
Generating Reusable Visual Notations Using

Model Transformation

Iman Avazpour* and John Grundy†

Centre for Computing and Engineering Software and Systems (SUCCESS)

Faculty of Science, Engineering and Technology
Swinburne University of Technology

Hawthorn, Victoria 3122, Australia
*iavazpour@swin.edu.au
†jgrundy@swin.edu.au

Hai L. Vu

Centre for Advanced Internet Architecture (CAIA)

Faculty of Science, Engineering and Technology

Swinburne University of Technology
Hawthorn, Victoria 3122, Australia

hvu@swin.edu.au

Visual notations are a key aspect of visual languages. They provide a direct mapping between

the intended information and set of graphical symbols. Visual notations are most often

implemented using the low level syntax of programming languages which is time consuming,
error prone, di±cult to maintain and hardly human-centric. In this paper we describe an

alternative approach to generating visual notations using by-example model transformations. In

our new approach, a semantic mapping between model and view is implemented using model

transformations. The notations resulting from this approach can be reused by mapping varieties
of input data to their model and can be composed into di®erent visualizations. Our approach is

implemented in the CONVErT framework and has been applied to many visualization exam-

ples. Three case studies for visualizing statistical charts, visualization of tra±c data, and reuse

of a Minard's map visualization's components, are presented in this paper. A detailed user study
of our approach for reusing notations and generating visualizations has been provided. 80% of

the participants in this user study agreed that the novel approach to visualization was easy and

87% stated that they quickly learned to use the tool support.

Keywords: Visualization; visual notation; by-example transformation; notation composition.

1. Introduction

Using complex information in a visual format is more acceptable and e®ective for

human beings in many circumstances, as visual representations use fuller capabilities

of our powerful human visual system. They are particularly e®ective for graph-based

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, No. 2 (2015) 277–305

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015400100

277

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218194015400100

models or models with well-known and understood visual representations [1]. Visual

notations are a key part of visualizations. They are an essential component in sup-

porting interactions with the visualization. Generating these notations using pro-

gramming languages has always been time consuming, error prone and di±cult. It is

also hardly a human-centric approach, requiring often detailed technical knowledge

and a large distance between speci¯cation (in code) and visual notations.

This paper describes our new approach in generating visual notations to be used

to generate complex visualizations. This approach has been inspired in part by the

seminal Cornell Program Synthesizer (CPS) work [2]. CPS was designed to provide

responsive and interactive program code editing. It used set of text-based templates

that embodied the grammar of the programming language. Users would interact with

these templates and generate code snippets and then compose them interactively to

form a complete program code.

Similar to CPS, our approach considers a set of imported visual designs (the view)

and user provided annotations as its visual templates. It automatically generates

reusable visual notations from these templates. It then allows users to interactively

map di®erent data source elements to these notations using a highly human-centric

drag-and-drop and by-example approach. Our toolset uses model transformations as

the basis of implementing the mapping between the notation's intended information

(that we call the notation's model) and the visual view. The de¯ned notations can

then be composed to generate complex visualizations. This approach is implemented

in our CONcrete Visual assistEd Transformation (CONVErT) framework.a

This paper is organized as follows. The next section provides a brief overview [12]

of closely related work. Section 3 describes our approach followed by three case

studies in Sec. 4. Section 5 provides details of our user study evaluation and Sec. 6

provides a discussion. Finally, Sec. 7 concludes the paper and provides key areas of

future work.

This paper is an extended version of the original paper presented at the Inter-

national Symposium on Visual Information Communication and Interaction (VINCI

2014) [3]. It extends the original paper with modi¯cation to the approach with

regards to notation generation where the notation data is generated automatically,

support for visualization generation in Scalable Vector Graphics (SVG), updated

annotation scripts to support attribute generation in SVG, and two new case studies

to showcase the capabilities of the approach in visualization generation and reus-

ability of visual notations.

2. Related Work

Many tools exist today for generating visualizations, e.g. Protovis [4] and CartoDB.b

These tools provide conventional data visualizations for example charts and

asites.google.com/site/swinmosaic/projects/convert
bcartodb.com

278 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

map-based visualizations. They do not however provide rich notation generation

facilities and additional visualization capabilities are hard to de¯ne within these

frameworks. For example, it is very hard to de¯ne a visualization for UML class

diagrams, or °at designs like CAD drawings. Alternatively, powerful visualization

scripting like D3 [5] require deep scripting knowledge. Our approach presented in this

paper is focused on visual notations and how they can be incorporated and reused to

generate visualizations.

One early approach to reuse notations for visualization was provided by Hum-

phrey [6]. He introduced Relational Visualization Notation (RVN) for generating

multi-dimensional visualizations. RVN is composed of three parts: semantic data

models, graphics relations and design diagrams. The graphics relations provide

binding between diagrams and informations using algebraic expressions. Design

diagrams are directed, acyclic graphs that combine source relations to produce

output graph relations. They combine multiple information and graphic relation into

a visualization design speci¯cation.

Cerno-II is a visualization system capable of constructing graphical views of the

execution state of object-oriented programs [7]. It uses display speci¯cation language

to design new representations for displays. Each descriptor in this language is a

functional expression specifying the general format of a type of display (boxes, lines,

etc.). A specialization of Cerno-II for user interface component construction was

provided in Skin [8]. Skin provides a visual functional language using icons and

connectors. Visualizations are then formed by connecting these icons using con-

nectors. Our approach is similar to these approaches, in that, the basis of notation

design is on set of shapes de¯ning the view, data descriptions (model), and mapping

correspondences between them. However, these correspondences in our approach are

provided using model transformations.

Ernst et al. provide visualizations for software application landscapes (software

map) [9]. For each cluster map of the system, they have identi¯ed a semantic model

and a symbol model and proposed to use transformations to link the gap between

semantic model (the data to be visualized) and symbolic model (visualization) [9].

