
(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

DIGGER: Identifying OS Kernel Objects for Run-
time Security Analysis

Amani S. Ibrahim, James Hamlyn-Harris, John Grundy and Mohamed Almorsy 
Centre for Computing and Engineering Software Systems 

Swinburne University of Technology 
Melbourne, Australia 

[aibrahim, jhamlynharris, jgrundy, malmorsy]@swin.edu.au

 
Abstract — In operating systems, we usually refer to a running 
instance of a data structure (data type) as an object. Locating 
dynamic runtime kernel objects in physical memory is the most 
difficult step towards enabling implementation of robust 
operating system security solutions. In this paper, we address 
the problem of systemically uncovering all operating system 
dynamic kernel runtime objects, without any prior knowledge 
of the operating system kernel data layout in memory. We 
present a new hybrid approach – called DIGGER – that 
uncovers kernel runtime objects with nearly complete coverage, 
high accuracy and robust results. The information revealed 
allows detection of generic pointer exploits and data hooks. We 
have implemented a prototype of DIGGER and conducted an 
evaluation of its efficiency and effectiveness. To demonstrate 
our approach’s potential, we have also developed three 
different proof-of-concept operating system security tools based 
on the DIGGER approach. 

Keywords - Operating Systems, Kernel Data Structures, 
Dynamic Runtime Objects. 

I. INTRODUCTION 
Dynamic kernel runtime objects can be a significant 

source of security and reliability problems in Operating 
Systems (OSes). Locating those objects from a trusted 
source is an important step towards enabling implementing 
robust operating system security solutions. The problem with 
dynamic kernel runtime objects is the complex and 
unpredictable runtime memory layout of those objects. An 
operating system kernel has thousands of heterogeneous data 
structures that have direct and indirect relations between 
each other with no explicit integrity constraints, providing a 
large attack surface to hackers. In Windows and Linux 
operating systems (from our analysis) nearly 40% of the 
inter-data structure relations are pointer-based relations 
(indirect relations), and 35% of these pointer-based relations 
are generic pointers (i.e. null pointers that do not have 
values, and void pointers that do not have associated type 
declarations in the source code) [20, 21]. Such generic 
pointers get their values or type definitions only at runtime 
according to the different calling contexts in which they are 
used [1]. In such a complex data layout, the runtime memory 
layout of the data structures cannot be predicted at 
compilation time. This makes the kernel data a rich target for 
rootkits that exploit the points-to relations between data 
structure instances in order to hide or modify system runtime 
objects. 

Accurately identifying the running instances of the OS 
kernel data structures and objects is an important task in 
many OS security solutions such as kernel data integrity 
checking [2, 3], memory forensics [4, 5], brute-force 

scanning [6], virtualization-aware security solutions [7, 8], 
and anti-malware tools [9, 10]. Although discovering 
runtime objects has been an aim of many OS security 
research efforts, existing and proposed solutions still have a 
number of limitations. Most fall into two main categories: 
Memory Mapping Techniques and Value-Invariant 
Approach. 

Memory Mapping Techniques. Memory mapping 
techniques such as CloudSec [7], KOP [11] and OSck [3] 
identify kernel runtime objects by recursively traversing the 
kernel address space starting from the operating system 
global variables and then follow pointer dereferencing until 
reaching the running object instances, according to a 
predefined kernel data definition. This kernel data definition 
reflects the runtime kernel data layout in memory, and is 
specific for each kernel build. However, memory traversal 
techniques are limited and not very accurate, because: 
− They are vulnerable to kernel data rootkits that exploit 

the points-to relations between data structures running 
instances, which hide the runtime objects or point to 
somewhere else in the kernel address space. 

− They require a predefined definition of the kernel data 
layout that accurately disambiguates indirect points-to 
relations between data structures, in order to enable 
accurate mapping of memory. However – to the best of 
our knowledge – all of the current efforts (with the 
exception of KOP [11]) depend on a security expert’s 
knowledge of the kernel data layout to manually resolve 
ambiguous points-to relations. Thus, those approaches 
only cover 28% of kernel data structures (as discussed 
by Carbone et al. [11]) that relate to well-known objects 
such as processes, threads and loaded modules. 

− They are not effective when memory mapping and 
object reachability information are not available. 
Sometimes security experts need to make a high-level 
interpretation of a set of memory pages where the 
mapping information is not available e.g. in system 
crash dumps. Incomplete subsets of memory pages 
cannot be traversed, and thus data that resides in the 
absent pages cannot be recovered. 

− They have a high performance overhead because of poor 
spatial locality. The problem with general-purpose OS 
allocators is that objects of the same type could be 
scattered around the memory address space. Traversal of 
the physical memory therefore requires accessing 
several memory pages. 

− Finally, they (with the exception of KOP [11]) cannot 
follow generic pointer dereferencing as they only 



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

leverage type definitions, thus cannot know the target 
types of these untyped pointers. 

Value Invariants Approaches. Value-invariants 
approaches such as DeepScanner [10], DIMSUM [12] and 
SigGraph [6], use the value-invariants of certain fields or of 
a whole data structure as a signature to scan the memory for 
matching running instances. However, such a signature may 
not always exist for a data structure, as discussed by Lin et 
al. [6]. Moreover, many kernel data structures cannot be 
identified by such value-invariant schemes. For example, it 
is difficult to generate value-invariants for data structures 
that are part of linked lists (single, doubly or triply), because 
the actual running contents of those structures depends on 
the calling contexts at runtime. In addition, the value-
invariant approach does not fully exploit the range of generic 
pointers in data structures fields, and is not able to uncover 
the points-to relations between the different data structures. 
Finally, the performance overhead of those approaches is 
extremely high, as they scan the whole kernel address space 
with large signatures, as they typically include most data 
structure fields in the signature. 

Motivated by the limitations of the current approaches and 
the need to accurately identify the runtime dynamic kernel 
objects from a robust view that cannot be tampered with, we 
have developed a new approach called DIGGER. DIGGER 
is capable of systematically uncovering all system runtime 
objects without any prior knowledge of the operating system 
kernel data layout in memory. Unlike previous approaches, 
DIGGER is designed to address the challenges of indirect 
points-to relations between kernel data structures. DIGGER 
employs a hybrid approach that combines new value-
invariant and memory mapping approaches in order to get 
accurate results with nearly complete coverage. The value-
invariant approach is used to discover kernel object instances 
with no need for memory mapping information. The memory 
mapping approach is used to retrieve the object’s details in 
depth including points-to relations (direct and indirect) with 
the other running data structures, without any prior 
knowledge of the operating system kernel data layout. 

DIGGER first performs offline static points-to analysis on 
the kernel’s source code to construct a type-graph that 
summarizes the different data types located in the operating 
system kernel along with their connectivity patterns, and the 
candidate target types and values of generic pointers 
scattered around the kernel. The type-graph is not used to 
discover running object instances. It is used to enable 
systematic memory traversal of the object details with no 
need for the symbol information or operating system expert 
knowledge. Second, DIGGER uses the four-byte pool 
memory tagging schema as a new value-invariant signature – 
that is not related the data structure layout – to uncover 
kernel runtime dynamic objects instances from the kernel 
address space. 

DIGGER’s approach has accurate results, a low 
performance overhead, fast and nearly complete coverage, 
and zero rates of false alarms. We have implemented a 
prototype system using DIGGER and evaluated it on the 
Windows OS to prove its efficiency in discovering: (i) kernel 
runtime objects; (ii) terminated objects that still persist in the 
physical memory; and (iii) semantic data of interest in dead 
memory pages. To demonstrate the power of DIGGER, we 
have also developed and evaluated three OS security 

prototype tools based on it, namely, B-Force, CloudSec+ and 
D-Hide. B-Force is a brute force scanning tool.  D-Hide is a 
tool that can systematically detect any hidden kernel object 
type. It is not just limited to the well-known objects. 
CloudSec+, a virtual machine (VM) monitoring tool, is used 
in virtualization-aware security solutions to externally 
monitor and protect a VM’s kernel data. 

