18] A. Begel, R. DeLine, T. Zimmermann, Social media for software engineering,

in: Proceedings of the FSE/SDP workshop on Future of software engineering645

research, ACM, 2010, pp. 33–38.

[19] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, S. R. Klemmer, Two studies

of opportunistic programming: interleaving web foraging, learning, and writing

code, in: Proceedings of the SIGCHI Conference on Human Factors in Comput-

ing Systems, ACM, 2009, pp. 1589–1598.650

[20] L. Guerrouj, S. Azad, P. C. Rigby, The influence of app churn on app success and

stackoverflow discussions, in: 2015 IEEE 22nd International Conference on Soft-

ware Analysis, Evolution, and Reengineering (SANER), IEEE, 2015, pp. 321–

330.

[21] C. Treude, M.-A. Storey, Work item tagging: Communicating concerns in collab-655

orative software development, IEEE Transactions on Software Engineering 38 (1)

(2012) 19–34.

[22] N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network

for modelling sentences, arXiv preprint arXiv:1404.2188.

[23] P. Liu, X. Qiu, X. Huang, Recurrent neural network for text classification with660

multi-task learning, arXiv preprint arXiv:1605.05101.

[24] Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, E. H. Hovy, Hierarchical attention

networks for document classification., in: HLT-NAACL, 2016, pp. 1480–1489.

37

[25] S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text

classification., in: AAAI, Vol. 333, 2015, pp. 2267–2273.665

[26] P. Zhou, J. Liu, Z. Yang, G. Zhou, Scalable tag recommendation for software

information sites, in: The 24th IEEE International Conference on Software Anal-

ysis, Evolution, and Reengineering (SANER), 2017.

[27] J. Liu, P. Zhou, Z. Yang, X. Liu, J. Grundy, Fasttagrec: fast tag recommendation

for software information sites, Automated Software Engineering.670

[28] B. Sigurbjörnsson, R. Van Zwol, Flickr tag recommendation based on collective

knowledge, in: Proceedings of the 17th international conference on World Wide

Web, ACM, 2008, pp. 327–336.

[29] S. Rendle, L. Schmidt-Thieme, Pairwise interaction tensor factorization for per-

sonalized tag recommendation, in: Proceedings of the third ACM international675

conference on Web search and data mining, ACM, 2010, pp. 81–90.

[30] D. Yin, Z. Xue, L. Hong, B. D. Davison, A probabilistic model for personalized

tag prediction, in: Proceedings of the 16th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, ACM, 2010, pp. 959–968.

[31] Q. Wang, L. Ruan, Z. Zhang, L. Si, Learning compact hashing codes for efficient680

tag completion and prediction, in: Proceedings of the 22nd ACM international

conference on Information & Knowledge Management, ACM, 2013, pp. 1789–

1794.

[32] R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, G. Stumme, Tag rec-

ommendations in folksonomies, in: European Conference on Principles of Data685

Mining and Knowledge Discovery, Springer, 2007, pp. 506–514.

[33] E. F. Martins, F. M. Belm, J. M. Almeida, M. A. Gonalves, On cold start for asso-

ciative tag recommendation, Journal of the Association for Information Science

and Technology 67 (1) (2016) 83105.

38

[34] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–690

444.

[35] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-

scale video classification with convolutional neural networks, in: Proceedings

of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp.

1725–1732.695

[36] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, S. Khudanpur, Recurrent neural

network based language model., in: Interspeech, Vol. 2, 2010, p. 3.

[37] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word represen-

tations in vector space, arXiv preprint arXiv:1301.3781.

[38] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of tricks for efficient text700

classification (2016) 427–431.

[39] J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word represen-

tation, in: Conference on Empirical Methods in Natural Language Processing,

2014, pp. 1532–1543.

[40] P. Covington, J. Adams, E. Sargin, Deep neural networks for youtube recommen-705

dations, in: Proceedings of the 10th ACM Conference on Recommender Systems,

ACM, 2016, pp. 191–198.

[41] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. An-

derson, G. Corrado, W. Chai, M. Ispir, et al., Wide & deep learning for

recommender systems, in: Proceedings of the 1st Workshop on Deep Learning710

for Recommender Systems, ACM, 2016, pp. 7–10.

[42] S. Okura, Y. Tagami, S. Ono, A. Tajima, Embedding-based news recommendation

for millions of users, in: Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, 2017, pp. 1933–

1942.715

39

[43] X. He, X. Du, X. Wang, F. Tian, J. Tang, T.-S. Chua, Outer product-based neural

collaborative filtering, arXiv preprint arXiv:1808.03912.

