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Abstract—Failure of application operations is one of the main 

causes of system-wide outages in cloud environments. This 

particularly applies to DevOps operations, such as backup, 

redeployment, upgrade, customized scaling, and migration that are 

exposed to frequent interference from other concurrent operations, 

configuration changes, and resources failure. However, current 

practices fail to provide a reliable assurance of correct execution of 

these kinds of operations. In this paper, we present an approach to 

address this problem that adopts a regression-based analysis 

technique to find the correlation between an operation’s activity logs 

and the operation activity’s effect on cloud resources. The 

correlation model is then used to derive assertion specifications, 

which can be used for runtime verification of running operations and 

their impact on resources. We evaluated our proposed approach on 

Amazon EC2 with 22 rounds of rolling upgrade operations while 

other types of operations were running and random faults were 

injected. Our experiment shows that our approach successfully 

managed to raise alarms for 115 random injected faults, with a 

precision of 92.3%. 

Keywords—Cloud application operations; Cloud monitoring; 

anomaly detection; error detection; log analysis. 

I.  INTRODUCTION 

Several industry surveys show severe figures of loss of 

money, market share, and reputation due to various types of 

system downtime. According to a recent survey (Nov-Dec 

2014) reported by International Data Corporation (IDC) [1], an 

average cost of unplanned downtime in fortune-1000 

companies is $100k per hour. This observation is in line with 

other industry estimates from Gartner [2], Avaya [3], Veeam 

[4], and Ponemon [5]. These industrial surveys and cost 

estimation analysis show an hourly cost of applications 

downtime between $100K and $540k per hour. A separate 

survey [6] from 205 medium to large business firms in North 

America states that companies are losing as much as $100 

million per year as the result of the server, application, and 

network downtime. Such immense financial and non-financial 

losses demonstrate the importance of tackling the root causes 

of system failures. Operation and configuration issues have 

been reported to be one of the main causes of overall system 

failure [7-9]. One recent empirical study reports that 

operational activities are the root cause of 69% of system-wide 

outages [9].   

One of the reasons for such high percentages of operational 

failure issues is the complexity of modern large-scale 

applications, especially in a cloud environment. Cloud 

environments are inherently complex due to the flexibility 

provided and the large number of resources involved. 

Applications in a cloud environment are subject to constant 

changes from sporadic operations, such as on-demand scaling, 

upgrade, migration, and reconfiguration [10]. In the 

maintenance of large-scale applications, several administrators 

perform tasks and execute various operations. Sporadic 

operations are usually implemented by a set of separate tools 

and are subject to interference from simultaneous operations 

dealing with the same resources. Executing an operation in 

such an environment is error-prone, as changes to one resource 

by one operation might affect the correct execution of other 

operations. With these complexities, it is not surprising that 

operational-related failures have been reported as one of the 

main challenges in system failure and outages [10, 11]. 

However, operation and configuration activities did not receive 

much of the attention they deserved until the recent movement 

of DevOps.  

One way to improve systems reliability is to leverage a 

suitable set of tools and techniques to monitor running 

operations, and to verify their impact on a system in real-time. 

Unfortunately, most of the past approaches to systems 

monitoring solely focused on point data [12] which is done by 

observing the state of hardware and software metrics, such as 

CPU utilization, network traffic, number of live sessions, and 

so on. This was done without monitoring the behavior of 

applications operations and inspecting the reflection of the flow 

of actions in systems resources. In current practice of 

monitoring cloud application operations, an operation’s log is 

the main source of information for monitoring the operation 

behavior. Yet, there are several severe limitations in log 

analysis [13]. Logs are usually low-level, noisy, and they lack 

information of changes to resource states. These limitations 

exacerbate the problem of monitoring operations with logs. 
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These challenges make dependability assurance of running 

operations a very difficult task. To address these difficulties, 

we have developed a novel and effective approach that adopts a 

regression-based technique to identify the correlation between 

states of resources with application operations behaviors. The 

derived correlation model is then leveraged to verify that the 

actual state of the system corresponds to the expected state of 

the system based on operation behavior at runtime. Assertions 

are used to check if the actual state of the system corresponds 

to the expected state of the system. Assertion checking is a 

crucial part of error detection and error diagnosis in monitoring 

operation process execution. Our approach improves 

dependability assurance of cloud application operations 

through the following novel contributions: 

 Identifying log events that cause changes to cloud 
resources by: 

o Clustering low-granular logs using weight timing 
and correlation coefficients; 

o Applying a regression-based statistical technique to 
learn correlation and causation relationships 
between operation behavior and cloud metric 
changes. 

 Defining assertion specifications as predictors of the 
expected behavior for system operations, based on the 
correlation and causation model. 

 Evaluating the approach on realistic data sets, where we 
learn from error-free traces, specify assertions, and 
evaluate if the assertions can detect injected faults. 

To evaluate our approach, we collected experimental data 

from case studies of rolling upgrade operations. Upgrade 

operations have been highlighted to be a high-risk and an error-

prone activity, and yet are a frequent task for systems 

maintenance and DevOps continuous deployment practices [7]. 

To obtain data that reflects a realistic environment in the public 

cloud, all the operations were run on Amazon EC2 using tools 

like Netflix Asgard and CloudWatch. We ran 22 rounds of 

rolling upgrade operations while faults were injected at 

random, and multiple concurrent operations were running. The 

evaluation of our approach on this data shows promising 

results.   

We first give a background to this work in Section II, 

followed by a motivational example as our case study in 

Section III. Then, an overview of our new approach is given in 

Section IV. Next, the details of steps of the approach are 

explained in Section V. In Section VI, we present our results, 

and evaluate our findings. In section VII, key related work is 

discussed, and finally conclusions and future work are given.  

II. BACKGROUND  

In this section we outline background knowledge of 
sporadic cloud operations, discuss why cloud DevOps 
operations commonly fail, and highlight limitations of current 
approaches to operations monitoring through log analysis. 