Section II gives an overview on the operating system 
kernel data problem and key related work. Section III 
presents our DIGGER approach, and section IV explores its 
implementation and evaluation. In section V, we explore the 
operating system security tool prototypes and Finally we 
discuss results and draw key conclusions. 

II. BACKGROUND 
Data hooks have the ability to modify the running 

instances of kernel runtime objects without injecting any 
malicious code, in order to hide running objects (e.g. 
processes, loaded modules, drivers or services) or alter 
operating system behavior. In OSes we usually refer to a 
running instance of a data structure as an object. Data 
structures scatted around operating system kernels can be 
classified into two categories: 
− Control Data Structures (CDS); these are the static data 

structures that are used in control-transfer instructions 
such as system call tables and descriptor tables. These 
data structures do not change during runtime in value, 
location or number of the running instances. Although, 
compromising these static data structures could alter the 
overall system behavior, it is straightforward to protect 
them where their contents do not change during system 
runtime. 

− Non-Control Data Structures (NCDS); these are the data 
structures that maintain the lifetime of the kernel 
dynamic runtime objects e.g. processes, threads, drivers, 
services, tokens, modules, files. Such dynamic runtime 
objects change during runtime in value, location and 
number of running instances. It is a challenge to 
automatically track and protect these without relying on 
the OS kernel. 

Locating dynamic kernel objects in memory is the most 
difficult step towards enabling the implementation of robust 
OS security solutions, as discussed above. Efficient security 
solutions should not rely on the OS kernel memory or APIs 
to extract runtime objects, as they may be compromised and 
give false information to the security solution. On the other 
hand, the complex data layout of an operating system kernel 
makes it difficult to uncover and check the integrity of all 
system kernel runtime objects, due to their volatile nature. 
Moreover, modifications to kernel dynamic data violate 
integrity constraints that in most cases cannot be extracted 
from OS source code. This is because the data structure 
syntax is controlled by the OS code while semantic meaning 
is controlled by runtime calling contexts. Thus, exploiting 
dynamic data structures will not make the OS treat the 
exploited structure as an invalid instance of a given type, or 
even detect hidden or malicious objects. For example, 
Windows and Linux keep track of runtime objects with the 
help of linked lists. A major problem with these lists is use 
of C null pointers [21]. Modifications to null pointers that 
violate intended integrity constraints cannot be extracted 
from source code as the violations depend on calling 
contexts at runtime. This makes it easy to unlink an active 



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

object by manipulating pointers and thus the object becomes 
invisible to the kernel and to monitoring tools that depend on 
kernel APIs and memory e.g. HookFinder [9] or memory 
traversal such as KOP [11], CloudSec [7], and OSck [3]. 

A. Related Work 

Previous research efforts in the area of tracking and 
checking the integrity of kernel runtime objects limit 
themselves to the kernel static data e.g. system call and 
descriptor tables [13], or can reach only a sub-set of the 
dynamic kernel data [2, 14], resulting in security holes, 
limited protection and an inability to detect zero-day threats. 
The approaches of DeepScanner [10], DIMSUM [12], 
Gilbraltar et al. [2], and Petroni et al. [14] (all value-
invariant approaches) are limited in that their authors depend 
on their knowledge of the kernel data layout, making their 
approach limited to a few structures. Also these tools do not 
consider the generic pointer relations between structures, 
making their approaches imprecise and vulnerable a wide 
range of attacks that can exploit the generic pointers. These 
approaches can have a high performance overhead due to 
large signatures.  

To the best of our knowledge all existing approaches, 
whether value-invariant or memory traversal (with the 
exception of KOP [11], and SigGraph [6]) depend on OS 
expert knowledge to provide kernel data layout definitions 
that resolve the points-to relations between structures. 
SigGraph follows a systematic approach to define the kernel 
data layout, in order to perform brute force scanning using 
the value-invariant approach. However, it only resolves the 
direct points-to relations between data structures without the 
ability to solve generic pointer ambiguities, making their 
approach unable to generate complete and robust signatures 
for the kernel. KOP is the first and only tool that employs a 
systematic approach to solve the indirect points-to relations 
of the kernel data. However, KOP is limited in that: the 
points-to sets of the void * objects are not precise and thus 
they use a set of OS-specific constraints at runtime to find 
out the appropriate candidates for the objects. KOP assumes 
the ability to detect hidden objects based on traditional 
memory traversal techniques which are vulnerable to object 
hiding. Moreover, both KOP and SigGraph have a very high 
performance overhead when uncovering kernel runtime 
objects in a memory snapshot. 

Rhee et al. [15] proposed an interesting approach to detect 
runtime objects by analyzing executed object allocation and 
reallocation instructions. Their approach has quite high 
performance overhead and therefore cannot be used in 
traditional OS security tools – only for advanced debugging 
tools. Also, despite the feature of detecting allocations and 
deallocations in near real time, they cannot identify the 
object type. They need to analyze executed instructions 
offline in order to identify object type and details. 

III. DIGGER ARCHITECTURE 
DIGGER’s goal is to systematically uncover all kernel 

running objects in a memory snapshot or from a running 
virtual machine – without deep knowledge of the kernel data 
layout – in order to enable systematic integrity checks for the 
dynamic kernel runtime objects. The high-level process of 
DIGGER is shown in Error! Reference source not found.. 
DIGGER has three main components: Static Analysis 

Component, Signature Extraction Component and Dynamic 
Memory Analysis Component, discussed below in detail. 

A. Static Analysis Component 

Performing static analysis on the kernel source code is the 
key to automating the process of extracting kernel objects’ 
details without any prior knowledge of the kernel data layout 
in memory. In this phase of the analysis, DIGGER performs 
static points-to analysis [16, 17] on the kernel’s source code, 
allowing it to systematically solve the ambiguous points-to 
relations between kernel data structures and to infer the 
candidate target types and values of the generic pointers. 
Points-to analysis is the problem of determining statically a 
set of locations to which a given pointer may point to at 
runtime. Points-to analysis for C programs has been widely 
used in compiler optimization, memory error detection and 
program understanding [18, 19]. However, none of the 
previously discussed approaches meet our requirements in 
analyzing the kernel as they do not scale to the enormous 
size and complexity of a typical OS kernel. They also 
typically sacrifice precision for performance. In our analysis, 
precision is an important factor. We want the most precise 
points-to sets to be computed. 

Precise	  
Kernel	  Data	  
Definition

Dynamic	  Memory	  Analysis	  
Component

Signatures	  Extraction	  
Component

Static	  Analysis	  
Component

Objects	  
list

Pool	  
Tags

 
Fig. 1. The high-level process of DIGGER approach. 

 
The result of our points-to analysis is a kernel data 

definition represented as a type-graph. This type-graph 
precisely models data structures and reflects accurately both 
direct and indirect relations that reflect the memory layout of 
the data structures. Fig. 2 shows a snapshot of the real 
computed type-graph that summarizes the different data 
types located in the kernel along with their connectivity 
patterns and reflects the inclusion-based relations between 
kernel data structures for both direct and indirect relations. 
The generated type-graph is not used to uncover kernel 
objects - it is only used to retrieve running object’s details 
after discovering a running instance of a specific object type 
(details of discovering objects is discussed later in section C). 
The level of an object’s details is selected by tool users 
based on the required hierarchal depth. This enables 
controlling the trade-off between details and performance 
overhead, as some object types have hundreds of 
hierarchically-organised fields. 

