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Abstract

Smart contract developers frequently seek solutions to develop-
mental challenges on Q&A platforms such as Stack Overflow (SO).
Although community responses often provide viable solutions, the
embedded code snippets can also contain hidden vulnerabilities.
Integrating such code directly into smart contracts may make them
susceptible to malicious attacks. We conducted an online survey
and received 74 responses from smart contract developers. The re-
sults of this survey indicate that the majority (86.4%) of participants
do not sufficiently consider security when reusing SO code snippets.
Despite the existence of various tools designed to detect vulnera-
bilities in smart contracts, these tools are typically developed for
analyzing fully-completed smart contracts and thus are ineffective
for analyzing typical code snippets as found on SO. We introduce
SOChecker, the first tool designed to identify potential vulnerabili-
ties in incomplete SO smart contract code snippets. SOChecker first
leverages a fine-tuned Llama2 model for code completion, followed
by the application of symbolic execution methods for vulnerability
detection. Our experimental results, derived from a dataset com-
prising 897 code snippets collected from smart contract-related SO
posts, demonstrate that SOChecker achieves an F1 score of 68.2%,
greatly surpassing GPT-3.5 and GPT-4 (20.9% and 33.2% F1 Scores
respectively). Our findings underscore the need to improve the
security of code snippets from Q&A websites.
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1 Introduction

In recent years, smart contracts have catalyzed the development of
many new applications, such as Non-fungible Tokens (NFTs) [74]
and Decentralised Finance (DeFi) [54]. Due to the rapidly evolving
of blockchain technology and the limited availability of online
resources, developers often turn to Q&A platforms such as Stack
Overflow (SO) [2] for development guidance. Such Q&A platforms
may facilitate knowledge exchange and may help to address the
questioner’s issue. However, the shared code snippets in answers
can also embed hidden vulnerabilities, posing significant security
risks when incorporated naively into smart contracts, especially by
inexperienced smart contract developers.

Various methods, such as static analysis [24, 40, 56, 62], dynamic
analysis [58] and formal verification [53], have been proposed to
detect vulnerabilities in smart contracts, these approaches usually
require a fully complete and compilable smart contract code. How-
ever, conducting such security analyzes directly on incomplete
shared smart contract code snippets from SO posts presents sig-
nificant unsolved challenges. Consequently, when analyzing code
snippets from SO posts, these tools may fail for the majority of
cases. Recent studies have demonstrated the promising capabili-
ties of Large Language Models (LLMs) [69] in code-related tasks,
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including code completion [22] and code generation [78]. However,
research by Chen et al. [10] highlights that the direct use of LLMs,
such as ChatGPT-4, for detecting smart contract vulnerabilities has
produced very unsatisfactory results, a domain where traditional
program analysis techniques excel [11]. The strength of traditional
program analysis techniques lies in their ability to enhance the
comprehension of complex code structures through abstract data
(e.g., control flow graph [6] and data flow graph [17]). This capabil-
ity is often beyond the reach of LLM. In addition, LLM is susceptible
to issues such as hallucinations and randomness [75], which can
lead to decreased accuracy in vulnerability detection.

To confirm if smart contract developers use vulnerable code from
SO code snippets, we ran an online survey and received 74 valid
responses. Our survey results show that 88.4% of smart contract
practitioners rely on Q&A websites such as SO to solve problems
encountered during the development process. However, less than
20% of these practitioners then conduct thorough security checks
on the code they reuse from these SO posts. This suggests that
forum-sourced smart contract code snippets indeed present high
potential security risks. According to the survey feedback, “lack
of support for direct code analysis on SO” is the main reason why
developers do not apply existing tools to security analysis of code
snippets, which highlights the importance of tools like SOChecker.

To address this major real-world issue of incomplete smart con-
tract code snippet security analysis, we introduce SOChecker, a
tool that combines the code completion capabilities of LLMs with
traditional program analysis methods. SOChecker is the first tool
specifically designed to analyze fragmented smart contract code
on Q&A websites such as Stack Overflow and able to detect nine
common smart contract vulnerabilities listed in DASP10 [70], e.g.,
Reentrancy, Access Control, etc. [11]. SOChecker comprises two
key components: a Code Completer and a Vulnerability Detector. For
the former we employ the Llama2 model [61], fine-tuned with a
dataset of the top 1,000 smart contracts with the highest transaction
volume from the Ethereummainnet, to enhance code completion ca-
pabilities. While a LLM can successfully complete the semantics of
the program, the code it produces may occasionally exhibit syntax
issues, such as incompatible Solidity versions or missing structural
symbols. Hence, we developed scripts for automated version match-
ing and code structure completion to address these issues. After
completing SO code snippets into compilable contracts, we use a
conventional Vulnerability Detector approach for security analysis.
Specifically, we first construct a Control Flow Graph (CFG) [6] of
the contract. Considering that we only aim to detect vulnerabili-
ties in the original code snippets and code added by the LLM may
introduce new vulnerabilities, we implement a program pruning
strategy to remove paths generated by LLM code from the CFG.
SOChecker is able to detect all nine vulnerabilities categorized by
DASP10 [70], a widely recognized smart contract vulnerability list.

To assess the efficacy of SOChecker, we curated a dataset of
897 Solidity code snippets from smart contract-related SO posts.
In the code completion stage, our fine-tuned model successfully
completed 75.5% of code snippets, outperforming the Llama2 base
model, as well as widely used GPT-3.5-turbo, and GPT-4 LLMs. In the
vulnerability detection stage, our experimental results show that
SOChecker achieved an F1 score of 83.4%, greatly outperforming 10
state-of-the-art smart contract vulnerability detection tools. When

applying SOChecker to analyze vulnerabilities in SO code snippets
directly, it achieves an F1 score of 68.2%, while the scores forGPT-3.5
and GPT-4 are only 20.9% and 33.2%, respectively.

In this research, we make the following key contributions:
• We conducted a survey to collect the perspectives of smart con-
tract practitioners on the usage of SO code, demonstrating the
high potential security risks associated with smart contracty
code snippet usage from Q&A websites.
• We introduced SOChecker, the first tool that combines code
completion capabilities of LLMs with the program analysis meth-
ods to analyze smart contract code snippets found on Q&A web-
sites like Stack Overflow. SOChecker is able to detect nine com-
mon smart contract vulnerabilities.
• We curated a high-quality dataset consisting of 897 Solidity code
snippets from smart contract-related posts on SO posts. We used
this dataset to evaluate SOChecker. The results indicate that
the effectiveness of SOChecker is as high as 68.2%, surpassing
GPTs and other traditional vulnerability detection tools.
• To promote further research in related fields, we make available
our dataset, experimental results, and source code of SOChecker
at https://github.com/BugmakerCC/SOChecker [3].