The approach provided by de Lara et al. also uses model transformations for ma-

nipulation of visual notations [10]. In their approach, syntax of notations is provided

by meta models. Using these meta models, Domain Speci¯c Visual Languages

(DSVL) are de¯ned and their manipulations are implemented using graph trans-

formations [10]. The approach presented by Costagliola et al. also makes use of

grammars for notation and visualization design [11]. In their approach diagramic

notations are modelled using eXtended Positional Grammars (XPG). XPG is used

for modelling both visual and textual notations. In their approach, visual notations

are treated as visual languages where sentences are formed using set of visual symbols

[11]. The Graphical Modelling Frameworkc (GMF) of Eclipse platform also helps

modellers de¯ne a mapping from model elements to notational elements. In GMF

chttp://www.eclipse.org/modeling/gmp/

Generating Reusable Visual Notations Using Model Transformation 279

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

however, data model, notation model and mapping model are all de¯ned by meta-

models and abstractions.

We take a very di®erent approach to visual notation generation. In our approach,

an existing visualization is imported and its visual fragments are used to create

notations. This allows designers of visual languages and visualizations in general to

adopt and use existing visual designs to suit their new or changing needs. The links

between model and graphics and shapes (view) of the notations are provided by user-

speci¯ed mappings. These mappings are implemented using model transformations.

Once notations are de¯ned, our approach allows us to use model transformations to

map multiple input data to notation's model.

A key di®erence of our approach compared with current approaches is that by

adding this transformation step, it is possible to reuse the generated notation

speci¯cations for wide varieties of di®erent inputs and domains. In contrast, for

most current approaches the visualizations are generated once for speci¯c types of

inputs. Also, using by-example transformation allows our approach to more

readily incorporate user's domain knowledge in the visualizations process and

hence provide a more user-centric visualization procedure. Similar to some current

approaches, we use meta models for de¯ning the syntax of visualizations. In our

approach however, these meta-models are automatically reverse engineered from

examples or de¯ned in the background by the framework when users are com-

posing notations.

The CONVErT framework used for implementation of this approach has been

developed for generating model transformations using concrete visualizations.

However, the visualizations in CONVErT were limited to set of prede¯ned notations

[12]. Using the approach presented in this paper, we demonstrate how reusable visual

notations can be integrated into by-example transformation of CONVErT to expand

its visualization and transformation capability. More speci¯cally, we seek to address

the following key research questions:

(1) Can we reuse existing visual designs to generate new visual notations?

(2) Can these visual notations be composed and linked together to generate more

complex and complete visualizations?

(3) Can we reuse already de¯ned visual notations for generating visualizations for

di®erent input models?

3. Approach

Our approach to generating visualizations is outlined in Fig. 1. This approach uses

the already designed drawings as the starting point to generate visual notations.

These drawings can be Scalable Vector Graphics (SVG) or Extensible Application

Markup Language (XAML). Users import the drawings (or design new ones in the

framework) and split them into di®erent visual views depending on application of the

visualization. For example, a bar chart in Fig. 1(a) is split into two views, an empty

280 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

chart and a bar (Fig. 1(b)). This is because generally a bar chart visualization

includes multiple bars and the bar notation needs to represent multiple data points.

The next step in the visualization procedure is to generate reusable visual nota-

tions from each view. The user (typically a visualization designer) needs to specify

what each element (e.g. shapes, widths, heights, color, lines, etc.) of the view

represents depending on application of the notation. For example, in our bar chart

visualization, width of each bar represents a value. The designer therefore, needs to

specify these element representations by a provided annotation language. Using

these annotations, our approach generates a data part (we call it notation's model)

and a mapping transformation between the data and the view. These three parts, the

view, the model and the model-to-view mapping de¯ne a notation (Fig. 1(c)). The

mapping transformation generates a view from amodel by using the original view as a

template and translating user-provided annotations to model transformation cor-

respondences. If the model changes the view changes and hence the changes will be

re°ected on the visualization. For example if the values of bars in a bar chart are

changed the mapping transformations re°ect the new values to bar views to update

bar views and refresh the visualization. Once de¯ned, the resulting notation is saved

in a notation repository to be (re)used for generating visualizations (Fig. 1(d)).

Notations in the repository can be reused by mapping elements of di®erent inputs

to their model elements. These mappings are provided using rule based model

transformations. To visualise an input ¯le using the de¯ned notations, elements of

input ¯les are mapped to elements of the visual notation's model (Fig. 1(e)). This

step de¯nes how each part of the input ¯le is to be represented using notational

elements. Di®erent inputs can be mapped to each notation that allows the notations

to be reused for multiple visualizations. For example, bar notation of a bar chart

could be mapped to sales data or population records or temperature listings. Once

inputs are mapped, the already mapped notations (we call them customized nota-

tions) will be saved in a repository (Fig. 1(f)) for composition.

A visualization is generated by composing customized notations (Fig. 1(g)). This

composition allows a visualization ¯le's meta-model to be generated from the models

Fig. 1. Visualization procedure.

Generating Reusable Visual Notations Using Model Transformation 281

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

embedded in each notation. The notation-embedded models here play the role of

meta-model's visual vocabulary. Using the meta-model resulting from the composi-

tion, a transformation is generated to transform the input ¯le to the visualization ¯le

resulting from composition (Fig. 1(h)).

This visualization ¯le is then transformed to visualizations using the mapping

transformations embedded in notations. For example in Fig. 1, applying the trans-

formation on the input ¯le has resulted in the visualization marked by i.

This new visualization approach has been implemented in CONVErT tool for

generating interactive visualizations. CONVErT was initially developed for model

transformation using concrete visualizations [12]. The visualization approach pre-

sented in this paper provides better °exibility in domain and types of visualizations

that can be supported in pure model transformation tasks. On the other hand, by-

example transformation and interaction mechanisms implemented in our CONVErT

framework helped us to better incorporate a user-centric drag and drop approach

into the visualization creation process. Also, the transformations used to transform

input ¯les to visualization ¯les use the transformation code generator and engine of

CONVErT. To better understand this approach, the following section provides case

studies from some exemplar application domains.

4. Usage Examples

This section provides three case studies demonstrating the usage of our approach.

The ¯rst is a simple example that demonstrates visualising input data as a bar chart

using SVG graphics. This data can represent various domains from sales records to

report generation. Our second case study demonstrates a more complex visualization

of tra±c data in XAML graphics, reusing these bar chart visualization elements. Our

third case study is a Minard's Map visualization, with elements of its visualization

reused to visualise tra±c data as a complementary approach to the second case

study.

4.1. Case study 1: Generating a bar chart visualization

Let us assume a bar chart visualization has been designed by a designer using SVG

graphics similar to Fig. 2(a). Our intention is to reuse this design, generate reusable

notations, and use them to visualize an input ¯le representing set of sales records of a

company.

