
Information-theoretic Source Code Vulnerability
Highlighting

Van Nguyen1, Trung Le1, Olivier De Vel2, Paul Montague2, John Grundy1, Dinh Phung1
1 Faculty of Information Technology, Monash University, Australia

2 Defence Science and Technology Group, Australia

Abstract—Software vulnerabilities are a crucial and serious
concern in the software industry and computer security. A
variety of methods have been proposed to detect vulnerabilities
in real-world software. Recent methods based on deep learning
approaches for automatic feature extraction have improved soft-
ware vulnerability identification compared with machine learning
approaches based on hand-crafted feature extraction. However,
these methods can usually only detect software vulnerabilities
at a function or program level, which is much less informative
because, out of hundreds (thousands) of code statements in a
program or function, only a few core statements contribute to a
software vulnerability. This requires us to find a way to detect
software vulnerabilities at a fine-grained level. In this paper,
we propose a novel method based on the concept of mutual
information that can help us to detect and isolate software
vulnerabilities at a fine-grained level (i.e., several statements
that are highly relevant to a software vulnerability that include
the core vulnerable statements) in both unsupervised and semi-
supervised contexts. We conduct comprehensive experiments on
real-world software projects to demonstrate that our proposed
method can detect vulnerabilities at a fine-grained level by
identifying several statements that mostly contribute to the
vulnerability detection decision.

I. INTRODUCTION

In the field of software security, software vulnerabilities
(SVs) are specific potential flaws, glitches, weaknesses or
oversights in parts of software. Attackers or vandals can
leverage these vulnerabilities to carry out malicious actions,
such as exposing or altering sensitive information, disrupting
or destroying a system, or taking control of a program or
computer system [1]. Owing to the rapid growth and dramatic
diversity of software, a large amount of computer software
potentially contains vulnerabilities, which can create severe
threats to cyber-security, resulting in expenditure costs of about
USD 600 billion globally each year [2]. These threats call for
an urgent need of advanced approaches (i.e., automatic tools
and methods) to efficiently and effectively deal with the large
amount of vulnerable code with a minimal level of human
intervention.

There are two typical approaches for software vulnerability
detection (SVD) including methods based on either hand-
crafted or automatic extraction of features. Most previous work
in software vulnerability detection [3]–[9] has been developed
based on hand-crafted features of data which are manually
chosen by knowledgeable domain experts and may thus carry
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outdated experience, expertise and underlying biases [10].
To lessen the dependency on hand-crafted features, the use
of automatically learned features for SVD has been recently
studied, notably [11]–[13]. In particular, these works leverage
deep learning models to automatically extract features, and
have shown great advances over those based on hand-crafted
features.

Despite showing promising performances, current deep
learning-based methods are only able to detect software vul-
nerabilities at the function [12], [13] or program [11] levels.
In real-world situations, programs or even functions are often
very long and may consist of hundreds or thousands of lines
of code. The source of most vulnerabilities arises from a
significantly smaller scope, usually a few core statements. We
thus want to be able to detect software vulnerabilities at a
more fine-grained level, i.e., several code statements within
functions or programs. This includes highlighting statements
that are highly relevant to the corresponding vulnerability
and associated code statements. In doing this, we can then
significantly speed up the process of isolating and detecting
software vulnerabilities, thereby reducing the time and cost
involved.

In this paper, we propose a novel method that allows us to
find and highlight code statements in functions or programs
that are truly relevant to the presence of significant code
vulnerabilities. Given vulnerable source code (i.e., functions
or programs), we aim to highlight the top-K statements that
are the most relevant to the vulnerable and non-vulnerable
class labels. By referring to the vulnerable source code with
a high probability, the highlighted statements contain the core
statements that contribute to the overall code vulnerabilities.
Moreover, our proposed method specifies and highlights the
statements that explain the vulnerability intrinsic to the given
source code. Our proposed method involves two key stages.
In the first stage, we train a reference deep learning model,
with the aim of approximating the true conditional distribution
p(y | F ) (i.e., the true probabilistic labeling assignment
mechanism) of label y (where y = 1 means a vulnerability and
y = 0 means otherwise) w.r.t the source code F by pm (y | F )
offered by the reference model. In the second stage, we learn
another model that aims to explain the reference model by
specifying the top-K statements in the given source code that
mostly contribute to the vulnerability prediction decision for
this model.