2 Motivation and Background

2.1 Motivating Example

In Figure 1, we show a SO post 1 as an example, where the ques-
tioner posted a question about a Solidity programming issue. In
addition to answering the question, the respondent also provided a
code snippet for reference. Although this code may serve the im-
mediate needs of the inquirer – evidenced by the acceptance of the
answer – it conceals a Denial of Service [73] vulnerability hidden in
it. This vulnerability could be exploited by a malicious attacker to
disrupt the normal execution of this function, preventing legitimate
participants from receiving payment. Even worse, this vulnerable
code may also be reused by other developers reading this SO post,
if they encounter similar issues. If several people up-rate the post,
it may become a popular solution despite the vulnerability.

Can I write it in remix ide?
I made a dynamic array variable of address type, i.e.,
address payable public participant; 
which one is the correct way to write in the following and why,
uint payable[] public participant   or 
uint[] payable public participant;

address payable[] public participants;
 function foo() public { 

uint amount = 1; // 1 wei
 for (uint i = 0; i < participants.length; i++) {
 participants[i].transfer(amount);} 

} 

uint payable[] public participant;

uint[] payable public participant;

address payable public participant; 

There's no payable extension to uint. If your aim is to define an 
amount to be sent, that can be stored in a regular uint. 

?

A…

Figure 1: A post on Stack Overflow related to Solidity.

1https://stackoverflow.com/questions/72171101/can-i-write-it-in-remix-ide
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Table 1: Top 9 smart contract vulnerabilities in DASP10 and their corresponding descriptions.

Vulnerability Description

Reentrancy (RE) Reentrant function calls make a contract to behave in an unexpected way
Access Control (AC) Failure to use function modifiers or use of tx.origin
Arithmetic Issues (AI) Integer over/underflows
Unchecked Return Values (URV) call(), callcode(), delegatecall() or send() fails and it is not checked
Denial of Service (DoS) The contract is overwhelmed with time-consuming computations
Bad Randomness (BR) Malicious miner biases the outcome
Front Running (FR) Two dependent transactions that invoke the same contract are included in one block
Time Manipulation (TM) The timestamp of the block is manipulated by the miner
Short Address Attack (SAA) EVM itself accepts incorrectly padded arguments

Detecting vulnerabilities in this code snippet is not easy. Firstly,
like most such code snippers, the code in the post is fragmented and
uncompilable, which cannot be straightforwardly analyzed using
traditional contract vulnerability detection tools. Unlike conven-
tional program analysis tools, LLMs can directly detect vulnerabili-
ties in code snippets without requiring compilable code. However,
Chen et al. [10] have shown that LLMs face challenges in directly
detecting vulnerabilities in contract code, frequently resulting in
false positives. Therefore, a more accurate and precise method is
needed to analyze the security of smart contract code snippets.

2.2 DASP10 Smart Contract Vulnerabilities

The DASP10 [70] is a list of common smart contract vulnerabil-
ities and is frequently referenced in academic research [10, 25].
Smartbugs [21], a framework built upon the DASP10 vulnerability
classification, integrates multiple vulnerability detection tools and
has been employed in numerous subsequent studies [10, 20]. A
summary of each vulnerability listed in DASP10 is shown in Ta-
ble 1. Only the top nine vulnerabilities are discussed, since the 10th
vulnerability of DASP10 is “Unknown Unknowns”, representing
all undiscovered vulnerabilities. While some research [72] has out-
lined increasingly complex types of smart contract vulnerability,
our study focuses primarily on code snippets sourced from Stack
Overflow (SO). These snippets are typically brief, straightforward
in logic, and generally free of intricate vulnerabilities. Therefore,
we adopt DASP10 as the detection standard.

2.3 Large Language Models

A Large Language Model (LLM) is a machine learning model ac-
quired through extensive training on a substantial corpus of text
data. This allows it to comprehend and generate natural language
and other textual formats proficiently [34, 69]. Throughout their
training process, most LLMs acquire extensive code knowledge
from code-based training data. This results in high proficiency
in code-related tasks, e.g., code generation, comprehension, and
summarization[30]. Research indicates a growing inclination among
programmers to use LLMs to generate code to aid in work[64].
The code completion ability of LLMs has also garnered recogni-
tion [22]. Furthermore, relevant studies have developed LLM-based
code translation tools that have shown strong performance [49].

GPT-4 [5] is an LLM developed by OpenAI specifically for natural
language processing and text generation. As the latest iteration of
the GPT series, it builds on and refines the technological advances

of its predecessor. In particular, surpassing GPT-3, GPT-4 showcases
substantial improvements in terms of model size, training data size,
and overall performance. This model follows a closed-source ap-
proach with a commercial licensing model, which requires users to
pay a fee for access rights [47]. Despite the associated cost, GPT-4
demonstrates exceptional proficiency in a multitude of tasks, mak-
ing it a widely acclaimed and popular LLM. Recently,Meta released
their latest open-source large language model, Llama 2 [61]. Its
pre-trained model is trained on 2 trillion tokens and its fine-tuning
model has been trained on more than 1 million human annota-
tions [43]. Llama 2 outperforms other open-source language models
on many external benchmarks, including reasoning, coding, profi-
ciency, and knowledge tests [43]. Moreover, Llama 2 is available
for free research and commercial use [43], so we can build datasets
specific to a task and fine-tune it based on the model, making the
fine-tuned model more capable of handling the task.

2.4 Pre-training, Fine-tuning and Inference

LLMs typically undergo pre-training and fine-tuning during their
training process. In the pre-training phase, the model is exposed to
extensive text data to acquire linguistic knowledge that includes
grammar, context, and semantics [57]. Following completion of pre-
training, the model often undergoes fine-tuning to tailor its capabil-
ities to specific tasks, e.g., code generation and summarization [55].
The fine-tuning stage generally employs supervised learning [14],
utilizing labeled data for additional training to adjust model param-
eters and align with the requirements of the targeted tasks.

Inference refers to the process in which a trained model gen-
erates output based on input data [4]. This typically occurs when
the model has completed training and is prepared to process real-
world data. This step is crucial to applying the model to practical
problems and tasks. LLMs suffer from instability (i.e., the responses
generated each time are different) and hallucinations (i.e., the re-
sponses generated contain things that have not appeared in context)
during inference due to sensitivity to adversarial samples[68], over-
fitting [29], and complex context.

3 Real-world Stack Overflow Smart Contract

Code Snippet Usage

3.1 Motivation

While smart contract codes on Stack Overflow (SO) may contain
vulnerabilities, it remains unclear whether these codes are actually
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utilized by developers in practice. We conducted an online survey
specifically targeting real-world smart contract developers to try
and determine how often this actually happens. Our survey was de-
signed to gather insights on smart contract developer perspectives
and usage of code snippets from SO. This includes their criteria
for using code snippets, approaches to evaluate and modify code
quality and security before integrating them into their projects.
Based on the information, we can assess the risks of using such
community-contributed code.

