
Experience Report: Anomaly Detection of Cloud

Application Operations Using Log and Cloud Metric

Correlation Analysis

Mostafa Farshchi
1,2

, Jean-Guy Schneider
1
, Ingo Weber

2,3
, John Grundy

1

1
School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia

{mfarshchi, jschneider, jgrundy}@swin.edu.au
2
Software Systems Research Group, NICTA, Sydney, Australia

ingo.weber@nicta.com.au
3
University of New South Wales, Sydney, Australia

Abstract—Failure of application operations is one of the main

causes of system-wide outages in cloud environments. This

particularly applies to DevOps operations, such as backup,

redeployment, upgrade, customized scaling, and migration that are

exposed to frequent interference from other concurrent operations,

configuration changes, and resources failure. However, current

practices fail to provide a reliable assurance of correct execution of

these kinds of operations. In this paper, we present an approach to

address this problem that adopts a regression-based analysis

technique to find the correlation between an operation’s activity logs

and the operation activity’s effect on cloud resources. The

correlation model is then used to derive assertion specifications,

which can be used for runtime verification of running operations and

their impact on resources. We evaluated our proposed approach on

Amazon EC2 with 22 rounds of rolling upgrade operations while

other types of operations were running and random faults were

injected. Our experiment shows that our approach successfully

managed to raise alarms for 115 random injected faults, with a

precision of 92.3%.

Keywords—Cloud application operations; Cloud monitoring;

anomaly detection; error detection; log analysis.

I. INTRODUCTION

Several industry surveys show severe figures of loss of

money, market share, and reputation due to various types of

system downtime. According to a recent survey (Nov-Dec

2014) reported by International Data Corporation (IDC) [1], an

average cost of unplanned downtime in fortune-1000

companies is $100k per hour. This observation is in line with

other industry estimates from Gartner [2], Avaya [3], Veeam

[4], and Ponemon [5]. These industrial surveys and cost

estimation analysis show an hourly cost of applications

downtime between $100K and $540k per hour. A separate

survey [6] from 205 medium to large business firms in North

America states that companies are losing as much as $100

million per year as the result of the server, application, and

network downtime. Such immense financial and non-financial

losses demonstrate the importance of tackling the root causes

of system failures. Operation and configuration issues have

been reported to be one of the main causes of overall system

failure [7-9]. One recent empirical study reports that

operational activities are the root cause of 69% of system-wide

outages [9].

One of the reasons for such high percentages of operational

failure issues is the complexity of modern large-scale

applications, especially in a cloud environment. Cloud

environments are inherently complex due to the flexibility

provided and the large number of resources involved.

Applications in a cloud environment are subject to constant

changes from sporadic operations, such as on-demand scaling,

upgrade, migration, and reconfiguration [10]. In the

maintenance of large-scale applications, several administrators

perform tasks and execute various operations. Sporadic

operations are usually implemented by a set of separate tools

and are subject to interference from simultaneous operations

dealing with the same resources. Executing an operation in

such an environment is error-prone, as changes to one resource

by one operation might affect the correct execution of other

operations. With these complexities, it is not surprising that

operational-related failures have been reported as one of the

main challenges in system failure and outages [10, 11].

However, operation and configuration activities did not receive

much of the attention they deserved until the recent movement

of DevOps.

One way to improve systems reliability is to leverage a

suitable set of tools and techniques to monitor running

operations, and to verify their impact on a system in real-time.

Unfortunately, most of the past approaches to systems

monitoring solely focused on point data [12] which is done by

observing the state of hardware and software metrics, such as

CPU utilization, network traffic, number of live sessions, and

so on. This was done without monitoring the behavior of

applications operations and inspecting the reflection of the flow

of actions in systems resources. In current practice of

monitoring cloud application operations, an operation’s log is

the main source of information for monitoring the operation

behavior. Yet, there are several severe limitations in log

analysis [13]. Logs are usually low-level, noisy, and they lack

information of changes to resource states. These limitations

exacerbate the problem of monitoring operations with logs.

26th IEEE International Symposium on Software Reliability Engineering, Gaithersburg, Maryland, USA, 2-5
Nov 2015, (c) IEEE.

These challenges make dependability assurance of running

operations a very difficult task. To address these difficulties,

we have developed a novel and effective approach that adopts a

regression-based technique to identify the correlation between

states of resources with application operations behaviors. The

derived correlation model is then leveraged to verify that the

actual state of the system corresponds to the expected state of

the system based on operation behavior at runtime. Assertions

are used to check if the actual state of the system corresponds

to the expected state of the system. Assertion checking is a

crucial part of error detection and error diagnosis in monitoring

operation process execution. Our approach improves

dependability assurance of cloud application operations

through the following novel contributions:

 Identifying log events that cause changes to cloud
resources by:

o Clustering low-granular logs using weight timing
and correlation coefficients;

o Applying a regression-based statistical technique to
learn correlation and causation relationships
between operation behavior and cloud metric
changes.

 Defining assertion specifications as predictors of the
expected behavior for system operations, based on the
correlation and causation model.

 Evaluating the approach on realistic data sets, where we
learn from error-free traces, specify assertions, and
evaluate if the assertions can detect injected faults.

To evaluate our approach, we collected experimental data

from case studies of rolling upgrade operations. Upgrade

operations have been highlighted to be a high-risk and an error-

prone activity, and yet are a frequent task for systems

maintenance and DevOps continuous deployment practices [7].

To obtain data that reflects a realistic environment in the public

cloud, all the operations were run on Amazon EC2 using tools

like Netflix Asgard and CloudWatch. We ran 22 rounds of

rolling upgrade operations while faults were injected at

random, and multiple concurrent operations were running. The

evaluation of our approach on this data shows promising

results.

We first give a background to this work in Section II,

followed by a motivational example as our case study in

Section III. Then, an overview of our new approach is given in

Section IV. Next, the details of steps of the approach are

explained in Section V. In Section VI, we present our results,

and evaluate our findings. In section VII, key related work is

discussed, and finally conclusions and future work are given.

II. BACKGROUND

In this section we outline background knowledge of
sporadic cloud operations, discuss why cloud DevOps
operations commonly fail, and highlight limitations of current
approaches to operations monitoring through log analysis.