(a) Bar chart (b) Empty chart view. (c) Bar view.

Fig. 2. Bar chart visualization design.

282 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

The representative code for the drawing provided by our designer in SVG is

depicted in Listing 1. This Listing provides an SVG element representing the bar

chart. It includes two rectangles with accompanying text as bars (each in a separate

SVG element) and provides a function in Javascript for layout management of the

bars. Both SVG and XAML allow additional processing and layouts using program

code. For example an SVG graphic may use Javascript to perform layout manage-

ment (like in Listing 1). XAML graphics may use additional coding in C# or Visual

Basic as the code behind the visualization to perform similar tasks. Since our ap-

proach uses the initial views as templates, it will not interfere with any additional

coding associated with the drawings that provides a strong capability for generating

complex visualizations.

To generate notations for our bar chart, the drawing can be split into two views. A

view as an empty chart (Fig. 2(b)) and a view for the bars (Fig. 2(c)). Accordingly,

the SVG code for each view is provided in Listings 2 and 3. Two notations will be

generated from these views. The various semantic constructs that these notations

represent should be provided as the notation's model. In a bar chart visualization

similar to Fig. 2(a), bars represent values of a certain category by visually depicting

that value in the view using their width. Since multiple bars may exist in a bar chart,

each bar is also accompanied by a name for the value it represents. Therefore the bar

notation's model should provide these two elements. Consequently, it's notation's

view should be annotated to re°ect the correspondences between values of the model

and and the view.

We have developed an annotation language to specify such model-to-view corre-

spondences. These annotations specify correspondences between elements of the

Listing 1. Bar chart's view.

Generating Reusable Visual Notations Using Model Transformation 283

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

view, that could be XML elements or XML attributes, and name of the elements from

the model. Table 1 provides a list of these annotations and a brief description. These

annotations are di®erent with regards to the type of correspondence relationship

(one-to-one and one-to-many) and the type of output they will be generating in

the view, e.g. contents for elements, contents for attributes or generating multiple

elements.

As a rule of thumb in specifying notation models, variable characteristics of a

notation should be speci¯ed by its model. In this example, the bar's length and name

represent variables to be de¯ned based on (to be visualized) input data. If color of the

notations was also dependant on values of the input, a color would also have been

considered as part of bar notation'smodel. Here bar notation uses default \steelblue"

Listing 2. Barchart's SVG drawing code (some details are omitted to save space).

Listing 3. Bar's SVG drawing code (some details are omitted to save space).

Table 1. List of annotation used to generate mappings between notation's model
and view.

Annotation Description

linkto¼\Value" A one-to-one relationship between model and view,

generates element contents

@linkto¼Valuejvalue A one-to-one relationship between model and view,
generates attribute contents

callfor¼\Value" A one-to-many relationship between model and view,

generates multiple elements

284 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

color provided by the designer. To specify these correspondences, the visualization

designer needs to specify annotations. For example, for the bar chart notation, the

text to be represented on top of the chart needs to be provided by a model element,

e.g. ChartName as in Listing 4. The linkto¼\ChartName" annotation speci¯es that

the value to be represented by the text needs to come from a ChartName in bar chart

notation's model.

Notations can incorporate, or host, other notations (e.g. a bar chart visualization

will incorporate multiple bar notations. These one-to-many correspondences are

speci¯ed by callfor annotations. For example in the Listing 4, the main SVG ele-

ment has a callfor¼\Bars" annotation, which speci¯es a one to many relationship

between the chart's main SVG element and the notation models included in Bars

element of the model. The Bars element here is a placeholder in the chart model that

de¯nes the position which other notation models are to be placed in a host nota-

tion's model.

Similarly, Listing 5 provides the annotations used for bar notation. Here the value

to be place as the bar's text is to be provided by a BName elements of the bar'smodel

and the value to be provided to the width of the rectangle will be provided by a Value

element in the chart Model. Note that since the width element is an attribute, and

hence a one-to-one link to annotation for attributes has been used.

Annotated views are read by the transformation code generator in CONVErT and

a mapping transformation script is generated for each view. In this transformation

script one-to-one linkto annotations are translated to value fetch scripts and call for

Listing 4. Barchart's SVG drawing code.

Listing 5. Bar's SVG drawing code (some details have been omitted to save space).

Generating Reusable Visual Notations Using Model Transformation 285

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

annotations are translated to call for templates (see Listings 6 and 7). As a result,

when the mapping transformation script of bar chart notation is executed, it

will fetch and copy the values provided to its model for the chart name to their

corresponding text element in the view. It will also register a declarative call for

templates to be applied on the data inside the \Bars" element of bar chart notation's

model.

Additionally, the annotations will result in automatic generation of a model for

each notation. In this paper, we use XML to represent model elements. However, our

approach can be adopted to use other technologies as well. Listings 8 and 9 provide

the automatically generated model for the bar chart and bar notations. Note the

\isplaceholder" attribute in Bars element which have been automatically put there

Listing 6. Barchart's model-to-view mapping transformation.

Listing 7. Bar's model-to-view mapping transformation.

286 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

when the system processes callfor annotations. Also, the values provided in the

drawing have been used as default values. The attribute based linkto annotation can

optionally provide a default value, in this case 20 was provided. Users can change

these values according to their requirements. The name used for each notation's

model is also provided by users once they build the notations, e.g. HBarchartData

and HBarData.

It is possible to con¯gure the model to view mapping transformation to wrap each

notation in a prede¯ned interaction logic. For example it can be con¯gured to wrap

notations with drag and drop, and right click event handlers. As a result the nota-

tions generated can be dragged and dropped on a canvas or other notations to

perform di®erent tasks, or right clicking on each notation can be speci¯ed to reveal

its model elements. This interaction can be altered according to application of

notations. Examples of these wrapping mechanism have been used in CONVErT

framework for model transformation where dragging and dropping notations per-

formed model transformation tasks (e.g. see [13, 14]).

Once notations are generated, di®erent input data can be mapped to their model

elements. Although we could map input data directly to notation views using

annotations, we have added this additional step so that the generated notations can

be reused. This provides both an easier mechanism for (re)using notations in gen-

erating visualizations for multiple di®erent datasets and an easier approach for

novice users, given that the notations can be developed separately by a designer. This

step provides the system with information required to create transformation rules for

transforming speci¯c parts of input data to the notation's model elements. Within

our CONVErT framework, input data is shown using a default tree layout. Elements

of the input model can be dragged and dropped on elements of notation's model to

generate the input to notation's model transformation.