The idea is to select a subset of K statements that maxi-
mizes the mutual information to the corresponding label given



by the reference model. A similar information-theoretic metric
has been employed in the L2X model [14] for instance-wise
feature selection for the case of vectorial data. Although that
model can be adopted to work for sequential data (e.g., source
code), our proposed method is different from L2X in the
following aspects: i) our formulation for mutual information
takes into consideration the sequential nature of source code
(in contrast to L2X) and ii) inspired from this formulation,
we propose a novel architecture using a multi-Bernoulli dis-
tribution for selecting the top-K mostly relevant statements
rather than employing a multinomial distribution as in L2X.
The advantage of this approach is two-fold. First, this allows
us to better control the random selection process. Second, it
allows us to incorporate the information from ground truth
in a semi-supervised context wherein we assume that a small
portion of source code data might have annotations of core
statements that cause a vulnerability. Our key contributions
include:
• We propose a novel learn-to-explain model that is based

on mutual information and takes into account the sequen-
tial nature of data to better evaluate mutual information.
Using this theory, we propose a novel architecture based
on multi-Bernoulli distribution for random subset of state-
ments selection. Unlike the multinomial distribution used
in L2X, our mechanism is more controllable and enables
us to train the model in a semi-supervised context. In
addition, our proposed model can be used to highlight
the core statements that are a subset of the most relevant
statements of vulnerable source code. It can also explain
how the reference model works by identifying the most
important statements that contribute to its prediction.

• We conduct experiments on the data sets collected by
[12], that contain source code of vulnerable and non-
vulnerable functions from two real-world software data
sources and compare our proposed method to a state-of-
the-art baseline L2X approach on these two data sets.
We further investigate our proposed method in the semi-
supervised context by comparing it to itself in an unsuper-
vised context. We demonstrate that our proposed method
can detect vulnerable code statements in functions much
more effectively than L2X in unsupervised context and
its semi-supervised variant can significantly boost the
performance.

II. MOTIVATING EXAMPLE

We give an example of a source code function obtained from
the CWE-119 data set to demonstrate software vulnerability
detection (SVD) at a fine-grained level, shown in Fig. 1. This
function has a few core vulnerable code statements highlighted
in red that are the main source of the vulnerability. The
statement “if (fgets (inputBuffer, CHAR_ARRAY_SIZE, stdin)
!= NULL)” is a potential vulnerability because we read data
from the console using fgets(). Likewise the two statements “if
(data >= 0)” and “buffer[data] = 1;” cause another potential
vulnerability because we attempt to write to an index of
the array that exceeds the upper bound. Since the real-world
source codes might contain hundreds of statements, we want

Fig. 1. An example of a source code function obtained from the CWE-119
data set. The left-hand and right-hand figures are the first and second parts
of the function. For demonstration purpose, we choose a simple source code
function, and some parts of the function are omitted for the brevity. The red
lines specify the core vulnerable statements obtained from the ground truth.

to be able to highlight several statements in the function that
are highly relevant to the presence of a vulnerability and
contain the core vulnerable statements. In doing so, we can
significantly speed up the process of isolating and detecting
software vulnerabilities, and therefore reduce the cognitive
load of the security analyst.

III. INFORMATION-THEORETIC CODE VULNERABILITY
HIGHLIGHTING

We begin with the problem statement of Information-
theoretic Code Vulnerability Highlighting (ICVH), followed
by the technical details of ICVH in the unsupervised and semi-
supervised contexts.

A. The problem statement

Most of the publicly available data sets only have vulnera-
bility labels (i.e., y) for the entire source codes (i.e., F ) and
have no information of code statements causing vulnerabilities.
Our ICVH method only requires vulnerability labels at the
source code level (i.e., Y obtained from the reference model)
and is capable of pointing out the code statements highly
relevant to these vulnerability labels. We hence call this
setting as unsupervised, meaning that the training process does
not require labels at the code statement level (i.e., ground-
truth of vulnerable code statements causing vulnerabilities).
In addition, in section semi-supervised context, we assume
that a tiny portion of the source codes has labels at the
code statement level. We hence name this setting as semi-
supervised.