A. Cloud DevOps (Sporadic) Operations  

The focus of our work is on monitoring and dependability 
assurance of DevOps applications operations in public cloud 
environments, also referred to as “sporadic operations”. Some 
types of such sporadic operations are Backup, (Rolling) 
Upgrade, Cloud migration, Reconfiguration, On-demand 
scaling, Rollback / Undo, and Deployment. “There is a 
sporadic nature to these operations, as some are triggered by ad 
hoc bug fixing and feature delivery while others are triggered 
periodically.” [14]. Sporadic operations are very sensitive as 
they often have a system-wide impact. In addition, these 
operations are subject to interference from simultaneous 
operations, whether through automatic concurrent operations or 
manual changes applied to a system and its resources.  

B. VM Instance Failure  

Public cloud computing services, like Amazon Web 

Services (AWS), are designed and engineered in a way to be 

fault-tolerant for service delivery. This resiliency is achieved 

mainly through shared resources, in which the failure of one 

resource will not significantly affect the whole system. 

However, it does not mean that all cloud services are fault-

tolerant. In fact, many of these services are fault-tolerant to the 

extent that a cloud customer chooses to architect them. 

In contrast to service delivery in the cloud where the status 

of VM instances is important in an aggregated form, at the 

operational level (e.g., rolling upgrade, deployment, or backup) 

each individual instance and its attached resources can be 

important. From time to time an instance fails – e.g., an 

instance can freeze or crash and become unresponsive. These 

failures are usually caused by one of the following: a problem 

stemming from the resources that the instance is running on; 

memory over-usage due to increase of system load; an 

application bug that stresses the instance; an operating system 

kernel bug; or through random system termination for 

assessing of systems resiliency and recoverability in production 

(e.g. Chaos Monkey
1
) [15, 16]. The occurrence of any of these 

failures during an upgrade can put the upgrade process on hold 

or derail it; hence, it is important to adopt a mechanism to track 

and trace the successful execution of an operation. 

C. Concurrent Operations and Configuration Changes  

Changes in cloud configuration are one of the reasons that 

make operation validation in this environment very 

challenging. A recent Gartner report states that over half of the 

outages of mission-critical systems are caused by “change, 

configuration, release integration and handoff issues” [11]. A 

cloud provides a configurable and scalable resource sharing 

environment, and thus software applications and services are 

exposed to frequent configuration changes, due to efficient and 

cost-effective use of these shared resources.  

Examples of frequent configuration changes are: detaching 

or attaching an Elastic Block Storage (EBL) disk volume from 

/ to an instance; changes in conditions and configuration of an 

                                                           
1 Chaos Monkey is a service that was developed by Netflix to test the 

resiliency and recoverability of applications running on AWS. Chaos 
Monkey’s job is to randomly kill instances within their group of systems.  



Auto Scaling Group (ASG)
2
, e.g., its size (horizontal scaling 

in/out); manual termination or reboot of an instance; instance 

manipulation for testing purposes; migration of machines to 

different zones or regions; or changing from one machine type 

to another (vertical scaling up/down). Such configuration 

changes of cloud resources may happen frequently. They are 

another motivation for our work, showing that the validation of 

sporadic operations has critical importance. 

D. Log Analysis 

There are several limitations and challenges in systems 

monitoring from logs. First, logs are often low-level, noisy, and 

with inconsistencies in style [13, 17]. Many of the current 

practices of generating logs focus on developer needs during 

development time, rather than considering administrative needs 

in production [9]. Second, logs are voluminous, and it is 

usually difficult to derive which log line, or which set of log 

lines, is responsible for an action in changing a state of a 

system resource. In addition, the granularity level of log data is 

usually different from resource metric data, and this uneven 

granularity level makes the mapping between these two more 

challenging. Third, monitoring execution behavior of an 

operation solely based on the operations’ log is not adequate. In 

large-scale applications, in which hundreds of shared resources 

are involved, resources are exposed to changes from multiple 

concurrent operations from time to time. Thus, it is not trivial 

to isolate the execution of one such operation from other 

running operations. To tackle these limitations, this study 

attempts to leverage cloud metric data to cross-validate the 

execution of cloud DevOps operations. 

III. MOTIVATING EXAMPLE - ROLLING UPGRADE CASE STUDY 

Our study aims to investigate whether it is possible to 
derive a strong correlation model between event logs of 
operations and the observable metrics of cloud resources. To 
conduct this investigation, we chose rolling upgrade, as 
implemented by Netflix Asgard

3
 on top of Amazon Elastic 

Computing Cloud (EC2), as a case study of such an operation.   

A rolling upgrade operation is a good example of a sporadic 
cloud operation that incurs interference from other operations. 
Applications in the cloud are deployed on a collection of 
virtual machines (VMs). Once there is a new version of the 
application released, a new virtual machine image is prepared 
with the new version – this is also called “baking the image”. 
Then all the current virtual machines will be replaced by newly 
baked image through an upgrade process, such as rolling 
upgrade. A rolling upgrade replaces VM instances, x at a time 
– e.g., upgrading 400 instances in total by upgrading 10 
instances concurrently at any given time during the operation. 
Asgard upgrades each EC2 instance through the following 
main steps: remove and deregister the instance from Elastic 
Load Balancer (ELB), terminate the instance, wait until the 
auto-scaling group replaces the missing instance with a new 
instance (running the updated version of the application); the 

                                                           
2 Auto Scaling allows automatic scaling in or out, i.e., de/increasing the 

number Amazon EC2 VM instances automatically according to conditions 

defined by a customer.  
3 https://github.com/Netflix/asgard 

new instance is registered with the ELB. There is a chance that 
an instance faces a configuration change or a failure at any time 
during these steps.  

The contemporary practice of continuous deployment 

focuses on pushing every commit into production – as long as 

it passes a large number of tests. In such an environment, 

upgrades can occur with high frequency – between few times a 

week [18] to many times per day [19], updating hundreds of 

machines, without causing any service downtime. Therefore, 

we felt the rolling upgrade was an excellent exemplar target 

operation for our investigation in this study. 