3.2 Survey Design

We followed Kitchenham and Pfleeger’s instructions [35] for per-
sonal opinion surveys and designed an anonymous survey to in-
crease response rates [63]. Our survey was made available in both
English and Chinese, since English is the most widely used lan-
guage and Chinese has the largest number of speakers worldwide.
Bi-lingual co-authors carefully reviewed the two versions and guar-
anteed their consistency. For each question, we made it an optional
question to prevent practitioners from not understanding it or being
unwilling to answer it. The following provides a brief introduction
to our survey questions. For the complete questionnaire, please
refer to our online supplementary material [3].
Demographics (𝑄1−4).We collected the following demographic
information to understand the background of respondents, and
filter those who might not fully understand our survey.
• Smart contract practitioner? Yes / No. (𝑄1)
• Main role as a smart contract practitioner. Development /
Testing / Project Management / Research / Other. (𝑄2)
• Experience in years. Free-text. (𝑄3)
• Current country of residence. Free-text. (𝑄4)

Access Frequency of Stack Overflow (𝑄5−6). We wanted to ask
practitioners to self-assess their familiarity with SO (𝑄5), and how
often they access the Q&A platform (𝑄6).
Questioners’ Perspective (𝑄7−12). We wanted to examine how
practitioners, acting as questioners, perceive and engage with smart
contract codes on SO. We first assessed how frequently these practi-
tioners ask questions on SO (𝑄7), and the types of questions related
to smart contracts (such as grammar, security issues, API uses,
etc) that most concern them (𝑄8). Additionally, we asked whether
practitioners used code directly from SO (𝑄9). For those who have
used SO code snippets, we asked about the security analysis they
performed prior to code incorporation into their own smart con-
tract programs (𝑄10). Conversely, for practitioners who have never
used SO code snippets, we asked for their reasons (𝑄11). Finally, we
askded about the security assessment measures, e.g., code reviews,
that practitioners adopt when evaluating code from SO (𝑄12).
Respondents’ Behaviour (𝑄13−15). We asked about how often
practitioners respond to others’ questions on SO (𝑄13). Subsequently,
we asked respondents if they verify the security of any code snip-
pets they add to their answers (𝑄14), and if so, the methods they
use to ensure code security before sharing it (𝑄15).
Understanding of Smart Contract Vulnerabilities (𝑄16−18).
We showed a set of example smart contract code vulnerabilities
as outlined in DASP10 [70], inviting practitioners to explain both
their understanding (𝑄16) and their perception on the importance
of identifying these vulnerabilities in SO code (𝑄17). Additionally,

we asked practitioners to suggest additional contract vulnerabilities
that they consider necessary to detect (𝑄18).
Usage of tools (𝑄19−21). We asked practitioners about the use
of existing smart contract vulnerability detection tools. First, we
investigated how often practitioners utilize these tools in their
development process (𝑄19), and whether they apply these tools for
SO code (𝑄20). Then, we asked practitioners’ perspectives on the
main limitations associated with employing these tools for security
analysis of SO code (𝑄21).
Suggestions for Improvement (𝑄22). Finally, we asked what
aspects do practitioners think need improvement when reviewing
or using community-shared smart contract code snippets (𝑄22).

3.3 Survey Validation

We conducted a pilot survey with a small number of practitioners
to obtain feedback on whether the questions are clear and easy to
understand. The participants included our academic collaborators
and partners working in well-known blockchain companies. Based
on the feedback, we refined some questions for enhanced clarity
without adding or removing any questions. We also polished our
translation to further reduce ambiguity between the two language
versions of the survey.

3.4 Participant Recruitment

We adopted a non-probabilistic [26] strategy for participant recruit-
ment. Specifically, we conducted a keyword-based search for smart
contract repositories on Github, extracted their contributors’ emails
via the Github REST API [27], and sent the survey to them. Our se-
lection of keywords encompasses a broad spectrum of topics within
smart contract technology, e.g., “smart contract”, “solidity”, and
“erc-20”. For the complete keyword list, please refer to our online
repository [3]. We then sent our survey to a total of 1,416 smart
contract practitioners and received 74 valid responses from 19 coun-
tries, a reasonable number compared to previous smart contract
related survey [9, 67, 77]. We excluded five responses, as they claim
to have no development experience in smart contracts. The roles
played by respondents in the field of smart contracts are mainly
distributed in research (31, 44.9%), development (52, 75.4%), test-
ing (33, 47.8%), project management (12, 17.4%), security audit (37,
53.6%), compliance check (3, 4.3%), training and education (9, 13.0%)
and market analysis (2, 2.9%). Their average years of experience are
2.80 (min: 0.2, max: 7.0, median: 2.0, sd: 2.0).

3.5 Results

Access Frequency of Stack Overflow. Only 8.1% participants
identified themselves as either “Ignorant” or “Not very familiar”
with SO, suggesting that a majority of 91.9% possess some degree
of familiarity with the platform. Notably, the vast majority (94.6%)
of practitioners have accessed SO, and 77.0% of the participants
reported engaging with SO at least once a week. These findings
highlight the important role of SO in the smart contract ecosystem.
Questioners’ Perspective. Although 59.4% of our participants
infrequently post questions on SO, a majority have used code from
the site (88.4%). Before using code from SO, only 16.4% performed
comprehensive security audits using various methods. Over a third
perform basic code reviews without employing additional tools or
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methods for security audits (36.1%). Many said they understand the
code logic but do not specifically assess code security (31.1%). Few
(11.6%) of the participants indicated that they do not refer to the
code from SO, the predominant reason being that the code does not
alignwith the unique requirements of their projects (60.0%). Figure 2
shows the proportion of participants conducting security analysis
on code from SO in various ways. We categorize the security status
of the code into three distinct levels, determined by the rigor of the
auditingmethods employed. These levels are defined as “unsecured”,
“basic security” and “advanced security”. Most participants favor
self-review to identify obvious errors and vulnerabilities (82.6%).
In contrast, the use of more professional audit methods, such as
specialized security audit tools (20.3%) or consulting professional
auditors (10.1%), is significantly less common.

Observation 1: The vast majority (94.6%) of practitioners have
accessed SO. Although frequent questioning by practitioners on
the platform is rare, many (88.4%) seek solutions by browsing
through posts made by others.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Never
evaluate

Self code
review

Peer code
review

Software
testing

Security tools Seeking
auditors

Questioner Respondent

Unsecured Basic Security Advanced Security

Figure 2: The way for participants to conduct security analy-

sis on the code on Stack Overflow.

Respondents’ Behaviour. When responding to queries on SO,
only a very small proportion of respondents (7.1%) consistently
verify the security of the code before providing any code-related
responses, regardless of the context. A larger group conduct se-
curity checks only for complex codes or those involving sensitive
functions such as transfers (28.6%). Approximately a quarter (25.7%)
check the security of the code in most instances. Almost a quarter
(24.3%) of our respondents never evaluate security of their example
code before responding to others’ questions with it. The most preva-
lent method employed by respondents for checking code security
is through self-review (65.7%). Only a very small fraction utilize
professional tools (7.1%) or seeks professional assistance (4.3%) for
security analysis. We determined the percentage of participants
capable of ensuring advanced security of shared code snippets, and
discovered that this group represents merely 13.6% of the total.

