
Preprint of paper published in International Journal of Software Engineering and Knowledge Engineering, vol.
10, No. 6, © World Scientific Publishing Co. 2000.

MULTI-PERSPECTIVE SPECIFICATION, DESIGN AND
IMPLEMENTATION OF SOFTWARE COMPONENTS USING

ASPECTS
JOHN GRUNDY

Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand

Submitted 3rd September 1999
First Revision 7th May 2000
Accepted 9th August 2000

Current approaches to component-based systems engineering tend to focus on low-level software
component interface design and implementation. This often leads to the development of components
whose services are hard to understand and combine, make too many assumptions about other
components they can be composed with and component documentation that is too low-level. Aspect-
oriented component engineering is a new methodology that uses a concept of different system
capabilities (“aspects”) to categorise and reason about inter-component provided and required
services. It supports the identification, description and reasoning about high-level component
functional and non-functional requirements grouped by different systemic aspects, and the refinement
of these requirements into design-level software component service implementation aspects. Aspect
information is used to help implement better component interfaces and to encode knowledge of a
component’s capabilities for other components, developers and end users to access. We describe and
illustrate the use of aspect-oriented component engineering techniques and notations to specify,
design and implement software components, report on some basic tool support, and our experiences
using the approach to build some complex, component-based software systems.

Keywords: component-based development, aspect-oriented design, requirements engineering,
software architectures, software components, software engineering environments

1. Introduction

As software systems and the software development process become ever more complex,
developers require improved methods and technologies. Component-based systems are
one example offering potential for better existing component reuse, compositional
systems development, and dynamic and end user re-configuration of applications [1, 2,
3, 4]. Component-based systems compose applications from discrete, reusable, inter-
related software components, which are often dynamically plugged into running
applications [5, 3]. Various software architectures and implementation frameworks have
been developed based on the notion of software components, including COM [6],

JavaBeans [5], and JViews [7]. Various development tools and methodologies have
been developed to support component-based software construction [8, 9, 10, 7, 11, 12].

Most component-based development approaches, like traditional object-oriented
analysis and design, focus on designing and implementing components that take
“vertical slices” of overall system functionality, breaking systems into services grouped
by data and operations on data [13, 14, 15, 16]. Most component-based techniques focus
on the identification of interfaces supporting these vertical-slice, functional de-
compositions [17, 6, 15], and encode low-level information about component interfaces
for use at run-time [5, 6]. During development of several component-based design
environments and collaborative Information Systems using these approaches we have
found that they do not adequately help developers to capture, reason about and encode
higher-level component capabilities [18, 19]. In particular these approaches are poor
with respect to addressing issues cross-cutting component services, or the "horizontal
slices" through systems. This makes component requirements analysis, specification,
design, implementation and deployment difficult and components less reusable and
more challenging to deploy and document.

To overcome these problems, we have been working on a new component
development approach we call Aspect-Oriented Component Engineering (AOCE).
AOCE focuses on identifying various horizontal slices, or “aspects”, of an overall
system a component contributes (provides) services to, or services it uses (requires)
from other components. Aspects are horizontal slices through a system, which typically
affect many components identified by functional decomposition, of common system
characteristics such as user interfaces, persistency and distribution and collaborative
work. Component developers use aspects to describe different perspectives on systemic
component capabilities during requirements engineering and design. Aspects also help
to guide component implementation, particularly inter-component interface
development, and aspect information can be encoded into component implementations
for run-time use. Unlike most Aspect-oriented Programming approaches [20, 21, 22],
AOCE avoids the concepts of "code weaving" and the use of run-time reflection
mechanisms. Instead we focus on developing components whose cross-cutting systemic
issues are carefully factored into the component interfaces so that components can be
run-time re-configured and dynamically composed.

This paper motivates the need for AOCE and gives examples of using aspects during
component requirements engineering, design and implementation. We begin with an
overview of the concept of component aspects, using a component-based process
management environment for illustration. We describe aspect-oriented component
requirements engineering, and the refinement of component requirements codified by
aspects into design-level aspects. Implementation of software components using design-
level aspect information is described, along with various run-time uses of aspects. Tool
support is briefly discussed, and we compare and contrast our approach with other
component development methods and architectures. We conclude with an overview of
current and possible future research directions.

2. Aspects of Software Components

We have developed several systems using software components [18, 19], one example
being the Serendipity-II software process management tool, a screen dump from which
is shown in Fig 1 (a). Serendipity-II provides multiple graphical and textual views of
software process models, including stages (1), event connections (2), role assignments
(3) and task resources. Enactment event histories (4) and shared to-do lists (5) facilitate
work tracking and co-ordination. Fig 1 (b) shows some of the software components that
make up Serendipity-II. Some are domain-specific, e.g. “Stage Icon”, “Base Stage” and
“Base Flow”, and some are quite generic, e.g. “Editing History”, “Collaborative
Editing” and “View rel”, reused in many diverse component-based applications [23].

(1)

(2)

(3)

(5)

(4)

component

relationship

link

Stage icon Stage icon

Flow glue
Process

view

View comps

Editing history

Collaborative
editing

to other
users…

View rel

Base Stage
Base
flow

Base Stage

Repository

Base stages

…

Edit e.g.
rename
stage…

Unique names

Send/receive
changes

Enactment
history To-do

list

Persistency man.

View rel

Fig 1. (a) Serendipity-II process management tool; and (b) example components.

Complex engineering issues arise when developing systems like Serendipity-II:
• Developers need to identify, describe and reason about inter-component

relationships and capabilities. This includes identifying and describing the services a
component requires as well as those it provides.

• Developers are often unaware of all the potential reuse situations of a component,
and thus have to be very careful about assumptions made about related components.

• Components need to be appropriately configured for a particular reuse situation

• Developers may want to reuse 3rd party or commercial off-the-shelf (COTS)
components, whose source code they may not have access to nor control over

• Components need to provide appropriately adaptable user interfaces, middleware
capabilities and configuration capabilities, to be reused in many situations.

• Developers need to be able to refine component requirements to software
component designs and implementations, ideally using a consistent metaphor for
characterising component capabilities and inter-component relationships.

• Information about component capabilities and configurations needs to be available
to both end users and other components at run-time, to facilitate plug and play.

• Users require appropriate support for finding, reusing and configuring components.