IV. OVERVIEW 

Our new approach uses a statistical technique to extract a 
regression-based model that explains the correlation and 
potentially causalities between operation event logs and cloud 
resource metrics.  The output of the model is used to generate 
assertions, which are then leveraged for anomaly detection of 
run-time execution of cloud application operations.  

To derive assertions from observations, we assume that 
there is a stream of time-stamped events, such as events 
represented by log lines, and at least one cloud platform metric 
that can be observed. Fig. 1 gives an overview of the approach. 

Logs represent the behavior of an operation while metrics 
show the status of a system. As can be seen in Fig. 1, event 
logs are generated at various points in time, and metrics are 
collected at potentially different points in time. Collecting 
monitoring data points usually happens at fixed intervals, such 
as every minute or every 5 minutes in Amazon CloudWatch. In 
contrast, observation of system operations behavior through 
event logs happens at non-fixed intervals, such as the 
occurrences of few event logs within one second, and then the 
absence of any event logs for the next few seconds or even 
minutes.  

Besides directly observed metrics, there can also be derived 
metrics, such as the difference between the previous and the 
current data point, or the n-th derivative. Furthermore, the 
observation component can pull metrics explicitly, e.g., 
through API calls. This can be done at fixed intervals, in which 
case the result is very similar to regularly collected metrics, or 
pull requests can be issued whenever an event was observed. 

This study explores the relationship between the behavior 

 
Fig. 1 Assertion derivation from log and metric observations.  

*Note: A1..A5 are activities; Metric1..3 are metrics like CPU utilization, 

network usage, number of instances changes etc. 

 



of application operations and a cloud’s resource states. Our 
research investigates whether adopting a log analysis technique 
along with a regression-based technique is practical to model 
the relationship between cloud operation behavior and the 
changing states of cloud resources.  The outcome of this effort 
is used for detecting anomalies that are happening during the 
execution of sporadic cloud operations. The high level steps of 
the approach, also shown in Fig. 2, are as follows: 1) data 
collection and data metrics derivation; 2) logs-metrics data 
mapping; 3) Logs clustering; 4) Correlation derivation between 
logs and metrics 5) Assertion specification for anomaly 
detection. We describe these steps in detail in the next section. 

V. APPROACH TO ASSERTION DERIVATION FROM STATISTICAL 

OBSERVATIONS  

In this section, we give the details of the key steps in our 
approach, as outlined above.  

A. Data Collection and Data Metrics Derivation 

To set up an experiment and obtain data from a realistic 
environment, we collected data by running rolling upgrade 
operations in a public cloud environment.  To this end, we used 
environments and tools that are in wide-spread use in industry: 
clusters of VMs on Amazon EC2, grouped into Auto Scaling 
Groups (ASGs), Amazon CloudWatch for collecting cloud 
monitoring metrics, and Netflix Asgard for executing the 
operations and collecting event logs.  

1) Metrics from CloudWatch 

CloudWatch provides monitoring metrics for many Amazon 

services, including EC2, ASG, ELB, etc. In our experiment, 

CloudWatch is used to collect metrics data for these three 

services. CloudWatch can collect this data at most once per 

minute. The data are available in JSON file format and can be 

retrieved through an API. By default, several metrics related to 

individual VM instances can be collected by CloudWatch, 

including CPU utilization, network traffic (incoming / 

outgoing), failed health checks, and so on. For a whole ASG, 

averages can be obtained. The data can be used for purposes 

like monitoring the health of the system or for custom auto 

scaling. 
In our study, to verify the effect of logged events, we are 

interested in the metrics that represent the transitions between 
states of a VM instance. For example, once a termination 
action is triggered through operation execution, one VM 
instance should transition from state “running” to “shutting-
down” and eventually to state “terminated”. Fig. 3 shows the 
instance lifecycle of an Amazon EC2 instance.  

 Interestingly, the metrics available from CloudWatch 
directly include no metric that explicitly shows the number of 
instances started or terminated within an ASG. The total 
number of healthy machines is only partly indicative of that: if, 
during any minute, a new machine becomes active, and an old 
one is terminated directly after, the total number of healthy 
machines remains static. This is a very common occurrence 
during rolling upgrade. However, the data points for individual 
instances, like CPU utilization, is only present when the 
machine is active. We derived precise metrics for the numbers 
of started and terminated instances, respectively. These metrics 
derived from CloudWatch data are a cornerstone in our 
approach, insofar as the case of rolling upgrade is concerned. 

2) Event logs from Operations Tools 
To draw any mapping between cloud metrics and 

information from operation log lines in textual form, we 
needed to extract a set of metrics that show the occurrences of 
different event logs. Although the styles of logging might be 
different, almost all type of logs contain time-stamped 
information, whether they are application logs, database logs, 
or operation logs. Furthermore, log message represent 
information about an event, including logs that indicate 
preparation or waiting periods. Hence, we assume a logged 
event must have at least two attributes: a timestamp and an 
event description.  

In our case study, we used Netflix Asgard to execute rolling 
upgrade operations and to collect operation logs. Asgard is an 
open-source web-based tool published by Netflix for managing  

 
 

Fig. 2 Workflow of extracting correlation between logs and metrics 

 
 

Fig. 3 Amazon EC2 instance lifecycle- source: AWS documentation. 



cloud-based applications and infrastructure. Asgard automates 
some of the AWS cloud operations such as deployment and 
upgrade. Asgard was developed by Netflix, AWS’s largest 
customer, to provide a higher-level management interface, and 
since it has been released publicly is in wide-spread use. Its log 
fulfils our base assumption, and contains high-quality textual 
messages – albeit the latter is not required in our approach. 

In programs with any form of repetition it is common to 
have logged events of recurring event types. In our case study, 
every time a VM is terminated, the same type of event is 
logged, where only certain parameters (VM ID, timestamp, 
etc.) differ. As part of our data transformation of event logs, all 
unique types of event logs for an operation are identified. For 
each event type, similar to the regular expression generation 
described in [20], we extract a regular expression that matches 
exactly the log lines belonging to this type [20]. During log 
processing, the event type for each log line can be identified by 
matching the log line to the regular expressions. We can then 
derive a metric that shows the occurrence of each event type 
over time, throughout the operation process. Fig. 4 shows the 
pattern of occurrences of the event logs throughout the process 
of rolling upgrade operation for updating four virtual machine 
instances. Looking at the figure, it reveals that there are 
recurring behavior pattern that happening at different time 
window. Presenting textual log events to a form of quantitative 
metrics enables us to visualize the behavior of the system 
through logs, which itself can be helpful for better 
understanding of the behavior of application operations. 

