
ModelObfuscator: Obfuscating Model Information to Protect
Deployed ML-based Systems

Mingyi Zhou
mingyi.zhou@monash.edu

Monash University
Melbourne, VIC, Australia

Xiang Gao
xiang_gao@buaa.edu.cn

Beihang University
Beijing, China

Jing Wu
jing.wu1@monash.edu
Monash University

Melbourne, VIC, Australia

John Grundy
john.grundy@monash.edu

Monash University
Melbourne, VIC, Australia

Xiao Chen
xiao.chen@monash.edu
Monash University

Melbourne, VIC, Australia

Chunyang Chen
chunyang.chen@monash.edu

Monash University
Melbourne, VIC, Australia

Li Li*
lilicoding@ieee.org
Beihang University

Beijing, China

ABSTRACT
More and more edge devices and mobile apps are leveraging deep
learning (DL) capabilities. Deploying such models on devices – re-
ferred to as on-device models – rather than as remote cloud-hosted
services, has gained popularity because it avoids transmitting user’s
data off of the device and achieves high response time. However,
on-device models can be easily attacked, as they can be accessed
by unpacking corresponding apps and the model is fully exposed
to attackers. Recent studies show that attackers can easily generate
white-box-like attacks for an on-device model or even inverse its
training data. To protect on-device models from white-box attacks,
we propose a novel technique called model obfuscation. Specifically,
model obfuscation hides and obfuscates the key information – struc-
ture, parameters and attributes – of models by renaming, parameter
encapsulation, neural structure obfuscation obfuscation, shortcut in-
jection, and extra layer injection. We have developed a prototype
tool ModelObfuscator to automatically obfuscate on-device TFLite
models. Our experiments show that this proposed approach can
dramatically improve model security by significantly increasing
the difficulty of parsing models’ inner information, without in-
creasing the latency of DL models. Our proposed on-device model
obfuscation has the potential to be a fundamental technique for on-
device model deployment. Our prototype tool is publicly available
at https://github.com/zhoumingyi/ModelObfuscator.

Dr. Li Li was a senior lecturer at Monash. He supervised this project for the whole
period. He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598113

KEYWORDS
SE for AI, AI safety, model obfuscation, model deployment

1 INTRODUCTION
This study focuses on how to defend against software analysis
and reverse engineering for collecting the inner information of
on-device models. These kinds of attacks are far more effective
than model-stealing techniques such as substitute model training
or side-channel attacks, since on-device models are directly hosted
on mobile devices.

Numerous edge and mobile devices are leveraging deep learn-
ing (DL) capabilities. Though DL models can be deployed on a
cloud platform, data transmission between mobile devices and the
cloud may compromise user privacy and suffer from severe latency
and throughput issues. To achieve high-level security, users’ per-
sonal data should not be sent outside the device. To achieve high
throughput and short response time, especially for a large number
of devices, on-device DL models are needed. The capabilities of
newer mobile devices and edge devices keep increasing, with more
powerful systems on a chip (SoCs) and a large amount of memory,
making them suitable for running on-device models. Indeed, many
intelligent applications have already been deployed on devices [49]
and benefited millions of users.

Unfortunately, since on-device models are directly hosted on mo-
bile devices, adversaries can easily unpack the mobile apps to locate
the models for security exploitation. Such on-device models are
thus facing more serious security threats. To protect the on-device
model, on-device DL frameworks like TFLite are released to users
as black-box ones, i.e.,, the released TFLite models do not support
the gradient computing. Since gradient information is considered
crucial to implement effective white-box attacks, preventing attack-
ers from obtaining gradient information from on-device models
(referred to as non-debuggable models) could enhance model’s se-
curity. However, it does not fulfill such a purpose in practice, which
is shown in Figure 1. Attackers can parse the information of mod-
els (e.g., model structures and weights), generate efficient attacks

https://github.com/zhoumingyi/ModelObfuscator
https://doi.org/10.1145/3597926.3598113

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li*

based on the parsed information, and apply the attacks to the target
on-device model. For example, Huang et al. [16] parse features of
the on-device model to find a surrogate model from the web, which
can then be used to launch transferable adversarial attacks on mo-
bile models. Li et al. [24] developed a method to perform backdoor
attacks on mobile models. This method uses reverse engineering to
parse the model file and inject a triggering model into the model
file. As the attackers can easily obtain the explicit information of
on-device models through public APIs or reverse engineering, on-
device models are at serious risk that attackers can also perform
many other attacks for on-device models, such as model inversion
attacks, membership inference attacks, etc. [3, 12, 34, 37]. However,
to the best of our knowledge, no effective defense method has been
proposed to resist reverse engineering for on-device DL models.

AI

Attacker

Structure

Weights

Producing attacks

Applying attacks

Non-debuggable

Debuggable

RE

Figure 1: The typical scenarios of attacking on-device models.
Our approach can disable the reverse engineering (i.e., RE).

Borrowing the idea of code obfuscation, which is awell-developed
approach for hiding key information in software, we propose to ob-
fuscate the information of on-device ML models. As the on-device
model interacts with the DL libraries like TFLite at runtime, we also
need to obfuscate the information of model files (e.g,.tflite files) and
modify the DL libraries to execute the correct forward computation
of original models. In this paper, we propose a novel on-device
ML model protection approach based on model obfuscation,
which focuses on improvingAI safety for disabling themodel
parsing using software analysis or reverse engineering. Given
a trained model and its underlying DL library (e.g., TFLite), an
end2end prototype tool, ModelObfuscator , is developed to generate
obfuscated on-device model and corresponding DL library. Mode-
lObfuscator first extracts the information of the target model and
locates the source code in the library used by its layers. It then
obfuscates the information of the models and builds a customized
DL library that is compatible with the obfuscated model. To achieve
this, we design five obfuscation methods, including: (1) renaming,
(2) parameter encapsulation, (3) neural structure obfuscation, (4) ran-
dom shortcut injection, and (5) random extra layer injection. These
obfuscation methods significantly increase the difficulty of parsing
the information of the model. Our on-device ML model obfusca-
tion can prevent attackers from reconstructing the model. It is also
hard for attackers to transfer the trained weights and structure
of models to steal intellectual property using model conversion,
because the connection between the obfuscated information and
the original one is randomly generated. Experiments on 10 differ-
ent models show that ModelObfuscator can against state-of-the-art
model parsing and attack tools with a negligible time overhead and

20% storage overhead. The codes of ModelObfuscator are shared at
https://github.com/zhoumingyi/ModelObfuscator.

The key contributions in this work include:
• We propose a novel model obfuscation framework to hide the key
information of deployed DLmodels to resist model parsing. It can
prevent attackers from generating efficient attacks and stealing
the knowledge of on-device models by significantly increasing
the cost of attacks.

• We design five obfuscation strategies for protecting on-device
models and implement an end2end prototype tool, ModelObfus-
cator . This tool automatically obfuscates the model and builds a
compatible DL software library. The tool is publicly available.

• We provide a taxonomy and comparison of different obfuscation
methods in terms of effectiveness and overhead, to guide model
owners in choosing appropriate defence strategies.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the background and related works.