We build the type-graph using our tool KDD [20, 21]. 
KDD is a static analysis tool that has the ability to perform 
inter-procedural, context-sensitive, field-sensitive and 
inclusion-based points-to analysis on the kernel source code.  



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

 
Fig. 2. A snapshot of the real computed type graph 

 
KDD is able to perform precise and scalable points-to 

analysis for large C programs that contain millions lines of 
code e.g. operating system kernels, without any prior 
knowledge of the operating system structure. The type-graph 
is created and refined by our points-to analysis algorithm in 
three steps: 
1) Intraprocedural Analysis; to perform local points-to 

analysis on the procedure level, but without information 
about caller or callees.  

2) Interprocedural Analysis; enables performing points-to 
analysis across different files to perform whole-program 
analysis. 

3) Context-Sensitive Points-To Analysis; enables 
computing complete points-to sets combined with the 
different call site, for the whole kernel source code.  

KDD can be applied on any C-based OS e.g. Linux, BSD 
and UNIX to perform a detailed and accurate points-to 
analysis in order to reflect a precise memory kernel data 
layout offline. KDD is able to scale to the enormous size of 
kernel code. This scalability was achieved by using Abstract 
Syntax Trees (AST) as the basis for points-to analysis. The 
compact and syntax-free AST improves time and memory 
usage efficiency of the analysis. This is because 
instrumenting AST is more efficient than instrumenting 
machine code or a low-level representation such as Medium-
level Intermediate Representation (MIR). Low-level 
representations of any source code are extremely big in size, 
omits very important information such as declarations, data 
types and type casting, and create a lot of temporary 
variables that are allocated identically to source code 
variables and thus are not easily distinguishable from source 
code variables [22].  

B. Signature Extraction Component 

The goal of this component is to extract efficient 
signatures for operating system data structures, to be used in 
discovering the runtime objects instances using the value-
invariant approach. Obtaining robust signatures for kernel 
data structures is difficult for the following reasons: 
− Data structure sizes are not small. From our analysis for 

Windows and Linux operating systems, we found that a 
single data structure could occupy several hundred bytes. 
Such big signatures increase discovery cost and 
performance overhead. 

− It is difficult to identify which fields of a target data 
structure can be used.  Dolan-Gavitt et al. [23] showed 
how to generate robust signatures for the kernel data 
structures by employing a feature selection process that 
ensures that the features chosen are those that cannot be 
controlled by the attacker. However, this approach is 

time-consuming and is not practical for systematically 
checking the thousands of the kernel data structures. 
This is because their solution profiles OS execution in 
order to determine the most frequently accessed fields 
and then tries to modify their contents to determine 
which are critical to the correct functioning of the 
system. In addition, as discussed by Liang [10],  the 
fields relevant to the correct operations of a target kernel 
data structure may not be able to act as signatures 
because it is difficult to distinguish the target kernel 
structure from memory based on these fields. Second, 
the fields of some passive kernel objects are not relevant 
to system operations. The operations of such system 
objects still are normal even after arbitrary modification. 

− The OS kernel contains thousands of data structures, 
making the process of generating “unique” signatures 
for this huge number of structures very challenging. 

In order to overcome those difficulties, DIGGER makes 
use of the pool memory tagging schema of the kernel object 
manager to overcome the first two problems, and is 
motivated by the following paragraph from the Mark 
Russinovich’s Windows Internals book [24] (we call it WI-
note) to overcome the third problem – details discussed 
below: “Not all data structures in the Windows operating 
system are objects. Only data that needs to be shared, 
protected, named, or made visible to user-mode programs is 
placed in objects. Structures used by only one component of 
the operating system to implement internal functions are not 
objects”.  

1) Pool Memory Tagging Schema  

Windows kernels use pool memory to allocate kernel 
dynamic objects. Pool memory is a form of memory 
manager that the kernel can use when it needs to allocate and 
free dynamically allocated memory objects. The pool 
memory can be thought of as a kernel-mode equivalent of 
the user-mode heap memory. When the object manager 
allocates a memory pool block using the allocation routine 
ExAllocatePoolWithTag, it associates the allocation 
with a pool tag. A pool tag1 is a unique four-byte tag for each 
object type and is stored in reverse order. We use these pool 
tags as a value-invariant signatures to uncover the kernel 
objects running instances presence in memory. However, the 
pool tag is not enough to be an object signature. For instance, 
if we have a pool tag “Proc” – the pool tag for Process object 
type – and we scan the memory using the ASCII code of this 

                                                             
1 The pool tag list for the Windows operating system can be 

extracted from the symbol information – Microsoft 
Symbols. 



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

pool tag, any word that has the same ASCII string will be 
detected as a running instance from that object type – 
process. Thus we need to add another checking signature that 
guarantees accurate results and at the same time does not 
increase the performance overhead. We make use of the 
object dispatcher header to provide the additional checking 
signatures. Each allocated object starts with a dispatcher 
header that is used by the OS to provide synchronization 
access to resources. This structure describes mainly an object 
type, size and state, as shown in Fig. 3. 

typedef struct _DISPATCHER_HEADER {
union {

struct {
UCHAR Type;
union {

UCHAR Absolute;
UCHAR NpxIrql;

};
union {

UCHAR Size;
UCHAR Hand;

};
union {

UCHAR Inserted;
BOOLEAN DebugActive;

};
};
volatile LONG Lock;

};

LONG SignalState;
LIST_ENTRY WaitListHead;

} DISPATCHER_HEADER;

Fig. 3. Dispatcher header data structure in Widows OS 

The first three bytes of the dispatcher header are unique 
for each object type, as they describe an object’s type and 
size. These three bytes can be calculated from the generated 
type-graph – from our static analysis component. From our 
experiments, we found that those three bytes are static and 
cannot be changed during object runtime. Using the pool 
tagging schema and the first three bytes of the object header, 
DIGGER can discover the presence of runtime object 
instances in memory. Key features of using pool tags as 
signatures are: 
− We are not constrained by data structure layout for a 

specific kernel build. This approach works for multiple 
OS kernel versions. . 

− The very small size of the scanning value-invariant 
signature decreases performance overhead significantly. 

2) WI-Note 

To the best of our knowledge, all current OS security 
research (for Windows and Linux operating systems) treat all 
data structures (type definitions) as objects, and do not 
consider the WI-note. The WI-note enables filtering the list 
of data structures extracted at the static analysis step, in 
order to obtain a list of the actual runtime object types. Each 
data structure that has a pool tag used by the Windows 
memory manager is considered to be an object and the other 
data structures are not. This massively reduces the number of 
object types from thousands to dozens. This solves the 
problem of generating unique signatures for the huge number 
of kernel data structures (the third obstacle), and also frees 
resources for analysis of the most important data structures. 

For the other data structures (non-objects that we consider 
less important than objects), we use a KDD-generated type-
graph to traverse memory to uncover those data structures 
using the points-to relations of those data structures with the 
uncovered kernel objects.  

C. Dynamic Memory Analysis Component 

The goal of this component is to use the output of the 
static analysis and signature extraction components, in order 
to uncover the runtime objects in a memory snapshot or a 
running virtual machine – using virtual machine 
introspection techniques. The output of this component is an 
object-graph whose nodes are instances of data structures 
and objects, and edges are the relations between these 
objects and data structures. 