B. Mapping Event Logs to Metrics Data 

Amazon CloudWatch offers metrics with a granularity no 

finer than 1 minute. In contrast, events can be logged with a 

frequency of split seconds or several minutes, as is in part the 

case in our case study. Therefore, the log and metric data need 

to be mapped. Since we can observe actual changes to cloud 
resources only through the CloudWatch metrics, i.e., no more 
often than once per minute, we chose to interpolate the 
occurrence strength of event log types that occurred within 
each minute-long time window to the respective minute. The 
number of occurrences for each event type is extracted as 
described above in Section  V. A.  

Specifically, the interpolation indicates at which second of 
a minute an event happened. Indicating a point of time for the 
derived metric for log events would show a relative interval of 
happening of set of log events. Therefore, we parse the 
timestamp of each log message and extract the point of time 
(seconds of a minute) the event happened. Then a relative 
occurrence value is calculated as an interpolated value, 
capturing the time-wise proximity of the event to the full 
minute before and after the event happened. For instance, say 
event E1 happened at x minutes and 30 seconds – then its 
occurrence strength would be counted as 0.5 for both minute x 
and minute x+1 ; if it happened at x minutes and 15 seconds, 
occurrence strength for minute x is 0.75 and 0.25 for minute 
x+1 . This interpolated occurrence strength allows us to map 
the event log data onto the one-minute interval cloud metric 
data. 

C. Clustering Logged Events 

We cluster logged events into higher-level activities, for 
two reasons: (i) Logs are often low-level and voluminous; by 
raising the level of abstraction, users may find the information 
provided more useful. (ii) If a set of event types always co-
occur, then high correlation among them cause a problem of 
multicolinearity in some statistical models, which might lead to 
unreliable and unstable estimates. 

To facilitate the clustering process, we adopted the Pearson 
product-moment correlation coefficient method to derive a 
measure of association strength between logged events. Based 
on the interpolated occurrence strength described above, we 
use the Pearson correlation coefficient to automatically 
determine where the strongest association exist between any 
two event types. Event types with a very high correlation can 
then be combined into activities. 

In our data analysis, we used SPSS to derive the Pearson 
correlation coefficient between variables by extracting the 
correlation strength and the direction of the linear association 
between the types of event logs. Table. 1 shows a snippet of the 
Pearson-r values for correlation distance between 18 different 
event types of the rolling upgrade operation of upgrading 40 
VMs instances, four at a time. The value of Pearson-r ranges 
from -1 to +1; a value of zero or very close to zero indicates 
that there is no correlation between two variables. A value 
close to 1 indicates a strong positive correlation between the 
variables, i.e., in our case, that the events of these types 

Table 1. Snippet of a Pearson Correlation table 

 

 
 

Fig. 4 Visualization of occurrence of 18 event types of rolling upgrade for 4 
VM instances 



(almost) always co-occur. Negative values indicate that events 
of the respective event types rarely co-occur. It is important to 
note that clustering event logs simply based on the correlation 
of occurrences of the events might not lead to a set of 
meaningful activities. Where user interaction is a direct 
application, other factors should be taken into consideration, 
e.g., as done in [20]. 

D. Statistical Event-Metric Correlation Derivation  

Correlation is defined as a statistical tool to measure the 
degree or the strength of association between two or multiple 
variables, whereas causation expresses the cause and effect 
between variables [21]. It is important to note that while the 
presence of causation certainly implies correlation, the 
existence of correlation only implies a potential causation. For 
instance, one may observe a correlation between power 
consumption and number of failures; yet the underlying cause 
of a higher number of failures could be due to the increase 
chance of observing any failure when a higher number of VMs 
is involved as the result of scaling up process to respond 
incoming higher workload traffic.  

Correlation is a powerful tool, as it can signify a predictive 
relationship that can be exploited in practice, especially for 
forecasting. To infer whether a correlation implies causality, 
one may need to make sure the correlation is extracted from a 
controlled environment, i.e., to make sure there are no factors, 
other than the ones included in the analysis, affecting the target 
variable. If this criterion is fulfilled, a meaningful correlation 
can be interpreted as causation. 

For the purpose of this study, we are interested to find the 
effect of operation actions on cloud resource state changes. To 
this end, we start from data that has been collected for a period 
of time and has sufficiently many data points. We then use a 
regression-based technique to discover correlation between 
logged events and changes in metrics, i.e., the absence, 
presence, and strength of such changes. In our running 
example, e.g., whenever there is a log event that indicates a 
termination request for one VM has been issued, the 
expectation is that within the next minute one VM will traverse 
from status running' to 'shutting-down', and finally 'terminated'. 
As the example suggests, it is rational to assume that there is a 
direct linear relation between a logged action and its effect as a 
change of a VM state.  

In our analysis, we adopted a Multiple Regression 
technique, namely Ordinary Least Squares (OLS) regression. 
“There are two general applications for multiple regression: 
prediction and explanation” [22]. This means, first, multiple 
regression can be utilized to predict an outcome for a particular 
phenomenon, based on the knowledge available from some 
other correlated variables [23]. Second, multiple regression can 
be used to understand how much of the variation of the 
outcome can be explained from the correlated variables.  
Therefore, multiple regression is done for several independent 
variables (IV) as predictors, and one dependent variable (DV) 
as the outcome.  

Given 𝑦 is the DV, 𝑥1 … 𝑥𝑛 to be the IVs, and ϵ to be the 
error term or noise, the general form of the linear regression 
function is 

𝑦 =  𝛼 +  𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 +  𝜖  

where the intercept 𝑎 denotes a constant value that is the 
expected mean value of 𝑦 when all 𝑥 = 0. The coefficients 
𝛽1 … 𝛽𝑛 denote the effect of each variable on an overall model. 
The coefficient parameters measure the individual contribution 
of independent variables to the prediction of the dependent 
variable after taking into account the effect of all the 
independent variables.  