Figure 3 demonstrates how elements of input can be mapped to elements of both

chart and bar notations using drag and drop. In this example, the input to be

visualized represents the values of a sales record data in a spreadsheet. Each \sales"

Listing 8. Barchart's model.

Listing 9. Bar's model.

Generating Reusable Visual Notations Using Model Transformation 287

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

is mapped to a bar with its region and sales amount representing BName and Value

of the bar (see Fig. 3(b)). Similarly, the \Spreadsheet" element is mapped to bar

chart notation with its name representing ChartName of the chart (see Fig. 3(a)).

Note that \Bars" element placeholder is shown with di®erent color to separate it

from other elements of chart notation's model.

The de¯ned customized notations are saved in a repository. These customized

notations represent a transformation rule that transforms portions of input to

notation's model (and its reverse where possible). As a result, a notation can be

reused to create multiple customized notations for di®erent inputs. Here for example,

a transformation rule will be generated to transform each \Sales" element to a bar's

model, and a transformation for transforming \Spreadsheet" to chart's model.

Once input data to notation transformation is complete, the de¯ned customized

notations need to be composed to generate a complete input to notation models

transformation. An example of composing chart and bar notations to generate bar

chart visualization is provided in Fig. 4. Linking a notation to a placeholder of

(a) Mapping Spreadsheet element to chart notation.

(b) Mapping sales element to bar notation.

Fig. 3. Mapping input elements to notations.

Fig. 4. Composing notations to create a visualization for a bar chart. Arrows are provided by framework to

trace notation composition.

288 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

another notation presents the dragging notation's model to the placeholder element

of host notations. This will specify thatmodel of the dragging notation is to be copied

inside the placeholder element of host notation. Since each customized notation also

includes a transformation rule for transforming a portion of input data to the

notation's model, this linking will also provide background logic so that the host

notation knows that the transformation rule provided by the notation being dragged

to it should be called. This is in order to e®ect the embedded input ¯le to notation's

model transformation and results in scheduling of input element-to-visual notation

transformation rules. In our example, the bar customized notation's model is to be

included in the \Bars" element placeholder of the chart notation, specifying that the

chart may contain set of bars. This composition generates a grammar for bar chart

where multiple bars can be provided inside the chart.

Linking a notation to a start element will de¯ne the root notation and hence the

top-most (¯rst to be run) transformation rule for the completed model transforma-

tion speci¯cation. This tells the transformation scheduler to start generating trans-

formation code for transforming input ¯le to notation models from the rule linked to

this start element. For example, in Fig. 4, the transformation rule associated to chart

customized notation (transforming Spreadsheet to chart notation'smodel) is the ¯rst

rule to be called. It then calls the transformation rule associated with the bar no-

tation accordingly to transform sales elements to bar notation models. The resulting

model for this composition is provided in Listing 10. Note how model part of bar

notations are copied into the Bars element of chart notation's model (due to space

limitation, only one bar notations' model is shown). Also, the isplaceholder element

previously present in the chart notation's model is removed after composition, as it

will not be needed in the ¯nal result.

To render visual elements the resulting ¯le from the input model to notation's

models transformation needs to be transformed into a renderable visualization. This

rendering in our approach reuses the model to view mapping transformation of

notations available in the notation repository. When a resulting model ¯le like

Listing 10 is to be rendered (as a visualization), CONVErT checks the elements in

the model ¯le against the model part of the notations in the notation repository.

Listing 10. Resulting model ¯le from the composition in Fig. 4.

Generating Reusable Visual Notations Using Model Transformation 289

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

A visitor pattern is used to traverse this ¯le for constructs similar to model part of

notations where those model to view mapping transformations could be applied.

For example in Listing 10 the visitor will encounter a HBarChartData element

that matches the bar chart notation in the repository, and a HBarData element that

matches the bar notation's model. Accordingly, it will retrieve the mapping trans-

formations embedded in these notations. These retrieved transformations will be put

inside a transformation script and a declarative call for templates will initiate the

chain of declarative calling of other transformation templates. This will result in

transforming the resulted model ¯le into renderable visualizations (in this case, SVG

graphics). The resulting visualization will be rendered in the framework or can be

exported to a browser-based visualization. For example, the resulting bar chart

visualization of the visualization ¯le in Listing 10 is depicted in Fig. 5.

4.2. Case study 2: Visualising tra±c data

Tra±c congestion is an ongoing issue for modern cities around the world and it is

important to understand how congestions form, monitor, and promptly take action

against them. Analysis of congestion requires considerable knowledge of the network

and is largely still based on the operator's past experience in dealing with local tra±c.

In this case study, we provide a visualization that enables the tracking of congestion

through both temporal and spatial dimensions by displaying the number of cars

passing a number of intersections (referred to as volume data) for set of particular

intersections over time in a 3D map. This visualization will help to better monitor

tra±c volume and congestion.

Similar to our ¯rst case study, we assume a designer has generated a visualization

of Melbourne CBD as in Fig. 6(b). This visualization is inspired by the 3D visuali-

zation of USA's population over time introduced by Petzold [15] (See Fig. 6(a)). It

demonstrates population of each point of interest on a map using 3D bars. A slider is

provided to navigate the visualization to depict data for di®erent years. The 3D

visualization provided by our designer exhibits similar features. It provides a slider

bar to navigate between multiple frames where each frame demonstrates a tra±c

volume record at certain time. It also provides a 3D rendering of Melbourne CBD for

each frame and a 3D bar. Our intention is to adopt this visualization for generating a

time-lapse of tra±c volume in Melbourne CBD for four intersections.

Fig. 5. Resulting bar chart visualization.

290 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

To generate the required notations from the provided visualization design, we

propose breaking it into three notations: 3D bar, map overview for a speci¯c time,

and a map host to review multiple congestion records on maps for di®erent time

frames as in Fig. 7. The combination of these three views is used to generate the

complete visualization.

