
Component-based Groupware: Issues and Experiences

John Grundy

Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton
NEW ZEALAND

jgrundy@cs.waikato.ac.nz

ABSTRACT There is a growing trend in both Software Engineering and HCI circles to developing “componentware”
systems i.e. systems which are comprised of individual, self-contained systems rather than a single, monolithic
application. The advantages of this approach are many, including higher degrees of reuse, more open architectures,
end-users being able to choose the “best” components for their needs, and the development of more extensible
systems. There may also be disadvantages, such as less than ideal user interface consistency, difficulty in agreeing on
integration and inter-operation standards, and lack of high-level, robust componentware architectures. This paper
discusses the impact componentware solutions may have on the development of new groupware systems, and gives
some examples from the author’s recent research.

KEYWORDS CSCW, groupware, componentware, work coordination, distributed systems

1. INTRODUCTION

 Many different kinds of groupware systems and tools
exist (Ellis et al, 1991). Examples include asynchronous
tools, such as email, note annotations (Oinas-Kukkonen,
1996), and version control systems. Various systems
provide synchronous collaborative work support, such
as IRC (Pioch, 1993), GroupKit (Roseman and
Greenberg, 1996a), Rendezvous (Hill et al, 1994), and
BSCW (Bently et al, 1995). Many systems, such as
Team Rooms (Roseman and Greenberg, 1996b), W4
(Gianoutsos and Grundy, 1996), and Lotus Notes
(Lotus, 1993), combine synchronous and asynchronous
modes of communication, usually by providing a
variety of different groupware tools.
 A great range of applications can make use of a
variety of groupware tools, such as email, annotations,
shared workspace editing, and discussion. Adding such
capabilities to each environment that requires them in

isolation results in a great deal of redundancy, and often
limited or no reuse of tools.
 Component-based systems offer a new approach to
developing groupware applications, by building small,
open and reusable tools which can be plugged together
to form an environment. The end-user of an
environment may even be able to choose the particular
groupware tools they add to their environment,
depending on their preferences or the tool capabilities
they require. Some aspects of groupware systems are
easy to make into components than others, and
componentware solutions must be carefully designed to
ensure good resulting environments.

2. COMPONENTWARE

 Figure 1 illustrates the basic idea of a component-
based system. Component-based systems (or
“componentware”) are built by combining a variety of

jgrundy
In Proceedings of the INTERACT97 Workshop on CSCW in HCI-worldwide, Sydney, Australia, July 15, 1997, pp. 23-28.

jgrundy

jgrundy

small (and sometimes larger) components, which
provide a particular kind of functionality.

Component #1

Component #3

Component #2

Data/event exchange

Figure 1. Basic Componentware System Architecture.

 For example, for a system requiring multi-user support,
components might include an email component, a note
annotation component, an IRC-style chat component, a
shared drawing editor component, a workflow
component, and so on. Rather than continually reinvent
the wheel when building systems that require such
functionality, we can plug such pre-existing tools into a
new system. The great advantage of componentware
over e.g. library or framework reuse, is that new tools
can be plugged into a componentware system, often
while it is running, or old components may be
unplugged and replaced.
Components in a componentware system exchange data
and control in ways agreed upon by the designers of the
system architecture. Components may have their own
user interface style, or may agree on a common user
interface approach. Some components may even be
dedicated to providing an interface, while others deal
with data storage/retrieval, inter-component
communication, and so on.
 Many componentware architectures have been
developed in recent times, including OpenDoc (Apple
Computer™ Inc, 1996), ActiveX (Microsoft™, 1996)
and Java Beans (JavaSoft™, 1996).
 Componentware solutions for groupware applications
have also been proposed and several have been
developed. Examples include TeamWave (Roseman and

Greenberg, 1997) and the use of CORBA (ter Hoft et al,
1996).
 The following sections outline the author’s
experiences with component-based groupware
solutions, and why I believe they offer the best solution
for reusable groupware applications.