Consider a data set D = {(F1, y1), . . . , (FN , yN )} where
yi ∈ {0, 1} (where 1: vulnerable code and 0: non-vulnerable
code) and Fi = [f i

1, . . . ,f
i
Ni

] is source code with a sequence
of Ni statements (i.e., Fi is the i-th source code section in
the data set D) while the lower-case f stands for a statement
in the corresponding source code F (e.g., f i

k is the k-th code
statement in the source code Fi). Given a source code F =
[f1, . . . ,fL], we denote the subset FS = [f i1 , . . . ,f iK ] =
[f j ]j∈S where S = {i1, . . . , iK} ⊂ {1, . . . , L} (i1 < i2 <
... < iK). In this work, we undertake vulnerability detection
at a fine-grained level than at the function or program levels.
In other words, we learn to emphasize the code blocks that are
directly and highly relevant to the vulnerabilities. Specifically,



Fig. 2. The architecture of the reference model.

given a function F , our task is to select a subset FS where
S = {i1, . . . , iK} ⊂ {1, . . . , L} in such a way that FS is
highly relevant to the presence of a vulnerability.

B. The reference model

The reference model aims to learn a model distribution
pm(y | F ) that can approximate the true distribution p(y | F )
where y is the label of the corresponding source code F and
y, F ∼ p(y, F ) = p(F )p(y | F ). To obtain pm(y | F ), we use
a network architecture with a combination of a bidirectional
recurrent neural network (Bi-RNN) to learn vector representa-
tions of source code and a deep feedforward neural network,
which takes the outputs of the Bi-RNN as inputs, to model the
distribution pm(y | F ). The architecture of the reference model
is depicted in Fig. 2 where mi, hi and oi = concat(mi,hi)
with i = 1, .., L are the hidden states and the output of
the Bi-RNN respectively while C is the prediction layer, and
M,H,U and G are model parameters. We note that without
loss of generalization and to simplify the notion, we use f i to
represent both a symbolic code statement and its embedding
vector that is fed to the networks. Data preprocessing and
embedding is discussed in data processing and embedding
section in the Supplementary material.

C. The explaining model: information-theoretic code vulner-
ability highlighting

1) Theoretical formulation with mutual information to cap-
ture the sequential nature of data: To select the most relevant
subset FS , we aim to maximize the mutual information:
I(FS , Y ) where the random variable Y is characterized using
pm(Y | F ), which is previously trained using the whole
training set D. Mathematically, we aim to solve the following
optimization problem:

max Ep(F )[Ep(S|F )[I(FS , Y )]] (1)

Eq. (1) means that given source code F ∼ p(F ) (data
distribution), we need to devise the random selection process
characterized by p(S | F ) to select the subset FS such that
the mutual information of FS and the label Y is maximized.
The two main problems here are: i) how to design the random
selection process p(S | F ) and ii) how to obtain I(FS , Y ).

We develop the following relevant theory to efficiently derive
I(FS , Y ) and solve Eq. (1). We have,

Lemma 1.

I(FS , Y ) =

K∑
k=1

Ef i1:k−1
[I(f ik

, Y | f i1:k−1
)]

Proof. We have with noting that f i1:0 = ∅:

I (FS , Y )

= E
[
[log

pm(Y, FS)

pm (Y ) pm(FS)
]

]
= E

[
log

pm(Y,f iK | f i1:K−1
)
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)

pm (Y )
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| f i1:k−1

)

]
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log
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)
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)
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)
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)
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)∏K
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K∑
k=1

E

log pm(Y,f ik
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)∏K
k=1

[
p(f ik
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)pm(Y |f i1:k−1

)
]


where E = EPm(Y,FS)

I (FS , Y )

=

K∑
k=1

Epm(Y,f i1:k
)

[
log

pm(Y,f ik
| f i1:k−1

)
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)

]
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K∑
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Ef i1:k−1

[
I(f ik

, Y | f i1:k−1
)
]

The following lemma tackles Ef i1:k−1
[I(f ik

, Y | f i1:k−1
)]

and this term can be further derived as follows.