The views of Fig. 7 will re°ect set of information provided to them on the visual

shapes. For example, map host of Fig. 7(a) provides a description of the visualization

and a horizontally laid out list that embeds maps like frames inside it. We intend to

put Map views for each time frame in this list and as a result, the linked slider would

provide navigation between frames. The Map host notation will then include other

notations (in this case maps) as frames. Accordingly the map host notation would

have a one-to-many relation (callfor annotation) for visuals and a one-to-one relation

(linkto annotation) for description. Map notation provides a description for the map

and will include multiple bars depending on the provided data. As a result it will

(a)

(b)

Fig. 6. Samples of 3D visualizations. (a) Visualization of USA population and (b) Tra±c visualization
provided by a designer.

Generating Reusable Visual Notations Using Model Transformation 291

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

have a one-to-one relation (linkto annotation) with the description and one-to-many

relation for bars. 3D bars to be laid out on the map take a value to be represented by

their height, a color, and longitude and latitude to specify their position on the map.

3D bar notation therefore will have four one-to-one linkto annotations for these

values. Listing 11 presents an example of these annotation for Map's view.

Using these annotations, the required model and the model to view mapping

transformation for each notation is generated by the transformation code generator

of our CONVErT framework. These notations will be saved in a notation repository

and can be reused by mapping di®erent input data to their model elements. In this

example, we are assuming a tra±c data ¯le is provided which includes the volume

data records of four intersections in Melbourne CBD. This data is provided using

tra±c sensors positioned in these intersections which record volume data for each ¯ve

minutes. Using the transformation generation mechanism available in CONVErT,

(a) Map host.

(b) Map.

(c) 3D bar.

Fig. 7. Tra±c visualization notation views.

292 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

we can map these data records to our recently generated notations by drag and

dropping each element on corresponding notational elements. In this example, we

map each junction data to a bar representing its tra±c volume as in Fig. 8. The

color of the bar is calculated based on a threshold value. If tra±c volume is more

than or equal to 20 cars per ¯ve minutes, the bar should be red to indicate a warning,

and blue otherwise. These colors are generated using the transformation conditions

available in CONVErT framework. These conditions can be customized to suite

every application. Similar to conditions, transformation functions are also available

in CONVErT in case more complex correspondences needed to be de¯ned, for ex-

ample many-to-many, arithmetic, and string processing functions (for more infor-

mation on these conditions and functions and how these transformations are

Listing 11. Map's annotated view (some details have been omitted to save space).

(a) Mapping elements to condition and notation.

Fig. 8. Mapping input data to 3D bar's notation. Arrows depict drag and drop.

Generating Reusable Visual Notations Using Model Transformation 293

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

generated, please refer to [16]). The VehicleFlow of the input also needs to be

mapped directly to Value of bar's model (not displayed in the ¯gure).

Each record element of the input data is to be mapped to a Map notation, with its

time linked to Map's description as in Fig. 9(a). The tra±c data element will be

mapped to our Map host notation where its description is linked to host's description

(see Fig. 9(b)).

(b) Mapping colors to condition.

Fig. 8. (Continued)

(a) Mapping Record element to Map notation.

(b) Mapping Tra±cData element to Map host notation.

Fig. 9. Mapping input data to notations. Arrows depict drag and drop.

294 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Saving the above speci¯ed mappings will result in generation of customized

notations. Similar to our ¯rst case study, these notations can be composed to gen-

erate the meta-model for visualization ¯le according to their placeholders (see

Fig. 10). This composition results in a transformation from the input ¯le to the

visualization ¯le conforming to the composition's meta-model.

The combinations of notation models resulting from this transformation will be

transformed to a renderable visualization by reusing the model to view mapping

transformations available in the notations of notation repository. The result of ren-

dering the generated visualization ¯le is presented in Fig. 11. Sliding the slider will

result in an animated visualization of how tra±c volume changes over time. In Fig. 11

the displayed frame represents tra±c volume at 12:35 pm. It is interesting to note that

if the input ¯le is changed while conforming to the same meta-model (for example if

data for other junctions is added to the input ¯le), the same transformation can be

used to generate updated visualizations. This is due to the fact that transformation

rules for performing the input to visualization procedure are already de¯ned.

Fig. 10. Composing notations to create a 3D map visualization.

Fig. 11. Resulting visualization of tra±c data.

Generating Reusable Visual Notations Using Model Transformation 295

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

4.3. Case study 3: Reusing Minard's map visualization for tra±c data

This case study shows an example of reusing the notations we used for regenerating a

Minard's map for visualization of tra±c information, complementing the approach

above. Minard's map is a famous visual depiction of the French Grande Army's

campaign for invasion of Russia in 1812 by Charles Joseph Minard. It is widely

considered as one of the best statistical graphs by the visualization community [17],

depicting number of troops, locations, campaign movements and status, and tem-

perature information.

We have previously reproduced this map using two notations, a notation for

troops movement and a notation for map visualization [14]. The troops movement

notation (the blue shape in Fig. 12) is a shape constructed with two circles depicting

number of troops at starting point and destination, and the lines connecting them. It

represents number of troops at the starting city of the move (troopsEntered) and the

number at destination city (TroopsLeft). Each city is represented by its X and Y

(replacing Longitude and Latitude) and its name. The color of the shape also

represents whether troops were advancing or retreating. This shape is generated

using Windows Presentation Foundation and XAML. Based on the number of troops

the radius of these circles is calculated in the accompanying C# code.

To re°ect the data to be presented, this notation is mapped to troops records

provided in a separate input ¯le. User drag and drops the required elements of the

input ¯le on notation model elements and generates more complex correspondences

using functions and conditions (see Fig. 12). Once these mapping are complete and

the customized notations are generated, the composition of the troops movement

notation and the map will result in the visualization show in Fig. 13.

We now show how we can easily reuse these visual notations (Map and Troops

movement) used for Minard's map to represent tra±c information on a map of city of

Fig. 12. Mapping input data to troops movement notation using functions and notations.

296 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Melbourne, Australia. For this visualization, each \movement" notation will be

reused to represent the number of trips made between the Melbourne CBD and a

selection of suburbs for a given day. We have collected this information using

Household Tra±c Survey data and now would like to generate a visualization to

re°ect on the collected information. Such a visualization would be used by urban

geographers and local government to better understand travel choices of households

in the Melbourne region. Such a visualization needs to show di®erent colors based on

the total number of trips made, i.e. if more than 10,000 trips are made, it should be

shown in Red; between 5000 to 10,000 trips are shown in yellow; and less than 5000

should be shown in green.