2.1 On-device DL models
DL frameworks. The open-source community has developed

many well-known open-source frameworks for DL tasks such as
TensorFlow [1], Theano [2], Caffe [19], Keras [6], and PyTorch [29].
These frameworks dominate the development of DL models and set
standards for them [11]. PyTorch is one of the latest DL frameworks,
and is gaining popularity for its ease of use and its capability to
construct the dynamic computational graph, which is now widely
used by the academic community. In contrast, TensorFlow is widely
used by companies, startups, and business firms to automate things
and develop new systems. It has distributed training support, scal-
able production options, and support for mobile devices. Currently,
companies and research teams have made huge efforts to develop
open-source on-device frameworks like TensorFlow Lite (TFLite),
Caffe2, Caffe, NCNN, and ONNX. As an on-device DL platform,
TensorFlow Lite (TFLite) is the most popular framework for DL
models on smartphones, as it has GPU support and is optimized for
mobile devices [16, 49].

Deployed DL models. As the training of DL models is intensive
in both data and computing, mobile developers often collect the
data and train their models on the computing server prior to app de-
ployment. Developers also need to specifically compile the trained
models to be compatible with devices (i.e., on-device models) so as
to speed up the model inference on mobile CPU/GPUs [4, 5, 27].
At app installation time, the trained models are deployed, along
with the app code itself, in the installation package of an app. At
runtime, apps perform the inference of DL models by invoking
application programming interfaces (APIs) of DL frameworks, and
subsequently achieve AI capabilities.

2.2 TFLite models
TFLite models have powerful features for running models on edge
devices but it does not provide APIs to access the gradient or inter-
mediate outputs like other TensorFlow or PyTorch models. Tensor-
Flow provides a TensorFlow Lite Converter1 to convert a TensorFlow

1https://www.tensorflow.org/lite/convert/index

https://github.com/zhoumingyi/ModelObfuscator
https://www.tensorflow.org/lite/convert/index

ModelObfuscator : Obfuscating Model Information to Protect Deployed ML-based Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

model into a TensorFlow Lite model. TFLite models run on the
FlatBuffers Platform2. FlatBuffers is an efficient cross-platform seri-
alization library for multiple programming languages. It has several
advantages for employing the model on mobile devices that it can
access serialized data without parsing/unpacking and only needs
small computational resources. TFLite uses a schema file to define
the data structures. For parsing the model structure and weights
from the .tflite file, we can use the schema file 3 of TFLite to parse
FlatBuffers and get the JSON file that contains detailed information
of the .tflite file.

2.3 Existing model parsing and defenses
The key information in a deployed DL model can be parsed by
three kinds of approaches: (1) Parsing the model’s weights through
queries [42]. Attackers use samples to query the outputs of the tar-
get model. Then, they can train a similar model with target model
through the samples and outputs. (2) Parsing the model’s architec-
ture by side-channel attacks[14, 23, 46]. Attackers can estimate the
architecture of the neural networks by the side channel information
(e.g., latency and DRAM accesses). (3) Parsing the entire model from
devices using software analysis or reverse engineering [24, 43]. Al-
though many attacks have been proposed to extract DL models,
it is hard for adversaries to precisely reconstruct DL models that
are identical to the original ones using queries or side-channel
information. These attacks cannot access the inner information
of the model, meaning that they are black-box attacks. Among
these three approaches, reconstructing DL models using queries
or side-channel information is hard to obtain identical models to
the original ones. Since, the first two approaches cannot access the
inner information of models, they only enable black-box attacks. In
contrast, since on-device models are delivered in mobile apps and
hosted on mobile devices, adversaries can easily unpack the mobile
apps to parse the original models for security exploitation, which
enables white-box attacks. As shown in previous work, white-box
attacks can achieve a much higher success rate than black-box at-
tacks [50]. Apart from being attacked, deploying DL models on
users’ devices may cause intellectual property leakage [36].

Existing model defense methods can be categorized into two
different groups: (1) defend against query-based attacks, and (2)
defend against side-channel attacks. For defending against query-
based attacks, some studies [20, 26, 28, 38, 39, 48] propose different
strategies to degenerate the effectiveness of query-based model ex-
traction. While other studies [38, 39, 48] propose methods to train
a simulating model, which has similar performance to the original
model, but is more resilient to query-based attacks. For securing
the AI model at the side-channel level, a recent work modifies the
CPU and Memory costs to resist the model extraction attacks [23].
However, existing defenses have not yet been aware of model pars-
ing using software analysis or reverse engineering, which is more
harmful than other kinds of model parsing for deployed DL mod-
els. Our method is proposed to defend against the parsing using
software analysis or reverse engineering.

2https://google.github.io/flatbuffers/
3schema file (The link is too long to display)

2.4 Reverse engineering tools for DL models
We want an approach that is highly resistant to model parsing
that uses software analysis or reverse engineering tools. Existing
model parsing methods using reversing engineering fall into three
categories: (1) model format conversion – existingmodel conversion
tools access the structure and weights of non-debuggable on-device
models through public APIs, and then assemble them into a new
model with a different format. (2) model parsing in the buffer –
the on-device model format TFLite loads the data on FlatBuffer 4.
Attackers can then extract the model structure and weights in
FlatBuffer [24]. (3) finding a similar differentiable model from the
Internet by comparing the features among models – the current
mainstream on-device model format TFLite does not support some
advanced functions like auto-differentiation to protect the deployed
model. But attackers like the App Attack can find a differentiable
model with similar structure and weights from the Internet [15].

2.5 Code obfuscation
Code obfuscation methods are initially developed for hiding the
functionality of the malware. Then, the software industry also uses
it against reverse engineering [33]. They provide complex obfus-
cating algorithms for programs like JAVA code [7, 8], including
robust methods for high-level languages [44] and machine code
level [47] obfuscation. Code obfuscation is a well-developed tech-
nique to secure the source code. However, traditional code obfusca-
tion approaches are hard to protect on-device models, especially
for protecting the structure of the models and their parameters. In
this work, inspired by traditional code obfuscation, we propose a
novel model obfuscation approach to obfuscate the model files and
then produce a corresponding DL library for them.

3 THE MODELOBFUSCATOR SOLUTION
In this section, we will introduce the threat model in this study and
show the detail of the proposed ModelObfuscator .

3.1 ML platform and threat model
On-device ML model platform. We chose the TensorFlow Lite

(TFLite) platform to demonstrate our model obfuscation approach.
TFLite is currently the most commonly used on-device DL platform.
The steps to produce TFLite models are shown in the top half
of Figure 2. Usually, DL developers use TensorFlow application
programming interfaces (APIs) to define and train TensorFlow (TF)
models. The trained TF models are then compiled into a TFLite
models. Note that TFLite has different implementations with TF,
and their operators (i.e., layers) may not be compatible. Therefore,
when compiling TFLite models, the TFLite library will check their
compatibility. Once the compatibility check passes, the compiled
TFLite model can run on devices using the TFLite library.

Threat model. The on-device model is usually saved as a sepa-
rate file (e.g., .tflite file) and packed into the app package. Attackers
can either download the target app from the app markets (e.g.,
Google Play and iOS App store) or extract the app package file (e.g.,
APK file for Android, and IPA file for iOS) from the hosting devices.
These app package files can then be decompiled by off-the-shelf
4https://google.github.io/flatbuffers/

https://google.github.io/flatbuffers/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs
https://google.github.io/flatbuffers/

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li*

Python code
TensorFlow library

generateprogram compile

(3) Model
assembling

(3) Package
compilation

TFLite modelTF model

Obfuscated
TFLite model

TFLite library
inference

Modified TFLite library

compatibility checka. Producing TFLite model

b. ModelObfuscator
User

Renaming

Parameter encapsulation

Neural structure obfuscation

Shortcut injection

Extra layer injection

(2) Model obfuscation

(1) Model parsing

inference

TFLite source code Modified source code

Figure 2: The working process of ourModelObfuscator on-device DL model obfuscation tool. ‘a’: the process of producing TFLite
model. ‘b’: the framework of the proposedModelObfuscator.

reverse-engineering tools (e.g., Apktool 5 and IDA Pro 6) to get
the original DL model file. Although many on-device DL platforms
do not support some advanced functions like backpropagation, at-
tackers can assemble the model architecture and weights into a
differentiable model format [16], or they can use software analysis
methods to generate attacks for the target model [15, 24]. In this pa-
per, we will obfuscate the information of the model and underlying
DL library to prevent the software analysis and model conversion
tools from getting model’s key information.