Most current component development methods, such as Select Perspective™ and
Catalysis™ [1, 24], do not adequately support high-level description of and reasoning
about component capabilities and focus on decomposing systems into “vertical slices”
of functionality i.e. group functions with data using domain-specific categories. We
developed the concept of component aspects to allow us to better categorise component
capabilities according to a component’s contribution to an overall component-based
system’s functions and to help organise non-functional constraints, particularly those
cross-cutting components. Aspects are “horizontal slices” of a system’s functionality
and non-functional constraints, and include user interfaces, collaborative work facilities,
persistency and distribution management, and security services. A key feature of this
categorisation of component characteristics is the idea that some components provide
certain aspect-related services for other components (or end users) to use, while other
components require certain aspect-related services from other components.

User interface-
related services

Distribution-
related services

Persistency-
related services

Collaborative work-
related services

Process Stage Event History Process ViewEvent Flow

Exmaples of “Vertical Slices”
i.e. objects, components

Examples of
“Horizontal

Slices”
i.e. aspects,
perspectives

Overall software application

Fig. 2. General concepts of components vs. component aspects.

Fig. 2 illustrates the conceptual difference we make between software components
(vertical slices of system data and functionality) [14] and component aspects (horizontal
slices of system functionality and non-functional constraints) [13]. Usually each
component in a system provides one or more aspect-related services for other
components to use, and requires one or more aspect-related services from other

components in order to function. Identifying aspect-categorised services allows us to
reason about components from various systemic perspectives cutting across the typical
system vertical slicing into software components.

Each component aspect (perspective) has a number of “aspect details” that are used
to more precisely describe component characteristics relating to the aspect. For
example, at a requirements level we typically want to talk about general notions of data
and event sources, event propagation and receiving, and concurrency control, in relation
to the distribution aspects of component-based systems. At a design level, we typically
want to talk about particular implementation patterns (e.g. observer, notifier) and
technologies (e.g. TCP/IP sockets, CORBA, messaging systems etc).
Examples of some aspects and aspect details we have identified and found useful for
applications we have developed are illustrated in Fig. 3 (a). This is not an exhaustive list
and many other aspects might be appropriate in different domains e.g. real-time
response, transaction processing, memory management, and so on.

Aspect Aspect Details Description

User interface Views
Affordances
Feedback
Extensible parts

Components supporting
or requiring user
interfaces, including
extensible &
composable interfaces
for several components

Collaboration Sync. editing
Versioning
Floor control
Group awareness
Messaging

Components supporting
or requiring
collaborative work by
users

Persistency Store/retrieve data
Locate data
Lock data

Components supporting
or requiring data
persistency
management facilities

Distribution Object Identification
Method Invocation
Transactions
Event propagation
Concurrency control

Components supporting
or requiring distributed
object management
facilities

Security Encoding model
Key distribution
Authentication
Access control

Components supporting
or requiring inter-
component secutiry
models

Configure PEMs & Aspects
Property sheet
Wizard
Scripting

Components supporting
or requiring end user or
dynamic configuration
of component

Editing history

show()

storeEdit()

replayEdit()

Collaborative editing

broadcastEdit()

receiveEdit()

replayEdit()

addEditingMenu()

Process View
display()

showEdits()

addMenu() User interface
aspects

Collaborative
work aspects

encodeData()

Persistency
aspects

versionData()

addButton()

Fig. 3. (a) Some general aspects; and (b) an illustration of component aspects from Serendipity-II.

We identified these particular aspects and aspect details by carefully looking at the
systemic, cross-cutting issues common to many components in our problem domains
(visual design tools and Collaborative Information Systems [16]). In other problem
domains, additional aspects are likely to be necessary (see [20, 40, 13, 22]). For
example in real-time systems event response time, memory management and

concurrency aspects; safety-critical systems have redundancy and high assurance
aspects; and security-critical systems have various additional security-related aspects.
Developers need to identify the key cross-cutting concerns their application components
have, develop suitable aspect details and agree on their aspects and aspect details so
they can sensibly exchange component knowledge.

When reasoning about provided and required services of components we analyse
these in terms of particular aspect details a component provides services relating to, or
requires services related to from other components. Fig. 3 (b) illustrates how some
aspects map onto some Serendipity-II component services. Our notion of an aspect is
also used to capture information about non-functional constraints. For example,
developers may not only wish to describe collaborative work or distribution aspects but
note performance constraints, such as required network speed, maximum data transfer
or transaction processing performance, security or robustness characteristics, and so on.
Note some aspect categorisations may overlap e.g. the versionData() service might be
considered a collaboratibve work aspect or persistency-related aspect of the
Collaborative editing component. Our notion of an aspect is tolerant to this potential
“overlapping of concerns”, and we find it a very useful characteristic.

We have used the concept of component aspects during component requirements
engineering, component design and implementation and component testing and
deployment. Aspects aim to increase developers and end users knowledge about
components by providing a more effective categorisation and codification mechanism
for the cross-cutting of component services.

AOCE begins with component and/or system requirements engineering using
aspects. Software component design refines abstract component specifications,
choosing appropriate user interface, middleware and database technologies, and
program design approaches and patterns. Component implementation using aspects
produces deployable software components, with aspects used to guide interface
implementation. Aspect information is encoded in components for run-time use by end
users, developers, and other components. A key difference between AOCE and most
conventional uses of OOA/D is that component requirements and designs may be
reasoned about from an application perspective i.e. an overall system's requirements or
design, or from individual component or groups of reusable components. We have
found using aspects to characterise component capabilities allows the relationship
between domain-specific and generic, reusable components to be more easily reasoned
about and specified. In the following sections we focus on the use of aspects for
component requirements engineering, design, implementation and deployment, then
compare our approach to other component development methods and technologies.

3. Aspect-oriented Component Requirements Engineering

Aspect-oriented component engineering begins by analysing a system’s requirements,
or one or more discrete components’ requirements [16]. Typically candidate
components are found from OOA diagrams, by reverse engineering software

components, or bottom-up consideration of individual, reusable components. For each
component we identify, using desired component services and non-functional
constraints, the aspects and aspect details for which the component provides services to
or requires services from other components.

For example, consider the event history component, reused by Serendipity-II to
provide view editing, processes stage enactment and collaborative editing histories. This
can be identified from Serendipity-II requirements or in a bottom-up fashion as a
commonly required design environment component. Event history functional
requirements include event management (add, remove, annotate), history display and
manipulation, multiple user sharing, and data persistency.

Fig. 4 illustrates some aspect-oriented requirements for the event history component
and related components from Serendipity-II. Aspect details are categorised as being
“provided” (“+” prefix) or “required” (”-“ prefix).