Several types of linear regression models are based on the 
above mechanism, and these types differ in the kinds and 
distribution of data they are suitable for. One challenge is to 
find a model that fits the data at hand well. Most of these 
models can be generated by using standard statistical software 
packages such as R, SPSS, SAS, STATA, and so on. We 
analyzed our data with multiple regression and generalized 
linear regression models, including Poisson regression and 
Negative Binomial regression. It is beyond the scope of this 
paper to explain the details result of these models. The multiple 
regression model (OLS) provided the best fit for our data.  

Multiple regression is a robust model, used as the base of 
data analysis in many disciplines. It is important to note that, in 
contrast to many common uses of multiple regression, e.g., in 
the social and medical domain where the sample data 
collection is expensive, limited, and comes with a degree of 
bias, for our use in log and metric data analysis there is higher 
confidence in accuracy of the sample data as they are collected 
through machine-based observations. Further, in our approach 
the emphasis is on validation of the regression results through 
empirical evaluation, rather than mere generalization from the 
observation of sample data.  

E. Assertion Derivation for Fault Detection 

Once we discovered correlation and causation relationships 
between events and metrics, these can be formulated as 
assertions, such that an assertion evaluation service can 
determine at runtime if the assertions are fulfilled. If any 
assertion is violated, the service will raise an alarm, e.g., to 
trigger automatic diagnosis or remediation actions. To derive 
assertions, we extract the regression equation from the multiple 
regression coefficient results, where 𝑦 denotes the dependent 
variable (e.g., number of terminated instances), and 𝑥1 and 𝑥3 
refer to the relevant activities, the regression equation is: 

𝑦 = α + β1 ∗ 𝑥1 + 0 ∗ 𝑥2 + β3 ∗ 𝑥3+. . . +0 

From the model, we learn concrete values for 𝛼 and the 𝛽𝑖. 
In particular, for any 𝑥𝑖 where the explanatory anlaysis of 
correlation is below the threshold, we set 𝛽𝑖  =  0. At runtime, 
each log event is processed as outlined earlier in this section, so 
that an interpolated occurrence strength for each of the 
independent variables (𝑥1 and 𝑥3 in the example) can be 
obtained. Every minute, a prediction can be calculated and 
compared with the actual CloudWatch metrics. 

One challenge remains: while some of the CloudWatch 
metrics are discrete values (such as the number of started / 
terminated VMs), the prediction always has a continuous result 
value. This value then needs to be discretized. The easiest 
method for discretization is rounding the number, but that may 
lead to prediction with a fairly low confidence, e.g., if the 



predicted value states that 𝑦 = 0.5 VMs were terminated. 
Another method is to define a threshold t, such that 0 <  𝑡 <
 0.5, and the prediction is set to the integer i closest to y iff y is 
closer to 𝑖 than 𝑡, i.e., |𝑦 − 𝑖|  <  𝑡. Finding a suitable threshold 
has to be done for each application scenario separately, as a 
tradeoff is needed between missing too many real alarms (false 
negatives) and receiving too many false alarms (false 
positives). 

VI. EXPERIMENTAL RESULTS AND EVALUATION 

In this section, we describe how we applied our approach to 
the case study, first by learning a model from observations of 
positive cases, and second by using the learned model for 
prediction and fault detection in cases where faults were 
injected. 

A. Logs Clustering Learning by Pearson Coefficient 

We generated the Pearson correlation coefficient for two 
different data sets. First, we generated correlation data for 
running a rolling upgrade of 8 virtual machine instances, 
upgrading two instances at a time. Then, we defined a rule that 
event types to be grouped together where they had correlation 
strength of more than 75% (Pearson-r > 0.75) whereas values 
show highly statistically significant (P-value <0.01). In other 
words, as a rule, any event type of activity should indicate at 
least 75% correlation with any other event types of the group 
that formed an activity. One may choose a higher or lower 
level depends on the desired abstraction level to obtain from 
logs. We chose Pearson-r > 0.75 as it is low enough to avoid 
multicollinearity in our regression analysis while it is high 
enough to associate strongly correlated event types together. To 
make sure that the correlation of activities is not affected by 
different configuration and scales of the operation, we applied 
the same process for running rolling upgrade of 40 virtual 
machine instances, upgrading four instances at a time.  

In both experiments, although there were slight changes in 
correlation values, the log abstraction led to identical clustering 
results. The 18 event types are grouped into six clusters of 
event logs (i.e. activities). Note that the whole process of log 
abstraction was done in an automated manner without relying 
on domain knowledge. To assess how meaningful our log 
abstraction result is, we investigated the context of the logs 
entries; the result, which listed in Table 2, shows that all the 
event types of each cluster are meaningfully related to each 
other. For instance, the four events of DisablingXInELB, 
RemoveInstanceFromELB, TerminateInstance, and 
WaitingInstancesPending that are clustered automatically 
together are related to the action of terminating a VM instance. 
For simplicity of the analysis, each cluster was given a name 
according to the context of its event types.  Logs to activity 
mapping are listed in Table 2. 

Further, we compared our result with the log abstraction of 
the same operation that was reported in a previous study [10], 
which was extracted based on domain knowledge expertise. In 
the comparison, we did not find any conflict in term of 
mapping event logs to activities though the level of abstraction 
is slightly different in the previous work. Based on the above, 
we concluded that the derived log abstraction is meaningful 
and appropriate for further analysis with regression. 

B. Correlation and Causality Learning with Multiple 

Regression Model 

 To perform correlation and causation analysis, we used the 
rolling upgrade operation. Similar to the log-clustering step, we 
performed our analysis based on two separate case studies of 
rolling upgrades: first, running the multiple runs of rolling 
upgrade of 8 instances, upgrading 2 instances at a time; and the 
other, running rolling upgrade of 40 instances, upgrading 4 
instances at a time. While we gave a summary of the overall 
fitness of the model for the both experiments in the Table 3, for 
conciseness from here on we focus on the details of the 
learning approach based on the case of 40 instances. 