We analyzed the current mainstream DL platforms (i.e., Tensor-
Flow and PyTorch) and identified the following two main observa-
tions. First, these platforms are open-source and provide a set of
tools to build the library (e.g., TFLite library) from the source code.
Second, they officially support customized operators (e.g., neural
layers). Specifically, on top of these DL platforms, users could imple-
ment customized layers in C/C++ and compile customized layers to
executable files (.so file in TensorFlow). Then, users can use these
customized layers via high-level Python interfaces. Those features
enable us to design obfuscation techniques to obfuscate model and
DL library code together. The bottom half of Figure 2 shows the
overview of our model obfuscation framework. Specifically, Mod-
elObfuscator has three main steps: (1) model parsing, (2) model
obfuscation, and (3) model assembling & library recompilation. In
the following subsections, we detail the proposed ModelObfuscator .

3.2 Model parsing
The first step of ModelObfuscator model obfuscation is to parse
the deployed model to extract its key information. ModelObfusca-
tor first extracts the structure information of each layer, including
the name of layers (e.g., Conv2D) and model structures (including
model’s input, output, layer ID and etc.). The extracted structure

5https://ibotpeaches.github.io/Apktool/
6https://hex-rays.com/ida-pro/

information is depicted using JSON format, which can be visualized
as Figure 3 (a). It includes all neural layers and their spatial rela-
tionships. Then, ModelObfuscator extracts the parameter of each
layer, such as the layer’s configurations and weights. Moreover,
ModelObfuscator identifies the source code used by each layer by
referring to the underlying libraries. The identified source code
includes relevant packages and functions of the TFLite layers.

3.3 Model Obfuscation
After extracting the on-device ML model information and its corre-
sponding source codes, ModelObfuscator will obfuscate the model
as well as the source codes. ModelObfuscator uses five obfuscation
strategies: renaming, parameter encapsulation, neural structure ob-
fuscation, shortcut injection, and extra layer injection. We describe
the implementation details of each of these obfuscation strategies
in the following subsections.

Renaming. The most straightforward obfuscation strategy is
the renaming of a layer. Usually, the layer’s name contains impor-
tant information, which is the function of this layer. For instance,
“Conv2DOptions” indicates a 2D convolution layer. Such informa-
tion is useful for attackers to reconstruct the model to generate
white-box attacks or to obtain a similar surrogate model to conduct
effective black-box attacks. To hide such important information,
we randomly modify each layer’s name. The ➀ of Figure 3 is an
example of an obfuscated Conv2D layer. ModelObfuscator automati-
cally replaces the real name with the random meaningless string
Tozwyu. Note that the same layers in the TFLite model will have dif-
ferent random names. Meanwhile, ModelObfuscator creates a copy
of Conv2D’s source code and replaces the layer name (i.e., Conv2D)
in the source code with Tozwyu. Note that we modify the duplicate
of Conv2D in case the modification affects other parts of the TFLite
library. After adding modified source codes to the TFLite project,

https://ibotpeaches.github.io/Apktool/
https://hex-rays.com/ida-pro/

ModelObfuscator : Obfuscating Model Information to Protect Deployed ML-based Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

（a）

（b）

1 2

3

5

31 4

Figure 3: Example of five obfuscation strategies for the TFLite model obtained from a real-world fruit recognition app. (a)
part of the original model. (b) the corresponding obfuscated model. ‘➀’: renaming. ‘➁’: parameter encapsulation. ‘➂’: neural
structure obfuscation. ‘➃’: shortcut injection. ‘➄’: extra layer injection. This visualization is generated by Netron [32], which is a
well-known visualization platform for neural networks.

the recompiled TFLite library will recognize obfuscated layers as
custom layers and correctly execute them at runtime.

Parameter encapsulation. Existing TFLite models have two
main assets: model structure and parameters. The parameter can
be obtained in the training period. Given an input, a TFLite model
will compute the results using the input tensor and parameters
that are stored in the model file. As we discussed above, parameter
exposure is very dangerous. An adversary could use the parame-
ter information to perform many kinds of white-box attacks, e.g.,
adversarial attacks and model inversion attacks. Besides, an adver-
sary can guess the function of this layer according to the shape of
the parameter, because different layers have different numbers of
parameters (e.g., two in the convolution layer) and different shapes
of parameters (e.g., (3, 3, 64) in the convolution layer).

To hide key model parameter information, we instead encapsu-
late parameters into their corresponding generated custom source
codes of the obfuscated layer. For example, for a simple one-layer
feed-forward neural network, the output can be computed by 𝒀 =

𝜎 (𝑾𝑇𝑿 + 𝒃), where 𝑿 ,𝑾 , and 𝒃 is input tensor, parameter of the
layer, and bias, respectively. 𝜎 is the activation for neural nodes. For
ModelObfuscator obfuscation, the network layer can be disguised
as 𝒀 = 𝑔(𝑿), where 𝑔 is an unknown function. We then implement
the correct computation (i.e., 𝑔) in the generated custom TFLite
source code, which we then obfuscate. At runtime, function 𝑔 will
be invoked to achieve the computation from 𝑿 to 𝒀 . Now an ad-
versary is unable to extract the key parameter information from
our obfuscated model. For example, as shown in the ➁ of Figure 3,
the explicit parameter information has been removed from the
on-device DL model file. Furthermore, the implementation of 𝑔 in
the compiled DL library can be obfuscated using transitional and
well-proven code obfuscation strategies [9]. Thus, adversaries will
be hard to identify key model parameters by reverse engineering
the compiled library.

Neural structure obfuscation. Just obfuscating layer names
and parameters is not enough, since an adversary may still infer
the function of each layer according to the model structure. For
instance, Figure 4(a) presents the structure of the neural network,
where the input, hidden and output layers include four, two, and
one node, respectively. Attacker could search for a surrogate model
according to the neural architecture. To solve this problem, Mode-
lObfuscator uses neural structure obfuscation to obfuscated neural
architecture with the goal of confusing the adversary. We propose
two strategies for network structure obfuscation: random and align-
to-largest. Given a model with output shapes vs. = (𝑠0, · · · , 𝑠𝑛),
where 𝑠𝑛 refers to the number of dimensions for the 𝑛-th channel,
the random strategy generates a random shape r = (r0, · · · , r𝑛) of
the output for each layer. Figure 4(b) shows an obfuscated model
of Figure 4(a) using random strategy. Second, the align-to-largest
strategy finds the largest output shape vs.′ and then fills the output
shapes of other layers to the size of vs.′. Figure 4(c) shows such an
obfuscated model, where the output shapes of each layer are filled
up to (4). Note that this will not affect the performance of models
because the modified TFLite library will not compute the output
using the provided neural structure information.

Shortcut injection & extra layer injection. Neural structure
obfuscation changes the network structure by inserting new nodes,
but the spatial relationships of original layers remain the same.
Therefore, even with the above three obfuscation strategies, the
attacker can still infer node information by analyzing the spatial
relationships of runtime data (e.g., actual input-output values of
each node). To further obfuscate the model structure, hence, Mode-
lObfuscator applies two more strategies: shortcut and extra layer
injection. The injected shortcut and extra layers would destroy the
original spatial relationships of TFLite models.