Event History

title:String
…
displayEvents()
addEvent()
removeEvent()
saveEvents()
loadEvents()
subscribeToEvent()
replayEvent()
linkComponents()
…
addEvent
removeEvent
changeTitle
…

<<User Interface Aspect>>
+view
+extensible affordances
[-viewer]

Process Stage

…
displayHistory()

<<User Interface Aspect>>
-event viewer

<<Collaborative Work Aspect>>
+replay received events
+generate events
-event/data broadcasting
- locking protocol
[- version control support]

<<Collaborative Work Aspect>>
- event generation
- event replaying
- encode data
+ event broadcasting
+ synchronous locking

<<Collaborative Work Aspect>>
+ version control support
- encode data

<<Persistency Aspect>>
+ store data
+ retrieve data
- encode data
- extensible affordance

<<Persistency Aspect>>
+ encode data
- store data
- retreive data

<<Configuration Aspect>>
+ PEM info
+ aspect info
- configuration tool

<<Configuration Aspect>>
- aspect info
+ visual component
configuration support

<<User Interface Aspect>>
- extensible affordance

Collaborative
Editing Comp

…
addMenu()
sendEvent()
receiveEvent()
connect()
close()
lockItem()

Version Control
Component

…
checkIn()
checkOut()

File Storage
Component

…
readData()
writeData()

Visual Agent
Specification

…
configureComps()

<<Aggregate User Interface Aspect>>
+view
[+extensible affordance]

<<Aggregate Collaborative Work Aspect>>
+replay received events
+event/data broadcasting
[-locking protocol]

<<Aggregate Persistency Aspect>>
+ store data
+ retreive data
[- index data]

Component
Attributes
Methods
Events

<<Aspect Kind>>
+ provided detail
- required detail
[- optionally required]

provides requires Aggregate aspects

Fig. 4. Visual representation of Serendipity-II components and some of their requirements-level aspects.

Some "required" aspect details may be optional i.e. the component can still function
without them being satisfied, although with some services unavailable. Serendipity-II’s

requirements indicate the event history component must provide a user interface, must
support collaborative viewing and editing, must be persistent, and allow configuration
of history behaviour. We indicate user interface affordances must be “extensible” by
other components, a need identified during Serendipity-II requirements specification,
where a versioning component needs to extend event history affordances. We identified
that collaborative work infrastructure should be provided by other components, to
enable its reuse. Thus the event history provides basic collaborative work-related
facilities, such as event editing, annotation, actioning received events and providing
event listening and export facilities, but requires support for event and data broadcasting
between environments, versioning facilities and data persistency from other
components. Note that aspect details are kept quite general at the requirements level,
and the eventual implementation strategies of these facilities is abstracted away.

Requirements (and design) level aspects can be reasoned about in groups, or
“aggregate” aspects. Aggregate aspects are useful to identify, specify and reason about
for groups of interrelated components. They also allow global, system-wide
requirements to be captured, constraining more detailed aspects. Fig. 4 shows some
aggregate aspects for the event history, collaborative work and file persistency
components. The aspects of this aggregate are a constrained subset of the grouped
components (no extensible affordance, no versioned history, requires indexing and so
on). Developers choose whether to "show" provided aspect details in the aggregate i.e.
make them accessible to other components. Required aspect details satisfied within the
aggregate may be omitted, or if other components the aggregate is composed with can
provide these services i.e. over-ride provision within the aggregate. Provides/requires
relationships between aspect details allow developers to reason about the validity of
component configurations. Consider an event history linked to a component providing
event broadcasting but not data versioning. This configuration could be used but would
not provide versioned event histories (acceptable in some situations but not others).

Each aspect detail has additional information encoding its functional and non-
functional characteristics. These aspect detail properties are used to more formally
describe aspects and inter-aspect relationships. A textual specification language defines
components; aspects; provided and required aspect details; and detail properties with
values or value constraints. Fig. 5 shows an example of some codified aspect
information for event history and collaborative editing components. The event history's
collaboration aspects provide EVENT_SOURCE services. Events are propagated before
and after state changes to the event history (GENERATE=before, after), include events
from aggregated components (AGGREGATE=true) and events generated in response to
other events (TRANSITIVE=true). The event history requires EVENT_EXCHANGE
services, provided in this example by a collaborative editing component. These should
use the history's own event serialisation services (SERIALISATION=event_source) and
must be able to propagate at least 3 editing events per second (NUM_PER_SECOND
>= 3). Some properties are expressed as single or enumerated values, some as value
constraints and some as values computed from other properties.

COMPONENT “Event History”

ASPECT “User Interface”
PROVIDED ASPECT DETAIL “extensible menu bar” : :

EXTENSIBLE_AFFORDANCE
PROPERTIES ORDER=fixed, EXTENSION=any

END ASPECT

ASPECT “Collaboration”
 PROVIDED ASPECT DETAIL "generate events" : EVENT_SOURCE

PROPERTIES GENERATE=before, after, AGGREGATE=true,
TRANSITIVE=true, AVERAGE_EVENT_SIZE = …,

PROVIDED ASPECT DETAIL "store events" : EVENT_SINK
PROPERTIES STORE_KIND=state_change,

SOURCE=self, aggregates

 REQUIRED ASPECT DETAIL "send/receive events" :
EVENT_EXCHANGE

PROPERTIES SERIALISATION=event_source,
NUM_PER_SECOND >= 3

 REQUIRED ASPECT DETAIL "locking protocol" :
SYNCHRONISATION

PROPERTIES LOCKING=pessimistic, exclusive

 REQUIRED ASPECT DETAIL "version control" : VERSIONING
PROPERTIES GRANULARITY=event, component, aggregates

END ASPECT

END COMPONENT

COMPONENT “Collaborative Editing”

ASPECT “Collaboration”
REQUIRES "generate events" : EVENT_SOURCE

PROPERTIES GENERATE=before AND after

REQUIRES “action events” : EVENT_SINK
PROPERTIES SYNCHRONOUS=true IMPLIES

GENERATE INCLUDES before

PROVIDES "broadcast events" : EVENT_EXCHANGE
PROPERTIES SERIALISATION=event_source,

NUM_PER_SECOND = "event transporter".
BYTES_SEC /
generate events.AVERAGE_EVENT_SIZE

 PROVIDES "receive events" : EVENT_EXCHANGE
PROPERTIES CANRECEIVE = IF

PROVIDED(EVENT_SINK) THEN = true

PROVIDES "synchronous locking" :
SYNCHRONISATION

PROPERTIES LOCKING=pessimistic, exclusive

REQUIRES "event transporter" :
EVENT_TRANSPORTER

END ASPECT

ASPECT “User Interface”
 PROVIDES "menu item" : AFFORDANCE

PROPERTIES KIND=menu_item

REQUIRES “extensible menu” : AFFORDANCE
PROPERTIES KIND=menu

END ASPECT

END COMPONENT

Fig. 5. Textual codification of some Serendipity-II aspect detail properties.