A. Cloud DevOps (Sporadic) Operations

The focus of our work is on monitoring and dependability
assurance of DevOps applications operations in public cloud
environments, also referred to as “sporadic operations”. Some
types of such sporadic operations are Backup, (Rolling)
Upgrade, Cloud migration, Reconfiguration, On-demand
scaling, Rollback / Undo, and Deployment. “There is a
sporadic nature to these operations, as some are triggered by ad
hoc bug fixing and feature delivery while others are triggered
periodically.” [14]. Sporadic operations are very sensitive as
they often have a system-wide impact. In addition, these
operations are subject to interference from simultaneous
operations, whether through automatic concurrent operations or
manual changes applied to a system and its resources.

B. VM Instance Failure

Public cloud computing services, like Amazon Web

Services (AWS), are designed and engineered in a way to be

fault-tolerant for service delivery. This resiliency is achieved

mainly through shared resources, in which the failure of one

resource will not significantly affect the whole system.

However, it does not mean that all cloud services are fault-

tolerant. In fact, many of these services are fault-tolerant to the

extent that a cloud customer chooses to architect them.

In contrast to service delivery in the cloud where the status

of VM instances is important in an aggregated form, at the

operational level (e.g., rolling upgrade, deployment, or backup)

each individual instance and its attached resources can be

important. From time to time an instance fails – e.g., an

instance can freeze or crash and become unresponsive. These

failures are usually caused by one of the following: a problem

stemming from the resources that the instance is running on;

memory over-usage due to increase of system load; an

application bug that stresses the instance; an operating system

kernel bug; or through random system termination for

assessing of systems resiliency and recoverability in production

(e.g. Chaos Monkey
1
) [15, 16]. The occurrence of any of these

failures during an upgrade can put the upgrade process on hold

or derail it; hence, it is important to adopt a mechanism to track

and trace the successful execution of an operation.

C. Concurrent Operations and Configuration Changes

Changes in cloud configuration are one of the reasons that

make operation validation in this environment very

challenging. A recent Gartner report states that over half of the

outages of mission-critical systems are caused by “change,

configuration, release integration and handoff issues” [11]. A

cloud provides a configurable and scalable resource sharing

environment, and thus software applications and services are

exposed to frequent configuration changes, due to efficient and

cost-effective use of these shared resources.

Examples of frequent configuration changes are: detaching

or attaching an Elastic Block Storage (EBL) disk volume from

/ to an instance; changes in conditions and configuration of an

1 Chaos Monkey is a service that was developed by Netflix to test the

resiliency and recoverability of applications running on AWS. Chaos
Monkey’s job is to randomly kill instances within their group of systems.

Auto Scaling Group (ASG)
2
, e.g., its size (horizontal scaling

in/out); manual termination or reboot of an instance; instance

manipulation for testing purposes; migration of machines to

different zones or regions; or changing from one machine type

to another (vertical scaling up/down). Such configuration

changes of cloud resources may happen frequently. They are

another motivation for our work, showing that the validation of

sporadic operations has critical importance.

D. Log Analysis

There are several limitations and challenges in systems

monitoring from logs. First, logs are often low-level, noisy, and

with inconsistencies in style [13, 17]. Many of the current

practices of generating logs focus on developer needs during

development time, rather than considering administrative needs

in production [9]. Second, logs are voluminous, and it is

usually difficult to derive which log line, or which set of log

lines, is responsible for an action in changing a state of a

system resource. In addition, the granularity level of log data is

usually different from resource metric data, and this uneven

granularity level makes the mapping between these two more

challenging. Third, monitoring execution behavior of an

operation solely based on the operations’ log is not adequate. In

large-scale applications, in which hundreds of shared resources

are involved, resources are exposed to changes from multiple

concurrent operations from time to time. Thus, it is not trivial

to isolate the execution of one such operation from other

running operations. To tackle these limitations, this study

attempts to leverage cloud metric data to cross-validate the

execution of cloud DevOps operations.

III. MOTIVATING EXAMPLE - ROLLING UPGRADE CASE STUDY

Our study aims to investigate whether it is possible to
derive a strong correlation model between event logs of
operations and the observable metrics of cloud resources. To
conduct this investigation, we chose rolling upgrade, as
implemented by Netflix Asgard

3
 on top of Amazon Elastic

Computing Cloud (EC2), as a case study of such an operation.

A rolling upgrade operation is a good example of a sporadic
cloud operation that incurs interference from other operations.
Applications in the cloud are deployed on a collection of
virtual machines (VMs). Once there is a new version of the
application released, a new virtual machine image is prepared
with the new version – this is also called “baking the image”.
Then all the current virtual machines will be replaced by newly
baked image through an upgrade process, such as rolling
upgrade. A rolling upgrade replaces VM instances, x at a time
– e.g., upgrading 400 instances in total by upgrading 10
instances concurrently at any given time during the operation.
Asgard upgrades each EC2 instance through the following
main steps: remove and deregister the instance from Elastic
Load Balancer (ELB), terminate the instance, wait until the
auto-scaling group replaces the missing instance with a new
instance (running the updated version of the application); the

2 Auto Scaling allows automatic scaling in or out, i.e., de/increasing the

number Amazon EC2 VM instances automatically according to conditions

defined by a customer.
3 https://github.com/Netflix/asgard

new instance is registered with the ELB. There is a chance that
an instance faces a configuration change or a failure at any time
during these steps.

The contemporary practice of continuous deployment

focuses on pushing every commit into production – as long as

it passes a large number of tests. In such an environment,

upgrades can occur with high frequency – between few times a

week [18] to many times per day [19], updating hundreds of

machines, without causing any service downtime. Therefore,

we felt the rolling upgrade was an excellent exemplar target

operation for our investigation in this study.

IV. OVERVIEW

Our new approach uses a statistical technique to extract a
regression-based model that explains the correlation and
potentially causalities between operation event logs and cloud
resource metrics. The output of the model is used to generate
assertions, which are then leveraged for anomaly detection of
run-time execution of cloud application operations.

To derive assertions from observations, we assume that
there is a stream of time-stamped events, such as events
represented by log lines, and at least one cloud platform metric
that can be observed. Fig. 1 gives an overview of the approach.

Logs represent the behavior of an operation while metrics
show the status of a system. As can be seen in Fig. 1, event
logs are generated at various points in time, and metrics are
collected at potentially different points in time. Collecting
monitoring data points usually happens at fixed intervals, such
as every minute or every 5 minutes in Amazon CloudWatch. In
contrast, observation of system operations behavior through
event logs happens at non-fixed intervals, such as the
occurrences of few event logs within one second, and then the
absence of any event logs for the next few seconds or even
minutes.