To generate this visualization, we only need to make one change from the Minard

map above ��� the image behind the map notation and its coordinates need to be

changed to re°ect the Melbourne area. The two notations (altered map and troops

movement) can be now reused and mapped to the newly provided data. The

\movement" visualization notation now represents people commuting from Mel-

bourne CBD to various suburbs, instead of troop movements between cities.

Fig. 13. Recreation of Minard's map using CONVErT.

Fig. 14. Mapping trips survey data to our previously-de¯ned troop movement visual notation. Arrows

depict drag and drop directions.

Generating Reusable Visual Notations Using Model Transformation 297

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Figure 14 demonstrates how the provided tra±c survey information can be

mapped to troops movement notation using drag and drop of input elements to

notation model's elements and use of a condition. Note that in Fig. 14 the volume is

mapped to both City1 and City2. This is due to the fact that unlike the case of troops

movement were the number of troops declined during the movement, in this case the

number of trips remains the same during the movement.

Once the mapping for both notations is done, they will be composed as shown in

Fig. 15. The previously de¯ned \map" visualization now represents Melbourne and

Fig. 15. Composing new customized notations for visualizing trips.

Fig. 16. Visualization of trips made between Melbourne CBD and its surrounding suburbs.

298 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

its surrounds. The \troop movement" notation now represents commuter trips be-

tween suburb (\SecondCity") and Melbourne CBD (\FirstCity"). The resulting vi-

sualization generated from this composition will transform the data provided by the

Household Travel Survey dataset input ¯le into the visualization shown in Fig. 16.

5. Architecture and Implementation

CONcrete Visual assistEd Transformation (CONVErT) [12], is our proof of concept

framework to realise our approach to by-example, model-to-visualization and model-

to-model transformations. CONVErT generates eXtensible Stylesheet Language

Transformation (XSLT) implementations for both model-to-visualization and

model-to-model transformations, and includes a transformation engine capable of

running these transformations. CONVErT is implemented with C# and uses eX-

tensible Application Markup Language (XAML) and Scalable Vector Graphics

(SVG) to render visual elements, making them interactable and providing polished,

high-performance model renderings.

Each notation in CONVErT can incorporate a background logic that controls

user interaction and notation's behavior. Model to view transformation of each

notation can be con¯gured to wrap the notation in a variety of interaction logics. For

example, we have used this interaction logic to perform model transformations by

drag and drop of visual notations [16]. This could be extended further to provide

more ¯ne grained information for example zoom-in and zoom-out functionality, or

data wrangling and cleansing.

Since the model to view mapping of the notations is done using model transfor-

mations, notation views can use dedicated coding as well. For example, in our SVG

bar chart, the layout was controlled by Javascript code embedded inside the SVG

notation views. The logic for interaction with the map and the troops movement

shapes in our second and third examples were provided in C# as code behind the

notation views.

6. Evaluation

We have evaluated our approach and toolset in two ways. First, capability testing

using various case study visualizations to show the e®ectiveness and applicability of

the approach. We have implemented a wide range of visualizations and reused these

in a wide range of target domains. To date, these include business data analytics [12],

intelligent transport systems [3], a Minard's Map [14], CAD tool data integration

[13], and code generation from various UML software models [16, 18].

Second, a user study to test target end user feedback on the usefulness of the

approach and to examine how users react to such an approach, incorporating by-

example visualization, drag and drop mapping speci¯cation and reuse and compo-

sition of visual notations. This section provides the details of our user study.

Generating Reusable Visual Notations Using Model Transformation 299

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

6.1. User study method

To perform this study, we recruited 19 users (including 4 controls for instrument

testing). Users were selected from software engineering sta® and students and were

assigned into two groups. A 10 minute screencast was provided to each participant

which described CONVErT framework's user interface and the visualization gener-

ation procedure. Participants were then asked to perform a set of given visualization

tasks following think-aloud approach. The experimental setup comprized a laptop

with an attached mouse. Screen captures were taken during the process and a

matching questionnaire with 21 visualization related questions was handed to each

participant at the end of the experiment. This questionnaire was designed using

5-point Likert scale (ranging from strongly disagree to strongly agree) and provided

dedicated spaces to leave comments and optional feedback.

Participants were asked to choose between two experiments: one group would test

application of our approach for business domain and the other group would evaluate

the approach in software engineering domain. They were then asked to create a

visualization with CONVErT. Both groups had the same settings but used di®erent

input models and visualizations. Our rationale for this was to test research question 3

with regards to using the approach for di®erent domains and input models.

The ¯rst group was given an input ¯le representing business sales data and were

asked to create a bar chart visualization of their sales data. The second group were

given a class diagram data (XML) and asked to generate a class diagram visuali-

zation. Task description hard copies were handed to the participants and did not

describe instructional steps. Instead, they included the input ¯le names and their

locations, and a snapshot of the desired ¯nal visualization result. Users had to come

up with steps required to get similar results. They were allowed to ask questions from

the instructor if they had trouble understanding those steps.

6.2. User study results

Our ¯rst group consisted of ten participants (8 male, 2 female). The second group

consisted of 5 participants (3 male, 2 female). In response to demographic question

D.4: \How familiar are you with data visualization?", the participants had following

options: VF: Very familiar, SF: Somewhat familiar, HH: Had heard of it, and NF:

Not familiar. The percentage of responses are provided in Table 2. Table 2 also

provides how participants describe their area of expertise (Question D.5). The

Table 2. Partial participant demo-

graphics. Numbers are percentages.

Question VF SF HH NF

D.4 13 60 13 13

Question SE CS/IT EC OT

D.5 47 40 0 13

300 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

options are SE for software engineering, CS/IT for computer science or information

technology, EC for economics and OT for other areas.

Table 3 demonstrates a selection of ¯ve questions from our questionnaire targeted

at ease of use and understandability of the approach and toolset. We have assigned

scores of 1 (for perfect negative) to 5 (perfect positive) to each Likert point. Fre-

quency of responses to sample questions based on these arrangements are summa-

rized in Table 4. Full results can be found in CONVErT's website.a Please note that

question Q.5 is a negative question and the responses have been accordingly altered

to re°ect this, i.e. those answering strongly agree have been mapped to strongly

disagree and so on.