4. Software Component Design with Aspects

Aspect-oriented component requirements provide a focused set of functional and non-
functional constraints a design can be refined from. As with refining object-oriented
analysis models into object-oriented designs, requirements-level components can be
refined directly to matching design-level software components, or can be split, merged
or otherwise revised. Similarly, requirements-level aspect details can be refined into
software component aspects that categorise design-level component services. Detailed
design decisions about user interfaces, component persistency and distribution,
collaboration facilities, security and transaction models, and component configuration
facilities are examples of common design-level refinements. Developers also typically
develop additional, design-level component specifications, such as collaboration
diagrams, interface specifications and customisation policies, [25, 24].

The first step is refinement of requirements-level components to design-level
software components. Developers may refine requirements-level components into e.g.
user interface, data, and processing parts, allocate data and functionality accordingly,
introduce various APIs (service objects) to support component implementation (e.g.
databases, middleware, user interface, security etc). They may also aggregate smaller
components to design implementations for larger ones. Component-based systems
design tries to develop a set of interacting yet more or less stand-alone coarse-grained
components versus a monolithic object-oriented design made up of objects.

Requiements-level Design-level
Comps Aspect Details Comps Aspect Details Detail Properties
Event
History

+ viewer
+ extensbible
 affordance
+ generate events
- event/data
 broadcasting
- locking protocol
- version control
 system
+ encode data
…

Event
History

+ viewer

+ extensible affordance

+ generate events

- event/data broadcasting

- locking protocol

- version control system

+ encode data

+ classes

+ methods
+ events
…

EDITABLE=true;
KIND=frame;
EXTENSIBLE=false
KIND=button list;
FUNCTIONS= {
addMenuItem(),,
 removeMenuItem() , … }
GENERATE=…;
…
SENDEVENTS={StoreChange,
 RemoveChange, …}
TRANSPORT=socket;
PROTOCOL=any;
BYTESPERSEC >= 5000
ACQUIRE=getLock();
RELEASE=freeLock();
KIND=exclusive semaphore
LOCKEVENTS={AcquireLock
 …}
ENCODE=source;
REMOTE=true
ENCODING=text;
ENCRYPTED=false
CLASSES={EventHistoryList,
EventHistoryDialogue}
…
…

Table 1. Refinement of component specifications to a software component designs.

As an example, consider the refinement of Serendipity-II's specifications to a set of
component designs for the system. We want to produce a design made up of a group of
interacting components that realises our process management environment, but where
many of the components may potentially be reused via plug-and-play [19, 23]. We
refine Serendipity-II specifications in a similar way to traditional OOA refinement: split
them into parts which include user interface, data and processing division of
responsibility; introduce service objects (APIs); and group to form units of functionality
(traditionally programs, but groups of inter-operating components in our model). Note
that in our component-oriented design many service object facilities (APIs) might be
provided by software components (see Fig 1 (b) for part of Serendipity-II’s design).

Design-level aspects refine implementation-neutral requirements into aspect details
and properties that specify information relevant to selected implementation strategies
software components embody. When refining requirements-level aspects to design-level
developers specify aspect detail types and aspect detail properties more precisely, tieing
them to component implementation design approaches. Developers can reason about
implementation-specific component properties, and design-level aspects encourage
implementation of de-coupled component interaction strategies.

As an example consider event history refinement, implemented by two classes.
Extra aspect detail properties are introduced at design-level: the kind of viewer(s)
provided and if viewer extensible; event transport mechanism, protocol and speed
required; and encoding mechanism for version control storage. Some aspect detail

properties refer to design-level component services (events, methods, properties,
interfaces etc), for example extensible affordance-related functions, events generated by
component that should be sent to facilitate collaborative editing; locking acquire/release
interfaces, function(s) and events required, and so on. The Event history incorporates
both user interface, data management and persistency-related capabilities. The
requirements-level Process Stage component on the other hand is refined to two distinct
components - Stage Icon and Repository Stage. The framework architecture we use to
build Serendipity-II makes a distinction between model and view components,
connected via a reusable View Relationship component. The Stage Icon refinement
includes most user interface aspects, the Repository Stage event processing, data
management and data persistency aspects.

User Interface
+dialogue view
+extensible buttons panel
- viewer

Event History List Class

displayHistory()
storeEvent()
addEventListener()
broadcastEvent()
replayEvent()
….

Event History Viewer Class

Collaborative editing
support Component

Version Control
Component

Collaborative Work
+ serialise/deserialise data/events
 to/from data stream
+ listen to events; action events
+ String-based annotation;

colour-based highlighting
- remote event sending & receiving
- lock shared histories with semaphore
- check-out, check-in event list data

Persistency
+ serialise/deserialise data
 to/from stream
+ data encoder
- stream provider

Provides dialogue view
Process View
Component

storeEdit()
viewEdits()
undoEdit()
redoEdit()
…

Event History Component

TCP/IP-based socket
stream communications

component

Stage Icon
Component

Repository Stage
Component

View relationship
component

File stream-based
persistency
component

Uses for
editing history

Uses for stage
enactment

history
Uses for collaborative

editing

Uses for comms

Uses for file storage

Component
uses component
services
Component's
aspects

Provides/requires
components aspects

Tree Viewer Component

Fig. 6. Some design-level components and aspects for Serendipity-II.

Fig. 6 shows how the event history interacts with other design-level software
components in Serendipity-II. We have refined the requirements components to a design
which uses a synchronous/asynchronous collaborative editing support component, a
TCP/IP socket-based event distribution component, a file-based version control
component, and a tree-based viewer. All of these are reusable in many component-based
applications. The domain-specific Serendipity-II process stage component has been
refined to data management ("repository stage") and view-level ("stage icon")
components. Grouping and management of these is done by repository and view
components. This example of design-level software components and their aspects is the
way that process view event histories are actually implemented for Serendipity-II [19].