First, using the pool tags and the additional checking 
signature, the dynamic memory component scans the kernel 
address space with eight byte granularity (the smallest size 
of the pool memory chunk) to extract the runtime instances 
of the different kernel object types. Until this step is 
complete, we can only identify that there is a running 
instance of an object of type T, but we cannot know any 
details about the object itself or even the object name. So, we 
need to find a relation between the pool tag and the object 
body in order to traverse the memory to extract the object 
details. When an object is being allocated by the object 
manager it is prefixed by an object header and the whole 
object (including the object header) is prefixed with a pool 
header data structure, as shown in Fig. 4. The pool header 
data structure is a data structure used by the Windows object 
manager to keep track of memory allocations. The most 
important fields in the pool header – for DIGGER – are the 
pool tag and the block size fields. These fields help our 
algorithm to extract the object details as follows: 
− Pool Tag; by subtracting the offset f of the pool tag field 

from the address x where an object has been detected at 
(using the pool tag and the additional checking 
signature), we can get the pool block start memory 
address y. Then, by adding the size of the pool header 
and the object header to address y, we can calculate the 
object’s start address O. The size of the pool and object 
headers are calculated from the kernel type-graph. 
Having the object’s start address, DIGGER can retrieve 
the object’s details – based on KDD-generated type-
graph – by traversing the kernel memory. 

− Block Size; indicates the pool block size s that has been 
allocated for an object O. This field helps to speed up 
the scan process, by skipping s bytes of the kernel 
address space – starting from the y address – to reach the 
start address of next pool block. 

The dynamic memory analysis component has two 
strategies for uncovering running kernel objects: Memory 
Images and Un-Mappable Memory pages. 

1) Complete Memory Images 

The size of a complete memory image is quite large and 
the kernel address space ranges from 1GB to 2GB in 32bit 
OSs and up to 8TB in 64bit OSs according to the memory 
layout used by the hardware and the available hardware 
memory. Scanning such a huge number of memory pages is 
too expensive.  



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

typedef struct _POOL_HEADER {
union {

struct {
USHORT PreviousSize : 9;
USHORT PoolIndex : 7;
USHORT BlockSize : 9;
USHORT PoolType : 7;

};
ULONG Ulong1;

};
ULONG PoolTag;
union {
EPROCESS *ProcessBilled;
ULONG PoolTag;
…………
} POOL_HEADER, *PPOOL_HEADER;

typedef struct _OBJECT_HEADER {
LONG_PTR PointerCount;
union {

LONG_PTR HandleCount;
PVOID NextToFree;

};
POBJECT_TYPE Type;
UCHAR NameInfoOffset;
UCHAR HandleInfoOffset;
UCHAR QuotaInfoOffset;
UCHAR Flags;

union {
POBJECT_CREATE_INFORMATION 

ObjectCreateInfo;
PVOID QuotaBlockCharged;

};
…………
} OBJECT_HEADER, *POBJECT_HEADER;

Pool 
Header

Object

Object 
Header

Fig. 4. The memory layout of allocated objects in the pool memory. 
 

typedef struct _POOL_DESCRIPTOR {
POOL_TYPE PoolType;
ULONG PoolIndex;
ULONG RunningAllocs;
ULONG RunningDeAllocs;
ULONG TotalPages;
ULONG TotalBigPages;
ULONG Threshold;
PVOID LockAddress;
PVOID PendingFrees;
LONG PendingFreeDepth;
SIZE_T TotalBytes;
SIZE_T Spare0;
LIST_ENTRY ListHeads[POOL_LIST_HEADS];

} POOL_DESCRIPTOR, *PPOOL_DESCRIPTOR;
 

Fig. 5. Pool Descriptor Data Structure 

To solve this problem and get the fastest coverage for the 
kernel address space, we scan only the pool memory instead 
of the whole kernel address space. At system initialization, 
the memory manager creates dynamically sized memory 
pools, and each pool is defined by a pool descriptor, shown 
in Fig. 5.  

The Pool descriptor is a management structure that tracks 
pool usage and defines pool properties such as the memory 
type. The	   pool descriptor is	   mainly	   responsible	   for	  
tracking	   the	   number	   of	   running	   allocations	   and	  
deallocations	   since	   system	   initialization,	   and	   also	   helps	  
the	  system	  to	  keep	  track	  of	  free	  pool	  chunks	  that	  can	  be	  
used	  to	  allocate	  new	  objects.	  The	  most	  important	  fields	  –	  
used	  by	  DIGGER’s	  approach	  –	  are:	  
− RunningAllocs;	   indicates	   the	   number	   of	   allocations	  

for	   all	   object	   types	   that	   have	   been	   allocated	   since	  
system	  initialization.	  DIGGER	  makes	  use	  of	   this	  data	  
member	  to	  validate	  the	  number	  of	  uncovered	  objects	  
(all	  data	   types)	  at	  specific	   time	   t,	   in	  order	   to	  ensure	  
that	  its	  results	  are	  accurate	  and	  represent	  the	  actual	  
allocated	  objects.	  	  	  	  	  

− RunningDeAllocs;	   indicates	   the	   number	   of	  
deallocations	   for	  all	  object	   types	   that	  have	  occurred	  
since	  system	  initialization.	  DIGGER	  makes	  use	  of	  this	  
field	   to	   validate	   the	   detected	   hidden	   objects	   that	  
have	  not	  been	  deallocated.	  

− PoolType;	   defines	   a	   pool	   chunk	   type.	   There are two 
distinct types of pool memory in Windows OS: paged 
pool and non-paged pool. Both are used by the kernel 
address space to store the kernel and executive objects, 
respectively. The non-paged pool consists of virtual 
memory addresses that are guaranteed to reside in 
physical memory as long as the corresponding kernel 
objects are allocated. The kernel uses the non-paged 
pool memory to store the runtime objects that may be 
accessed when the system cannot handle page faults e.g. 
processes, threads and tokens. The paged pool consists 
of virtual memory that can be paged in and out of the 
system. This means that by scanning the non-paged pool 
memory, which is a trusted source of information, we 
can get all the running object instances that are potential 
targets for hackers as they always reside in physical 
memory.	   On uniprocessor or multiprocessor systems 
there exists only one non-paged pool. This number can 
be confirmed using the global variable 
nt!ExpNumberOfNonPagedPools. The OS 
maintains a number of global variables that define the 
start and end addresses of the paged and non-paged pool 
memory: MmPagedPoolStart, MmPagedPoolEnd, 
MmNonPagedPoolStart and 
MmNonPagedPoolEnd. These pointers can be used to 
speed up scanning by limiting the scanned area. From 
our observations, we found pool memory size takes a 
very small portion from the system address space, as 
shown in Table 1.	  

 
2) Un-mappable Memory Pages 

In this case, the size of pages set is reasonably small. We 
perform a scan on the whole set of memory pages using the 
pool tag and the additional checking signature. However, as 
the memory mapping information may not be available in 
such un-mappable memory pages, not all of the discovered 
objects’ details can be retrieved as we depend on the 
memory traversal technique according to the generated type-
graph and this approach requires accessing multiple  memory 
pages. 
	  



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

Table 1. Paged and Nonpaged Pool Memory Size. 
“L” column indicates the pool memory limit that can be allocated and “A” 

column indicates the actual allocated memory in some operating systems we 
used in our experiments. 