As the user study demonstrates, users of both groups positively liked the visu-

alization approach and the majority of participants (60% strongly agree and 27%

agree) agree that learning the tool was easy. However, we should note that since this

user study was to evaluate usability of the notations and comprehension of our

approach in visualization, users were provided with prede¯ned notations. Given that

users were required to annotate views to generate notations, we would anticipate to

have slightly di®erent results, since users would have to have basic understanding of

XAML or SVG representations to understand the elements of visual views.

6.3. Threats to validity

There are certain threats to validity of our user study results with regards to par-

ticipant number and a±liation.

Internal threats to validity impact the degree of bias of a study. As our partici-

pants were mostly recruited from sta® and students of Swinburne university, their

a±liation might have introduced bias in their responses to our questionnaire. As the

demographics of Table 2 demonstrates, our users were mostly familiar with at least

Table 3. Sample questions of our user study questionnaire.

Question

Q.1 I found it easy to visualise the given data as a bar chart/class diagram.

Q.2 I learned to use the tool quickly.

Q.3 In general I found the tool to be easy to use for visualization activities.
Q.4 I easily remember how to use the tool.

Q.5 Some things do require a lot of thought.

Table 4. User responses to questions of Table 3.

Question 5 (%) 4 (%) 3 (%) 2 (%) 1 (%) Median Mean Mode

Q.1 73 7 20 0 0 5 4.53 5

Q.2 60 27 13 0 0 5 4.47 5

Q.3 47 40 13 0 0 4 4.33 5
Q.4 33 60 0 7 0 4 4.20 4

Q.5 7 47 20 20 7 4 3.27 4

Generating Reusable Visual Notations Using Model Transformation 301

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

one visualization technique (11 out of 15). This could have a®ected the results of our

visualization evaluation. However, our participants are broadly representative of our

target end user groups (visualization designers and visualization re-users).

External threats to validity impact the degree to which a study can be general-

ized. With our current number of participants to date, statistically signi¯cant and

more generalizable inferences cannot be made. Hence, this user study is a work in

progress and we intend to further evaluate this approach with more participants. We

will update our online results as we recruit more participants. However, based on the

user participants recruited to date, our tool and approach appear to have broad

appeal to our target domain of end users and their likely expertise.

Construct threats to validity impact the degree a study measures its intended

causes and e®ects. We chose to provide two subsets of our user participants two quite

di®erent kinds of visualizations and asked them to perform sets of tasks, to reduce

potential domain-oriented in°uences on the outcomes. In this study we wanted to

investigate if interactive concrete visualizations better support using users' domain

knowledge in general, and not for speci¯c domains. As a result, using two very

di®erent visualizations and visualization domains help us examine if the approach

had similar e®ects on users of di®erent domains (software engineering and business

analysis in this case).

7. Discussion

The two very di®erent case studies presented in this paper have helped to demon-

strate how a separately designed visualization can be e®ectively reused to generate

reusable visual notations. We have shown that our approach is e®ective in supporting

complex visualization speci¯cations using a by-example approach. We have shown

that these visualization speci¯cations can be e®ectively reused in multiple, diverse

domains by mapping target domain input data elements to visualization speci¯cation

elements. Our visualization support generates a variety of target renderable visua-

lizations, optionally with interaction support. This includes WPF components,

XAML, SVG, Javascript and C#. We have deployed our approach to specify a wide

range of complex visualizations, many reusing the same pre-de¯ned visualization

components in very di®erent domains. We have conducted a user study to gain

feedback on the usability and likely acceptance of our approach and prototype

toolset, using representative target end users. This has been largely positive to date.

We believe the approach presented here can be used with other technologies with

minor alterations. This has been demonstrated by being able to readily generalise our

original WPF and XAML-only approach to SVG, which in turn supports diverse

rendering technologies. Hence, these technologies address our ¯rst key research

question, and form our major research contribution ��� we can e®ectively reuse

existing visual designs to generate new visual notations.

Our experiences to date also demonstrate that our second research question is also

(partially) answered. Our user study shows that our target end user group appears to

302 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

be able to e®ectively use this concept in the CONVErT realization environment.

Visual notations can be composed and linked together to generate more complex and

complete visualizations, at least to the degree that our various case studies to date

have shown. However, very complicated or novel visualization components may need

to be implemented using C# or Javascript. CONVErT provides support for speci-

fying novel visualizations as customized components in C# as well [14].

Our case studies, experiences with CONVErT to date, and our user study all

partially answer our third research question, that we can reuse already de¯ned visual

notations for generating visualizations in di®erent input models. Our case studies

show the e®ectiveness of our visualization approach with regards to mapping input

data to the already-designed notations, composing new customized notations, and

generating concrete visualizations. These contributions were further investigated

with our user study which examined target end user experience with our new visu-

alization approach.

Considering that the mapping between input data and visual notations is per-

formed using rule based model transformations, any data could have been used for

the input to visual notation transformation step. For example, the tra±c data of

second case study could have been mapped to our bar chart visualization of case

study one to form visual analytics charts. This also answers our third research

question on reusing already de¯ned visual notations for generating visualizations for

di®erent input models.

The case studies demonstrated in this paper were targeted to show capabilities of

the approach and to clearly illustrate the capabilities of the proof of concept

framework. This approach is capable of generating much larger scale and complex

visualizations. However, certain considerations should be made. For example, where

the visualization's dimension become very large, although the panels provided in the

tool can stretch to house bigger renderings, one might use zoom-able panels in

notation's view design. These panels can be embedded as part of top most notation's

view by the designer of the initial visualization and are independent of the approach.

Once required notations are composed, the embedded notations can be zoomed in

and out accordingly.

Since the visualization generation in this approach relies on visual notations, the

time spent to generate the visualization is a function of diversity of notations used in

the visualization rather than the number of notations. For example, a bar chart has

two types of notations; similarly a heat map has two notations as well (a map, and

colored geographic boundaries). Therefore, the time spent to generate these two

visualizations, although very di®erent, are similar. Accordingly, generating visuali-

zations with more diverse types of notations will be more time consuming. In large

scale data visualization, the number of notations generally increases while their

diversity remains the same. This is in fact strength of our approach where the

complexity and computation time for visualization depends on notation types rather

than their numbers.