There tends to be overlapping of aspects at design-time (and often at requirements
level) in terms of the component services the aspects affect. For example, for the event
history design, the persistency event data encoding uses the same implementation as
collaborative work event data encoding. If constraints on the encoding provided aspect
detail were changed e.g. to a binary format or to an encrypted format, related
components using this provided detail, and its corresponding implementing services,
may be incompatible or will not satisfy previously satisfied functional and/or non-
functional requirements (e.g. if encryption algorithm slows down event transfer/storage
rates below acceptable levels or binary-encoded data can’t be stored by persistency
component). Design-level component aspects record the services they affect, and may
also record aspects whose concerns overlap with their own, allowing designers to track
using these inter-perspective dependency links.

5. Component Implementation

Aspect-oriented component designs can be realised using any implementation
framework for components. For example, Enterprise JavaBeans services map onto
aspect characterisations reasonably well. However, we have found encoding aspect
information in component implementations for run-time usage very useful. It can be
used to introspect aspect-related services, provide de-coupled interaction, facilitate end-
user understanding of components, and incorporate configuration validation.

JViews Component

addAspectDetails
findNamedAspectDetails
removeAspectDetails
showDialogue
validate

Aspect Manager

name: String
optional: Boolean
provided: Boolean
type: String
getAnnotation
getProperty
setAnnotation
setProperty
showDialogue
validate

Aspect Detail

User Interface Aspect Detail

Distribution Aspect Detail

Collaboration Aspect Detail

Persistency Aspect Detail

affordanceKind: String
extensionsAllowed: String
addAffordance
disableAffordance
enableAffordance
findAffordance
getExtensibleAffordanceIF
removeAffordance
replaceAffordance
validate

Extensible Afforance Detail

aggregates: Boolean
eventTypes: List [Class]
objectSize: Integer
addSubscriber
getSubscriberIF
removeSubscriber
validate

Event Generator Detail

retransmit: Boolean
speed: Integer
transport: String
unicast: Boolean
connect
disconnect
getTransporterIF
receiveEvent
sendEvent
validate

Event Transport Detail

*

aspectManagers

aspectDetails
*

Fig. 7. Some AspectManager and AspectDetail classes from the JViews framework.

We have extended a component-based framework, JViews, to incorporate aspect
information. JViews is an extension of the JavaBeans component-based framework [5],

and adds a more powerful event model, repository and view components and various
reusable components for building user interfaces, middleware and data management
services [23]. We added aspect codification AspectManager objects, one for each aspect
category, managing various AspectDetail objects, each kind of AspectDetail class
having appropriate aspect detail properties. As illustrated in Fig. 7, JViews component
classes inherit from a JVComponent class that includes functions to access
AspectManager and AspectDetail objects. The AspectManager classes provide
functions to query, retrieve and modify their AspectDetail objects. The AspectDetail
class provides generic functionality to identify (name) each aspect detail for a
component, as well as common property management and annotation functions.

AspectDetail specialisations capture extra aspect detail properties and many provide
aspect detail-specific component querying and manipulation functions. We have
developed AspectDetail specialisations for collaborative work support, persistency,
security, component configuration and transaction processing characterisation.

For example, the ExtensibleAfforanceDetail class, a UserInterface aspect detail
specialisation, describes components that have extensible user interface affordances e.g.
a pull-down menu or list of buttons. Its properties characterise the kind of extensible
afforance, how the affordance can be extended and functions to carry out extension.
Components providing extensible affordances advertise this via a
ExtensibleAfforanceDetail object. Components requiring an extensible affordance
advertise this, and use ExtensibleAfforanceDetail functions to discover capabilities of
the provider component and dynamically extend the provider’s user interface in a
controlled, de-coupled fashion.

Various interfaces a component may implement can be accessed via AspectDetail
functions. For example, the ExtensibleAffordanceIF interface might be implemented by
a component, and another component discovers that it implements this via its
ExtensibleAfforanceDetail object. The second component can access the
ExtensibleAfforanceDetail functions, which know how to extend the first component’s
interface, or it can access the providing component’s functions directly.

The EventGeneratorDetail class characterises components that provide or require
event generation capabilities. It provides properties to characterise event generation as
well as functions to establish and remove subscribers to events. The
EventTransportDetail class describes distribution mechanisms for events and functions
to carry out sending and receiving of events. AspectDetail objects may include
validation functions that can be called at run-time to check components are correctly
combined i.e. their aspect details and properties are sufficient to allow them to operate.

Programmers may provide functions in components that implement aspect-related
services which are invoked directly, but where possible try to avoid this to minimise
component coupling. AspectDetail methods allow JViews components to communicate
in a generalised, de-coupled manner, producing far more reusable components.

6. Run-time Use of Aspects

AspectDetail objects are created when needed by other components. They can be used
to introspect a component’s capabilities at run-time, to provide a de-coupled access
point for invoking functions of a component that implement aspect-related services, or
be used to re-configure or validate a component.

Fig. 8 shows two examples of AspectDetail object usage in Serendipity-II. Fig. 8(a)
shows a persistency management component, which needs to add extra affordances to
the event history's user interface. The persistency management component accesses the
event history’s user interface manager (1) to obtain an extensible affordance aspect
detail object. It then invokes the addAffordance() function (2), and addAffordance()
calls appropriate functions implemented by the event history (3), and returns the new
affordance objects. In Serendipity-II, the persistency management component extends
the event history's buttons list to add "Export" and "Import" buttons, for event history
saving and loading. If the event history only allowed a menu bar to be extended, it
would add e.g. Export and Import menu item affordances. The persistency component
knows nothing about the event history component and only interacts with it via the
functions provided by the ExtensibleAfforanceAspectDetail object.

Fig. 8(b) shows a collaborative editing component using a distribution aspect
manager (1) to discover the event generation and subscription interface supported by the
event history (2), using this interface to subscribe to editing events (3, 4). When the
collaborative editing component receives events (5), it sends these to another user's
collaborative editing component via an event transport component (6, 7), illustrating a
transitively provided aspect detail. Received events (8) are sent to the event history (9).

persistency comp : File
PersistencyComponent

aspect : Extensible
AffordanceDetail

history :
EventHistory

UI manager :
AspectManager

3: addMenuItem()

1: findAspectDetailByKind()

2: addAffordance()

event transport :
TCPEventTransporter

history :
EventHistory

distribution aspects :
AspectManager collab work comp :

CollaborativeEditing

event gen : Event
GeneratorDetail

event IF :
EventNotifier

event trans aspect : Event
TransportDetail

5: eventReceived()

1: findAspectDetailByKind()

2: getSubscriptionInterface()

3: addSubscriber()

9: receiveEvent()

6: sendEvent()

8: eventReceived()

4: addEventListener()

7: sendEventData()

Fig. 8. (a) User interface extension; and (b) event subscription service access via AspectDetail objects.