Operating 
System 

RAM 
(GB) 

Paged Pool 
(MB) 

Nonpaged 
Pool (MB) 

L A L A 
Windows XP 

32-bit 2 368 17.9 262.1 4 

Windows XP 
64-bit 2 3498 28.1 875.5 15.3 

Server 2008 
32-bit 2 2000 24.5 1555 15.4 

Windows 7 
64-bit 8 8000 372 6238 174 

IV. IMPLEMENTATION AND EVUALTION 
We have developed a prototype of DIGGER. The static 

analysis component was built using our previously 
developed tool, KDD [1, 20]. We have implemented a 
prototype of KDD using C#. KDD uses pycparser [25] to 
generate AST files of the kernel’s source code. KDD then 
uses the AST files to apply our points-to analysis algorithm 
to generate the type-graph. We have used Microsoft’s 
Parallel Extensions to leverage multicore processors in an 
efficient and scalable manner to implement KDD. Threading 
has also been used to improve parallelization of 
computations (.Net supports up to 32768 threads on a 64bit 
platform). The signatures and runtime components are 
standalone programs and all components are implemented in 
C#. The runtime component could work: (i) offline on 
memory snapshot, raw dumps (e.g. dumps in the Memory 
Analysis Challenge and Windows crash dumps), and 
VMware suspended sessions. (ii) Online in a virtualized 
environment by scanning VMs’ physical memory from the 
hypervisor level using virtual machine introspection 
techniques. 

We have evaluated the basic functionality of DIGGER 
with respect to the identification of the kernel runtime 
objects and the performance overhead of uncovering these 
objects. We performed different experiments and 
implemented different OS security prototype tools to 
demonstrate DIGGER’s efficiency.  

A. Static Analysis Component  

For the static analysis component, we applied KDD’s 
static analysis to the source code of the Windows Research 
Kernel (WRK2) (a total of 3.5 million lines of code), and 
found 4747 type definitions, 1858 global variables, 1691 
void pointers, 2345 null pointers, 1316 doubly linked list and 
64 single linked lists.  KDD took around 28 hours to 
complete the static analysis on a 2.5 GHz core i5 processor 
with 12 GB RAM. As our analysis was performed offline 
and just once on each kernel version, the performance 
overhead of analysing kernels is acceptable and does not 
present any problem for any security application using KDD. 
The performance overhead of KDD could be decreased by 
increasing the hardware processing capabilities, as such 
types of analysis usually run with at least 32 GB RAM. 

                                                             
2 WRK is the only available source code for Windows. 

B. Runtime Analysis Component  

To enable efficient evaluation for the runtime component, 
we need a ground truth that specifies the exact object layout 
in kernel memory so that we can compare it with the results 
of DIGGER to measure false alarm rate. We built the ground 
truth as follows: we extracted all data structure instances of 
the running Windows OS memory image via program 
instrumentation using the Windows Debugger (WD). We 
instrumented the kernel to log every pool allocation and 
deallocation, along with the address using the WD. In 
particular, we modified the GFlags (Global Flags Editor) to 
enable advanced debugging and troubleshooting features of 
the pool memory. We then measured DIGGER efficiency as 
the fraction of the total allocated objects that DIGGER was 
able to identify correctly (i.e. the correct object type).  

We performed experiments on 3 different versions of the 
Windows OS on a 2.8 GHz CPU with 2GB RAM. Table 2 
shows the results of DIGGER and the Windows Debugger in 
discovering the allocated instances for some object types in 
two of the three Windows versions. From Table 2 we can see 
that DIGGER achieves zero false negative rates (FN), and a 
low false positive rate (FP). However, from our manual 
analysis of the results, we found that this reported false 
positive rate is not an actual false positive. This difference 
represents deallocated objects that still persist in the physical 
memory after termination; we call these “dead memory 
pages objects – DMAO”. These objects are present because 
the Windows operating system does not immediately clear 
the contents of deallocated memory pages (thereby delaying  
the overhead of writing zeroes to physical memory). We 
propose that whenever the kernel has to allocate a new object 
it will return the pool block address from the pool free list 
head. For example, the EPROCESS structure of a newly 
created process will overwrite the object data of a process 
that has been terminated previously. This makes sense 
because when a block is freed using the free function call, 
the allocator just adds the block to the list of free blocks 
without overwriting memory. 

We noticed (from our analysis) that the pointer and handle 
count of the DMAO is always zero. This enables us to 
differentiae between the active objects from the DMAO, and 
thus our actual false positive rate (FP*) becomes zero. Those 
DMAOs can provide forensic information about an 
attacker’s activity. Imagine that an attacker runs stealthy 
malware and then terminates it on a victim’s machine. After 
termination there may still exist for a non-trivial period of 
time some forensic data of interest in the dead memory pages. 
To prove our assumption, we analyzed the dead memory 
pages in order to uncover semantic data of interest for the 
some terminated processes. However, our approach could 
work for any other object type. We used some benchmark 
programs to run in three memory images and then analyzed 
the dead memory pages to uncover some data of interest: 
user login information (GroupWise email client), chat 
sessions (Yahoo messenger), FTP sessions (FileZilla). 

We created 9 processes (three of these were benchmark 
programs) and performed some CPU-intensive operations 
using these processes. We terminated these processes after 5 
hours, 2 hour and 15 minutes in three different memory 
images – identified L, M and S, respectively. Then we 
created 4 different (new) processes 5 minutes after 
termination. The memory images were then scanned for 
runtime objects using DIGGER’s runtime component.  



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

Table 2. Experimental results of DIGGER and WD on Windows XP 32 bit and 64bit. 
Memory, paged and nonpaged columns reprsent the size in pages (0x1000 graunrality) of the kernel address space, paged pool and nonpaged pool, 

repectively. WD and DIG refer to WD’s and DIGGER results. FN, FP and FP* denote the false negative, reported false positive and the actual false poitive 
rates, repectively. 

Object 

Windows XP 32bit Windows XP 64bit 
Memory Paged Nonpaged Memory Paged Nonpaged 
915255 27493 11741 1830000 35093 17231 

WD DIGGER FN 
(%) 

FP 
(%) 

FP* 

(%) WD DIGGER FN 
(%) 

FP 
(%) 

FP* 

(%) 
Process 119 121 0.00 1.65 0.00 125 125 0.00 0.00 0.00 
Thread 2032 2041 0.00 0.44 0.00 2120 2121 0.00 0.04 0.00 
Driver 243 243 0.00 0.0 0.00 211 211 0.00 0.00 0.00 
Mutant 1582 1582 0.00 0.0 0.00 1609 1609 0.00 0.00 0.00 

Port 500 501 0.00 0.19 0.00 542 542 0.00 0.00 0.00 
 
We found that three processes from the terminated 

processes’ physical addresses were overwritten by the 
EPROCESS structure for new processes, while another three 
processes (from the terminated ones) still persisted in 
memory (at the same address in the memory). Thus we make 
the following observations. First, for the email client we 
were not able to identify the login information (user name 
and password) for all of the memory images. For the ftp 
client we were able to identify the server name, and the 
server and client connection ports for the S image only, 
without any ability to locate the login credentials in all of the 
three images. For the chat benchmark application, we were 
able to locate the username, the connection port and few chat 
sessions in the S image only. This data recovery approach is 
not effective if the program zeros its memory pages before 
termination. 

C. Performance Overhead 

We have evaluated DIGGER’s runtime performance to 
demonstrate that it can perform its memory analysis in a 
reasonable amount of time. We measured DIGGER’s 
running time when analyzing the memory snapshots used in 
our experiments. The median running time was around 0.8 
minutes to uncover 12 different object types from the 
nonpaged pool, and 1.6 minutes to uncover another 15 object 
type from the paged pool. This time included the time of 
loading the memory snapshot from the disk to the runtime 
analysis component. We consider this running time to be 
acceptable for offline analysis and even for online analysis in 
virtualized environments. This is because DIGGER is able to 
detect the DMAOs that could be created and terminated 
between the scan time intervals. However, we cannot argue 
that it would be 100% accurate. Comparing DIGGER with 
SigGraph [6], DIMSUM [12], KOP [11], CloudSec [7]: 
DIGGER is the fastest with highest coverage and lowest 
performance overhead. The performance overhead of 
extracting object details based on our generated type-graph 
differs according the required details-depth. Fig. 6 shows the 
time consumed (in seconds) to extract object details with 
different depths for all of the running instances from specific 
object types. “I” denotes the number of the running objects 
from the object, and “D” denotes the depth of the extracted 
details. 