Lemma 2. We have

Ef i1:k−1
[I(f ik

, Y | f i1:k−1
)]

≈ Ef i1:k
[Epm(Y |f i1:k

)[log pm(Y | f i1:k
)]] + const

Proof.

Ef i1:k−1

[
I
(
f ik
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[
Ẽ
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log
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+ const



where Ẽ = E
Pm

(
Y,f ik

|f i1:k−1

)
Noting that we approximate pm(Y | f i1:k−1

) by pm(Y |F ).
The next lemma gives a lower bound to

Ef i1:k
[Epm(Y |f i1:k

)[log pm(Y | f i1:k
)]].

Lemma 3. We can obtain a lower bound to
Ef i1:k

[Epm(Y |f i1:k
)[log pm(Y | f i1:k

)] by

Ef i1:k
[Epm(Y |f i1:k

)[log Q(Y | f i1:k
)]]

for every Q (Y | F ).

Proof.

Ef i1:k

[
Epm(Y |f i1:k

)

[
log pm(Y | f i1:k

)
]]

= Ef i1:k

[
Epm(Y |f i1:k

)

[
log Q(Y | f i1:k

)
]]

+ Ef i1:k

[
DKL(pm(Y | f i1:k

)‖Q(Y | f i1:k
))
]

Combining Lemmas 1, 2 and 3, the optimization problem
in Eq. (1) can be now rewritten:

max Ep(F )[Ep(S|F )[

K∑
k=1

Ef i1:k
[Epm(Y |f i1:k

)[Qk]]]] (2)

where Qk = log Q(Y | f i1:k
).

2) Network design in the unsupervised context: To design
the random selection process for selecting S = {i1, ..., iK}
(i1 < i2 < ... < iK) to form p(S | F ) and formulate Q(Y |
f i1:k

) for k = 1, . . . ,K, we employ a Bi-RNN with sequence
length L. As shown in Fig. 3, for each statement fk or its
embedding vector, which is also denoted by fk, we use a
Bernoulli random variable Zk with P(Zk = 1) = µk (i.e.,
we apply the sigmoid activation over µk to convert it to a
probability) to specify if fk is selected or not (i.e., Zk = 1
means fk is selected). We compute Zkfk for all k and then
feed them to another Bi-RNN where we make a prediction of
the label at the hidden states with Zk = 1 to mimic Q(Y |
f i1:k

). In addition, we have approximated the sub-sequence of
statements [f i1 , ...,f ik

] by the sequence [Z1f1, ..., ZLfL] in
which the inactive (not selected) statements are substituted by
the vector 0.

To render the above random selection process continu-
ous and differentiable for training, we employ the Concrete
(Gumbel-softmax) distribution [15], [16] to undertake relax-
ation on the Bernoulli random variable Zk. In particular, we
sample Vk from the Concrete distribution as: [Vk, 1 − Vk] ∼
Concrete(µk, 1− µk).

We now denote V �F as [Vkfk]k=1,...,L and the sequence
V � F is injected into the second Bi-RNN. We denote SK

as the set of indices with the top K values for Vk. The
optimization problem in Eq. (2) can be rewritten as follows:

max Ep(F )[Ep(S|F )[
∑
k∈SK

[

1∑
y=0

pm(Y = y | V � F )qk]]] (3)

Fig. 3. The architecture of our Information-theoretic Code Vulnerability
Highlighting (ICVH) network. The pink cells refer to those code statements
in SK and we formulate p(Y = y | h2

k,m
2
k) using the softmax function.

where qk = log p(Y = y | h2
k,m

2
k) relates to the log-

likelihood of the second Bi-RNN. The architecture of our pro-
posed Information-theoretic Code Vulnerability Highlighting
applied to code vulnerability identification is depicted in Fig.
3 where m1

i , h1
i , m

2
i and h2

i with i = 1, .., L are the hidden
states of two Bi-RNNs while Mj , Hj , Uj , Gj with j = 1, 2 and
W are model parameters. Our ICVH model can be applied to
both source code and binary code vulnerability identification.

In the testing phase, we choose the code statements whose
indices lie in SK with top K values for µk. We can interpret
µk as the probability to select the k-th code statement in our
subset.