To automatically inject random shortcuts, ModelObfuscator first
randomly selects a shortcut pair (r1, r2). The output index of r1-th
layer are then added to the input list of r2-th layer. For example, as
shown in the ➃ of Figure 3 (b), we add a shortcut between the layer

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li*

(a) Orginal neural nodes (b) Random neural nodes (c) Unchanged neural nodes

Figure 4: Neural structure obfuscation for a simple feed-forward neural network.

‘Rwicza’ and ‘Wjjzwh’ by adding the output index of ‘Rwicza’ to
the input list of ‘Wjjzwh’. Second, to inject extra layers, just like
the shortcut injection,ModelObfuscator randomly picks a layer pair
(r′1, r

′
2). The input of the extra layer is the output node list of r

′
1-th

layer, and its output is added to the input list of r′2-th layer. For
instance, an extra layer Ypxumu (as shown in the ➄ of Figure 3) is
injected between the 3-rd and 5-th convolution layers.

Note that the injected shortcut and layers will not affect the pre-
diction results of the deployed model because the modified TFLite
library will ignore the obfuscation part (e.g., Ypxumu layers) in
model inference. Specifically, the extra layer 𝒀 = 𝑓 (𝑿) just needs
to create the output with a specific shape to confuse the adversary.
In addition, extra layer injection will not significantly increase the
latency of on-device models because the extra layer does not need
many computational resources.

Combing our five obfuscation strategies. To apply the pro-
posed five on-device ML model obfuscation strategies sequentially,
we designed an automatic model obfuscation tool ModelObfusca-
tor . ModelObfuscator can automatically obfuscate an on-device ML
model and produce compatible API libraries (e.g., JAVA, Python)
that can use it. Figure 3 shows an example, where Figure 3(a) is the
original model from a real fruit recognition app, while Figure 3(b)
shows an example of the obfuscated model. We just add one short-
cut and one extra layer to it. Note that developers can add more
shortcuts and extra layers to achieve high obfuscation performance
in practice. The structure and parameters of the obfuscated model
are quite different from that of the original model, which will make
the obfuscated model hard to analyze. To prevent an adversary
from parsing the obfuscated model through reverse engineering
the modified TFLite library and customized layers, we can use code
obfuscation strategies, a well-developed technology to make the
code unreadable and unable to be reverse engineered. Code obfusca-
tion is a well-developed technology, so we do not show the detail in
our paper. The combination of model and code obfuscation would
hide the key information of models.

3.4 Model assembling and library recompilation
After obtaining the obfuscated model and modified TFLite source
codes, ModelObfuscator assembles the new obfuscated model using
the obfuscated model structure in Python. Then, it recompiles the
modified TFLite library to support the newly generated obfuscated
model. The newly generated obfuscated model and library can

be packaged into mobile apps or embedded device software to
replace the original unobfuscated model and code library. To further
prevent attackers from parsing the model by reverse engineering
the modified TFLite library if it is possible, developers can use code
obfuscation, which is a well-developed technique, to obfuscate the
source code of the TFLite library.

4 MODELOBFUSCATOR EVALUATION
This work aims to use our proposed model obfuscation method to
secure the deployed neural networks. To determine if this objective
has been achieved, we evaluate ModelObfuscator by answering the
following key research questions:
• RQ1: How effective isModelObfuscator at obfuscating on-device
ML models?

• RQ2: What is the overhead of obfuscated on-device ML models?
• RQ3: What is the impact of parameter sensitivity of ModelOb-
fuscator on obfuscated model overhead?

• RQ4: How effective is ModelObfuscator in defending against
on-device ML model parsing?
In this section, we show the evaluations of the proposed Mode-

lObfuscator in terms of effectiveness, efficiency, and reliability. Our
experiment settings are shown as follows:

Dataset. To evaluateModelObfuscator’s performance on models
with various structures for multiple tasks, we collected 10 TFLite
models including a fruit recognition model, a skin cancer diagnosis
model, MobileNet [13], MNASNet [40], SqueezeNet [18], Efficient-
Net [41], MiDaS [30], LeNet [22], PoseNet [21], and SSD [25]. The
fruit recognition and skin cancer diagnosis model were collected
from Android apps (see the provided code repository). The other
models were collected from the TensorFlow Hub 7. All of these
models can be found in our provided code repository.

Experimental Environment. ModelObfuscator is evaluated on
a workstation with Intel(R) Xeon(R) W-2175 2.50GHz CPU, 32GB
RAM, and Ubuntu 20.04.1 operating system.

4.1 RQ1: Obfuscation effectiveness
In addressing this RQ we aim to demonstrate the effectiveness of
ModelObfuscator . Attackers can either extract ML model informa-
tion from the model file [24] or analyze the structure of models to

7https://tfhub.dev/

https://tfhub.dev/

ModelObfuscator : Obfuscating Model Information to Protect Deployed ML-based Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 1: Comparison between original model files and obfus-
catedmodel files. ‘Operator codes’: type of the neural layer in
this model. ‘Tensors’: the tensor that should be allocated in
the memory. ‘Operators’: each neural layer. ‘OR’: obfuscation
rate for original components. Note that the renaming and
parameter encapsulation will increase and decrease the num-
ber of the corresponding model component, respectively.

Operator codes
Example Number OR

Original "deprecated_builtin_code": 3 50
100%Obfuscated "deprecated_builtin_code": 32, 510"custom_code": "Fvsfxf",

Tensors

Original

"shape": [1,224,224,3],

1345
100%

"name": "conv2d_1/Relu",
· · ·
"shape": [500,3200],
"name": "dense_1/kernel/transpose",

Obfuscated "shape": [1,224,224,3], 534"name": "Fvsfxf",
Operators

Original

"inputs": [3,2,0],

510

100%

"outputs": [1],
"op_type": "Conv2DOptions",
"builtin_options": {stride_w: 1, · · · },

Obfuscated

"inputs": [0],

510"outputs": [1],
"op_type": "Fvsfxf",
"custom_options": {84,0,1,3,1, · · · },

collect similar models from theweb for security exploitation [15, 16].
Thus, we demonstrate the effectiveness of ModelObfuscator in ob-
fuscating model files and structures.

Model File Obfuscation. In this experiment, renaming, param-
eter encapsulation, and neural structure obfuscation approaches of
ModelObfuscator are employed. To demonstrate the effectiveness
of these approaches, we use Flatc8, an existing python tool to parse
the information of TFLite models in the buffer.

A comparison of file contents between the original models and
ModelObfuscator obfuscated models is shown in Table 1. The results
include the summary of all 10 models. For operator codes (types
of the neural layer), ModelObfuscator creates different obfuscated
operator names (e.g., layer names) for each neural layer. As shown
in the first section of Table 1, the original model assigns the same
name to the same type of layers (i.e., 510 layers are assigned with 50
names), while the obfuscated models assign random names to each
of the individual layer (i.e., 510 different operator codeswith random
names). This can confuse attackers in inferring the functionality of
layers by hiding the relationship between certain layers.

For tensors, as shown in the second section of Table 1, the original
model file contains the exact shape and name of each allocated ten-
sor. The allocated tensors include the inputs, outputs, andweights of
each layer. It also provides the index of layers’ weights. In contrast,
the obfuscated model has a fixed tensor shape ([1,224,224,3]
in the example) and random names. In addition, it does not have
information on layers’ weights. So, the obfuscated model file only
has 534 allocated tensors. Attackers cannot extract the weights and
output shape of each layer from model files.