 To investigate the relationship between occurrence of event 
types and cloud metrics in the regression model, the activities 
derived from log clustering were assigned as predictor 
variables and the termination and start of instances as two 
dependent variables, i.e., in two separate models. A multiple 
regression was run to predict termination of instances given six 
activities from 514 records data of 10 rounds of running rolling 
upgrade operations for upgrading 40 instances in Amazon EC2. 
These six variables statistically significantly predicted 
termination of instances, F(4, 509) = 1317.097, p < .0005, 
adj. R

2
 = .912. There was a very strong, positive, linear 

correlation between multiple six activities and terminated 
instances (R = 0.955). All six variables added statistically 
significantly to the prediction, p < .05. The result shows 91.2% 
of the variation in Terminated Instances can be explained by 
the linear relationship between above five variables and the 
Terminated Instances, R

2 
= 0.912. In other words, the 

regression model, indicating a very good fit to the model, and 
explained 91.2% of the variability in the yield data. A similar 
interpretation of the model can be inferred from Table. 3 for 
the experiments with 8 instances and 40 instances for both 
terminated and started instances. As with started instances, we 
observe less coefficient determination in comparison with 
terminated instances, yet the values are strongly correlated and 
statistically significant, which indicates the model is a fairly 
good fit for the data. 

Table 2. Event logs to activity abstraction for the rolling upgrade operation 

Event (Shorten name derived from event log 

message) 
Activity 

ET01_StartedThread 

ET02_UpdatingLaunchWithAmi 
ET03_CreateLaunchConfig 

ET04_UpdatingGroupXToUseLaunchConfig 

ET05_UpdateASG 
ET06_SortedInstances 

ET07_GroupXInstancesWillBeReplacedXAtA

Time 

Start of Rolling 

upgrade (sorted 
instances) 

 

ET08_DisablingXInELB 
ET09_RemoveInstanceFromELB 

ET10_TerminateInstance 

ET11_WaitingInstancesPending 

Remove Instance from 
ELB and Terminate 

Instance 

ET12_ItTookXminInstanceToBeReplaced 

ET13_InstanceInLifeCycleStatePending 

ET14_WaitingForInstanceToGoInService 

Instance Replacement 

Process 

ET15_ItTookXminInstanceToGoInService 
ET16_WaitingForInstanceToBeReady 

New Instance to go in 
service 

ET17_InstanceXIsReady Instance is ready 

ET18_Completed Rolling upgrade 

completed 

 



 

One of the objectives of doing multiple regression analysis 
was to find an explanatory relationship between independent 
variables (activities) and the dependent variables (cloud 
metric). We seek to distinguish the activities that are likely to 
affect the target metric from the others. To perform such 
analyzes, we look at the Coefficient results generated by 
regression analysis, Table 4.  

By looking at p-value in Table. 4, we observed that 
activities A3 and A4 are statistically insignificant (p >.005). 
Therefore, we conclude that these two variables can not explain 
the variation of the target variable. Further, Standardized 
Coefficient shows the contribution of activities 01, 06 are 
almost zero. Above observation helped us to narrow down the 
contributed activities to A3 and A5. We run the multiple 
regression again with these two activities for the outcome as 
shown in Table 5. 

Given the high difference between the activity 03 (0.836) 
and the activity 05 (0.15), it can be concluded the activity 03 is 
the main cause of termination of an instance. The context of the 
activity log confirms that the model was effective to identify 
correctly the activity log that causes the termination, which 
these finding can be used to define assertion specification as it 
was explained in Section V.E. 

 

Table 4. Coefficient Correlation - 40 instances – Terminated Metric 

 
𝛽 Std. Error B Sig. 

Intercept (Constant) 0.083 0.027 --- 0.003 

A1_Start of Rolling upgrade 0.529 0.208 0.035   0.011 

A2_Terminate Instance 1.139 0.026 0.836 0.000 

A3_Instance Replacement -0.023 0.016 -0.019 0.168 

A4_New Instance to go in 

service 
-0.023 0.018 -0.017 0.214 

A5_Instance is ready 0.201 0.026 0.15 0.000 

A6_Rolling upgrade 

completed 
-0.73 0.184 -0.058 0.00 

*Note. 𝛽 = Unstandardized regression coefficient; B = Standardized 
regression coefficient; Sig. = p-value 

 

Table 5. Coefficient Correlation for identified influential factors  
- 40 instances - Terminated Metric 

 
𝛽 Std. Error B Sig. 

Intercept (Constant) 0.051 0.021 --- 0.018 

A2_Terminate Instance 1.197 0.024 0.879 0.000 

A5_Instance is ready 0.149 0.023 0.111 0.000 

*Note. 𝛽 = Unstandardized regression coefficient; B = Standardized 

regression coefficient; Sig. = p-value 

C. Prediction and Fault Detection 

In order to evaluate how well the derived assertions can 
detect failures, we conducted another experiment which was 
run separately from the one used to learn the model. The raw 
data of this experiment was obtained from experiments run by 
our colleagues [24]. The experiments were conducted on 
Amazon EC2, upgrading 8 instances, 2 instances at the time. 
Rolling upgrade was executed while multiple tasks (HTTP 
loads, CPU intensive tasks, and Network intensive tasks) were 
running, and faults simulating individual VM failure were 
randomly injected into the system. We obtained data on 22 
rounds of rolling upgrade operations, including 574 minutes of 
metric data and 5335 lines of logs emitted by Asgard. A total 
of 115 faults were injected at random. 

As explained in Section  V.E, the equations derived from 
multiple regression models can be used to predict the number 
of started / terminated instances within the last minute: given 
the observed log lines how many VMs should have been 
started or terminated? If this predicted value does not match the 
actual value, an alarm is issued. We aim to find out how 
accurately our approach can identify the anomalies. Since the 
injected faults were all VM failure, our approach tries to 
distinguish between VMs being terminated due to legitimate 
operational activity and cases caused by fault injection. We 
choose to inject VM failure because the scope of our work has 
a focus on DevOps/sporadic operations. For such operations - 
in particular, for the rolling upgrade case study used in this 
study - the state of VMs is a prime source of anomalies. 
Therefore, it was reasonable to generate failure types that cause 
VM termination rather than other types of failures. 