Observation 2: Both as questioners and respondents, the ma-
jority of participants are only able to ensure basic even lower
security for code (86.4%), with a very limited number (13.6%)
capable of guaranteeing advanced security.

Familarity with Smart Contract Vulnerabilities. Figure 3 illus-
trates participants’ comprehension of smart contract vulnerabilities
and their perceived importance of detecting these vulnerabilities on
SO. Participants assigned scores ranging from 1 to 5 for each vulner-
ability, with 1 being the lowest and 5 the highest familarity. Among
the vulnerabilities listed in DASP10 [70], participants demonstrated
the highest level of understanding regarding Reentrancy, with an
average score of 4.30. On the contrary, their understanding of Short
Address Attack was the lowest, averaging at 3.03. Concurrently,
Reentrancy is also perceived by participants as the most critical vul-
nerability to detect, receiving an average importance score of 4.54.
Beyond the vulnerabilities outlined in DASP10 [70], participants
also identified additional concerns, including price manipulation
and accuracy issues.

0
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3
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6

0

1

2

3

4

5

6

Figure 3: The level of understanding of smart contract vul-

nerabilities among participants (left) and their belief in the

necessity of detecting these vulnerabilities on SO (right).

Usage of tools. A significant majority of participants (81.4%) have
utilized tools for detecting vulnerabilities in smart contracts. Yet,
only a very small 20.0% have applied these tools for the security
analysis of code on SO. When questioned about their reluctance
to use these tools on SO code, 44.9% cited “lack of support for
direct code analysis on SO” as a key factor, while 60.7% pointed to
“poor usability of the tools, their complexity, and the high time cost
involved” as their primary concerns.
Expectations for StackOverflow. For smart contract codes shared
within the community, a significant proportion of our survey par-
ticipants (72.9%) view security and vulnerability detection as the
primary areas in need of improvement or support. Additionally,
there is a notable demand for improvements in code quality and
clarity, as indicated by 64.3% of the participants.

Observation 3: Despite the availability of numerous tools for
smart contract security, only 20.0% of participants reported using
these tools on code from SO. The predominant reason cited for
not using these tools, mentioned by 44.9% of respondents, was
the “lack of support for direct code analysis on SO”.

4 Our SOChecker Approach

4.1 Overview

Figure 4 provides an overview of SOChecker approach. SOChecker
comprises two main components: a Code Completer and a Vulnera-
bility Detector. For the Code Completer, we first collect the top 1,000
smart contracts with high transaction volumes from the Ethereum
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mainnet. Then, we use them to fine-tune the open-source LLM
llama2-chat-13b [43], aiming to enhance the model’s performance
in smart contract code completions. For code snippets that our
model cannot complete, we further utilize GPTs to generate com-
pletions again and then merge the results. Finally, we performed
two steps (i.e., structural completion, version adaptation) on the
LLM-completed code to increase the number of compilable smart
contracts. Our Vulnerability Detector utilises two primary steps,
code preprocessing and vulnerability detection. During the code
preprocessing stage, we compile the completed smart contract code,
extract their Abstract Syntax Trees (ASTs), and construct Control
Flow Graphs (CFGs). Subsequently, we prune the CFGs based on the
original code snippets and ASTs. In the vulnerability detection stage,
we developed patterns for nine types of DASP10 vulnerabilities and
conduct pattern matching on the pruned CFG to identify potental
vulnerabilities. Based on the results of vulnerability detection, we
generate a safety report for developers to consult.

Figure 4: The overall workflow of SOChecker.

4.2 Code Completer

4.2.1 Data Collection. To construct a smart contract dataset for
fine-tuning, we first gathered 345,058 open-source smart contracts
from the Ethereum mainnet through the GitHub repository smart-
contract-sanctuary [48] up to March 2023.

To evaluate the code completion performance of the all the candi-
date models (i.e., GPTs, llama2, codellama), we obtained 4,952 posts
related to smart contracts from Stack Overflow (SO) after October
2021 2. These posts were selected based on the following criteria:
1) The post should have at least one response. 2) The post should
include at least one tag of Solidity, Ethereum, ERC20, ERC721, or Con-
tract. From these 4,952 posts, we refined our dataset by excluding
answers for several reasons: 1) Non-code answers were removed,
as our analysis focuses find security issues on code snippets. 2)
Code was not written in the Solidity language was omitted. 3) Brief
one-liner code snippets were omitted, as they typically provide lim-
ited information and are unlikely to pose significant security risks.
Finally, we had a curated dataset comprising 897 code snippets for
our subsequent code completion and analysis steps.

2The training data for the GPTs was up to September 2021 [5]. Selecting posts after
this time point helps mitigate the impact of data leakage.

4.2.2 Data Preprocessing & Fine-Tuning. We adopt a fine-tuning
process to enhance the model’s ability to accurately understand and
generate smart contract code. We strategically chose to focus on a
subset of the top 1,000 smart contracts with the highest transaction
volumes from the initial pool of 345,058 smart contracts for fine-
tuning. The average length of these 1,000 smart contracts is 711.03
lines, including comments. Choosing these smart contracts for fine-
tuning is to balance the breadth of smart contract applications (e.g.,
NFTs, DeFi) with the practicality of computational efficiency during
fine-tuning. Meanwhile, the selection with the highest transaction
volume is based on the assumption that these contracts are more
likely to represent real-world scenarios with significant usage and
functionalities. Additionally, these smart contracts typically present
lower vulnerability risks. From collected data, we found that the
majority of code snippets on SO are function-level segments. There-
fore, function-level code was used as input for LLM fine-tuning,
with complete codes serving as the targeted outputs. We construct
fine-tuning data by extracting functions from complete contracts.

However, incorporating lengthy smart contracts posed a chal-
lenge; their complexity and detailed nature could potentially lead
the model to be distracted by the intricacies of the logic itself, thus
affecting the effectiveness of the model. To mitigate this issue, we
used a method to segment lengthy contracts into shorter parts. Our
segmentation process starts with the compilation of each smart
contract to obtain its abstract syntax tree (cf. Section 4.3.1), pro-
viding insights into the dependency relationships among various
subcontracts. For each subcontract, we use its function snippets as
the input of a fine-tuning data and include the subcontracts upon
which it depends, along with itself, as the output of a fine-tuning
data. Figure 5 illustrates a simple example of constructing fine-
tuning data. The function registerUser on line 1 of “Input” serves as
the target objective that requires completion. Given that this func-
tion is dependent on other contracts, we include the subcontract
UserRegistration on line 11 of “Output” containing this function and
its dependent contract Identity on line 2 of “Output” as the com-
pleted code. The task instructions are further detailed in Figure 5.
This procedure allows us to construct a dataset of segmented smart
contracts for fine-tuning effectively.