[44] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, H. Jing, Recurrent recommender

networks, in: Proceedings of the tenth ACM international conference on web

search and data mining, ACM, 2017, pp. 495–503.720

[45] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, J. Wu, Sequen-

tial recommender system based on hierarchical attention networks, in: the 27th

International Joint Conference on Artificial Intelligence, 2018.

[46] R. Salakhutdinov, A. Mnih, G. Hinton, Restricted boltzmann machines for collab-

orative filtering, in: Proceedings of the 24th international conference on Machine725

learning, ACM, 2007, pp. 791–798.

[47] X. Cai, J. Han, L. Yang, Generative adversarial network based heterogeneous

bibliographic network representation for personalized citation recommendation.,

in: AAAI, 2018.

[48] I. Munemasa, Y. Tomomatsu, K. Hayashi, T. Takagi, Deep reinforcement learn-730

ing for recommender systems, in: International Conference on Information and

Communications Technology, 2018, pp. 226–233.

[49] Z. Xu, J. Xuan, J. Liu, X. Cui, Michac: Defect prediction via feature selec-

tion based on maximal information coefficient with hierarchical agglomerative

clustering, in: Software Analysis, Evolution, and Reengineering (SANER), 2016735

IEEE 23rd International Conference on, Vol. 1, IEEE, 2016, pp. 370–381.

[50] D. Ye, Z. Xing, C. Y. Foo, Z. Q. Ang, J. Li, N. Kapre, Software-specific named

entity recognition in software engineering social content, in: Software Analysis,

Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Confer-

ence on, Vol. 1, IEEE, 2016, pp. 90–101.740

[51] M. Mondal, C. K. Roy, K. A. Schneider, Spcp-miner: A tool for mining code

clones that are important for refactoring or tracking, in: Software Analysis, Evo-

40

lution and Reengineering (SANER), 2015 IEEE 22nd International Conference

on, IEEE, 2015, pp. 484–488.

[52] Y. Kim, Convolutional neural networks for sentence classification, arXiv preprint745

arXiv:1408.5882.

[53] Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to)

convolutional neural networks for sentence classification, arXiv preprint arX-

iv:1510.03820.

[54] M. A. Nielsen, Neural networks and deep learning, Vol. 25, Determination press750

USA, 2015.

[55] G. E. Dahl, T. N. Sainath, G. E. Hinton, Improving deep neural networks for

lvcsr using rectified linear units and dropout, in: Acoustics, Speech and Signal

Processing (ICASSP), 2013 IEEE International Conference on, IEEE, 2013, pp.

8609–8613.755

[56] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning

to align and translate, arXiv preprint arXiv:1409.0473.

[57] D. Costarelli, R. Spigler, Approximation results for neural network operators ac-

tivated by sigmoidal functions, Neural Networks 44 (8) (2013) 101–106.

[58] Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, A general software defect-760

proneness prediction framework, IEEE Transactions on Software Engineering

37 (3) (2011) 356–370.

[59] T. Zimmermann, N. Nagappan, Predicting defects using network analysis on de-

pendency graphs, in: Software Engineering, 2008. ICSE’08. ACM/IEEE 30th

International Conference on, IEEE, 2008, pp. 531–540.765

[60] X. Yang, D. Lo, X. Xia, J. Sun, Tlel: A two-layer ensemble learning approach for

just-in-time defect prediction, Information & Software Technology (2017) 206–

220.

41

[61] Y. Sun, C. Chen, Q. Wang, B. Boehm, Improving missing issue-commit link re-

covery using positive and unlabeled data, in: Ieee/acm International Conference770

on Automated Software Engineering, 2017, pp. 147–152.

[62] L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin, Convolutional neural networks over

tree structures for programming language processing (2014) 1287–1293.

[63] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep

convolutional generative adversarial networks, Computer Science.775

[64] H. K. Dam, T. Tran, J. Grundy, A. Ghose, Deepsoft: A vision for a deep mod-

el of software, in: Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, ACM, 2016, pp. 944–947.

[65] E. Zangerle, W. Gassler, G. Specht, Using tag recommendations to homogenize

folksonomies in microblogging environments, in: International Conference on780

Social Informatics, Springer, 2011, pp. 113–126.

[66] H. Wang, B. Chen, W.-J. Li, Collaborative topic regression with social regular-

ization for tag recommendation., in: IJCAI, 2013.

[67] D. Yang, Y. Xiao, H. Tong, J. Zhang, W. Wang, An integrated tag recommen-

dation algorithm towards weibo user profiling, in: International Conference on785

Database Systems for Advanced Applications, Springer, 2015, pp. 353–373.

[68] D. Yang, Y. Xiao, Y. Song, J. Zhang, K. Zhang, W. Wang, Tag propagation based

recommendation across diverse social media, in: Proceedings of the 23rd Inter-

national Conference on World Wide Web, ACM, 2014, pp. 407–408.

42