Besides directly observed metrics, there can also be derived
metrics, such as the difference between the previous and the
current data point, or the n-th derivative. Furthermore, the
observation component can pull metrics explicitly, e.g.,
through API calls. This can be done at fixed intervals, in which
case the result is very similar to regularly collected metrics, or
pull requests can be issued whenever an event was observed.

This study explores the relationship between the behavior

Fig. 1 Assertion derivation from log and metric observations.

*Note: A1..A5 are activities; Metric1..3 are metrics like CPU utilization,

network usage, number of instances changes etc.

of application operations and a cloud’s resource states. Our
research investigates whether adopting a log analysis technique
along with a regression-based technique is practical to model
the relationship between cloud operation behavior and the
changing states of cloud resources. The outcome of this effort
is used for detecting anomalies that are happening during the
execution of sporadic cloud operations. The high level steps of
the approach, also shown in Fig. 2, are as follows: 1) data
collection and data metrics derivation; 2) logs-metrics data
mapping; 3) Logs clustering; 4) Correlation derivation between
logs and metrics 5) Assertion specification for anomaly
detection. We describe these steps in detail in the next section.

V. APPROACH TO ASSERTION DERIVATION FROM STATISTICAL

OBSERVATIONS

In this section, we give the details of the key steps in our
approach, as outlined above.

A. Data Collection and Data Metrics Derivation

To set up an experiment and obtain data from a realistic
environment, we collected data by running rolling upgrade
operations in a public cloud environment. To this end, we used
environments and tools that are in wide-spread use in industry:
clusters of VMs on Amazon EC2, grouped into Auto Scaling
Groups (ASGs), Amazon CloudWatch for collecting cloud
monitoring metrics, and Netflix Asgard for executing the
operations and collecting event logs.

1) Metrics from CloudWatch

CloudWatch provides monitoring metrics for many Amazon

services, including EC2, ASG, ELB, etc. In our experiment,

CloudWatch is used to collect metrics data for these three

services. CloudWatch can collect this data at most once per

minute. The data are available in JSON file format and can be

retrieved through an API. By default, several metrics related to

individual VM instances can be collected by CloudWatch,

including CPU utilization, network traffic (incoming /

outgoing), failed health checks, and so on. For a whole ASG,

averages can be obtained. The data can be used for purposes

like monitoring the health of the system or for custom auto

scaling.
In our study, to verify the effect of logged events, we are

interested in the metrics that represent the transitions between
states of a VM instance. For example, once a termination
action is triggered through operation execution, one VM
instance should transition from state “running” to “shutting-
down” and eventually to state “terminated”. Fig. 3 shows the
instance lifecycle of an Amazon EC2 instance.

 Interestingly, the metrics available from CloudWatch
directly include no metric that explicitly shows the number of
instances started or terminated within an ASG. The total
number of healthy machines is only partly indicative of that: if,
during any minute, a new machine becomes active, and an old
one is terminated directly after, the total number of healthy
machines remains static. This is a very common occurrence
during rolling upgrade. However, the data points for individual
instances, like CPU utilization, is only present when the
machine is active. We derived precise metrics for the numbers
of started and terminated instances, respectively. These metrics
derived from CloudWatch data are a cornerstone in our
approach, insofar as the case of rolling upgrade is concerned.

2) Event logs from Operations Tools
To draw any mapping between cloud metrics and

information from operation log lines in textual form, we
needed to extract a set of metrics that show the occurrences of
different event logs. Although the styles of logging might be
different, almost all type of logs contain time-stamped
information, whether they are application logs, database logs,
or operation logs. Furthermore, log message represent
information about an event, including logs that indicate
preparation or waiting periods. Hence, we assume a logged
event must have at least two attributes: a timestamp and an
event description.

In our case study, we used Netflix Asgard to execute rolling
upgrade operations and to collect operation logs. Asgard is an
open-source web-based tool published by Netflix for managing

Fig. 2 Workflow of extracting correlation between logs and metrics

Fig. 3 Amazon EC2 instance lifecycle- source: AWS documentation.

cloud-based applications and infrastructure. Asgard automates
some of the AWS cloud operations such as deployment and
upgrade. Asgard was developed by Netflix, AWS’s largest
customer, to provide a higher-level management interface, and
since it has been released publicly is in wide-spread use. Its log
fulfils our base assumption, and contains high-quality textual
messages – albeit the latter is not required in our approach.

In programs with any form of repetition it is common to
have logged events of recurring event types. In our case study,
every time a VM is terminated, the same type of event is
logged, where only certain parameters (VM ID, timestamp,
etc.) differ. As part of our data transformation of event logs, all
unique types of event logs for an operation are identified. For
each event type, similar to the regular expression generation
described in [20], we extract a regular expression that matches
exactly the log lines belonging to this type [20]. During log
processing, the event type for each log line can be identified by
matching the log line to the regular expressions. We can then
derive a metric that shows the occurrence of each event type
over time, throughout the operation process. Fig. 4 shows the
pattern of occurrences of the event logs throughout the process
of rolling upgrade operation for updating four virtual machine
instances. Looking at the figure, it reveals that there are
recurring behavior pattern that happening at different time
window. Presenting textual log events to a form of quantitative
metrics enables us to visualize the behavior of the system
through logs, which itself can be helpful for better
understanding of the behavior of application operations.

B. Mapping Event Logs to Metrics Data

Amazon CloudWatch offers metrics with a granularity no

finer than 1 minute. In contrast, events can be logged with a

frequency of split seconds or several minutes, as is in part the

case in our case study. Therefore, the log and metric data need

to be mapped. Since we can observe actual changes to cloud
resources only through the CloudWatch metrics, i.e., no more
often than once per minute, we chose to interpolate the
occurrence strength of event log types that occurred within
each minute-long time window to the respective minute. The
number of occurrences for each event type is extracted as
described above in Section V. A.

Specifically, the interpolation indicates at which second of
a minute an event happened. Indicating a point of time for the
derived metric for log events would show a relative interval of
happening of set of log events. Therefore, we parse the
timestamp of each log message and extract the point of time
(seconds of a minute) the event happened. Then a relative
occurrence value is calculated as an interpolated value,
capturing the time-wise proximity of the event to the full
minute before and after the event happened. For instance, say
event E1 happened at x minutes and 30 seconds – then its
occurrence strength would be counted as 0.5 for both minute x
and minute x+1 ; if it happened at x minutes and 15 seconds,
occurrence strength for minute x is 0.75 and 0.25 for minute
x+1 . This interpolated occurrence strength allows us to map
the event log data onto the one-minute interval cloud metric
data.