1 function registerUser(address _user) external {
2 require(!isVerified(_user), "User already verified");
3 verifyUser(_user);
4 }

1 pragma solidity ^0.8.0;
2 contract Identity {
3 mapping(address => bool) private isVerified;
4 function verifyUser(address _user) external {
5 isVerified[_user] = true;
6 }
7 function isVerified(address _user) external view returns (bool) {
8 return isVerified[_user];
9 }
10 }
11 contract UserRegistration is Identity {
12 function registerUser(address _user) external {
13 require(!isVerified(_user), "User already verified");
14 verifyUser(_user);
15 }
16 }

Input

Output

The following is a snippet of a smart contract's code in Solidity.
Please complete the code to make it a fully functioning, compilable
smart contract in Solidity. Only the complete smart contract code is
needed, do not output other information. The snippet is:

Instruction

Figure 5: An example of constructing fine-tuning data.
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4.2.3 Model Selection. In our study, we chose llama2-chat-13b [43]
and Codellama-instruct-13b [51] for fine-tuning with the following
reasons: 1) Both of them are open-source, ensuring transparency
and accessibility. 2) These LLMs possess a moderate number of
parameters [38], resulting in an acceptable computational cost. 3)
Both can be fine-tuned to better understand task requirements.
4) Previous research and relevant work [7, 12, 50] have demon-
strated their effectiveness in various contexts. After fine-tuning, we
compared their performance in the code completion task and then
selected the model with better performance for further analysis.

We used the dataset constructed in Section 4.2.1 to fine-tune
Llama2-chat-13b and Codellama-instruct-13b. We employed LoRA
technology [31] for model fine-tuning. The training parameters
were configured with a rank of 8, alpha of 32, batch size of 256,
3 epochs, and a learning rate of 1e-4. All parameter settings re-
main default. To assess their performance, we randomly selected
324 smart contracts based on a confidence interval of 10 and a
confidence level of 95% [32] from the smartbugs-wild dataset [21],
which comprises 47,398 smart contracts. Each smart contract’s
functions were extracted as code snippets for completion with the
same method introduced in Section 4.2.2. In particular, these code
snippets do not overlap with the fine-tuning dataset. The experi-
mental results reveal that the fine-tuned llama2-chat-13b provides
141 compiled smart contracts, whereas the fine-tuned Codellama-
instruct-13b only provides 48. This indicates that llama2-chat-13b
serves as a more suitable base model for fine-tuning in the task of
smart contract code completion.

4.2.4 Structural Completion. Smart contract programming demands
high syntactical precision, including the accurate placement of
structural symbols, e.g., ‘)’, ‘}’. LLMs may struggle with the correct
prediction of such symbols due to complex contextual relationships,
often generating non-compilable code. To mitigate this issue, we
implemented a preprocessing step for the LLM-generated code and
developed a script to intelligently insert the missing structural sym-
bols, thus ensuring the syntactical completeness and integrity of
the code.

4.2.5 Solidity Version Adaptation. The version declaration of the
smart contract is susceptible to errors.We observed instances where
the code for certain contracts, despite being correct, failed compi-
lation, with the issue solely attributed to the version declaration
of Solidity. This challenge arises from the numerous versions of
Solidity and the subtle differences between each version, making
it challenging for LLMs to accurately discern the correct version
from their extensive learned knowledge. To address this issue, we
disregarded the version numbers generated by LLMs. Instead, we
implemented scripts to systematically test and compile smart con-
tracts across all Solidity versions, thereby ensuring the compatibility
and successful compilation.

4.3 Vulnerability Detector

4.3.1 Code Preprocessing. The complete smart contract code un-
dergoes compilation by the Solidity compiler, resulting in the gen-
eration of the corresponding Abstract Syntax Tree (AST) [45] and
bytecode. The source code information contained within the AST

Figure 6: The overall workflow of Vulnerability Detector.

can be utilized for subsequent pruning steps. For bytecode, we uti-
lize the API offered by Geth [1] to disassemble it, enabling us to
obtain the corresponding opcodes. Subsequently, we segment the
opcodes into basic blocks and facilitate block-to-block jumps to
finalize the construction of the Control Flow Graph (CFG) [6].

Before performing program analysis, we prune the CFG of the
smart contract to concentrate solely on original code fragments.
While LLMs are capable of expanding code fragments into full
smart contracts, the LLM-generated code might introduce bugs
or vulnerabilities not in the original SO code snippet itself. Our
pruning approach thus mitigates the influence of LLM-generated
code and decreases the probability of false positives. The pruning
algorithm is shown in Algorithm 1. We first compile the smart
contract and obtain its AST. Then, we extract some key informa-
tion (e.g., function names and contract names) from the original
code snippet through regular expression matching and initialize an
empty list 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 to store the subgraph related to the original
code snippet in the AST. Next, we traverse each node in the AST
to determine whether the information of that node matches the
information in 𝑖𝑛𝑓 𝑜 . If so, we extract the subgraph where the node
is located and add 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ to 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 . Finally, we merge and
store all subgraphs in 𝑝𝑟𝑢𝑛𝑒𝑑𝐴𝑆𝑇 , and extract the corresponding
CFG based on the information of each node in 𝑝𝑟𝑢𝑛𝑒𝑑𝐴𝑆𝑇 . This
will result in a pruned CFG.

It should be noted that pruning may fail for the following two
reasons: 1) The original code snippet lacks sufficient information to
extract statement-level or higher details from the AST, leading to
unsuccessful matching. 2) LLMs incorrectly completed the original
code (e.g., changed function names, deleted parts of the snippet
source code), resulting in failure to retrieve any information about
the original code snippet from the AST.

4.3.2 Vulnerability Detection. After obtaining the pruned control
flow graph, we carry out vulnerability detection on the original
code snippet. Given that the code snippets found on SO are typically
simple, it is less likely we will encounter complex vulnerabilities,
e.g., a price manipulation attack [36]. Consequently, our analysis
concentrates on vulnerabilities as categorized by the Decentralized
Application Security Project (DASP) Top 10 [70].
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Algorithm 1 Pruning of smart contract snippet
Input: Contract 𝑐𝑡𝑟 , Snippet 𝑠𝑛𝑝
Output: Pruned 𝐶𝐹𝐺
1: 𝑎𝑠𝑡 ← 𝐺𝑒𝑡𝐴𝑆𝑇 (𝑐𝑡𝑟 )
2: 𝑖𝑛𝑓 𝑜 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐼𝑛𝑓 𝑜 (𝑠𝑛𝑝)
3: 𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠 ← []
4: for 𝑛𝑜𝑑𝑒 in 𝑎𝑠𝑡 do

5: if 𝑁𝑜𝑑𝑒𝐼𝑛𝑓 𝑜 (𝑛𝑜𝑑𝑒) in 𝑖𝑛𝑓 𝑜 then

6: 𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ(𝑛𝑜𝑑𝑒)
7: 𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ)
8: end if