Fig. 4. The training phase of our ICVH model.

Fig. 5. The testing phase of our ICVH model using the trained model obtained
from the training phase.

For our explaining ICVH model, we aim to obtain high
performances not only on approaching close to (or have a good
explanation of) the reference model (i.e., a high F1-score for
the label prediction Y obtained from the reference model), but
also on the selecting and highlighting process of vulnerable
code statements in vulnerable functions (i.e., the VCP and
VCA measures which are both mentioned in the Experiment
section). The working processes of our ICVH model in the



training (i.e., in the unsupervised context) and testing phases
are visualized in Fig. 4 and Fig. 5 respectively.

3) Network design in the semi-supervised context: It is
very convenient to incorporate the annotations of the core
vulnerable statements in the ground truth to our network
design. Specifically, let Fc = [f i1 , ...,f im ] be the core vul-
nerable statements for a given source code. We maximize the
probabilities of selecting the core statements and not selecting
other statements in the first Bi-RNN as follows:

max
∑
k∈Ic

logµk +
∑
k/∈Ic

log(1− µk),

where Ic = [i1, ..., im]. We then add the above objective
function to the main objective function in Eq. (3) with the
trade-off parameter λ > 0.

IV. EXPERIMENT

First, we compare our Information-theoretic Code Vulner-
ability Highlighting (ICVH) method with L2X introduced
in [14] and the random selection method (RSM) where we
randomly choose statements from functions in order to com-
pare with ground truths of vulnerable code statements in the
unsupervised context. Second, we investigate ICVH in the
semi-supervised context in which there is a small portion
of data having ground truth of core vulnerable code state-
ments. Finally, we inspect the explanatory capability of ICVH
by identifying example misclassifications by the reference
model and then analysing the reason for these (details in
the Supplementary material). Data preprocessing and model
configuration are mentioned in the Supplementary material.

From machine learning and data mining perspectives, it
seems that the existing methods in interpretable machine
learning [14], [17], [18] with adoption are ready to apply.
Unfortunately, besides [14], none of others can be adopted
to be applicable to the specific context of statement-grained
vulnerability detection.

To the best of our knowledge, there is one deep learning-
based method, VulDeeLocator [19] posted on ArXiv, for fine-
grained level vulnerability detection. We do not compare with
VulDeeLocator because: i) it cannot work directly with source
code (i.e., it requires to compile source codes to Lower Level
Virtual Machine intermediate code), and ii) it requires infor-
mation relevant to vulnerable statements for extracting tokens
from program code according to a given set of vulnerability
syntax characteristics, hence it cannot be operated in the
unsupervised setting.

A. Experimental setup

1) Experimental data sets: We used the real-world data
sets collected by [12] which contain the source code of
vulnerable functions (vul-funcs) and non-vulnerable functions
(non-vul-funcs) obtained from two real-world software data
sets, containing buffer error vulnerabilities (CWE-119 has
5,582 vul-funcs and 5,099 non-vul-funcs) and resource man-
agement error vulnerabilities (CWE-399 has 1,010 vul-funcs
and 1,313 non-vul-funcs). For both CWE-119 and CWE-
399, we remove functions that are identical. The minimum,

mean, and maximum length of functions in CWE-399 and
CWE-119 are (4; 51; 177) and (4; 21; 164) respectively.
For the 1,010 vulnerable functions of CWE399 and 5,582
vulnerable functions of CWE119, the percentage of vulnerable
statements and non-vulnerable statements is 5.50% and 8.13%
respectively. These percentages between vulnerable and non-
vulnerable statements demonstrate that our proposed VCP and
VCA measures are reasonable.

2) Labeling core vulnerable statements for evaluation:
The CWE-399 and CWE-119 data sets have only vulnerable
and non-vulnerable labels for their source codes. Our aim in
this work is to detect the statements responsible for causing
the vulnerability. Although our proposed method does not
need the information of vulnerable statements at all in the
training phase, this information is necessary in evaluating its
performance. To obtain this information regarding the location
of vulnerable statements in source code for the CWE-399 and
CWE-119 data sets, we further processed these data sets. To
obtain the ground truth of vulnerable code statements, we used
the description of vulnerability information (i.e., the comments
and annotations) in the original source code as well as the
differences between the vulnerable versions and the fixed
versions (i.e., non-vulnerable versions) of the source code.