C. Clustering Logged Events

We cluster logged events into higher-level activities, for
two reasons: (i) Logs are often low-level and voluminous; by
raising the level of abstraction, users may find the information
provided more useful. (ii) If a set of event types always co-
occur, then high correlation among them cause a problem of
multicolinearity in some statistical models, which might lead to
unreliable and unstable estimates.

To facilitate the clustering process, we adopted the Pearson
product-moment correlation coefficient method to derive a
measure of association strength between logged events. Based
on the interpolated occurrence strength described above, we
use the Pearson correlation coefficient to automatically
determine where the strongest association exist between any
two event types. Event types with a very high correlation can
then be combined into activities.

In our data analysis, we used SPSS to derive the Pearson
correlation coefficient between variables by extracting the
correlation strength and the direction of the linear association
between the types of event logs. Table. 1 shows a snippet of the
Pearson-r values for correlation distance between 18 different
event types of the rolling upgrade operation of upgrading 40
VMs instances, four at a time. The value of Pearson-r ranges
from -1 to +1; a value of zero or very close to zero indicates
that there is no correlation between two variables. A value
close to 1 indicates a strong positive correlation between the
variables, i.e., in our case, that the events of these types

Table 1. Snippet of a Pearson Correlation table

Fig. 4 Visualization of occurrence of 18 event types of rolling upgrade for 4
VM instances

(almost) always co-occur. Negative values indicate that events
of the respective event types rarely co-occur. It is important to
note that clustering event logs simply based on the correlation
of occurrences of the events might not lead to a set of
meaningful activities. Where user interaction is a direct
application, other factors should be taken into consideration,
e.g., as done in [20].

D. Statistical Event-Metric Correlation Derivation

Correlation is defined as a statistical tool to measure the
degree or the strength of association between two or multiple
variables, whereas causation expresses the cause and effect
between variables [21]. It is important to note that while the
presence of causation certainly implies correlation, the
existence of correlation only implies a potential causation. For
instance, one may observe a correlation between power
consumption and number of failures; yet the underlying cause
of a higher number of failures could be due to the increase
chance of observing any failure when a higher number of VMs
is involved as the result of scaling up process to respond
incoming higher workload traffic.

Correlation is a powerful tool, as it can signify a predictive
relationship that can be exploited in practice, especially for
forecasting. To infer whether a correlation implies causality,
one may need to make sure the correlation is extracted from a
controlled environment, i.e., to make sure there are no factors,
other than the ones included in the analysis, affecting the target
variable. If this criterion is fulfilled, a meaningful correlation
can be interpreted as causation.

For the purpose of this study, we are interested to find the
effect of operation actions on cloud resource state changes. To
this end, we start from data that has been collected for a period
of time and has sufficiently many data points. We then use a
regression-based technique to discover correlation between
logged events and changes in metrics, i.e., the absence,
presence, and strength of such changes. In our running
example, e.g., whenever there is a log event that indicates a
termination request for one VM has been issued, the
expectation is that within the next minute one VM will traverse
from status running' to 'shutting-down', and finally 'terminated'.
As the example suggests, it is rational to assume that there is a
direct linear relation between a logged action and its effect as a
change of a VM state.

In our analysis, we adopted a Multiple Regression
technique, namely Ordinary Least Squares (OLS) regression.
“There are two general applications for multiple regression:
prediction and explanation” [22]. This means, first, multiple
regression can be utilized to predict an outcome for a particular
phenomenon, based on the knowledge available from some
other correlated variables [23]. Second, multiple regression can
be used to understand how much of the variation of the
outcome can be explained from the correlated variables.
Therefore, multiple regression is done for several independent
variables (IV) as predictors, and one dependent variable (DV)
as the outcome.

Given 𝑦 is the DV, 𝑥1 … 𝑥𝑛 to be the IVs, and ϵ to be the
error term or noise, the general form of the linear regression
function is

𝑦 = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖

where the intercept 𝑎 denotes a constant value that is the
expected mean value of 𝑦 when all 𝑥 = 0. The coefficients
𝛽1 … 𝛽𝑛 denote the effect of each variable on an overall model.
The coefficient parameters measure the individual contribution
of independent variables to the prediction of the dependent
variable after taking into account the effect of all the
independent variables.

Several types of linear regression models are based on the
above mechanism, and these types differ in the kinds and
distribution of data they are suitable for. One challenge is to
find a model that fits the data at hand well. Most of these
models can be generated by using standard statistical software
packages such as R, SPSS, SAS, STATA, and so on. We
analyzed our data with multiple regression and generalized
linear regression models, including Poisson regression and
Negative Binomial regression. It is beyond the scope of this
paper to explain the details result of these models. The multiple
regression model (OLS) provided the best fit for our data.

Multiple regression is a robust model, used as the base of
data analysis in many disciplines. It is important to note that, in
contrast to many common uses of multiple regression, e.g., in
the social and medical domain where the sample data
collection is expensive, limited, and comes with a degree of
bias, for our use in log and metric data analysis there is higher
confidence in accuracy of the sample data as they are collected
through machine-based observations. Further, in our approach
the emphasis is on validation of the regression results through
empirical evaluation, rather than mere generalization from the
observation of sample data.

E. Assertion Derivation for Fault Detection

Once we discovered correlation and causation relationships
between events and metrics, these can be formulated as
assertions, such that an assertion evaluation service can
determine at runtime if the assertions are fulfilled. If any
assertion is violated, the service will raise an alarm, e.g., to
trigger automatic diagnosis or remediation actions. To derive
assertions, we extract the regression equation from the multiple
regression coefficient results, where 𝑦 denotes the dependent
variable (e.g., number of terminated instances), and 𝑥1 and 𝑥3
refer to the relevant activities, the regression equation is:

𝑦 = α + β1 ∗ 𝑥1 + 0 ∗ 𝑥2 + β3 ∗ 𝑥3+. . . +0

From the model, we learn concrete values for 𝛼 and the 𝛽𝑖.
In particular, for any 𝑥𝑖 where the explanatory anlaysis of
correlation is below the threshold, we set 𝛽𝑖 = 0. At runtime,
each log event is processed as outlined earlier in this section, so
that an interpolated occurrence strength for each of the
independent variables (𝑥1 and 𝑥3 in the example) can be
obtained. Every minute, a prediction can be calculated and
compared with the actual CloudWatch metrics.