8https://google.github.io/flatbuffers/flatbuffers_guide_use_python.html

Conv2D

MaxPool

Conv2D

MaxPool

FullyConnected

FullyConnected

Conv2D

MaxPool

Conv2D

MaxPool

FullyConnected

FullyConnected

Extra Layer

Conv2D

MaxPool

Conv2D

MaxPool

FullyConnected

FullyConnected

Extra Layer

Extra Layer

(a) (b) (c)

Logistic Logistic Logistic

Figure 5: Example of structure obfuscation for LeNet. (a)
Originalmodel. (b) Obfuscatedmodel with one extra shortcut
& layer. (c) Obfuscated model with two extra shortcuts &
layers. Red dotted line and red dotted block represent extra
shortcuts and extra layers, respectively.

For operators, as shown in the third section of Table 1, the origi-
nal model file contains detailed information about each layer, in-
cluding the inputs, outputs, type, and settings (‘builtin_options’).
In contrast, the obfuscated models exclude the weights (inputs 3
and 2 in this example) of layers in the input list, hide the operator
types, and randomize the settings. Thus, attackers cannot get the
details of layers. Overall, these three obfuscation strategies (i.e.,
renaming, parameter encapsulation, and neural structure obfusca-
tion) can effectively obfuscate the model file. ModelObfuscator
can confuse attackers, especially those using automatic tools
or reverse engineering [24], to extract model information.

Model Structure Obfuscation. While we can obfuscate the
model file component, attackers still can parse the model using
model structure. In order to mitigate against such attacks, we con-
ducted a second experiment to showcase the effectiveness of Mode-
lObfuscator in obfuscating model structures, which only utilizes the
shortcut and extra layer injection. We use the Propagation Graph
Kernel method [35] to calculate the structure similarity between
graphs (i.e., original model structure and obfuscated model struc-
ture), which is shown in Table 3. We utilize the structure similarity
between the models to demonstrate the effectiveness of our ap-
proach in obfuscating the model structure. This is because the
model structure can be represented as a directed graph, as shown
in Figure 5, with each layer functioning as a node in the graph.

Table 3 shows the structure difference between the original
model and the obfuscated model will lay on the normal range of
the difference (i.e., 0.50-0.95) between original models when the
number of extra shortcuts & extra layers is 20. Our results show
that attackers will find it hard to use structure similarity
to identify the correct similar models (i.e., a model that has
similar structure and parameters) from the web when the
model information – structure and parameters – has been ob-
fuscated by ModelObfuscator. In addition, the more the number
of extra shortcuts and extra layers, the higher the effectiveness of
structure obfuscation. When the model has higher complexity (e.g.,
MiDaS), ModelObfuscator needs more number of extra shortcuts

https://google.github.io/flatbuffers/flatbuffers_guide_use_python.html

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li*

Table 2: Structure similarity between original and obfuscated structures. We use the Propagation Kernel algorithm to calculate
the similarity between two graphs [35]. ‘(𝑛1, 𝑛2)’: obfuscatedmodels with 𝑛1 shortcuts and 𝑛2 extra layers. The range of similarity
is [0,1]. Note that we only use the extra shortcuts & extra layer injection in this experiment.

(𝑛1, 𝑛2) Fruit Skin MobileNet MNASNet SqueezeNet EfficientNet MiDaS LeNet PoseNet SSD Average value

(10, 10) 0.78 0.81 0.80 0.95 0.89 0.93 0.97 0.60 0.81 0.95 0.86
(20, 20) 0.53 0.61 0.64 0.82 0.75 0.84 0.95 0.59 0.65 0.89 0.74
(30, 30) 0.48 0.59 0.51 0.76 0.63 0.77 0.92 0.59 0.64 0.81 0.67

Table 3: Structure similarity between the original models. ‘➀
- ➉’: Fruit, Skin, MobileNet,MNASNet, SqueezeNet, Efficient-
Net, MiDaS, LeNet, PoseNet, SSD.

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉
➀ 1.0 0.99 0.98 0.80 0.66 0.80 0.66 0.18 0.97 0.67
➁ 0.99 1.0 0.99 0.81 0.68 0.82 0.68 0.18 0.97 0.69
➂ 0.98 0.99 1.0 0.82 0.67 0.83 0.68 0.18 0.97 0.68
➃ 0.80 0.81 0.82 1.0 0.63 0.99 0.94 0.18 0.79 0.58
➄ 0.66 0.68 0.67 0.63 1.0 0.69 0.57 0.20 0.69 0.63
➅ 0.80 0.82 0.83 0.99 0.68 1.0 0.93 0.18 0.81 0.66
➆ 0.66 0.68 0.68 0.94 0.57 0.93 1.0 0.12 0.68 0.50
➇ 0.18 0.18 0.18 0.18 0.20 0.18 0.12 1.0 0.55 0.62
➈ 0.97 0.97 0.97 0.79 0.69 0.81 0.68 0.55 1.0 0.83
➉ 0.67 0.69 0.68 0.58 0.63 0.66 0.50 0.62 0.83 1.0

& layers to generate obfuscated models that have low structure
similarity with original models.

Overall, theModelObfuscator can effectively obfuscate both
the data and structures of on-device ML models.

4.2 RQ2: Obfuscation overhead
Ideally, applyingModelObfuscator to an on-device MLmodel should
not affect the prediction accuracy of the original models, while still
providing sufficient defense against model attacks. To this end, we
apply all five proposed obfuscation strategies to each model and
compare the prediction results based on 1,000 randomly generated
inputs. The obfuscation error is calculated as | |𝒚−𝒚′ | |2, where𝒚 and
𝒚′ is the output of original models and obfuscated models, respec-
tively. Note that the number of extra layers and shortcuts is set to 30
in shortcut injection & extra layer injection. In this experiment, the
obfuscation error of the proposedmodel obfuscationmethod
is 0 for all 10 on-device models. It shows that our obfuscation
strategies have no impact on the prediction results of the
original models.

In order to evaluate the efficiency impact of our obfuscation
strategies on ML models, we conducted experiments to measure
the runtime overhead of each model in our dataset. We measured
both the time and memory overhead of the proposed obfuscation
method under various settings, based on 1,000 randomly generated
instances. The results of these experiments are presented in Tables
4 and 5, which respectively report the time overhead and memory
overhead of the obfuscated models. We also include the time and
memory consumption of the original models as the baseline. As
shown in Table 4, even though extra layers are injected into the
obfuscated model,ModelObfuscator obfuscated models incur a

negligible time overhead (i.e., approximately 1% on average for
the most time-consuming obfuscation). The differences between
using various obfuscation settings are also not significant. Because
the parameter encapsulationwill remove some data processing steps
in the source code of APIs, the basic obfuscation (‘(0,0)’ in Table 4)
may reduce the latency of TFLite models.

The memory overhead for ModelObfuscator obfuscated models
is shown in Table 5. To eliminate the impact of different memory
optimization methods, we use peak RAM usage where the model
preserves all intermediate tensors. We argue that even with 20 extra
shortcuts and 20 extra layers in our experiment, which provides
sufficient protection to original models, the memory overhead
of obfuscated ML models is acceptable (approximately 20%).