3. EXAMPLE #1: SERENDIPITY

 The Serendipity environment is a workflow/process
modelling system which supports a range of CSCW
capabilities (Grundy et al, 1996). These include email-
style messaging, version control and configuration
management, shareable modification histories, change
description annotation, IRC-style chats, high-level
group awareness, and synchronous and semi-
synchronous editing of diagrams.
 Figure 2 shows an example screen dump from
Serendipity showing several of these facilities in use on
a collaborative software development project. The
highlighting of icons in the workflow model (top, right)
shows a developer what parts of the process other
developers are working on. The developer can add/read
note annotations (bottom, left dialogue) and carry out a
chat (bottom, right dialogue) with collaborators. The
centre, textual view shows change descriptions (changes
made) shown in a class header, made to the OOA
diagram top, right. These changes have been annotated
with information from the workflow model to assist
developers in seeing both what changes have been
made, but also why they were made.
 Serendipity was developed by combining several
different tools and environments. These included the a
workflow modelling and enactment system, a generic
annotation system, a generic text chat system, reuse of
collaborative editing and version control abstractions,
and integration with tools for performing work (e.g.
software development and office automation tools).
 A strict componentware solution was not used with
Serendipity, although some of the tools used are stand-
alone applications, and componentware-style event
notification was utilised in many places. We needed to
make some modifications to some of the environments
to get them to work together, and to ensure consistent
mechanisms for user interaction and data persistency.

Figure 2. Various CSCW capabilities of the Serendipity process modelling system.

4. EXAMPLE #2: JCOMPOSER

 JComposer is a CASE tool for the modelling and
generation of environments using a componentware
architecture, called Jviews (Grundy et al, 1997a).
JViews provides abstractions for building multi-view,
multi-user environments using components, and is a
successor to MViews (Grundy and Hosking, 1996), the
environment used to build Serendipity.
 From our experiences with Serendipity and other
environments built with MViews, we decided to move

our work to Java and make use of the Java Beans
componentware API in the construction of new tools
and environments. This has several advantages over our
previous approach with MViews, which was
implemented in an OO Prolog:

• more portable and faster applications
• more open architecture for use of third party

tools
• a proper componentware system, with stand-

alone and interchangeable components,
fostering better reuse of tools and abstractions

• access to better distributed systems
capabilities for supporting multi-user
applications

Figure 3 shows an example of a running environment
(an ER modeller) built using JComposer. The bottom-
left view is the users’ view of an ER model, with the
top-left view a visualisation of the components making
up this view. The top-right view is an entity component
which has been linked by the user to a filter (rectangle)
and then an action (oval). These filter/action
components provide reusable components for dynamic
event handling. This model specifies that if the entity is
renamed, the user should be notified by a message
(using an email-like tool). The bottom-right view shows

a visual query language we are developing for
component structure querying. JComposer provides an
environment for specifying the appearance of drawing
editor icons and connectors, the structure of repository
and view editors, and various reusable and extensible
event-handling abstractions.
 Third-party Java Beans components can be integrated
into the environment and their data and events
exchanged with those of JComposer components. A key
feature of this work is that both environment developers
and end-users can configure the structure of these
systems, using the visual notations, providing powerful
groupware environment composition capabilities
(Grundy et al, 1997b).

Figure 3. An example Jcomposer environment showing component composition and visualisation.

5. COLLABORATIVE INFORMATION

 We are currently designing a new component-based
groupware system for heterogeneous, collaborative
information visualisation and wok coordination. The
components in this architecture are user interface tools
for the specification, visualisation and navigation of
complex information spaces. Additional components
allow the system to interact with WWW, Intranet and
Corporate Database information sources. These tools
interact with a standard Web browser and various desk
top applications, such as word processors, database
applications, email and chat systems, and so on.
 This system will allow a wide variety of complex
information sources to be collaboratively visualised and
navigated in novel ways, and allow links between
information items from different sources to be deduced
or explicitly specified. A component-based architecture
allows a variety of new and existing third-party tools to
readily utilised, as well as our own tools. Groupware
aspects of this system will include JComposer-style
work coordination support, messaging and note
annotation, collaborative browsing, and various group
awareness facilities.