One challenge remains: while some of the CloudWatch
metrics are discrete values (such as the number of started /
terminated VMs), the prediction always has a continuous result
value. This value then needs to be discretized. The easiest
method for discretization is rounding the number, but that may
lead to prediction with a fairly low confidence, e.g., if the

predicted value states that 𝑦 = 0.5 VMs were terminated.
Another method is to define a threshold t, such that 0 < 𝑡 <
 0.5, and the prediction is set to the integer i closest to y iff y is
closer to 𝑖 than 𝑡, i.e., |𝑦 − 𝑖| < 𝑡. Finding a suitable threshold
has to be done for each application scenario separately, as a
tradeoff is needed between missing too many real alarms (false
negatives) and receiving too many false alarms (false
positives).

VI. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we describe how we applied our approach to
the case study, first by learning a model from observations of
positive cases, and second by using the learned model for
prediction and fault detection in cases where faults were
injected.

A. Logs Clustering Learning by Pearson Coefficient

We generated the Pearson correlation coefficient for two
different data sets. First, we generated correlation data for
running a rolling upgrade of 8 virtual machine instances,
upgrading two instances at a time. Then, we defined a rule that
event types to be grouped together where they had correlation
strength of more than 75% (Pearson-r > 0.75) whereas values
show highly statistically significant (P-value <0.01). In other
words, as a rule, any event type of activity should indicate at
least 75% correlation with any other event types of the group
that formed an activity. One may choose a higher or lower
level depends on the desired abstraction level to obtain from
logs. We chose Pearson-r > 0.75 as it is low enough to avoid
multicollinearity in our regression analysis while it is high
enough to associate strongly correlated event types together. To
make sure that the correlation of activities is not affected by
different configuration and scales of the operation, we applied
the same process for running rolling upgrade of 40 virtual
machine instances, upgrading four instances at a time.

In both experiments, although there were slight changes in
correlation values, the log abstraction led to identical clustering
results. The 18 event types are grouped into six clusters of
event logs (i.e. activities). Note that the whole process of log
abstraction was done in an automated manner without relying
on domain knowledge. To assess how meaningful our log
abstraction result is, we investigated the context of the logs
entries; the result, which listed in Table 2, shows that all the
event types of each cluster are meaningfully related to each
other. For instance, the four events of DisablingXInELB,
RemoveInstanceFromELB, TerminateInstance, and
WaitingInstancesPending that are clustered automatically
together are related to the action of terminating a VM instance.
For simplicity of the analysis, each cluster was given a name
according to the context of its event types. Logs to activity
mapping are listed in Table 2.

Further, we compared our result with the log abstraction of
the same operation that was reported in a previous study [10],
which was extracted based on domain knowledge expertise. In
the comparison, we did not find any conflict in term of
mapping event logs to activities though the level of abstraction
is slightly different in the previous work. Based on the above,
we concluded that the derived log abstraction is meaningful
and appropriate for further analysis with regression.

B. Correlation and Causality Learning with Multiple

Regression Model

 To perform correlation and causation analysis, we used the
rolling upgrade operation. Similar to the log-clustering step, we
performed our analysis based on two separate case studies of
rolling upgrades: first, running the multiple runs of rolling
upgrade of 8 instances, upgrading 2 instances at a time; and the
other, running rolling upgrade of 40 instances, upgrading 4
instances at a time. While we gave a summary of the overall
fitness of the model for the both experiments in the Table 3, for
conciseness from here on we focus on the details of the
learning approach based on the case of 40 instances.

 To investigate the relationship between occurrence of event
types and cloud metrics in the regression model, the activities
derived from log clustering were assigned as predictor
variables and the termination and start of instances as two
dependent variables, i.e., in two separate models. A multiple
regression was run to predict termination of instances given six
activities from 514 records data of 10 rounds of running rolling
upgrade operations for upgrading 40 instances in Amazon EC2.
These six variables statistically significantly predicted
termination of instances, F(4, 509) = 1317.097, p < .0005,
adj. R

2
 = .912. There was a very strong, positive, linear

correlation between multiple six activities and terminated
instances (R = 0.955). All six variables added statistically
significantly to the prediction, p < .05. The result shows 91.2%
of the variation in Terminated Instances can be explained by
the linear relationship between above five variables and the
Terminated Instances, R

2
= 0.912. In other words, the

regression model, indicating a very good fit to the model, and
explained 91.2% of the variability in the yield data. A similar
interpretation of the model can be inferred from Table. 3 for
the experiments with 8 instances and 40 instances for both
terminated and started instances. As with started instances, we
observe less coefficient determination in comparison with
terminated instances, yet the values are strongly correlated and
statistically significant, which indicates the model is a fairly
good fit for the data.

Table 2. Event logs to activity abstraction for the rolling upgrade operation

Event (Shorten name derived from event log

message)
Activity

ET01_StartedThread

ET02_UpdatingLaunchWithAmi
ET03_CreateLaunchConfig

ET04_UpdatingGroupXToUseLaunchConfig

ET05_UpdateASG
ET06_SortedInstances

ET07_GroupXInstancesWillBeReplacedXAtA

Time

Start of Rolling

upgrade (sorted
instances)

ET08_DisablingXInELB
ET09_RemoveInstanceFromELB

ET10_TerminateInstance

ET11_WaitingInstancesPending

Remove Instance from
ELB and Terminate

Instance

ET12_ItTookXminInstanceToBeReplaced

ET13_InstanceInLifeCycleStatePending

ET14_WaitingForInstanceToGoInService

Instance Replacement

Process

ET15_ItTookXminInstanceToGoInService
ET16_WaitingForInstanceToBeReady

New Instance to go in
service

ET17_InstanceXIsReady Instance is ready

ET18_Completed Rolling upgrade

completed

One of the objectives of doing multiple regression analysis
was to find an explanatory relationship between independent
variables (activities) and the dependent variables (cloud
metric). We seek to distinguish the activities that are likely to
affect the target metric from the others. To perform such
analyzes, we look at the Coefficient results generated by
regression analysis, Table 4.

By looking at p-value in Table. 4, we observed that
activities A3 and A4 are statistically insignificant (p >.005).
Therefore, we conclude that these two variables can not explain
the variation of the target variable. Further, Standardized
Coefficient shows the contribution of activities 01, 06 are
almost zero. Above observation helped us to narrow down the
contributed activities to A3 and A5. We run the multiple
regression again with these two activities for the outcome as
shown in Table 5.

Given the high difference between the activity 03 (0.836)
and the activity 05 (0.15), it can be concluded the activity 03 is
the main cause of termination of an instance. The context of the
activity log confirms that the model was effective to identify
correctly the activity log that causes the termination, which
these finding can be used to define assertion specification as it
was explained in Section V.E.