Considering that the models are deployed on mobile devices
that have limited storage space, we also present the size differences
of the modified TFLite software library and the obfuscated mod-
els. Note that the size change is caused by creating additional .so
files to support the inference of the obfuscated layer. Hence, the
size difference will be similar with different implementations (e.g.,
Python, Java, etc.). Table 6 shows the size change to the TFLite
Python library and the TFLite models after applyingModelObfusca-
tor obfuscation strategies. We use all obfuscation strategies and the
number of extra shortcuts and extra layers is 30. Our results show
that the library size change is mainly caused by the renaming
method, because it will create a new API for the renamed layer
in the TFLite library. In addition, the extra layer injection will not
increase the size of the library, although it will create a new API to
support the extra layer. Because the extra layer just has a simple
function, the effect of the extra layer injection in size is negligible.
Our obfuscation strategies significantly reduce the size of the
TFLite model file because it only keeps the obfuscated minimal
structure information. However, the size of the TFLite library is
significantly increased, and increases the size of the application
deployed on the mobile device.

The time overhead of ModelObfuscator on on-device ML
models is negligible. In addition, the memory overhead
on obfusacted models is acceptable (approximately 20%)
when the model has sufficient protection. However, Mode-
lObfuscator will increase the size of the TFLite library.

4.3 RQ3: Parameter sensitivity
In this study, our research question investigates the overhead of
obfuscated on-device models in various settings. Our proposed tool,
ModelObfuscator , includes two hyper-parameters: the number of

ModelObfuscator : Obfuscating Model Information to Protect Deployed ML-based Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 4: Time overhead (seconds per 1000 inputs) of the original model and obfuscated model. We use five obfuscation strategies.
We set the number of extra shortcuts and extra laters to 20. ‘+’ and ‘-’ refer to the increase and decrease, respectively.

Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average value

Original 30.3 98.5 62.1 72.5 33.4 81.2 346.6 1.5 130.4 231.2 108.8
Obfuscated 30.2 98.7 63.2 74.3 34.6 82.9 349.2 1.6 130.4 237.1 110.2
Difference -0.1 +0.2 +1.1 +1.8 +1.2 +1.7 +2.6 +0.1 0.0 +5.9 +1.4

Table 5: Overhead of the model obfuscation on random access memory (RAM) cost (Mb per model). We use five obfuscation
strategies. To eliminate the influence of other processes on the test machine, we show the increment of RAM usage.

Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average value

Original 18.8 49.5 33.1 46.5 41.3 51.9 237.1 2.8 43.4 97.8 62.2
Obfuscated 30.1 65.6 50.5 56.6 52.6 66.3 254.5 3.1 61.6 107.6 74.8
Difference +11.3 +16.1 +17.4 +10.1 +11.3 +14.4 +17.4 +0.3 +18.2 +9.8 +12.6

Table 6: Size change (Mb) of the TFLite library and models after the obfuscation. The size of the obfuscated model is reduced to
a few Kb. The original library size is 183 Mb.

Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD

Library (renaming) +8.7 +31.9 +19.6 +38.7 +8.8 +40.6 +126.1 +11.6 +9.7 +52.1
Library (all strategies) +8.7 +31.9 +19.6 +38.7 +8.8 +40.6 +126.1 +11.6 +9.7 +52.1
Model -5.5 -16.9 -10.3 -17.5 -5.0 -18.6 -66.3 -6.5 -5.0 -27.5

Total +3.2 +15.0 +9.3 +21.2 +3.8 +22.0 +59.8 +5.1 +4.7 +24.4

Table 7: Time consumption (seconds per 1000 inputs) of obfuscated models in different settings. ‘(𝑛1, 𝑛2)’: obfuscated models
with 𝑛1 shortcuts and 𝑛2 extra layers.

(𝑛1, 𝑛2) Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average

(0, 0) 30.4 98.7 61.1 70.4 33.5 82.3 346.4 1.5 130.7 232.1 108.7
(10, 0) 30.4 98.7 61.0 70.7 33.4 82.1 346.5 1.7 130.2 232.1 108.7
(20, 0) 30.5 98.6 61.4 70.4 33.6 82.4 346.4 1.6 130.6 232.3 108.8
(30, 0) 30.7 97.9 62.3 71.7 33.1 82.0 346.9 1.5 130.2 231.0 108.7
(0, 10) 30.2 98.6 61.1 74.1 34.9 82.3 346.7 1.6 130.9 231.6 109.2
(0, 20) 30.6 98.3 63.3 74.1 36.8 81.3 348.2 1.6 130.5 231.3 109.6
(0, 30) 30.4 98.5 63.2 74.6 34.5 82.8 349.0 1.8 130.4 236.7 110.2

additional shortcuts and the number of extra layers, which are used
to regulate the effectiveness of obfuscating model structures. As
demonstrated in Tables 7 and 8, we conduct ablation studies to
examine the impact of these hyper-parameters on the overhead of
obfuscated models. The notation (𝑛1, 𝑛2) in the table represents
the number of shortcuts (𝑛1) and extra layers (𝑛2) applied. When
(0, 0) is used, it indicates that only basic obfuscations (i.e., renaming,
parameter encapsulation) and neural structure obfuscation are em-
ployed. Our results in Table 7 indicate that these two parameters
have little effect on the time overhead. However, as shown in
Table 8, the RAM cost of obfuscated models increases with
the number of extra layers.

Hence, it is worthwhile to consider the trade-off between
the obfuscation complexity and the memory overhead.

4.4 RQ4. Resilience to attacks
To demonstrate the effectiveness in concealing information of mod-
els, we use three distinct model parsing methods:

(1) The first method involves model format conversion. Existing
model conversion tools utilize public APIs to access a model’s
structure and weights, and then assemble them into a new
model with different formats. We utilize three tools, namely TF-
ONNX [10], TFLite2ONNX [45], and TFLite2TF [17], to evaluate
the performance of ModelObfuscator . If a tool can convert the
model format, we consider it a successful model information
extraction. Conversely, if ModelObfuscator is effective, these
tools will be unable to extract the model information.

(2) The second method involves reverse engineering in the buffer.
The on-device model format TFLite loads data on buffer 9. We

9https://google.github.io/flatbuffers/

https://google.github.io/flatbuffers/

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li*

Table 8: Random access memory (RAM) cost (Mb per model) of obfuscated models in different settings. ‘(𝑛1, 𝑛2)’: obfuscated
models with 𝑛1 shortcuts and 𝑛2 extra layers.

(𝑛1, 𝑛2) Fruit Skin MobileNet MNASNet SqueezeNet EffcientNet MiDaS LeNet PoseNet SSD Average

(0, 0) 18.9 53.3 33.1 49.4 45.5 56.4 244.8 2.9 40.6 99.9 64.5
(10, 0) 18.8 53.2 33.3 49.7 45.8 56.8 244.8 2.8 40.5 99.8 64.6
(20, 0) 18.9 53.5 32.8 49.7 45.9 56.7 244.3 2.8 40.5 99.9 64.5
(30, 0) 18.7 53.4 32.6 49.5 46.0 55.8 244.6 2.9 40.3 100.2 64.4
(0, 10) 25.9 58.8 42.5 53.6 49.2 69.5 248.1 2.9 55.0 107.5 71.3
(0, 20) 30.0 67.3 50.4 56.7 52.0 66.2 253.1 3.1 63.9 110.0 75.2
(0, 30) 35.9 81.9 55.2 57.3 71.6 73.0 267.7 3.1 73.4 123.8 81.9

Table 9: The success number of existing reverse engineering methods to extract the information of on-device models with
different obfuscation strategies. ‘

√
’: this model parsing method cannot extract information for all models.