End user support for accessing component aspect information is provided by tools that
query components for their AspectInfo information. This allows developers and end
users to use high-level, categorised knowledge of component capabilities. The
AspectInfo information about component capabilities is also usable for indexing and
locating components in a repository. Fig. 9 shows a simple example of end-user use of
aspect information in Serendipity-II. The end user is building a simple process
notification agent by reusing and connecting component representations in a visual
agent specification tool [19]. The user can view component aspect information, and can
request validation functions associated with aspects and aspect details be run to check
the current component configuration is sensible and meets encoded aspect constraints.
An example is shown of an end user locating and reusing the collaborative editing
component from a component repository [26]. A query requested a component that
provided a collaborative work aspect and an event broadcasting aspect detail.

Aspect
categorisations

Aspect detail
information

End user agent
specification

tool

Validation
dialogue

Aspect detail
properties

Aspects &
aspect details

Query (aspect
details+property

value constraints)

Property value
specification

Retrieved
components

Fig. 9. End user access to aspect information (left) and component retrieval using aspects (right).

7. Development Tool Support

To support the aspect-oriented component engineering methodology we have extended
a CASE tool for JViews, called JComposer [7], to support component aspects for
requirements engineering, software component design and component implementation.
JComposer provides multiple views of component-based software systems using the
JViews ADL. It supports collaborative editing of these views and includes sophisticated
inconsistency management support. We added additional constructs to JComposer to
allow developers to describe component aspects, aspect details, detail properties and
inter-component aspect relationships [16]. Requirements-level aspects and design-level

aspects can both be represented in JComposer, linked by simple refinement
relationships. Checks can be run to ensure provided and required aspect details for
related components are consistent. JComposer supports the generation of JViews
component implementations, and we extended the tool to support the generation of
AspectInfo class creation. Currently only basic support is provided for specifying
component interfaces or use of design patterns in conjunction with aspect specifications.

8. Discussion

Current object-oriented and component-oriented development methods, such as the
UML™ [10], Select Perspective™ [1], COMO [25], Enterprise-scale CBD [8], and
Catalysis™ [24], tend primarily to focus on functional decomposition of requirements
into objects and/or components [13, 15]. At design-level they focus almost exclusively
on detailed component interface design and service implementation. We originally
developed Serendipity-II and several other component-based systems using this kind of
approach [19, 23], finding several problems with such approaches that other researchers
and practitioners have also identified [4, 8, 2, 18, 25, 27, 17, 28]. The main problem is
their tendency to produce components with capabilities and interfaces that are
insufficiently adaptable. Other problems include lack of suitable notations to express
component-oriented requirements and designs, lack of requirements and design
processes and abstractions for current component implementation technologies, and
difficulties in both developers and end users understanding components. The later is
important in systems where users themselves need to extend their environment. As often
no general framework is used to capture and reason about component requirements, or
standardise interfaces, it is often hard to get third-party components to interact.

Some recent approaches take into account diverse component interface requirements
[17] or system-wide properties [28], although they still focus on low-level component
interface characteristics. Some extensions to the UML to express components include
Catalysis, Enterprise CBD and COMO, [8, 24, 25, 27]. These still lack adequate
structured characterisation of components, particularly their provided and required
interfaces and non-functional properties. In contrast, component aspects provide a
framework for multi-perspective specification, assisting developers to codify systemic
characteristics, and they assist development of highly reusable, dynamically
reconfigurable components. The need for reusable components that can be "trusted" to
perform in appropriate ways in diverse situations has become apparent [29], and aspects
with detailed property specifications and run-time validation begin to address this.

Current component technologies, such as Java Beans [5], CORBA C-IDL [30], and
COM+ [6], and support tools, such as Visual Javascript [11], SYNTHSIS [9], and [12],
focus on low-level component capabilities. The advertising of component capabilities
using BeanInfo classes, C-IDL interfaces and type libraries does not lend itself to
capturing high level knowledge about component capabilities. This adversely affects
other components and end users ability to understand and appropriately use a
component’s facilities. Our higher-level aspect information greatly assists end users

understand reused component functionality. Enterprise JavaBeans containers [31]
provide a similar capability to our JViews framework-level aspects for abstracting
detailed systemic service provision from components. However, they restrict
components to a containment model in order to achieve this, whereas component
interaction and dynamic reconfiguration is more flexible but equally powerful.

A major aim of component-based systems is support for end user configuration of
software [11, 12]. Various component-based systems support this [19, 12], as well as
agent-based, workflow, adaptive user interface and end user computing systems [32, 33,
34, 35]. Most of these systems need third party agents to communicate knowledge [32,
33, 34], focusing on domain-specific data and functions, limiting the sharing of
systemic user interface, collaboration and distribution mechanisms. Most component
configuration tools utilise visual drag-and-drop metaphors, iconic component inter-
connection or scripting languages [11, 12]. All require end users to be aware of
component capabilities and what are “correct” configurations, but most tools and
component architectures do not adequately capture and present such information.
Aspects give end users a higher-level view of component capabilities, inter-component
relationships and provided/required services.

Various techniques capture knowledge about software components, including
IBROW [36], JBCDL [37], CDM [27], and [38]. IBROW uses multiple ontologies to
describe problem solver components and adapatation of components at task and domain
model levels. Oussalah and Messadia [38] also use task/process-solving
method/domain-based descriptions. These go somewhat beyond aspects in addressing
task and problem-solving issues, but do not address the kinds of cross-cutting functional
and non-functional specifications as do component aspects. CDM and JBCDL use
hierarchical categorisation, vertically grouping components based on component
purpose, which is much more limited than cross-cutting systemic component
characteristics. We have used aspects to index and support retrieval of components [26]
and have found aspects form a better ontology for querying components.