Table 4. Coefficient Correlation - 40 instances – Terminated Metric

𝛽 Std. Error B Sig.

Intercept (Constant) 0.083 0.027 --- 0.003

A1_Start of Rolling upgrade 0.529 0.208 0.035 0.011

A2_Terminate Instance 1.139 0.026 0.836 0.000

A3_Instance Replacement -0.023 0.016 -0.019 0.168

A4_New Instance to go in

service
-0.023 0.018 -0.017 0.214

A5_Instance is ready 0.201 0.026 0.15 0.000

A6_Rolling upgrade

completed
-0.73 0.184 -0.058 0.00

*Note. 𝛽 = Unstandardized regression coefficient; B = Standardized
regression coefficient; Sig. = p-value

Table 5. Coefficient Correlation for identified influential factors
- 40 instances - Terminated Metric

𝛽 Std. Error B Sig.

Intercept (Constant) 0.051 0.021 --- 0.018

A2_Terminate Instance 1.197 0.024 0.879 0.000

A5_Instance is ready 0.149 0.023 0.111 0.000

*Note. 𝛽 = Unstandardized regression coefficient; B = Standardized

regression coefficient; Sig. = p-value

C. Prediction and Fault Detection

In order to evaluate how well the derived assertions can
detect failures, we conducted another experiment which was
run separately from the one used to learn the model. The raw
data of this experiment was obtained from experiments run by
our colleagues [24]. The experiments were conducted on
Amazon EC2, upgrading 8 instances, 2 instances at the time.
Rolling upgrade was executed while multiple tasks (HTTP
loads, CPU intensive tasks, and Network intensive tasks) were
running, and faults simulating individual VM failure were
randomly injected into the system. We obtained data on 22
rounds of rolling upgrade operations, including 574 minutes of
metric data and 5335 lines of logs emitted by Asgard. A total
of 115 faults were injected at random.

As explained in Section V.E, the equations derived from
multiple regression models can be used to predict the number
of started / terminated instances within the last minute: given
the observed log lines how many VMs should have been
started or terminated? If this predicted value does not match the
actual value, an alarm is issued. We aim to find out how
accurately our approach can identify the anomalies. Since the
injected faults were all VM failure, our approach tries to
distinguish between VMs being terminated due to legitimate
operational activity and cases caused by fault injection. We
choose to inject VM failure because the scope of our work has
a focus on DevOps/sporadic operations. For such operations -
in particular, for the rolling upgrade case study used in this
study - the state of VMs is a prime source of anomalies.
Therefore, it was reasonable to generate failure types that cause
VM termination rather than other types of failures.

To measure the Precision and Recall of the prediction we
classified the result of the prediction into four categories: True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). Table 6 explains these four categories in
terms of an alarm being issued (or not), and a fault being
injected (or not). For any of the 574 minutes of data, we aim to
raise an alarm when a fault was injected (TP) or raise no alarm
when no fault was injected (TN). FP and FN thus mark cases
where the prediction did not work. These four categories are
the basis for calculating precision, recall, and F-measure.
Precision is a measure to assess the exactness of the result: the
percentage of the valid issued alarms out of all issued alarms,

=
𝑇𝑃

𝑇𝑃+𝐹𝑃
. Recall is a measure of completeness of correct

alarms: the percentage of injected faults where an alarm was

raised, =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. The F-measure is the weighted average

(harmonic mean) of precision (P) and recall (R), 𝐹1 = 2 ∗
𝑃∗𝑅

𝑃 + 𝑅
.

In our study, we observed possible delays between an
operation action and its effect becoming observable. For
instance, consider the duration of terminating one VM: the time
between when the respective event was logged until the VM is
actually terminated may vary between fifteen seconds and three
minutes. It is thus not uncommon that a VM is terminated in
one minute, but CloudWatch metrics only reflect the
termination in the next minute, or even later. This delay is
observable in legitimate operations’ actions, as well as in
injected faults. Therefore, we studied the results of applying
three different time windows (TW) for prediction: zero minutes

Table 3. Coefficient Determinations of multiple regression analysis

Experiment Metric R R Square Sig. (p)

8 instances Terminated .918 .842 .000

8 instances Started .827 .683 .000

40 instances Terminated .955 .912 .000

40 instances Started .886 .786 .000

Table 6. Classification metric for the generated alarm

Fault Injected Fault Not Injected

Prediction ≠ Actual: Alarm TP FP

Prediction = Actual: No Alarm FN TN

(0mTW), i.e., only the current minute; one minute distance
(1mTW), i.e., the current minute, the minute before, and the
minute after; and two minutes distance (2mTW), i.e., from two
minutes before to two minutes after. It should be noted that a
longer TW also delays when the result of the prediction
becomes available. This is an application-specific trade-off in
practice: is it worth waiting two minutes longer for an alarm, if
the precision goes up by 𝑥 percent? The results of monitoring
the operation with the three different time windows are shown
in Table 7: Precision, Recall, and F-Score are given without
considering the impact of the ripple effect of the faults. Faults
are injected randomly on the VM instances, and the
occurrences of the faults are logged. However, faults may have
ripple effects that lead to seemingly false alarms at a later stage
of the operations process, as explained below. As can be seen
from Table 7, there are strong differences between the basic
precision value of 0mTW and 1mTW of 0.145 (14.5%). The
difference between 1mTW and 2mTW, in contrast, is rather
small. This observation can be explained because of the time
delay that the action of termination takes to be completed: the
majority of terminations is completed either within the current
minute or the next minute – it rarely takes more than that. Time
window size for alarms can be configurable in a real-time
monitoring system. For our experiment, we concluded that
1mTW offers a good trade-off between capturing most
anomalies and keeping the delay short.

 Not all the effects of injected faults are seen immediately.
There are cases where failures have ripple effects. Table 8
shows three types of ripple effects we observed in the
experiment, as well as their number of occurrences. The first
two types are essentially race conditions when rolling upgrade
and fault injection both want to terminate a particular VM. In
particular, rolling upgrade retrieves the list of VMs to be
replaced at the beginning of the process, and subsequently goes
through the list and attempts to terminate instances. If a VM
has already been terminated earlier by fault injection – whether
or not correctly detected by our approach at that time – this is
not taken into account by Asgard. Instead, the log states that
Asgard attempted terminating a VM, and no such effect is
observed – hence an alarm is raised. Since no fault had been
injected at that time, the alarm is counted as FP in the basic
detection, cf. Table 7. To distinguish actual failed prediction
from ripple effects (where the prediction behaved as expected),
we analyzed all 30 FP and 7 FN cases for the chosen 1mTW
(in total 37 cases), by looking at details of the log lines and
metrics. We found that 28 out of 37 FN/FP cases were caused
by ripple effects of fault injection. Since the prediction behaved
as expected in these cases, we re-classified them as TP/TN,
leading to the final results shown in Table 9 and in Fig. 5.