Model conversion tool Parsing model in the buffer Feature analyzing
TF-ONNX TFLite2ONNX TFLite2TF Reverse Engineering in FlatBuffer [24] Smart App Attack [15]

Without obfuscation 10 9 9 10 8
Renaming

√ √ √ √
8

Parameter encapsulation
√ √ √ √

2
Neural structure obfuscation

√ √ √ √
8

Shortcut injection
√ √ √ √

8
Extra layer injection

√ √ √ √
8

ModelObfuscator
√ √ √ √ √

refer to a study by Li et al. [24], in which the researchers at-
tempt to extract a model’s structure and weights in FlatBuffer.
If ModelObfuscator is effective, the FlatBuffer extractor will be
unable to parse the data of the obfuscated model and reverse it
to the original one.

(3) The third method involves finding a similar differentiable model
from the Internet by comparing the features among models.
Although the mainstream on-device model format TFLite does
not support some advanced functions like auto-differentiation
to protect the deployed model, attackers such as the App Attack
can find a differentiable model with a similar structure and
weights from the Internet [15]. For the App Attacking method,
if it can correctly identify the obfuscated model that has the
same model structure as the original one on TensorFlow Hub,
we consider it a successful extraction of the model information.

In this experiment, we evaluated the effectiveness of the pro-
posed obfuscation strategies, including renaming, parameter en-
capsulation, neural structure obfuscation, and shortcut & extra layer
injection, on the original models. Table 9 shows the results of our
evaluation, where we used three different model parsing methods
to attempt to extract information from the TFLite models. Our pro-
posedModelObfuscator successfully prevented all existing
model parsing tools and methods from obtaining the infor-
mation of TFLite models. In addition, we found that parameter
encapsulation alone was able to prevent the App Attack from find-
ing surrogate models on six of the models. However, applying other
obfuscation strategies separately did not confuse the App Attack,
as it uses the features of the model structure and parameters si-
multaneously to analyze the model. Therefore, to defend against
the App Attack, we need to obfuscate the model structure

RenamingParameter
encapsulation

Neural node
obfuscation

Shortcut
injection

Extra layer
injection

Basic
obfuscation

Structure
obfuscation

Camouflage
Obfuscation

Free
obfuscation

Size-expand
obfuscation

Figure 6: Taxonomy of model obfuscation strategies.

and parameters simultaneously by combining the proposed
obfuscation methods.

The proposed ModelObfuscator is effective in defending
against all three types of model parsing methods, thus
providing robust protection for deployed models.

5 DISCUSSION
In this section, we will present the taxonomy of model obfuscation
strategies and the limitation of our methods. In addition, we show
the possible way to extract information from the obfuscated model.

5.1 Taxonomy of model obfuscation strategies
In this paper, we proposed five different model obfuscation strate-
gies. Figure 6 shows a preliminary taxonomy of the different model

ModelObfuscator : Obfuscating Model Information to Protect Deployed ML-based Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

obfuscation methods and the best practice for model deployment.
First, developers can use the renaming and parameter encapsulation
to prevent most model parsing or reverse engineering tools from
extracting the information of the deployed model. In the scenar-
ios where computational costs are critical, developers can use the
neural structure obfuscation and shortcut injection, as they do not
introduce any additional overhead. For structure obfuscation, de-
velopers can use shortcut injection and extra layer injection. These
methods can significantly increase the difficulty of understanding
the model structure of the deployed models. In addition, developers
can use renaming and neural structure obfuscation to disguise the
deployed model, which can mislead the attacker into choosing the
wrong architecture to produce a surrogate model. If the size of the
app package is critical (e.g., deploying the model on devices with
limited storage), developers need to carefully consider the trade-off
between the number of obfuscated layers leveraging extra layer
injection with renaming. The reason is that if renaming is used to
create different obfuscated layers for each layer, ModelObfuscator
needs to create the corresponding APIs in the library to support
obfuscated layers, hence increasing the library size.

5.2 ModelObfuscator vs. white-box gradient
attacks

In Section 4.4, we show that ourmethod can prevent existing reverse
engineering methods from extracting the information of on-device
models. However, what will happen if attackers directly perform
white-box gradient attacks on the obfuscated model? In this sub-
section, we investigate the attacking performance of white-box
gradient attacks on obfuscated on-device models, and analyze the
factor that disables such kinds of attacks. We use three well-known
white-box gradient attack methods FGSM, BIM, and PGD to evalu-
ate the resilience of our method to this kind of attack. We use the
Foolbox tool [31] to generate these attacks. The results are shown
in Table 10. We cannot directly produce attacks for on-device mod-
els because the TFLite model format does not support gradient
computing. But we can first convert the TFLite model to the Py-
Torch model using model conversion tools. The on-device models
without obfuscation can be successfully converted to the PyTorch
model, and the white-box gradient attack methods can successfully
generate attacks for the converted PyTorch model. However, as we
mentioned in Section 4.4, the model conversion tools cannot trans-
form obfuscated models into PyTorch models. When we directly
use the obfuscated models as the input of the attack-generating
functions, the attack methods cannot generate attacks for the obfus-
cated model. This is because (1) first, the white-box attack methods
cannot parse the information of the obfuscated model, and (2) sec-
ond, they cannot compute the gradient information of on-device
models. Thus, we can conclude our method can prevent attackers
from generating white-box gradient attacks using existing tools
(e.g., model conversion tools and attack-generating tools).

5.3 How to parse obfuscated models?
When ModelObfuscator obfuscates the model, it will create a cache
file to guide the tool to generate a compatible DL library. Attack-
ers cannot automatically extract the obfuscated model unless they

Table 10: Evaluation using white-box gradient attacks. ‘
√
’:

the attack method cannot generate attacks. ‘#’: the attack
method can generate attacks.

FGSM BIM PGD
Without obfuscation # # #

ModelObfuscator
√ √ √

obtain the cache file from the developer’s computer (which is un-
likely to happen). Generally speaking, attackers must use reverse
engineering to get source codes from the compiled library, which
consists of binary files, and it will cost significant manual effort to
understand the obfuscated model.

5.4 Limitations
Although the proposed model obfuscation does not introduce sig-
nificant computational overhead, it will increase the size of the
modified TFLite library. This is because we need to provide support
for the new obfuscations made. For a huge network like a 1000-
layer network deployed model (although it is unlikely to find a
such deployed model in the real world), the size of the modified
TFLite library will significantly increase if we rename every layer.
As a result, the app package also increases as the modified TFLite
library will also need to be deployed on the device. Besides, our
method cannot defend against query-based attacks as they do not
need the inner information of models. But they are less effective
than white-box attacks, which can be disabled by the proposed
ModelObfuscator .

6 CONCLUSION
In this work, we analyzed the risk of deep learning models de-
ployed on mobile devices. Attackers can extract information from
the deployed model to perform white-box-like attacks and steal
its intellectual property. To this end, we proposed a model obfus-
cation framework to secure the deployed DL models. We utilized
five obfuscation strategies to obfuscate the information of deployed
models, i.e., renaming, parameter encapsulation, neural structure ob-
fuscation, shortcut & extra layer injection. We developed a prototype
tool ModelObfuscator to automatically obfuscate the TFLite model
and produce a compatible library with the model. Experiments
show that our method is effective in resisting the model parsing
tools without performance sacrifice. Although the ModelObfuscator
will increase the library size, considering the acceptable time &
memory overhead required and the extra security it achieves, we
believe our method has the potential to be an essential step for
security-sensitive smart apps. In future works, optimizing model
obfuscation to reduce the library size is worthwhile to be explored.

ACKNOWLEDGMENTS
Zhou is supported by a Monash Graduate scholarship. Grundy
is supported by ARC Laureate Fellowship FL190100035. Gao is
supported by the National Natural Science Foundation of China
under Grant No (62202026). Also, our sincere gratitude goes to
Jiawei Wang, a PhD student at Monash, for providing invaluable
help in solving problems of TFLite modification.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li*

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Be-
likov, Alexander Belopolsky, et al. 2016. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints (2016), arXiv–1605.