V. SECURITY APPLICATIONS 
We have further evaluated our DIGGER approach by 

developing three prototype OS security tools to demonstrate 
its efficiency and applicability. These are (i) a generic hidden 
objects detection tool, (ii) a brute force scanning tool, and 
(iii) an external VM monitoring tool. We chose these 
applications because they address common important OS 
security activities. Our experiments with these tools have 
demonstrated DIGGER’s efficiency and the false alarm rate 
is similar to that shown in table 2. 
A. Detecting Object Hiding Attacks 

Previous efforts – in the area of detecting object hiding 
attacks – have focused on detecting specific types of hidden 
object types by hard-coding OS expert knowledge of the 
memory kernel data layout (e.g. Petroni et al. [14] and 
Baliga et al. [2]). Other approaches (e.g. Nanavati et al. [26]) 
rely on value-invariants such as the matching of the process 
list with the thread scheduler, and limiting their approach to 
detect only hidden processes. Other approaches (e.g. Riley et 
al. [27] and Xuan et al. [28]) are based on logging malware 
memory accesses and provide temporal information about 
operating system behavior. However these can only cover 
known attacks and cannot properly handle zero-day threats. 
There are some approaches (e.g. Antfarm [29] and Wen et 
al. [30]) that track the value of the CR3 register that holds 
the process table address. Although this approach is useful in 
a live environment for detecting hidden processes, it cannot 
be used for memory forensics applications. It also has a  very 
high performance overhead. In summary, all of the previous 
approaches are time-consuming, and require a human expert 
with deep knowledge of the operating system to create the 
rules and thus cannot cover all system objects and enable 
systematic discover of all hidden object types.  

Given DIGGER’s ability to uncover kernel objects, we 
developed a tool called D-Hide that can systematically 
uncover all kinds of stealthy malware (not just limited to 
specific object type, as done to date), by detecting their 
presence in physical memory. We used DIGGER’s approach 
to uncover runtime kernel objects, and then performed an 
“external” cross-view comparison with the information 
retrieved from mapping the physical memory using our 
generated type-graph.  



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

0

50

100

150

200

Process	  (I=119,
D=5)

Thread	  (I=2032,
D=5)

Driver	  (I=243,	  D=3) Mutant	  (I=1582,
D=2)

Port	  (500	  I,	  D=	  2) Semaphore
(I=1227,	  D=2)

Event	  (I=5693,
D=2)

 
Fig. 6. Object details extraction normalized time. 

 
In other words, in order to enable cross-view detection we 

needed two different views to compare. In D-Hide the first 
view was DIGGER’s view and the other view was a 
traditional memory traversal view; starting from the 
operating system global variables and then follow pointer 
dereferencing until it covered all kernel running objects. Any 
discrepancy in this comparison revealed hidden kernel 
objects. We implemented a traditional memory traversal add-
on for the runtime component that takes our generated type-
graph and based on that graph, it traverses the kernel address 
space. We evaluated D-Hide’s ability to identify hidden 
objects with four real-world kernel rootkit samples: 
FURootkit, FuToRootkit, AFX Rootkit and HideToolz. We 
also used WinObj (a windows internal tool) to compare the 
results with D-hide. D-hide correctly identified all hidden 
objects with zero false alarms. D-Hide has three key 
advantages: 
− No need for deep knowledge of the runtime kernel data 

layout, as it depends on DIGGER’s static component to 
get an accurate definition of kernel data layout. 

− D-Hide can perform cross-view comparisons without 
the need for any internal tools e.g. task manager or 
WinObj that get the internal view, as done in the current 
cross-view research [31]. This feature enables deploying 
D-Hide in VMs hosted in the cloud platform where the 
cloud providers do not have any control over VMs, as 
discussed in [1, 13]. 

− D-Hide is unlike previous tools [26, 32] that rely on the 
authors’ knowledge of the kernel data and thus is not 
limited to specific objects. 

B. A Brute Force Scanning Tool 

Given a range of memory addresses and a signature for a 
data structure or object, brute force scanning tools can detect 
if an instance of the corresponding data structure exists in the 
memory range or not [6]. Brute force scanning of kernel 
memory images is an important function in many operating 
system security and forensics applications, used to uncover 
semantic information of interest e.g. passwords, hidden 
processes and browsing history from raw memory. 

Given DIGGER’s ability to uncover kernel objects, we 
developed B-Force – a brute force scanning tool. We mainly 
depended on the pool memory tagging schema to detect 
instances of corresponding data structures existing in a set of 
memory pages. From our experiments with five different 
small crash dumps of small sizes ranging from 12MB to 
800MB, we found that this method is effective and has no 
false alarms.  This method could reveal false positives if the 

memory page set does not contain the pool header (that 
contains the pool tag) of the pool block along with the first 
three bytes of the object itself (to perform the additional 
signature checking). However, from our point of view this is 
unlikely, as the single memory page size is big enough to 
contain tens of pool blocks. 

 
C. Virtual Machine Monitoring 

To the best of our knowledge, all current Virtual Machine 
Introspection (VMI) research [8, 33-36] depend on manual 
efforts to build a kernel data definition to solve the semantic 
gap. XenAccess [35] depends on manual efforts to build a 
data definition to overcome the semantic gap for specific 
data structures. PsycoTrace [37] follows a similar approach, 
as does KvmSec [38] and VIX Tools [8], X-Spy [31], 
VMwatcher [39] and SIM [40]. Security research targeting 
VMs hosted on the IaaS platform is relatively limited. Most 
of current approaches [41, 42] depend on deploying 
traditional in-guest security solutions inside the VMs. 
However, some researchers [13, 43] have discussed the 
complexities of the IaaS platform and the challenges of 
implementing security solutions for it. 

We modified our earlier-developed VM monitoring tool, 
CloudSec [7], to use DIGGER’s approach instead of the 
manually built kernel data definitions. CloudSec monitors a 
VM’s memory from outside the VM itself, without installing 
any security code inside the VM, to provide fine-grained 
inspection of the VM’s physical memory. CloudSec actively 
reconstructs externally a high-level semantic view of the 
running OS kernel data structure instances for the monitored 
VMs’ OS in order to overcome the semantic gap problem. 

Using our new DIGGER approach, we extended CloudSec 
to map the physical memory of a VM running Windows XP 
64bit. To evaluate the mapping results, we compared the 
results with the internal OS view using the Windows 
Debugger. CloudSec successfully uncovered and correctly 
identified the running kernel objects, with zero false alarms. 
The performance overhead of CloudSec to uncover the entire 
kernel running objects was around 1.1, 1.9 and 2.8 minutes 
with 0-level, 1-level and 2-level depths, respectively for a 
VM with a 2.8 GHz CPU and 4GB RAM. The VM was 
executed under a normal workload (50 processes, 912 
threads). We can see that the performance overhead of 
scanning a VM’s memory online is less that scanning a 
memory image, as access to VM’s memory via hypervisors 
is faster than uploading a memory image to the analysis tool. 