6. FUTURE TRENDS

 Our experiences with component-based groupware
development has indicated that many aspects of
groupware systems can be effectively split into
reusable, interoperable components. This leads to
groupware systems which are much easier to build than
by reusing frameworks or libraries providing low-level
groupware capabilities. With the continued
development of componentware solutions, including
both internet and intranet-based component systems, the
development of component-based groupware seems
likely to increase.
 We have found a major problem with component-
based groupware can be in the computer human
interface. If great care is not taken to ensure that
components have a common look and feel, and common
design style, component-based environments can
become a mis-mash of poorly integrated tools. Care
must also be taken to design component interoperation
architectures so sufficient flexibility is provided to

integrate new components into a system. We have found
that end-users enjoy being able to compose their own
component-based systems, but require tools which do
not involve complex programming. Our visual
languages are an attempt to provide more suitable
human interfaces for composing complex component-
based groupware.
 Some groupware aspects are more amenable to being
made into components than others. The ability to
perform shared workspace editing needs to be carefully
built into a system, as does provision for the possibility
of various group awareness capabilities. We have found
our event-based JViews architecture allows component-
based awareness and synchronous editing to be
supported by a component-based approach. Many
existing systems, however, do not provide suitable
capabilities to add these features onto an environment.

7. SUMMARY

 Component-based groupware systems offer the
possibilities of more open, extensible, reusable and,
ultimately, more powerful systems than current
technologies. Careful consideration must be given to
designing the human interface and software architecture
aspects of such systems, however, in order to make
them feasible. We believe much scope exists for HCI
research into these areas, and also into the large
problem of end-user configuration of component-based
software in general.

8. REFERENCES

Apple Computer Inc (1996) OpenDoc Programmer's
Guid".

Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J.
(1995) Supporting collaborative information sharing
with the World-Wide Web: The BSCW Shared
Workspace system. In Proceedings of the 4th
International WWW Conference, Boston, MA,
December.

Ellis, C.A. and Gibbs, S.J. and Rein, G.L., Groupware:
Some Issues and Experiences, Communications of the
ACM, 34 (1), p. 38-58.

Gianoutsos, S. and Grundy, J. (1996) Collaborative
work with the World Wide Web: Adding CSCW

support to a Web Browser, Proceedings of Oz-
CSCW96, Brisbane, Australia, 30 August.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
(1996) Low-level and high-level CSCW in the
Serendipity process modelling environment, in
Proceedings of OZCHI'96, IEEE CS Press, Hamilton,
New Zealand, 24-27 November.

Grundy, J.C. and Hosking, J.G. Constructing Integrated
Software Development Environments with Mviews,
International Journal of Applied Software Technology,
2 (3-4).

Grundy, J.C., Mugridge, W.B., Hosking, J.G. A Visual,
Java-based Componentware Environment for Building
Multi-view Editing Systems, Proceedings of 2nd
Component Users Conference, Munich, July 14-17.

Grundy, J.C., Mugridge, W.B., Hosking, J.G. (1997)
Support for End-User Specification of Work
Coordination in Workflow Systems, Proceedings of
the 2nd International Workshop on End User
Development, Barcelona, Spain, 16-17 June.

.Hill, R. D. and Brinck, T. and Rohall, S. L. and
Patterson, J. F. and Wilner, W. (1994) The Rendezvous
Architecture and Language for Constructing Multi-
User Applications, ACM Transactions on Computer
Human Interaction, 1 (2), p. 81-125.

JavaSoft (1996) JAVABEANS™ API
Lotus Corporation (1993) System Administration
Manual, Lotus Notes release 3

Microsoft (1996) ActiveX
Oinas-Kukkonen, H. (1996) Debate Browser – An
Argumentation Tool for Meta Edit+ Environment,
Proceedings of the 7th Workshop on the Next
Generation of CASE Tools, Crete, June 20-21, 1996.

Pioch, N. (1993) A short primer on IRC, Ecole
Polythechnique, Paris, Edition 1.1b, February.

Roseman, M. and Greenberg, S. (1996) Building Real
Time Groupware with GroupKit, A Groupware
Toolkit, ACM Transactions on Computer Human
Interaction, 3 (1), p. 1-37.

Roseman, M. and Greenberg, S. (1996). TeamRooms:
Network Places for Collaboration. Proceedings of
ACM CSCW'96 Conference on Computer Supported
Cooperative Work.

Roseman, M. and Greenberg, S. (1997) Simplifying
Component Development in an Integrated Groupware
Environment, Research Report 97-600-02, Department
of Computer Science, University of Calgary.

ter Hofte, H., van der Lugt, H., Bakker, H., A CORBA
Platform for Component Groupware, Proceedings of
the OZCHI96 Workshop on the Next Generation of
CSCW Systems, Hamilton, New Zealand, 25
November.