Table 7. Evaluation results - basic detection

Evaluation Metrics 0mTW 1mTW 2mTW

Precision 0.567 0.712 0.745

Recall 0.670 0.914 0.921

F-Score 0.706 0.826 0.849

Table 8. Type of ripple effects observed in the experiment

Occurrences Ripple Effect Explanation

21
Rolling upgrade’s attempt to terminate a VM has no
effect, since the respective VM has already been
terminated by fault injection.

5
Fault injection's termination attempt fails due to instance
being already terminated by rolling upgrade earlier.

2 Instance is terminated by fault injection while being
pending to be started.

VII. RELATED WORK

There are two main areas of work related to our approach:
error detection and error diagnosis through log analysis, and
anomaly detection through system resource health and
performance monitoring.

System error detection and diagnosis is an effort that relies

on relationship analysis of a deficiency in a system and its

observable symptoms. In recent years, several studies have

been conducted to automate this process. Kavulya et al. [25]

have categorized automated techniques based on mapping the

relationship between systems symptoms and failure. These

techniques include rule-based techniques, model-based

techniques, statistical techniques, machine-learning

techniques, count-and-threshold techniques, and visualization

techniques [12, 25]. Adopting each of these techniques comes

with limitations. For example, rule-based techniques require

large knowledge bases that are difficult to maintain; model-

based techniques require a detailed understanding of the

system. Statistical techniques have been widely used for

anomaly detection in system monitoring [12, 26, 27]. Most of

the existing work in this domain focus on changes in non-

contextual data points (CPU utilization, memory usages, and

etc.) and raise an alarm when there are breaches of thresholds.

In our research we were not interested in seeing the non-state-

based metrics like CPU utilization as we are specifically

interested in anomaly detection during running DevOps

Table 9. Evaluation results – detection result with ripple effect

Evaluation Metrics 1mTW 1mTW_with Ripple Effect

Precision 0.712 0.923

Recall 0.914 1.000

F-Score 0.826 0.960

Fig. 5 Showing the Precision, Recall, and F-Score for three time window and

for the investigated cases for 1mTW

operations. For anomaly detection during such sporadic

operations, state based metrics like VM start / termination are

most suitable. Existing literature is very rich in anomaly

detection with data points; however, there have been few

studies on using contextual and behavioral information for

anomaly detection [12]. In this direction, our research focuses

on using contextual logs as one of the sources of information

for anomaly detection along with metrics data.

Most past approaches that use contextual information are

appropriate for offline assessment, rather than for online

assessment. Other approaches are mostly intrusive, i.e., they

require changes to be applied to the system. POD-Monitor [24]

attempted to address this gap by using contextual logs and data

point metrics to suppress false alarms of detected anomalies in

resources usage. However, their approach lacks the support for

anomaly detection of steps of cloud operations that are

proposed in this paper. Their paper considers operational

context on the level of whole operation processes and focus on

anomaly detection on resources, whereas we conduct anomaly

detection at fine-grained level of individual steps of operations.

Another approach that addresses the above limitations, in part

of one of the author’s previous work, called POD-Diagnosis

[10]. This approach models the cloud sporadic operations as

processes and uses the process context to catch errors, filter

logs and perform on-demand assertion checking for online

error handling [10, 28]. This technique addresses the problem

of online validation of operations to some degree. However,

the approach has two limitations, which we discuss below: it

merely relies on logs as the only source of information, and it

requires manual assertion specification.

The first limitation of using system operation logs as the

main source of information for error diagnosis suffers from

logs often being low-level, noisy, and voluminous and with

inconsistencies in style [13, 29]. These limitations exacerbate

the difficulty of validation of cloud operations. These problems

make the validation of processes merely with log analysis less

reliable. Therefore, it is important to employ one or more

additional sources of information along with the information

extracted from logs for validation of running operations. The

second limitation is related to manual assertion specification.

Assertions check if the actual state of a system corresponds to

the expected state of a system. In the previous work [10],

intermediate expected outcomes of process steps have been

defined manually as assertions. This method is suboptimal for

the following reasons. First, manual assertion specification is

very time-consuming and thus, with fast evolving changes of

modern applications, might not be practical. Second, manual

assertion checking might not correctly correlate the changes of

operation state with changes to cloud resources. Therefore,

there may be a lack of precision in the assertion specification.

Third, manual assertion specification relies on the domain

knowledge of the administrator specifying the assertion. This

knowledge may be incomplete, and its encoding in assertions

may be incomplete. For instance, for a 10-step process

touching on 20 resources with an average of 10 parameters

each, a full specification of all desired and undesired changes

results in 10x20x10=2000 potential assertions. It is unlikely

that any administrator will (correctly) specify all of them. This

will result in a partial coverage of assertions, potentially

leaving out important causes for failures simply because the

administrator has never experienced them. Our approach

differs from these approaches as we rely on statistical

correlation analysis rather than domain knowledge.

System monitoring is of paramount importance for both

cloud service providers and cloud service consumers.

Analytical tools in cloud monitoring can be used for real-time

performance monitoring to quickly uncover performance

bottlenecks and troubleshooting unknown issues. Monitoring

data can be collected through automatic calls of APIs in near

real time fashion. This capability provides a significant

opportunity to leverage such data for anomaly detection. Many

commercial and open source platforms and services are

available for cloud monitoring, including CloudWatch,

AzureWatch, CloudKick, Nagios, and OpenNebula. A detailed

comparison of monitoring platforms and services is given in

[30]. One of the highlighted issues in this domain is the lack of

cross-layer monitoring [30]. Cross-layer monitoring is a

challenging task, as it is difficult to map two different

monitoring data types and to interpret them in an integrated

form. Our research, in particular, contributes in this direction,

as we consider two different sources of monitoring

information.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of monitoring
cloud application operations through log and metrics analysis.
Our contribution is a novel approach that assists in the reliable
assurance of correct execution of sporadic cloud operations as
are common practice in DevOps, especially the staged upgrade
of running VMs. Core to this approach is a regression-based
correlation analysis technique that identifies the correlation
between event logs of operations and cloud resource changes,
respectively. We showed that the derived regression model can
be used as the basis for generating runtime assertions in order
to detect anomalies in running operations. We evaluated our
approach on the Amazon public cloud computing service
(EC2) where, multiple operations were running and random
faults were injected. Our results demonstrate that our
regression-based analysis technique was able to detect injected
faults with high precision and recall.