To measure the Precision and Recall of the prediction we 
classified the result of the prediction into four categories: True 
Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN). Table 6 explains these four categories in 
terms of an alarm being issued (or not), and a fault being 
injected (or not). For any of the 574 minutes of data, we aim to 
raise an alarm when a fault was injected (TP) or raise no alarm 
when no fault was injected (TN). FP and FN thus mark cases 
where the prediction did not work. These four categories are 
the basis for calculating precision, recall, and F-measure. 
Precision is a measure to assess the exactness of the result: the 
percentage of the valid issued alarms out of all issued alarms, 

=
𝑇𝑃

𝑇𝑃+𝐹𝑃
. Recall is a measure of completeness of correct 

alarms: the percentage of injected faults where an alarm was 

raised, =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. The F-measure is the weighted average 

(harmonic mean) of precision (P) and recall (R), 𝐹1 = 2 ∗
𝑃∗𝑅

𝑃 + 𝑅
. 

In our study, we observed possible delays between an 
operation action and its effect becoming observable. For 
instance, consider the duration of terminating one VM: the time 
between when the respective event was logged until the VM is 
actually terminated may vary between fifteen seconds and three 
minutes. It is thus not uncommon that a VM is terminated in 
one minute, but CloudWatch metrics only reflect the 
termination in the next minute, or even later. This delay is 
observable in legitimate operations’ actions, as well as in 
injected faults. Therefore, we studied the results of applying 
three different time windows (TW) for prediction: zero minutes 

Table 3. Coefficient Determinations of multiple regression analysis 

Experiment Metric R R Square Sig. (p) 

8 instances Terminated .918 .842 .000 

8 instances Started .827 .683 .000 

40 instances Terminated .955 .912 .000 

40 instances Started .886 .786 .000 

 



Table 6. Classification metric for the generated alarm 

 
Fault Injected Fault Not Injected 

Prediction ≠ Actual: Alarm TP FP 

Prediction = Actual: No Alarm FN TN 

(0mTW), i.e., only the current minute; one minute distance 
(1mTW), i.e., the current minute, the minute before, and the 
minute after; and two minutes distance (2mTW), i.e., from two 
minutes before to two minutes after. It should be noted that a 
longer TW also delays when the result of the prediction 
becomes available. This is an application-specific trade-off in 
practice: is it worth waiting two minutes longer for an alarm, if 
the precision goes up by 𝑥 percent? The results of monitoring 
the operation with the three different time windows are shown 
in Table 7: Precision, Recall, and F-Score are given without 
considering the impact of the ripple effect of the faults. Faults 
are injected randomly on the VM instances, and the 
occurrences of the faults are logged. However, faults may have 
ripple effects that lead to seemingly false alarms at a later stage 
of the operations process, as explained below. As can be seen 
from Table 7, there are strong differences between the basic 
precision value of 0mTW and 1mTW of 0.145 (14.5%). The 
difference between 1mTW and 2mTW, in contrast, is rather 
small. This observation can be explained because of the time 
delay that the action of termination takes to be completed: the 
majority of terminations is completed either within the current 
minute or the next minute – it rarely takes more than that. Time 
window size for alarms can be configurable in a real-time 
monitoring system. For our experiment, we concluded that 
1mTW offers a good trade-off between capturing most 
anomalies and keeping the delay short. 

 Not all the effects of injected faults are seen immediately. 
There are cases where failures have ripple effects. Table 8 
shows three types of ripple effects we observed in the 
experiment, as well as their number of occurrences. The first 
two types are essentially race conditions when rolling upgrade 
and fault injection both want to terminate a particular VM.  In 
particular, rolling upgrade retrieves the list of VMs to be 
replaced at the beginning of the process, and subsequently goes 
through the list and attempts to terminate instances. If a VM 
has already been terminated earlier by fault injection – whether 
or not correctly detected by our approach at that time – this is 
not taken into account by Asgard. Instead, the log states that 
Asgard attempted terminating a VM, and no such effect is 
observed – hence an alarm is raised. Since no fault had been 
injected at that time, the alarm is counted as FP in the basic 
detection, cf. Table 7. To distinguish actual failed prediction 
from ripple effects (where the prediction behaved as expected), 
we analyzed all 30 FP and 7 FN cases for the chosen 1mTW 
(in total 37 cases), by looking at details of the log lines and 
metrics. We found that 28 out of 37 FN/FP cases were caused 
by ripple effects of fault injection. Since the prediction behaved 
as expected in these cases, we re-classified them as TP/TN, 
leading to the final results shown in Table 9 and in Fig. 5. 

Table 7. Evaluation results - basic detection  

Evaluation Metrics 0mTW 1mTW 2mTW 

Precision 0.567 0.712 0.745 

Recall 0.670 0.914 0.921 

F-Score  0.706 0.826 0.849 

 

Table 8.  Type of ripple effects observed in the experiment 

Occurrences Ripple Effect Explanation 

21 
Rolling upgrade’s attempt to terminate a VM has no 
effect, since the respective VM has already been 
terminated by fault injection. 

5 
Fault injection's termination attempt fails due to instance 
being already terminated by rolling upgrade earlier. 

2 Instance is terminated by fault injection while being 
pending to be started. 

 

VII. RELATED WORK 

There are two main areas of work related to our approach: 
error detection and error diagnosis through log analysis, and 
anomaly detection through system resource health and 
performance monitoring.  