9: end for

10: 𝑝𝑟𝑢𝑛𝑒𝑑𝐴𝑆𝑇 ← 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑒𝑟𝑔𝑖𝑛𝑔(𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠)
11: 𝑝𝑟𝑢𝑛𝑒𝑑𝐶𝐹𝐺 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐶𝐹𝐺 (𝑝𝑟𝑢𝑛𝑒𝑑𝐴𝑆𝑇 )
12: return 𝑝𝑟𝑢𝑛𝑒𝑑𝐶𝐹𝐺

Numerous studies have defined patterns associated with these
DASP10 vulnerabilities [24, 40, 56, 62]. Building on their efforts,
we have encapsulated these patterns within the program’s CFG to
facilitate vulnerability detection via symbolic execution. Z3 SMT
solver [18] was used in Vulnerability Detector. Taking Denial of
Service (DoS) as a case in point, our initial step involves analyzing
the CFG for loops, which suggests the presence of loops between
program blocks. If no loop is present, exit; otherwise, proceed. We
iterate through all instructions within blocks of the loop, identifying
any resource-intensive operations such as ‘CALL’ associated with
functions like call and transfer in the code. Such functions typically
involve substantial gas consumption. If these instructions are found,
we conclude that a DoS vulnerability has been detected. For details
of each vulnerability pattern please consult our repository [3].

5 SOChecker Evaluation

We conducted a detailed empirical evaluation of SOChecker, fo-
cusing on answering three key research questions:
• RQ1: How effective is SOChecker’s Code Completer in code
completion of smart contract snippets?
• RQ2: How effective is SOChecker’s Vulnerability Detector in vul-
nerability detection in completed, pruned smart contract code?
• RQ3: How does SOChecker perform when detecting vulnerabil-
ities in real code snippets from Stack Overflow (SO)?

For RQ1, we assessed the effectiveness of the Code Completer on
897 code snippets collected from SO (details see 4.2.1). We evalu-
ated both the compilability and correctness of all completed code,
resulting in a LLM-completed smart contract dataset that was accu-
rately completed by LLM. For RQ2, we evaluated the performance
of our Vulnerability Detector using the LLM-completed smart con-
tract dataset, which is also compatible with traditional vulnerability
detection tools due to the compilability of the code in the dataset.
This approach enables a fair comparison with other traditional vul-
nerability detection tools. For RQ3, we conducted a comprehensive
evaluation of SOChecker’s performance on the entire dataset and
compared it with the performance of other LLMs (i.e., GPT-3.5-
turbo and GPT-4). By addressing these three research questions,
we aim to comprehensively evaluate SOChecker’s capabilities in
detecting vulnerabilities in real code snippets from SO.

5.1 RQ1: Effectiveness of Code Completer
We evaluated the effectiveness of Code Completer by applying our
fine-tuned model to the 897 real code snippets from SO, as detailed
in Section 4.2.1. When conducting the code completion process
with our fine-tuned model, we observed a degree of uncertainty in
the model’s output, with some code snippets fail to be completed
during the first iteration but successfully handled in the subsequent
iterations. To fully leverage the model’s capabilities, we employed
multiple iterations of the code completion process. All the parame-
ters of models (e.g., temperature, decoding strategy) remain default.
Total Compilable Code. As shown in Figure 7, all the models
have undergone 13 rounds of iteration, resulting in a continuous
increase in the total number of successfully compiled smart con-
tracts, reaching a plateau after 13 iterations. After 13 iterations,
our fine-tuned model performs the best, indicating that our fine-
tuning is effective for this task. Interestingly, the final performance
of GPT-3.5-turbo is slightly better than that of GPT-4, which we
believe is normal because although GPT-4 is a new version released
after GPT-3.5-turbo, it may also use updated training data and meth-
ods, which can lead to better performance on certain tasks while
lowering it on others. In addition, the GPT series models showed
excellent performance at the beginning, and after the first round
of code completion, they provide more than half of the compilable
smart contracts. However, as the number of iterations continues
to increase, the performance of the GPT models decrease signifi-
cantly. On the contrary, our model’s performance has consistently
improved, and after 13 iterations, it provides more compilable smart
contracts than all other models.
Table 2: The code completion performance of models iterat-

ing on datasets.

Models # Compilable # Correct Time Price

Base 537 442 4.4h -
GPT-3.5-turbo 774 669 7.8h $8.27

GPT-4 736 649 11.2h $57.88
Ours 795 677 6.3h -

Ours+GPT 889 846 7.1h $1.32

Quality of Compilable Code.We found that some models pro-
duced compilable code but deviated from expected behavior, attrib-
utable to design and training characteristics of LLMs. For example,
LLMs may automatically repair vulnerabilities when completing
the code or may change the logic of the original code. This behavior
may stem from exposure to data and rules during LLM’s training
process, or may result from the model’s biased interpretation of
tasks or contextual understanding. Consequently, only assessing
the volume of compilable code is insufficient – the correctness of
the model-completed code is equally important. We manually ana-
lyzed the code completed by various models. Table 2 presents an
evaluation of this metric. Our Code Completer outperforms other
LLMs in both the quantity and quality of compilable contracts.
Cost. Table 2 shows the costs of the 4 models on this task. Col-
umn ‘Time’ shows the time required for each model to perform a
complete round of code completion. It can be seen that the single
round code completion time of GPT-4 reached 11.2 hours, nearly
twice of our model and three times of the base model. Due to the
need to pay a fee for each API call [47], the economic cost of GPT
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Figure 7: Performance of different models for code comple-

tion. The point with a horizontal coordinate of ‘*’ on the

graph represents the number of code that could have been

directly compiled.

series models also counts. The total cost required for GPT-4 is the
highest, reaching $57.88, followed by GPT-3.5-turbo at $8.27. On
the contrary, whether it is the open-source llama2 base model or
the model we have fine-tuned, they are all deployed locally and do
not require any economic cost. In order to obtain more completed
smart contracts, we consider using a compromise solution, which
is to perform ablations with the inference results of other models
based on the inference results of our Code Completer. Finally, we
successfully obtained 846 correctly completed code snippets.

We observed the remaining 51 code snippets that cannot be com-
pleted by any of the models. There may be the following reasons:
1) inherent flaws within the snippets themselves, such as syntax
errors, data type mismatches, and multiple constructors. 2) code
complexity also plays a crucial role. This complexity can be at-
tributed to two aspects: the length and clarity of the code. Longer
code snippets are more challenging for the model to complete, as
they require memorizing and understanding numerous details. Ad-
ditionally, unclear code snippets, often containing undefined or
unconventional variable and function names (e.g., foobar, abcd),
further complicate the model’s ability to comprehend and complete
the code. While many smart contract codes use traceable naming
conventions that aid in logical inference (e.g., transfer, withdraw),
some snippets from SO employ non-standard names, making them
harder for the model to interpret.

Answer to RQ1: Code Completer completed 75.5% of the smart
contract snippets correctly, outperforming both its base model
and the GPT models, while also offering a lower usage cost com-
pared to the GPT models.