We aim to use the proposed approach for better error
diagnosis. Furthermore, we plan to utilize this approach for
designing self-adaptive operations. Such a self-adaptive
operation would be able to perform self-healing actions after a
failure happens, as well as utilize its knowledge for adapting
the configuration of itself, other operations, or the affected
application(s) in certain cases like spikes in the demand.

IX. ACKNOWLEDGMENTS

This work is supported in part by the National ICT
Australia and Swinburne University of Technology. NICTA is
funded by the Australian Government through the Department
of Communications and the Australian Research Council
through the ICT Centre of Excellence Program.

REFERENCES

[1] S. Elliot, "DevOps and the cost of downtime: Fortune 1000 best
practice metrics quantified," International Data Corporation (IDC),

, Dec 2014.

[2] D. Cappuccio, "Ensure cost balances out with risk in high-
availability data centers," Gartner, July 2013.

[3] Avaya. (2014,Access: May 2015). Network downtime results in

job, revenue loss. Available: http://www.avaya.com/usa/about-
avaya/newsroom/news-releases/2014/pr-140305/

[4] Veeam, "Veeam data centre availability report 2014," Veeam

Software, December 2014.
[5] Ponemon, "Breaking down the cost implications of a data center

outage," Ponemon Institute, , December 2013.

[6] Infonetics, "The cost of server, application, and network
downtime," Infonetics Research, Janaury 2015.

[7] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W.

Zwaenepoel, "Staged deployment in mirage, an integrated software
upgrade testing and distribution system," in Proceedings of twenty-

first ACM SIGOPS symposium on Operating systems principles,

Stevenson, Washington, USA, 2007, pp. 221-236.
[8] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T.

Do, et al., "What bugs live in the cloud?: A study of 3000+ issues

in cloud systems," presented at the Proc. of the ACM Symposium
on Cloud Computing, Seattle, WA, USA, 2014.

[9] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, et al.,

"Simple testing can prevent most critical failures: An analysis of
production failures in distributed data-intensive systems," in Proc.

of the 11th USENIX conference on Operating Systems Design and

Implementation, Broomfield, CO, 2014, pp. 249-265.
[10] X. S. Xu, L. Zhu, I. Weber, L. Bass, and W. Sun, "Pod-diagnosis:

Error diagnosis of sporadic operations on cloud applications," in

The 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2014.

[11] R. J. Colville and G. Spafford. (2013, Access: Sep 2014).

Configuration management for virtual and cloud infrastructures.
Available: http://goo.gl/C2d4Sz

[12] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A

survey," ACM Computing Surveys (CSUR), vol. 41, p. 15, 2009.
[13] A. Oliner, A. Ganapathi, and W. Xu, "Advances and challenges in

log analysis," Commun. ACM, vol. 55, pp. 55-61, 2012.

[14] L. Z. Xiwei Xu, Daniel Sun, An Binh Tran, Ingo Weber, Min Fu,
Len Bass, "Error diagnosis of cloud application operation using

bayesian networks and online optimisation " in 11th European

Dependable Computing Conference (EDCC), Paris, France, 2015.
[15] J. Atwood. (2011,Access: Sep 2014). Working with the chaos

monkey. Available: http://blog.codinghorror.com/working-with-

the-chaos-monkey/

[16] Netflix. (Feb 2014,Access: Sep 2014). Chaos monkey. Available:

https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
[17] A. Oliner, A. Ganapathi, and W. Xu. (2011) Advances and

challenges in log analysis. Queue. 30-40.

[18] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, "Development
and deployment at facebook," IEEE Internet Computing, vol. 17,

pp. 8-17, 2013.

[19] J. Miranda. (2014,Access: June 2015). How Etsy deploys more
than 50 times a day. Available:

 http://www.infoq.com/news/2014/03/etsy-deploy-50-times-a-day

[20] Ingo Weber, Chao Li, Len Bass, Xiwei Xu, and L. Zhu,
"Discovering and visualizing operations processes with pod-

discovery and pod-viz," in The 45th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks
(DSN), Rio de Janeiro, Brazil, 2015.

[21] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles

and practice: OTexts, 2014.
[22] J. W. Osborne, "Prediction in multiple regression," Practical

Assessment, Research & Evaluation, vol. 7, pp. 1-9, 2000.

[23] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to

linear regression analysis vol. 821: John Wiley & Sons, 2012.

[24] X. Xu, L. Zhu, M. Fu, D. Sun, A. B. Tran, et al., "Crying wolf and

meaning it: Reducing false alarms in monitoring of sporadic
operations through pod-monitor," in First International Workshop

on Complex Faults and Failures in Large Software Systems

(COUFLESS2015), Firenze, Italy, 2015.
[25] S. Kavulya, K. Joshi, F. Giandomenico, and P. Narasimhan,

"Failure diagnosis of complex systems," in Resilience assessment
and evaluation of computing systems, K. Wolter, A. Avritzer, M.

Vieira, and A. van Moorsel, Eds., ed: Springer Berlin Heidelberg,

2012, pp. 239-261.
[26] A. Patcha and J.-M. Park, "An overview of anomaly detection

techniques: Existing solutions and latest technological trends,"

Computer Networks, vol. 51, pp. 3448-3470, 8/22/ 2007.
[27] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield,

et al., "Statistical techniques for online anomaly detection in data

centers," in Integrated Network Management (IM), 2011
IFIP/IEEE International Symposium on, 2011, pp. 385-392.

[28] X. Xu, I. Weber, L. Bass, L. Zhu, H. Wada, et al., "Detecting cloud

provisioning errors using an annotated process model," in Proc. of
the 8th Workshop on Middleware for Next Generation Internet

Computing, 2013, p. 5.

[29] L. Bass, I. Weber, and L. Zhu, Devops: A software architect’s
perspective: Addison-Wesley, 2015.

[30] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, "Cloud

monitoring: A survey," Computer Networks, vol. 57, pp. 2093-
2115, 2013.

http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2014/pr-140305/
http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2014/pr-140305/
http://goo.gl/C2d4Sz
http://blog.codinghorror.com/working-with-the-chaos-monkey/
http://blog.codinghorror.com/working-with-the-chaos-monkey/
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
http://www.infoq.com/news/2014/03/etsy-deploy-50-times-a-day