System error detection and diagnosis is an effort that relies 

on relationship analysis of a deficiency in a system and its 

observable symptoms. In recent years, several studies have 

been conducted to automate this process. Kavulya et al. [25] 

have categorized automated techniques based on mapping  the 

relationship between systems symptoms and failure. These 

techniques include rule-based techniques, model-based 

techniques, statistical techniques, machine-learning 

techniques, count-and-threshold techniques, and visualization 

techniques [12, 25]. Adopting each of these techniques comes 

with limitations. For example, rule-based techniques require 

large knowledge bases that are difficult to maintain; model-

based techniques require a detailed understanding of the 

system. Statistical techniques have been widely used for 

anomaly detection in system monitoring [12, 26, 27]. Most of 

the existing work in this domain focus on changes in non-

contextual data points (CPU utilization, memory usages, and 

etc.) and raise an alarm when there are breaches of thresholds. 

In our research we were not interested in seeing the non-state-

based metrics like CPU utilization as we are specifically 

interested in anomaly detection during running DevOps 

Table 9. Evaluation results – detection result with ripple effect 

Evaluation Metrics 1mTW 1mTW_with Ripple Effect 

Precision 0.712 0.923 

Recall 0.914 1.000 

F-Score  0.826 0.960 

 

 
Fig. 5 Showing the Precision, Recall, and F-Score for three time window and 

for the investigated cases for 1mTW 

 



operations. For anomaly detection during such sporadic 

operations, state based metrics like VM start / termination are 

most suitable. Existing literature is very rich in anomaly 

detection with data points; however, there have been few 

studies on using contextual and behavioral information for 

anomaly detection [12]. In this direction, our research focuses 

on using contextual logs as one of the sources of information 

for anomaly detection along with metrics data. 
 

Most past approaches that use contextual information are 

appropriate for offline assessment, rather than for online 

assessment. Other approaches are mostly intrusive, i.e., they 

require changes to be applied to the system. POD-Monitor [24] 

attempted to address this gap by using contextual logs and data 

point metrics to suppress false alarms of detected anomalies in 

resources usage. However, their approach lacks the support for 

anomaly detection of steps of cloud operations that are 

proposed in this paper. Their paper considers operational 

context on the level of whole operation processes and focus on 

anomaly detection on resources, whereas we conduct anomaly 

detection at fine-grained level of individual steps of operations. 

Another approach that addresses the above limitations, in part 

of one of the author’s previous work, called POD-Diagnosis 

[10]. This approach models the cloud sporadic operations as 

processes and uses the process context to catch errors, filter 

logs and perform on-demand assertion checking for online 

error handling [10, 28]. This technique addresses the problem 

of online validation of operations to some degree. However, 

the approach has two limitations, which we discuss below: it 

merely relies on logs as the only source of information, and it 

requires manual assertion specification.  

The first limitation of using system operation logs as the 

main source of information for error diagnosis suffers from 

logs often being low-level, noisy, and voluminous and with 

inconsistencies in style [13, 29]. These limitations exacerbate 

the difficulty of validation of cloud operations. These problems 

make the validation of processes merely with log analysis less 

reliable. Therefore, it is important to employ one or more 

additional sources of information along with the information 

extracted from logs for validation of running operations. The 

second limitation is related to manual assertion specification. 

Assertions check if the actual state of a system corresponds to 

the expected state of a system. In the previous work [10], 

intermediate expected outcomes of process steps have been 

defined manually as assertions. This method is suboptimal for 

the following reasons. First, manual assertion specification is 

very time-consuming and thus, with fast evolving changes of 

modern applications, might not be practical. Second, manual 

assertion checking might not correctly correlate the changes of 

operation state with changes to cloud resources. Therefore, 

there may be a lack of precision in the assertion specification. 

Third, manual assertion specification relies on the domain 

knowledge of the administrator specifying the assertion. This 

knowledge may be incomplete, and its encoding in assertions 

may be incomplete. For instance, for a 10-step process 

touching on 20 resources with an average of 10 parameters 

each, a full specification of all desired and undesired changes 

results in 10x20x10=2000 potential assertions. It is unlikely 

that any administrator will (correctly) specify all of them. This 

will result in a partial coverage of assertions, potentially 

leaving out important causes for failures simply because the 

administrator has never experienced them. Our approach 

differs from these approaches as we rely on statistical 

correlation analysis rather than domain knowledge. 

System monitoring is of paramount importance for both 

cloud service providers and cloud service consumers. 

Analytical tools in cloud monitoring can be used for real-time 

performance monitoring to quickly uncover performance 

bottlenecks and troubleshooting unknown issues. Monitoring 

data can be collected through automatic calls of APIs in near 

real time fashion. This capability provides a significant 

opportunity to leverage such data for anomaly detection. Many 

commercial and open source platforms and services are 

available for cloud monitoring, including CloudWatch, 

AzureWatch, CloudKick, Nagios, and OpenNebula. A detailed 

comparison of monitoring platforms and services is given in 

[30]. One of the highlighted issues in this domain is the lack of 

cross-layer monitoring [30]. Cross-layer monitoring is a 

challenging task, as it is difficult to map two different 

monitoring data types and to interpret them in an integrated 

form. Our research, in particular, contributes in this direction, 

as we consider two different sources of monitoring 

information.  

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we have addressed the problem of monitoring 
cloud application operations through log and metrics analysis. 
Our contribution is a novel approach that assists in the reliable 
assurance of correct execution of sporadic cloud operations as 
are common practice in DevOps, especially the staged upgrade 
of running VMs. Core to this approach is a regression-based 
correlation analysis technique that identifies the correlation 
between event logs of operations and cloud resource changes, 
respectively. We showed that the derived regression model can 
be used as the basis for generating runtime assertions in order 
to detect anomalies in running operations. We evaluated our 
approach on the Amazon public cloud computing service 
(EC2) where, multiple operations were running and random 
faults were injected. Our results demonstrate that our 
regression-based analysis technique was able to detect injected 
faults with high precision and recall.  

We aim to use the proposed approach for better error 
diagnosis. Furthermore, we plan to utilize this approach for 
designing self-adaptive operations. Such a self-adaptive 
operation would be able to perform self-healing actions after a 
failure happens, as well as utilize its knowledge for adapting 
the configuration of itself, other operations, or the affected 
application(s) in certain cases like spikes in the demand. 
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