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

VI. DISCUSSION  
DIGGER’s approach provides a robust view of OS kernel 
objects not affected by the manipulation of actual kernel 
memory content. This enables development of different OS 
security applications as discussed in section V, in addition to 
enabling systematic kernel data integrity checks based on the 
resultant object-graph. A key feature of DIGGER is its  
systematic approach it extracting OS kernel data layout and 
to disambiguate the points-to relations between data 
structures, without any prior knowledge of the OS kernel 
memory data layout. Performing static analysis on kernel 
source code to extract robust type definitions for the kernel 
data structures has several advantages. It minimizes the 
performance overhead in security applications as a major 
part of the analysis process is done offline. If no static 
analysis were done, every pointer dereference would have to 
be instrumented, which increases performance overhead. It 
also maximizes the likelihood of detecting zero-day threats 
that target generic pointers. This is because kernel objects 
and associated data structures recovered by DIGGER can be 
checked against their statically analysed possible types and 
structures. Even if an attack has never been seen before, 
DIGGER allows us to determine if an invalid kernel object 
structure is present in the running OS kernel. The robust and 
quite small signature size used by DIGGER to uncover 
runtime objects enhances performance. It allows a security 
solution employing our DIGGER approach to determine a 
kernel object type and structure fast enough for real-time 
usage e.g. as in CloudSec, as well as brute-force scanning, as 
in B-Force. 

As the pool memory concept is only related to Windows 
operating systems, the current approach used in DIGGER’s 
runtime component can only be used to analyze Windows 
operating systems, including all its kernel builds except 
Windows vista. DIGGER’s runtime component is not related 
to a specific version of the Windows OS kernel and can 
work on either 32-bit or 64-bit layouts. However, the same 
approach could be used in Linux using the slab allocation 
concept. Slab allocation can be thought of as a pool memory 
equivalent of the Windows OS. Slab allocation is a memory 
management mechanism for Linux and UNIX OSes for 
allocating kernel runtime objects efficiently. The basic idea 
behind the slab allocator is having caches (similar to the pool 
blocks in Windows OS) of commonly used objects kept in an 
initialized state. The slab allocator caches the freed object so 
that the basic structure is preserved between uses to be used 
by a newly allocated object of the same type. The slab 
allocator consists of caches that are linked together on a 
doubly linked list called a cache chain that is similar to the 
list head of the pool memory used in Windows kernel. 

Key future work extensions we are investigating include 
the application of the DIGGER to LINUX kernels using the 
slab allocation concept. Another key direction for future 
research is the run-time analysis of kernel data structure 
integrity, that we wish to extend from our CloudSec and B-
Force prototypes. Another area for investigation is using 
function pointer disambiguation in conjunction with kernel 
object discovery to check for tampering at run-time. 

VII. SUMMARY 
Current state-of-the-art tools are limited in their ability to 

accurately uncover the running instances of kernel dynamic 
objects. This results in limited protection and an inability to 

detect zero-day threats. In this paper, we presented 
DIGGER, a new approach that enables uncovering dynamic 
kernel objects with nearly complete coverage and accurate 
results by leveraging a set of new techniques in both static 
and runtime components. Our evaluation of DIGGER has 
shown its effectiveness in uncovering system objects and in 
supporting the development of several OS security solutions. 

ACKNOWLEDGMENT 
The authors are grateful to Swinburne University of 

Technology and the FRST Software Process and Product 
Improvement project for support for this research. 
Scholarship support for the first and fourth authors from 
Swinburne University of Technology is gratefully 
acknowledged. 

REFERENCES 
[1] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, 

"Supporting Virtualization-Aware Security Solutions using a 
Systematic Approach to Overcome the Semantic Gap," in Proc. of 
5th IEEE International Conference on Cloud Computing, Hawaii, 
USA, 2012. 

[2] A. Baliga, V. Ganapathy, and L. Iftode, "Automatic Inference and 
Enforcement of Kernel Data Structure Invariants," in Proc of 2008 
Annual Computer Security Applications Conference, 2008, pp. 77-86. 

[3] O. S. Hofmann, A. M. Dunn, and S. Kim, "Ensuring operating system 
kernel integrity with OSck," in Proc. of 16th international conference 
on Architectural support for programming languages and operating 
systems, California, USA, 2011, pp. 279-290. 

[4] S. Andreas, "Searching for processes and threads in Microsoft 
Windows memory dumps," Digital Investigation, vol. 3, pp. 10-16, 
2006. 

[5] J. Solomon, E. Huebner, D. Bem, and M. Szeżynska, "User data 
persistence in physical memory," Digital Investigation, vol. 4, pp. 68-
72, 2007. 

[6] Z. Lin, J. Rhee, and X. Zhang, "SigGraph: Brute Force Scanning of 
Kernel Data Structure Instances Using Graph-based Signatures," in 
Proc. of 18th Network and Distributed System Security Symposium, 
San Diego, CA, 2011. 

[7] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, 
"CloudSec: A Security Monitoring Appliance for Virtual Machines in 
the IaaS Cloud Model," in Proc. of 2011 International Conference on 
Network and System Security (NSS 2011), Milan, Italy, 2011. 

[8] K. Nance, M. Bishop, and B. Hay, "Virtual Machine Introspection: 
Observation or Interference?," Journal of IEEE Security and Privacy, 
vol. 6, pp. 32-37, 2008. 

[9] H. Yin, Z. Liang, and D. Song, "HookFinder: Identifying and 
understanding malware hooking behaviors," in Network and 
Distributed Systems Security Symposium (NDSS), 2008. 

[10] B. Liang, W. You, W. Shi, and Z. Liang, "Detecting stealthy malware 
with inter-structure and imported signatures," in Proc. of the 6th 
ACM Symposium on Information, Computer and Communications 
Security, Hong Kong, China, 2011, pp. 217-227. 

[11] M. Carbone, W. Cui, L. Lu, and W. Lee, "Mapping kernel objects to 
enable systematic integrity checking," in Proc of 16th ACM 
conference on Computer and communications security, Chicago, 
USA, 2009, pp. 555-565. 

[12] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu, "Discovering Semantic 
Data of Interest from Un-mappable Memory with Confidence," in 
Proc. of the 19th Network and Distributed System Security 
Symposium (NDSS'12), San Diego, CA, 2012  

[13] A. S. Ibrahim, J. Hamlyn-Harris, and J. Grundy, "Emerging Security 
Challenges of Cloud Virtual Infrastructure," in Proc. of 2010 Asia 
Pacific Cloud Workshop co-located with APSEC2010, Sydney, 
Australia, 2010. 

[14] N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh, "An 
architecture for specification-based detection of semantic integrity 
violations in kernel dynamic data," in Proc. of 15th conference on 
USENIX Security Symposium - Volume 15, Vancouver, Canada, 
2006. 

[15] J. Rhee, R. Riley, and D. Xu, "Kernel malware analysis with un-
tampered and temporal views of dynamic kernel memory," in Proc. 
of 13th international conference on Recent advances in intrusion 
detection, Ontario, Canada, 2010, pp. 178-197. 



(IJIDCS) International Journal on Internet and Distributed Computing Systems. Vol: 3 No: 1, 2013. 
 

[16] C. Lattner, A. Lenharth, and V. Adve, "Making context-sensitive 
points-to analysis with heap cloning practical for the real world," in 
Proc. of 2007 ACM SIGPLAN conference on Programming language 
design and implementation, California, USA, 2007, pp. 278-289. 

[17] G. Xu, A. Rountev, and M. Sridharan, "Scaling CFL-Reachability-
Based Points-To Analysis Using Context-Sensitive Must-Not-Alias 
Analysis," presented at the Proceedings of the 23rd European 
Conference on ECOOP 2009 --- Object-Oriented Programming, Italy, 
2009. 