[3] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[4] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, HaoyuWang, Tao Xie, and Xuanzhe
Liu. 2020. A comprehensive study on challenges in deploying deep learning based
software. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
750–762.

[5] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, and Xuanzhe Liu. 2021. An empirical study on deployment faults of
deep learning based mobile applications. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 674–685.

[6] François Chollet et al. 2018. Keras: The python deep learning library. Astrophysics
source code library (2018), ascl–1806.

[7] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations.

[8] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 184–196.

[9] Christian S. Collberg and Clark Thomborson. 2002. Watermarking, tamper-
proofing, and obfuscation-tools for software protection. IEEE Transactions on
software engineering 28, 8 (2002), 735–746.

[10] Developers. 2022. tf2onnx - Convert TensorFlow, Keras, Tensorflow.js and Tflite
models to ONN. https://github.com/onnx/tensorflow-onnx

[11] Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding Software-
2.0: A Study of Machine Learning library usage and evolution. ACM Transactions
on Software Engineering and Methodology (TOSEM) 30, 4 (2021), 1–42.

[12] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local Model
Poisoning Attacks to {Byzantine-Robust} Federated Learning. In 29th USENIX
Security Symposium (USENIX Security 20). 1605–1622.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[14] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, et al. 2020. Deepsniffer: A dnn model
extraction framework based on learning architectural hints. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 385–399.

[15] Yujin Huang and Chunyang Chen. 2022. Smart App Attack: Hacking Deep
Learning Models in Android Apps. IEEE Transactions on Information Forensics
and Security 17 (2022), 1827–1840.

[16] Yujin Huang, Han Hu, and Chunyang Chen. 2021. Robustness of on-device mod-
els: Adversarial attack to deep learningmodels on android apps. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 101–110.

[17] Katsuya Hyodo. 2022. tflite2tensorflow. https://github.com/PINTO0309/
tflite2tensorflow

[18] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[19] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. 675–678.

[20] Sanjay Kariyappa and Moinuddin K Qureshi. 2020. Defending against model
stealing attacks with adaptive misinformation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 770–778.

[21] Alex Kendall, Matthew Grimes, and Roberto Cipolla. 2015. Posenet: A convolu-
tional network for real-time 6-dof camera relocalization. In Proceedings of the
IEEE international conference on computer vision. 2938–2946.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[23] Jingtao Li, Zhezhi He, Adnan Siraj Rakin, Deliang Fan, and Chaitali Chakrabarti.
2021. NeurObfuscator: A Full-stack Obfuscation Tool to Mitigate Neural Archi-
tecture Stealing. In 2021 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 248–258.

[24] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. 2021.
Deeppayload: Black-box backdoor attack on deep learning models through neural
payload injection. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 263–274.

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[26] Mantas Mazeika, Bo Li, and David Forsyth. 2022. How to steer your adversary:
Targeted and efficient model stealing defenses with gradient redirection. In
International Conference on Machine Learning. PMLR, 15241–15254.

[27] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNN-
Fusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 883–898.

[28] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Prediction poi-
soning: Towards defenses against dnn model stealing attacks. arXiv preprint
arXiv:1906.10908 (2019).

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[30] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
2020. Towards robust monocular depth estimation: Mixing datasets for zero-
shot cross-dataset transfer. IEEE transactions on pattern analysis and machine
intelligence (2020).

[31] Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A Python
toolbox to benchmark the robustness of machine learning models. In Reliable
Machine Learning in the Wild Workshop, 34th International Conference on Machine
Learning. http://arxiv.org/abs/1707.04131

[32] Lutz Roeder. 2017. Netron, Visualizer for neural network, deep learning, and
machine learning models. https://doi.org/10.5281/zenodo.7109451 If you use
Netron in your research, please cite it using these metadata..

[33] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting software through obfuscation: Can
it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 49,
1 (2016), 1–37.

[34] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[35] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Kon-
stantinos Skianis, and Michalis Vazirgiannis. 2020. GraKeL: A Graph Kernel
Library in Python. Journal of Machine Learning Research 21, 54 (2020), 1–5.

[36] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. 2021. Mind your weight
(s): A large-scale study on insufficient machine learning model protection in
mobile apps. In 30th USENIX Security Symposium (USENIX Security 21). 1955–
1972.

[37] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[38] Kálmán Szentannai, Jalal Al-Afandi, and András Horváth. 2019. Mimosanet:
An unrobust neural network preventing model stealing. arXiv preprint
arXiv:1907.01650 (2019).

[39] Kálmán Szentannai, Jalal Al-Afandi, andAndrás Horváth. 2020. PreventingNeural
Network Weight Stealing via Network Obfuscation. In Science and Information
Conference. Springer, 1–11.

[40] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820–2828.

[41] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[42] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction {APIs}. In 25th USENIX
security symposium (USENIX Security 16). 601–618.

[43] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[44] Chenxi Wang. 2001. A security architecture for survivability mechanisms. Univer-
sity of Virginia.

https://www.tensorflow.org/
https://github.com/onnx/tensorflow-onnx
https://github.com/PINTO0309/tflite2tensorflow
https://github.com/PINTO0309/tflite2tensorflow
http://arxiv.org/abs/1707.04131
https://doi.org/10.5281/zenodo.7109451

ModelObfuscator : Obfuscating Model Information to Protect Deployed ML-based Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[45] Zhenhua Wang. 2021. tflite2onnx - Convert TensorFlow Lite models to ONNX.
https://github.com/jackwish/tflite2onnx

[46] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah
Al Faruque. 2020. Leaky dnn: Stealing deep-learning model secret with gpu
context-switching side-channel. In 2020 50th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE, 125–137.

[47] GregoryWroblewski. 2002. General method of program code obfuscation. (2002).
[48] Hui Xu, Yuxin Su, Zirui Zhao, Yangfan Zhou, Michael R Lyu, and Irwin King.

2018. Deepobfuscation: Securing the structure of convolutional neural networks
via knowledge distillation. arXiv preprint arXiv:1806.10313 (2018).

[49] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. 2019. A first look at deep learning apps on smartphones. In The
World Wide Web Conference. 2125–2136.

[50] Chaoning Zhang, Philipp Benz, Adil Karjauv, Jae Won Cho, Kang Zhang, and
In So Kweon. 2022. Investigating Top-k White-Box and Transferable Black-box
Attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 15085–15094.

Received 2023-02-16; accepted 2023-05-03

https://github.com/jackwish/tflite2onnx

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 On-device DL models
	2.2 TFLite models
	2.3 Existing model parsing and defenses
	2.4 Reverse engineering tools for DL models
	2.5 Code obfuscation

	3 The ModelObfuscator Solution
	3.1 ML platform and threat model
	3.2 Model parsing
	3.3 Model Obfuscation
	3.4 Model assembling and library recompilation

	4 ModelObfuscator Evaluation
	4.1 RQ1: Obfuscation effectiveness
	4.2 RQ2: Obfuscation overhead
	4.3 RQ3: Parameter sensitivity
	4.4 RQ4. Resilience to attacks

	5 Discussion
	5.1 Taxonomy of model obfuscation strategies
	5.2 ModelObfuscator vs@汥瑀瑯步渠. white-box gradient attacks
	5.3 How to parse obfuscated models?
	5.4 Limitations

	6 Conclusion
	Acknowledgments
	References