5.2 RQ2: Effectiveness of Vulnerability Detector
We assess the efficacy of Vulnerability Detector using 846 complete
code snippets, as referenced in Section 5.1, which are all correctly
completed by the models. Given that nearly all other SOTA tools
for vulnerability detection are designed for complete, compiled
smart contract code, we can facilitate a fair comparison between
our vulnerability detectors and these tools using this subset.

We employed SmartBugs [19], a comprehensive framework that
consolidates various smart contract vulnerability detection tools, to

Table 3: Comparison of performance between Vulnerability
Detector and other tools (w.a. F1 denotes weighted average F1

score for all vulnerabilities, and # NUM denotes the number

of contracts containing corresponding vulnerabilities).

Vulnerability RE AC AI URV DoS BR TM
# Num 2 6 10 15 2 8 22

Conkas
# TP 0 - 0 0 - - 0
# FP 22 - 17 0 - - 1
# FN 2 - 10 15 - - 22

w.a. F1: 0 F1 % 0 - 0 0 - - 0

Maian
# TP - 1 - - - - -
# FP - 2 - - - - -
# FN - 5 - - - - -

w.a. F1: 22.2% F1 % - 22.2 - - - - -

Mythril
# TP 0 2 0 1 - - -
# FP 6 3 3 0 - - -
# FN 2 4 10 14 - - -

w.a. F1: 12.3% F1 % 0 36.4 0 12.5 - - -

Osiris
# TP 0 - 0 - 0 - 0
# FP 0 - 10 - 0 - 0
# FN 2 - 10 - 2 - 22

w.a. F1: 0 F1 % 0 - 0 - 0 - 0

Oyente
# TP 0 0 0 - 0 - 0
# FP 0 0 26 - 0 - 0
# FN 2 6 10 - 2 - 22

w.a. F1: 0 F1 % 0 0 0 - 0 - 0

Securify
# TP 0 0 - 0 - - -
# FP 0 1 - 0 - - -
# FN 2 6 - 15 - - -

w.a. F1: 0 F1 % 0 0 - 0 - - -

Slither
# TP 0 1 - 0 0 - 1
# FP 1 3 - 10 1 - 0
# FN 2 5 - 15 2 - 21

w.a. F1: 6.6% F1 % 0 20.0 - 0 0 - 8.7

Smartcheck
# TP 0 0 0 3 1 - 0
# FP 0 0 3 5 29 - 0
# FN 2 6 10 12 1 - 22

w.a. F1: 7.1% F1 % 0 0 0 26.1 6.3 - 0

SOChecker
# TP 1 4 8 9 1 5 20
# FP 0 0 1 0 0 0 0
# FN 1 2 2 6 1 3 2

w.a. F1: 83.4% F1 % 66.7 80.0 84.2 75.0 66.7 76.9 95.2

execute the evaluations. The selection criteria for these tools were:
(1) They target Solidity source code. (2) Smartbugs establishes a
clear mapping rule between the vulnerability naming of the tool and
DASP10 vulnerability naming (Because different tools may employ
different naming for the same vulnerability). (3) The tool detects at
least one vulnerability listed in the DASP10 [70]. Consequently, we
selected the following tools for our study: Conkas [65], Maian [46],
Mythril [13], Osiris [59], Oyente [40], Securify [62], Slither [24],
Honeybadger [60] and Manticore [44].

Our experiments were carried out on a Windows 11 system
equipped with a 12th generation Intel i7 processor, 16GB of RAM,
and a 5-minute timeout limit [10] for each tool. Two experienced
smart contract researchers independently annotated the presence of
vulnerabilities in all snippets of the smart contract. In instances of
disagreement, two researchers engaged in discussions to reconcile
and unify their conclusions. We used seven metrics to evaluate the
experimental results, namely true positive (TP), true negative (TN),
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false positive (FP), false negative (FN), precision, recall and F1 score.
TP and TN represent smart contracts with certain vulnerabilities
correctly detected by our Vulnerability Detector and smart contracts
without certain vulnerabilities, respectively. FP and FN indicate
that Vulnerability Detector has incorrectly detected smart contracts
with or without certain vulnerabilities. We calculate precision using
formula 𝑃 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑃), recall using formula 𝑅 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑁 ),
F1 using formula 𝐹1 = 2 ∗ 𝑃 ∗ 𝑅/(𝑃 + 𝑅). For w.a. F1, we calculate
it as follows:𝑤.𝑎.𝐹1 =

∑𝑛
𝑖=1 𝑣𝑖∗𝐹1𝑖∑𝑛

𝑖=1 𝑣𝑖
, where 𝑛 represents the type of

vulnerability and 𝑣𝑖 represents the number of vulnerabilities.
Table 3 presents the results of our experiments. Tools Honeybad-

ger and Manticore are absent from Table 3 as they failed to identify
any positive cases within the dataset. Due to the absence of Front
Running and Short Address Attack vulnerabilities in our dataset, we
also omitted them in Table 3. Our experimental results reveal that
our Vulnerability Detector obtains the highest weighted average F1
score of 83.4%, surpassing other SOTA tools across all indicators. A
comparative analysis with other tools reveals that our Vulnerability
Detector not only encompasses all DASP10 [70] vulnerabilities but
also exhibits superior detection performance across all categories,
underscoring its high efficacy. However, Vulnerability Detector still
generate some false alarms. We examined each of them individually
and found that they were caused by several factors. Z3 has inher-
ent difficulties in handling complex path conditions, particularly
those involving factorial or loop operations, which can easily lead
to timeouts and affect the acquisition of critical path information.
Additionally, different compiler versions can influence detection re-
sults. For instance, Solidity v0.8.x includes default integer overflow
checks, which differ from earlier versions. Vulnerability Detector
relies on predefined vulnerability patterns and may not account for
these optimizations, leading to discrepancies with actual vulnera-
bilities.

Answer to RQ2: Our Vulnerability Detector achieved an average
F1 score of 83.4% on the dataset. Compared to the 10 state-of-
the-art tools, it not only identifies the most types of vulnerability
listed in DASP10, but also demonstrates the best detection per-
formance for each type of vulnerability.

5.3 RQ3: Effectiveness of SOChecker

We evaluated SOChecker’s overall performance with authentic
code snippets sourced from SO. We executed SOChecker on 897
code snippets collected from SO; all experimental settings, such as
temperature, maintain the same as them in RQ1 and RQ2.

LLMs can also be directly used for vulnerability detection of
smart contract snippets. Consequently, we employed GPT-3.5 and
GPT-4 to analyse the same dataset, facilitating a comparative anal-
ysis of their performance against SOChecker. Specifically, we de-
signed a prompt informed by others’ previous work [10] to obtain
non-binary results (i.e., in LLM’s response, the presence of vulnera-
bilities is indicated by "1", while their absence is denoted by "0".).
We then gave these results back to GPT-4 for semantic analysis, so
that binary results about the existence of these vulnerabilities can
be obtained. In Figure 8, within the vulnerability detection prompt,
“[VULS]” denotes the names of all vulnerabilities, “[Input]” spec-
ifies the target code subject to detection, and "[CONCLUSION]"

represents the detection outcome provided by ChatGPT. For the
semantic analysis prompt, “[VULS]” continues to signify the vul-
nerability name, “[CONCLUSION]” refers to the conclusion derived
from prior vulnerability detection, and “[RESULT]” indicates the
semantic analysis result delivered by ChatGPT.