[18] J. Whaley and M. S. Lam, "Cloning-based context-sensitive pointer 
alias analysis using binary decision diagrams," in Proc. of ACM 
SIGPLAN 2004 conference on Programming language design and 
implementation, Washington DC, USA, 2004, pp. 131-144. 

[19] N. Heintze and O. Tardieu, "Ultra-fast aliasing analysis using CLA: a 
million lines of C code in a second," in Proc. of ACM SIGPLAN 2001 
conference on Programming language design and implementation, 
Utah, USA, 2001, pp. 254-263. 

[20] A. S. Ibrahim, J. C. Grundy, J. Hamlyn-Harris, and M. Almorsy, 
"Supporting Operating System Kernel Data Disambiguation using 
Points-to Analysis," in Proc. of 27th IEEE/ACM International 
Conference on Automated Software Engineering (ASE 2012), Essen, 
Germany, 2012. 

[21] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, 
"Operating System Kernel Data Disambiguation to Support Security 
Analysis"," in Proc. of 6th International Conference on Network and 
System Security (NSS 2012), Fujian, China, 2012. 

[22] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. 
Jakubowski, "Oblivious Hashing: A Stealthy Software Integrity 
Verification Primitive," in Proc. of 5th International Workshop on 
Information Hiding 2003, pp. 400-414. 

[23] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, "Robust 
signatures for kernel data structures," in Proc. of 16th ACM 
conference on Computer and communications security, Illinois, USA, 
2009, pp. 566-577. 

[24] M. Russinovich, D. Solomon, and A. Ionescu, Windows Internals, 5th 
Edition: Microsoft Press, 2009. 

[25] E. Bendersky, "pycparser: C parser and AST generator written in 
Python " 2011, Available at http://code.google.com/p/pycparser/. 

[26] M. Nanavati and B. Kothari, "Hidden Processes Detection using the 
PspCidTable," MIEL Labs2010, Accessed November 2010. 

[27] R. Riley, X. Jiang, and D. Xu, "Multi-aspect profiling of kernel 
rootkit behavior," in Proc. of the 4th ACM European conference on 
Computer systems, Nuremberg, Germany, 2009, pp. 47-60. 

[28] C. Xuan, J. Copeland, and R. Beyah, "Toward Revealing Kernel 
Malware Behavior in Virtual Execution Environments," in Proc. of 
the 12th International Symposium on Recent Advances in Intrusion 
Detection, Saint-Malo, France, 2009, pp. 304-325. 

[29] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, "Antfarm: 
tracking processes in a virtual machine environment," in Proc. of the 
annual conference on USENIX '06 Annual Technical Conference, 
Boston, MA, 2006, pp. 1-1. 

[30] W. Yan, Z. Jinjing, and W. Huaimin, "Implicit Detection of Hidden 
Processes with a Local-Booted Virtual Machine," in Information 
Security and Assurance, 2008. ISA 2008. International Conference 
on, 2008, pp. 150-155. 

[31] B. Jansen, H. Ramasamy, and M. Schunter, "Architecting 
Dependable and Secure Systems Using Virtualization," Architecting 
Dependable Systems, pp. 124-149, 2008. 

[32] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, 
"VMM-based hidden process detection and identification using 
Lycosid," in Proc. of the fourth ACM SIGPLAN/SIGOPS 
international conference on Virtual execution environments, Seattle, 
WA, USA, 2008, pp. 91-100. 

[33] J. Pfoh, C. Schneider, and C. Eckert, "Exploiting the x86 Architecture 
to Derive Virtual Machine State Information," in Emerging Security 
Information Systems and Technologies (SECURWARE), 2010 Fourth 
International Conference on, 2010, pp. 166-175. 

[34] T. Garfinkel and M. Rosenblum, "Virtual Machine Introspection 
Based Architecture for Intrusion Detection," in Proc. of 2003 
Network and Distributed Systems Security Symposium, 2003, pp. 191-
206. 

[35] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, "Lares: An 
Architecture for Secure Active Monitoring Using Virtualization," in 
Proc. of IEEE Symposium on Security and Privacy, Oakland, CA, 
2008, pp. 233-247. 

[36] Adit Ranadive, Ada Gavrilovska and Karsten Schwan, "IBMon: 
monitoring VMM-bypass capable InfiniBand devices using memory 
introspection," in 3rd ACM Workshop on System-level Virtualization 

for High Performance Computing, Nuremburg, Germany, 2009, pp. 
25-32. 

[37] F. Baiardi, D. Maggiari, and D. Sgandurra, "PsycoTrace: Virtual and 
Transparent Monitoring of a Process Self," in Proc. of17th 
Euromicro International Conference on Parallel, Distributed and 
Network-based Processing, Weimar, 2009, pp. 393-397. 

[38] F. Lombardi and R. D. Pietro, "KvmSec: a security extension for 
Linux kernel virtual machines," in Proc. of 2009 ACM symposium on 
Applied Computing, Honolulu, Hawaii, 2009, pp. 2029-2034. 

[39] X. Jiang, X. Wang, and D. Xu, "Stealthy malware detection through 
vmm-based "out-of-the-box" semantic view reconstruction," in Proc. 
of 14th ACM conference on Computer and communications security, 
Virginia, USA, 2007, pp. 128-138. 

[40] Monirul I. Sharif, Wenke Lee, Weidong Cui, et al., "Secure in-VM 
monitoring using hardware virtualization," in Proc of The 16th ACM 
conference on Computer and communications security, Chicago, 
Illinois, USA, 2009, pp. 477-487. 

[41] A. Dastjerdi and K. A. Bakar, "Distributed Intrusion Detection in 
Clouds Using Mobile Agents," in Proc. of Third International 
Conference on Advanced Engineering Computing and Applications in 
Sciences, 2009, pp. 175-180. 

[42] J. Tiejun and W. Xiaogang, "The Construction and Realization of the 
Intelligent NIPS Based on the Cloud Security," in Proc. of 1st 
International Conference on Information Science and Engineering, 
Nanjing 2009, pp. 1885 - 1888. 

[43] M. Christodorescu, R. Sailer, and D. L. Schales, "Cloud security is 
not (just) virtualization security," in Proc. of 2009 ACM workshop on 
Cloud computing security, Illinois, USA, 2009, pp. 97-102. 

 
 
Amani S. Ibrahim is a PhD student at 
Swinburne University of Technology. Amani 
received the MSc degree in computer science 
from Ain Shams University in 2009.  
She is interested in cloud computing, 
virtualization security, memory and run-time 
malwares, and operating system kernel security. 
 
 

 
John Grundy is Professor of Software Engineering 
and Head of Computer Science and Software 
Engineering at the Swinburne University of 
Technology.  
He has published over 230 refereed papers in areas 
including Automated Software Engineering, Cloud 
Computing, Model-driven Development, Software 
Methods and Tools, Software Architectures and 

Visual Languages. 
 

 
James Hamlyn-Harris completed a Bachelor of 
Applied Science in 1984, a Master of Applied 
Science in 1986, a PhD in Engineering in 1992, a 
Master of Information Technology in 2006 and a 
Graduate Certificate of eForensics in 2011.  
He is a Lecturer in computer security, computer 
forensics and computer programming in 
Swinburne University’s Centre for Computing 
and Engineering Software Systems (SUCCESS) 

at Swinburne University of Technology at Hawthorn in Victoria, Australia.  
 
 

 
Mohamed Almorsy is a PhD student at 
Swinburne University of Technology. Mohamed 
received his MSc degree in computer science 
from Ain Shams University in 2009. 
 
Mohamed worked in software industry for more 
than seven years with three year project 
management experience. 
 

He is interested in cloud computing, Adaptive security, software 
engineering, and project management. 
 

 
 