Aspect-oriented programming (AOP) [13, 21, 20, 22] and adaptive programming
[14, 39] are becoming popular approaches to handling cross-cutting concerns for object-
based systems. To our knowledge aspects haven’t been directly applied to software
component implementation aside from in our work. AOP [13, 21] uses a notion of
systemic aspects of a system to "weave" code managing e.g. data persistency and object
distribution [40, 13], with aspects codified independently to program classes. A key
difference between AOP and AOCE is the concept of components providing services
for one or more such systemic aspects and requiring one or more services from other
components. Interfaces are designed to avoid AOP-style code weaving as source code
may not be available for third party Commercial Off the Shelf (COTS) components, and
run-time reconfiguration of component-based systems necessitates components being
able to dynamically change interactions with other components’ aspect-based services.

Reflective techniques can avoid compile-time weaving [22, 41], though at the cost
of expensive performance overheads and (currently) lack of design abstractions. Some

design-level approaches to codifying aspects have been developed [20, 42] though these
typically adopt standardised UML-style notations which are textually annotated. Some
approaches use “adaptive components” or “hyperslices” to isolate cross-cutting
concerns and facilitate de-coupled component interaction [14, 15]. Such implementation
strategies are compatible with our own using extended JViews components, though we
have addressed a much wider range of aspects and aspect details, and aspect-oriented
component requirements and design approaches provide higher-level abstractions.

We have used aspect-oriented component engineering to successfully reengineer a
range of software components and component-based systems, including Serendipity-II
and JComposer, and to develop new, reusable components for persistency management,
collaborative work support and component distribution. Re-engineering Serendipity-II
and JViews components using aspects has produced significantly better characterised
component requirements, and more easily reused and reconfigured components. The
main advantages aspect-oriented component engineering provides include the extra
richness of multiple perspectives onto components, better structuring of component
requirements and designs, encouraging implementation of better dynamic configuration
and de-coupled component interaction, and run-time access to detailed component
knowledge. Aspect-based perspectives give developers a set of alternative, richer
viewpoints on component capabilities, and allow developers to document their
components more completely. During design and implementation, aspects encourage
more flexible coupling, dynamic configuration and dynamic deployment strategies.
Aspect codification provides a far more powerful introspection and generic coupling
mechanism, components can be indexed using their aspects, and aspect information
even presented to end users.

Component aspects introduce added complexity, requiring developers think about
their components from various perspectives, specify provided and required aspect
details, and reason about component interaction from each perspective. A trade-off has
to be found between this extra effort and AOCE benefits. Our experience indicates that
for complex systems, or even single components that have several systemic aspects,
AOCE is worth this extra effort with enhanced reusability, reconfigurability and
understandability outweighing extra specification and reasoning effort. Problems
identifying suitable aspects, choosing incomplete aspects and the lack of aspect support
in current tools may mean the technique is less effective.

We are extending our set of component aspects, aspect details and particularly
aspect detail properties and property constraints, allowing more formal reasoning about
inter-component relationships and improved indexing and retrieval. We are extending
JViews and its tools to support such formal specification and checking, and to include
better support for aggregate aspect representation. We are improving JComposer's
aspect generation capabilities and use of a wider range of UML modelling diagrams
with aspect extensions. Use of Perceval [20] to codify aspects in an implementation-
independent way and generate different component implementations is being

investigated. User studies of our requirements and design techniques are in progress
using simplified extensions to the UML.

9. Summary

Several key challenges in building complex component-based systems include: the
engineering of requirements for individual and groups of reusable components;
refinement of requirements into software component designs; correct composition of
components at compile- and run-time; and run-time access to component capabilities.
Aspect-oriented component engineering addresses these by providing a new framework
for describing and reasoning about component capabilities from multiple perspectives.
Requirements engineering with aspects provides improved documenting of and
reasoning about component functional and non-functional requirements. Requirements
can be naturally refined to design-level aspects that categorise design decisions about
component services and aid developers in choosing generic inter-component
relationship implementations. Aspect information in component implementations allows
developers, end users and other components to access high-level knowledge about a
component’s capabilities, and to perform basic configuration validity checks. De-
coupled component interaction enhances component reusability and configurability.
Tool support for aspect-oriented component engineering includes requirements to
implementation use of component aspects in the JComposer CASE tool, providing run-
time access to component aspect information, and an aspect-based component
repository. Our experiences with aspect-oriented component engineering have been
generally very positive, and a number of promising research directions exist.

Acknowledgments

Support for parts of this research from the New Zealand Public Good Science Fund and
the many helpful comments of the anonymous reviewers are gratefully acknowledged.

References

1. P. Allen and S. Frost, Component-Based Development for Enterprise Systems: Apply the
Select Perspective™, SIGS Books/Cambridge University Press, 1998.

2. A.W. Brown and K.C. Wallnau, Current state of Component Based Software Development,
IEEE Software (Sept/Oct 1998), pp. 37-46.

3. C.A. Szyperski, Component Software: Beyond OO Programming, Addison-Wesley, 1997.
4. A.W. Brown and K.C. Wallnau, Engineering of component-based systems, in Proc. of the

2nd Int. Conf. on Engineering of Complex Computer Systems, Montreal, Canada (Oct 1996).
5. J. O'Neil and H. Schildt, Java Beans Programming from the Ground Up, Osborne McGraw-

Hill, 1998.
6. R. Sessions, COM and DCOM: Microsoft's vision for distributed objects, Wiley, 1998.
7. J.C. Grundy, W.B. Mugridge and J.G. Hosking, Static and dynamic visualisation of

component-based software architectures, in Proc. of 10th Int. Conf. on Software Engineering
and Knowledge Engineering, San Francisco (June 18-20 1998), KSI Press.

8. A. Brown and B. Barn, Enterprise-Scale CBD: Building Complex Computer Systems from
Components, in Proc. of the 9th Int. Workshop on Software Technology and Engineering
Practice, Pittsburgh (30 August - 2 September, 1999), USA, IEEE CS Press.

9. C. Dellarocas, The SYNTHESIS Environment for Component-Based Software
Development, in Proc. of 8th Int. Workshop on Software Technology and Engineering
Practice, London UK (, July 14-18 1997), IEEE CS Press.

10. M. Fowler, The UML Distilled, Addison-Wesley, 1999.
11. Netscape Communications Inc, Visual Javascript™, 1998, http://www.netscape.com/.
12. B. Wagner, I. Sluijmers, D. Eichelberg and P. Ackerman, Black-box Reuse within

Frameworks Based on Visual Programming, in Proceedings of the. 1st Component Users
Conf., Munich (July 14-18 1996), SIGS Books.

13. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin,
Aspect-oriented Programming, in Proc. of the 1997 European Conf. on Object-Oriented
Programming, Finland (June 1997), Springer-Verlag, LNCS 124.

14. M. Mezini and K. Lieberherr, Adaptive Plug-and-Play Components for Evolutionary
Software Development, in Proc. of OOPSLA’98, Vancouver, WA (October 1998), ACM
Press, pp. 97-116.

15. P. Tarr, H. Ossher, H., W. Harrison and S.M. Sutton, Jr., N Degrees of Separation: Multi-
Dimensional Separation of Concerns, in Proc. of the Int. Conf. on Software Engineering, Los
Angeles (May, 1999), IEEE CS Press.

16. J.C. Grundy, Aspect-oriented requirements engineering for component-based software
systems, in Proc. of 4th IEEE Int. Symp. on Requirements Engineering, Limmerick, Ireland
(June 7-11 1999), IEEE CS Press.

17. A. Rakotonirainy and A. Bond, A Simple Architecture Description Model, in Proc. of
TOOLS Pacific'98, Melbourne, Australia (Nov 24-26, 1998), IEEE CS Press.

18. J.C. Grundy, W.B. Mugridge, J.G. Hosking and M.D. Apperley, Tool integration,
collaborative work and user interaction issues in component-based software architectures, in
Proc. of TOOLS Pacific '98, Melbourne, Australia (24-26 November 1998), IEEE CS Press.

19. J.C. Grundy, J.G. Hosking, W.B. Mugridge and M.D. Apperley, An architecture for
decentralised process modelling and enactment, IEEE Internet Computing 2,
(September/October 1998), IEEE CS Press.

20. F.A. Ariniegas, Introduction to Perceval: Aspect-oriented Design using XML Schema and
Groves, in Proc. of the 5th Int. Conf. on Parallel and Distributed Processing Techniques and
Applications, Las Vagas (June 26-29 2000), CSREA Press.

21. G. Kiczales and C. Lopes, Recent developments in AspectJ, In Proc. of the ECOOP’98
Workshop on Aspect-oriented Programming, Brussels, Belgium (July 1998).

22. J.L. Pryor and N.A. Bastan, Java Meta-level Architecture for the Dynamic Handling of
Aspects, In Proc. of the 5th Int. Conf. on Parallel and Distributed Processing Techniques and
Applications, Las Vagas (June 26-29 2000), CSREA Press.

23. J.C. Grundy, J.G. Hosking and W.B. Mugridge, Constructing component-based software
engineering environments: issues and experiences, Information and Software Technology 42,
(January 2000), Elsevier.

24. D. F. D’Souza and A. Wills, Objects, Components and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1998.

25. S.D. Lee, Y.J. Yang, F.S. Cho, S.D. Kim and S.Y. Rhew, COMO: a UML-based component
development methodology, in Proc. of the Sixth Asia-Pacific Software Engineering Conf.,
Takamatsu, Japan (7-10 Dec. 1999), IEEE CS Press, pp. 54-61.

26. Grundy, J.C. Storage and retrieval of Software Components using Aspects, in Proc. of the
2000 Australasian Computer Science Conference, Canberra, Australia (Jan 30-Feb 3 2000),
IEEE CS Press, pp 95-103.

27. R. Meling, E.J. Montgomery, P. Sudha Ponnusamy, E.B. Wong and D. Mehandjiska, Storing
and retrieving software components: a component description manager, in Proc. of the 2000
Australian Software Engineering Conf., Canberra, Australia (April 2000), pp. 107 –117.

28. C.A. Szyperski and R.J. Vernik, Establishing system-wide properties of component-based
systems: a case for tiered component frameworks, in Proc. of the OMG/DARPA Workshop
on Compositional Software Architecture, Monterey, California (Jan 6-8 1998).

29. B. Meyer, C. Mingins and H. Schmidt, Providing Trusted Components to the Industry, IEEE
Computer (May 1998), pp. 104-15.

30. T.J. Mowbray and W.A. Ruh, Inside Corba, Addison-Wesley, 1997.
31. R. Monson-Haefel, Enterprise JavaBeans, O'Reilly, 1999.
32. T. Finin, Y. Labrou and J. Mayfield, KQML as an agent communication language, Software

Agents, MIT Press, 1997.
33. C. Fernström, ProcessWEAVER: Adding process support to UNIX, in 2nd Int. Conf. on the

Software Process, Germany (Feb. 1993), IEEE CS Press, pp. 12-26.
34. G. Grunst, R. Oppermann and C.G. Thomas, Adaptive and adaptable systems, in Hoschka, P.

(ed.): Computers As Assistants - A New Generation of Support Systems. Hillsdale:
Lawrence Erlbaum Associates (1996), 29-46.

35. S. Rivard and S.L. Huff, Factors of successes for end user computing, Communications of
the ACM 31, (1988), 552-561.

36. E. Motta, D. Fensel, M. Gaspari and R. Benjamins, Specifications of Knowledge
Components for Reuse, in Proc. of The 11th Int. Conf. on Software Engineering and
Knowledge Engineering, Kaiserslautern, Germany (June 1999), KSI Press, pp. 36-43.

37. W. Qiong, C. Jichuan, M. Hong, and Y. Fuqing, JBCDL: an object-oriented component
description language, Proc. of the 24th Conf. on Technology of Object-Oriented Languages,
(September 1997), IEEE CS Press, pp. 198 – 205.

38. M. Oussalah and K. Messaadia, An all-reuse methodology for KBS components library, in
Proc. of The 11th Int. Conf. on Software Engineering and Knowledge Engineering,
Kaiserslautern, Germany (June 16-19 1999), KSI Press, pp. 187-191.

39. M. Mezini, L. Seiter and K. Lieberherr, Component Integration with Pluggable Composite
Adapters. Software Architectures and Component Technology (M. Aksit, Ed), Kluwer, 2000.

40. K. Bollert, On Weaving Aspects, in Proc. of the ECOOP’99 Workshop on Aspect-oriented
Programming, Lisbon, Portugal (June 1999).

41. I. Welch and R. Stoud, Load-time application of aspects to COTS, in Proc. of the ECOOP’99
Workshop on Aspect-oriented Programming, Lisbon, Portugal (June 1999).

42. W.N. Ho, F. Pennaneach, J.M. Jezequel and N. Plouzeau, Aspect-Oriented Design with the
UML, in Proc. of the ICSE2000 Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering, Limerick, Ireland (June 6 2000).