Generating Reusable Visual Notations Using Model Transformation 303

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

8. Conclusions and Future Work

We have presented a new approach for generating visual notations and forming

concrete visualizations. This approach allows reusable notations to be created from

visual designs and provides a platform for linking varieties of input data to these

notations. By composing these notations a meta-model for ¯nal visualization and a

transformation from an input ¯le to visualization is generated. This approach has

been implemented in our CONVErT framework and applied on multiple visualiza-

tion applications. We have evaluated our approach and its tool support in a user

study and the results provide general acceptance of the approach and the use of drag

and drop for visualization generation.

The approach provided here might be seen as an alternative to the Model View

View Model (MVVM) provided in WPF. However, our approach does not limit use

of MVVM since the MVVM can be still used in the provided views. As a result, the

framework provides both MVVM and transformation-based model to view mapping.

For example in our third case study, calculation of the circles for the troops move-

ment shapes is done in their MVVM. Similarly, other external technologies can be

integrated into notations as an extension. For example live refreshment of visuali-

zations or external layout mechanisms [18].

Part of our future work will be focused on further evaluation of the approach

perhaps with practitioners in the ¯eld of media and information visualization. We

are also working on extensions of current approach to be able to customise and

de¯ne interaction during notation generation. These interactions could include

zoom-in and zoom-out functionalities, or provide drill-down or hide/show visual

elements, or to embed further data relations in the visualizations. An example is

where a pie chart has been visualized representing percentage of people who voted

for certain product. By clicking on a pie piece in this visualization, it would be

possible to show what percentage of them were male and what percentage were

female.

It is common in visualization community to assume the data to be visualized is

pristine and satis¯es certain formatting and quality required [19]. However, it is not

often the case and our visualization approach is not an exception. For example in the

case study above, we have assumed that the input data is always complete and the

records are sorted according to their representative time. We are working on data

wrangling and cleaning approaches to catch data inconsistency and °aws before

visualization. Similar functionality can however be provided using the transforma-

tion facilities within current version of the CONVErT framework.

Acknowledgments

This work is partially supported by the ARC Discovery Project (DP140102185) and

ARC Future Fellowship (FT120100723) grants. Support for the ¯rst author from

Swinburne University of Technology is gratefully acknowledged.

304 I. Avazpour, J. Grundy & H. L. Vu

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

References

1. D. L. Moody, The physics of notations: Toward a scienti¯c basis for constructing visual
notations in software engineering, IEEE Trans. Software Engineering 35(6) (2009) 756–
779.

2. T. Teitelbaum and T. Reps, The cornell program synthesizer: A syntax-directed pro-
gramming environment, Commun. ACM 24(9) (1981) 563–573.

3. I. Avazpour, J. Grundy and H. Vu, Generating reusable visual notations using model
transformation, in 7th International Symposium on Visual Information Communication
and Interaction, 2014, pp. 58–67.

4. M. Bostock and J. Heer, Protovis: A graphical toolkit for visualization, IEEE Trans.
Visualization and Computer Graphics 15(6) (2009) 1121–1128.

5. M. Bostock, V. Ogievetsky and J. Heer, D3: Data-driven documents, IEEE Transactions
on Visualization and Computer Graphics 17(12) (2011) 2301–2309.

6. M. C. Humphrey, Creating reusable visualizations with the relational visualization no-
tation, in Proceedings of the Conference on Visualization, 2000, pp. 53–60.

7. S. Fenwick, J. Hosking and M. Warwick, A visualisation system for object-oriented
programs, in Technology of Object-Oriented Languages and Systems, 1994, pp. 93–103.

8. J. Hosking, S. Fenwick, W. Mugridge and J. Grundy, Cover yourself with skin, Software
Veri¯cation Research Centre, Department of Computer Science, University of Queens-
land, Technical Report, 94, 1994.

9. A. M. Ernst, J. Lankes, C. M. Schweda, A. Wittenburg and E. Denert-Stiftungslehrstuhl,
Using model transformation for generating visualizations from repository contents,
Technical report, Technische Universität München, 2006.

10. J. de Lara and H. Vangheluwe, De¯ning visual notations and their manipulation through
meta-modelling and graph transformation, Journal of Visual Languages and Computing
15(34) (2004) 309–330.

11. G. Costagliola, V. Deufemia and G. Polese, A framework for modeling and implementing
visual notations with applications to software engineering, ACM Trans. Software Engi-
neering and Methodology 13(4) (2004) 431–487.

12. I. Avazpour and J. Grundy, CONVErT: A framework for complex model visualization
and transformation, in IEEE Symposium on Visual Languages and Human-Centric
Computing, 2012, pp. 237–238.

13. I. Avazpour, J. Grundy and L. Grunske, Tool support for automatic model transforma-
tion speci¯cation using concrete visualizations, in IEEE/ACM International Conference
on Automated Software Engineering, 2013, pp. 718–721.

14. I. Avazpour and J. Grundy, Using concrete visual notations as ¯rst class citizens for
model transformation speci¯cation, in IEEE Symposium on Visual Languages and
Human-Centric Computing, 2013, pp. 87–90.

15. C. Petzold, 3D Programming for Windows (O'Reilly, 2010).
16. I. Avazpour, Towards user-centric concrete model transformation, Ph.D. dissertation,

Swinburne University of Technology, 2014.
17. E. R. Tufte, Beautiful Evidence (Graphics Press, Cheshire, 2006).
18. I. Avazpour, U. Rüegg and J. Grundy, CONVErT meets KIELER: Integrating advanced

layout algorithms into by-example visualizations, in IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2014, pp. 199–200.

19. S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche, C. Weaver, B. Lee,
D. Brodbeck and P. Buono, Research directions in data wrangling: Visuatizations and
transformations for usable and credible data, Information Visualization 10(4) (2011)
271–288.

Generating Reusable Visual Notations Using Model Transformation 305

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:2
77

-3
05

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
m

an
 A

va
zp

ou
r

on
 0

7/
07

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

	Generating Reusable Visual Notations Using Model Transformation
	1. Introduction
	2. Related Work
	3. Approach
	4. Usage Examples
	4.1. Case study 1: Generating a bar chart visualization
	4.2. Case study 2: Visualising traffic data
	4.3. Case study 3: Reusing Minard’s map visualization for traffic data

	5. Architecture and Implementation
	6. Evaluation
	6.1. User study method
	6.2. User study results
	6.3. Threats to validity

	7. Discussion
	8. Conclusions and Future Work
	Acknowledgments
	References