Figure 8: Example of using LLM to detect vulnerabilities.

Table 4 displays the performance of SOChecker and GPT series
models in detecting vulnerabilities across 897 real smart contract
snippets. The weighted average F1 score achieved by SOChecker
is 68.2%, in contrast to GPT-3.5 and GPT-4, which scored 20.9% and
33.2%, respectively. Although GPTs achieving high recall rates for
most vulnerabilities, their precision remains low, leading to subop-
timal overall performance. This finding aligns with the outcomes
of prior research [10]. We observed that SOChecker’s recall rate
was relatively low. Upon individually analyzing each false nega-
tive, we discovered that the majority were attributed to the model
either patching the original vulnerabilities or altering the original
semantics during code completion. Such issues prove challenging
for pruning algorithms to effectively address.

Table 4: Comparison of performance between SOChecker

and GPTs.

Vuls

GPT-3.5 GPT-4 SOChecker
𝑃% 𝑅% 𝐹1% 𝑃% 𝑅% 𝐹1% 𝑃% 𝑅% 𝐹1%

RE 1.8 100 3.5 2.0 100 4.0 100 50.0 66.7

AC 0.8 50.0 1.7 1.6 83.3 3.2 100 66.7 80.0

AI 7.3 33.3 12.0 8.1 50.0 14.0 88.9 44.4 59.3

URV 11.4 65.0 19.4 26.3 75.0 39.0 100 45.0 62.1

DoS 1.6 50.0 3.0 1.9 100 3.7 50.0 25.0 33.3

BR 17.9 70.0 28.6 30.8 80.0 44.4 83.3 50.0 62.5

TM 22.7 63.0 33.3 37.5 77.8 50.6 95.2 74.1 83.3

w.a. 13.4 57.5 20.9 23.1 73.6 33.2 92.0 55.2 68.2

We tried to execute other vulnerability detection tools discussed
in Section 5.2 on this code snippets dataset for comparative analysis.
However, as these traditional tools are designed to analyze complete
smart contracts, they encountered errors with 770 code snippets
presented in fragmentary form. Of the remaining 127 complete
contracts, encompassing a total of 18 vulnerabilities, only Slither
and Smartcheck managed to detect 1 and 2 TPs, respectively, while
SOChecker identified 14. This outcome suggests that, in the context
of fragmented code, our tool demonstrates greater utility compared
to conventional tools.

Answer to RQ3: SOChecker achieved an average F1 score of
68.2% on real datasets sourced from SO, surpassing both GPT
models and other traditional vulnerability detection tools.
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6 Threats to Validity

Internal Threats. A potential internal threat in our study is the re-
liance on specific tags for collecting posts from SO. Thismethodmay
overlook relevant discussions that do not feature the designated
tags. However, by selecting widely-used tags such as “Solidity”,
“Ethereum”, “ERC20”, “ERC721” and “Contract”, we aim to capture
a diverse range of smart contract-related content. The extensive
volume of posts gathered from these tags helps mitigate this risk
and ensures comprehensive coverage for analysis.
External Threats. We designed a survey to assess whether devel-
opers had implemented risky SO code into their projects. However,
we did not directly trace these codes on the Ethereum chain due
to the vast amount of contract information available, which made
it impractical to complete within our timeframe. Nonetheless, the
data gathered from the survey can provide valuable insights into
the real-world scenario. Our survey targets smart contract practi-
tioners with diverse backgrounds and levels of experience, allowing
them to provide feedback on their use of SO code.

7 Related Work

Due to the rise of large language models, some scholars have re-
cently conducted in-depth research on them. Fan et al. [23] studied
whether automatic program repair technology can fix the error so-
lutions generated by LLMs in the LeetCode competition. Li et al. [37]
studied the limitations of LLMs in generating software failure-
induced test cases and proposed a differential prompt method to
improve effectiveness. Ma et al. [41] evaluated the performance of
ChatGPT in various subdomains of software engineering. Chen et
al. [10] evaluated the performance of ChatGPT in detecting vulner-
abilities in smart contracts. David et al. [16] studied the detection
ability of LLMs such as Claude and GPT for actual attacks on smart
contracts.

Smart contract vulnerability detection has always been a re-
search hotspot in the fields of blockchain and smart contract secu-
rity. Many work uses static analysis methods to detect potential vul-
nerabilities in code before contract deployment [8, 24, 40, 56, 58, 62].
Some work has also pointed out the problems with current main-
stream tools [79]. Fuzzing is also a commonly used method to detect
vulnerabilities in smart contracts [28, 33, 71] In addition, machine
learning has also been used in smart contract vulnerability detec-
tion tasks in recent years [39, 52]. Our approach to vulnerability
detection aligns with established methodologies but offers unique
features compared to previous work [8, 24, 40, 56, 58, 62]. Firstly, it
possesses the capability to prune programs effectively, rendering it
adept at handling the fragmented code commonly found on SO. Sec-
ondly, it simulates program execution with greater completeness,
capturing a wider array of operation codes. Thirdly, given that the
majority of the targets are simple contracts, efficiency optimiza-
tion is not a primary concern, allowing us to incorporate detailed
mechanisms like memory and storage mapping.

The code issues on the famous developer forum Stack Overflow
(SO) have received increasing attention from researchers in re-
cent years. Despite previous efforts [42, 66, 76] to perform security
analysis on SO code, most of them focus on traditional program-
ming languages (e.g., C/C++, Java), while Solidity, the most popular
programming language for smart contracts [15], has received less

attention. In addition, these works are mainly completed by manual
code inspection, leaving a gap in automated vulnerability detection
for Solidity-based smart contracts. Zhang et al. [76] empirically
studied the prevalence of the Common Weakness Enumeration
(CWE), in code snippets of C/C++ related answers. Verdi et al. [66]
investigated security vulnerabilities in C++ code snippets on SO
over a period of 10 years. Meldrum et al. [42] evaluated the quality
of SO code in various aspects, including reliability and conformance
to programming rules, readability, performance and security.

8 Conclusion

We conducted a survey to investigate their usage patterns and per-
spectives regarding smart contract code snippets on Stack Overflow
and obtained feedback from 74 smart contract practitioners. Our
findings suggest a significant risk associated with the adoption
of vulnerable code snippets by developers, potentially compro-
mising the security of the blockchain ecosystem. We wanted to
support developers to identify such vulnerabilities within smart
contract code snippets. To do this we introduced SOChecker, a
novel tool that combines a fine-tuned Llama2-based Code Com-
pleter with a Vulnerability Detector. Tested on 897 code snippets,
SOChecker demonstrated greatly superior performance over ex-
isting GPT-serires LLMs and other program analysis tools.
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