3) Data processing and embedding: We preprocess the
data sets before injecting them into the deep networks.
First, we standardize the source code by: removing com-
ments and non-ASCII characters, mapping user-defined vari-
ables to symbolic names (e.g., “var1”, “var2”) and user-
defined functions to symbolic names (e.g., “func1”, “func2”),
and replacing strings with a generic <str> token. Second,
we embed statements in source code into vectors. For in-
stance, in the following statement (C programming language)
“if(func3(func4(2,2),&var2)!=var11)”: to embed this code
statement, we tokenize it to a sequence of tokens (e.g.,
if,(,func3,(,func4,(,2,2,),&,var2,),!=,var11,)), construct the fre-
quency vector of the statement, and multiply this frequency
vector by the statement embedding matrix. The statement
embedding matrix represents the learnable variables in our
model.

4) Model configuration: We implemented ICVH and L2X
in Python using Tensorflow [20], an open-source software
library for Machine Intelligence developed by the Google
Brain Team. We ran our experiments on a server with an
Intel Xeon Processor E5-1660 which had 8 cores at 3.0
GHz and 128 GB of RAM. The length of each function is
padded or cut to 100 code statements. For the reference model
(i.e., the learning model), we used a bidirectional recurrent
neural network (Bi-RNN) using LSTM cells, where the size
of the hidden states is in {128, 256}, combined with a deep
feedforward neural network having two hidden layers with
the size of each hidden layer in {100, 200, 300}. For L2X, we
used the structure with parameters as mentioned in [14] and
for each data set, we used 10 epochs as suggested in [14] for
the training process. For our ICVH method, regarding the first
and second Bi-RNN, we used LSTM cells where the size of
hidden states is in {128, 256}. The deep feedforward neural
networks consisted of two hidden layers with the size of each



hidden layer in {100, 200, 300}. The trade-off parameter λ is
in {10−1, 10−2}.

We employed the Adam optimizer [21] with an initial
learning rate in {0.001, 0.003}, while the mini-batch size is
100 and the temperature τ for the Gumbel-softmax distribution
is in {0.1, 0.5}, for both L2X and ICVH. For the reference
(learning) model and explaining model (L2X and our ICVH
method), we split the data of each data set into three random
partitions. The first partition contains 80% for training, the
second partition contains 10% for validation and the last
partition contains 10% for testing. We additionally apply
gradient clipping regularization to prevent over-fitting when
training the model.

5) Measures and evaluation: To evaluate the performance
of the proposed method and baselines in detecting the core
vulnerable code statements, we proposed two measures: vul-
nerability coverage proportion (VCP) and vulnerability cover-
age accuracy (VCA).

The VCP aims to measure the proportion of correctly
detected vulnerable statements over all vulnerable statements
in a given data set. The VCP hence is mathematically defined
as #detectedV CS

#allV CS where #detectedV CS is the number of
vulnerable code statements detected correctly and #allCV S
is the number of all vulnerable code statements in a data set.

The VCA is considered more strictly, because it measures
the ratio of the successfully detected functions over all func-
tions in a data set. In addition, a function is considered
successfully detected by a method if this method can detect
successfully all vulnerable statements in this function. Mathe-
matically, the VCA can be expressed as #detectedV Func

#allV Func where
#detectedV Func is the number of successfully detected
functions and #allV Func is the number of functions in a
data set.

In addition to VCP and VCA measures, we also reported
the label (i.e., Y ) classification F1-score on CWE-399 and
CWE-119 data sets for our proposed method and baselines.

B. Experimental results

1) Learning process (the reference model): We aim to learn
a model distribution pm(y | F ) that can approximate the true
distribution p(y | F ) where y is the label corresponding to
the source code F . To obtain pm(y|F ), we use the network
architecture as depicted in Fig. 2. We measure the F1-score of
the reference model (learning model) on CWE-119 and CWE-
399 real-world data sets. Using this architecture we obtained a
high predictive performance for learning the approximate dis-
tribution pm(y|F ). In particular, the learning model obtained
99.25% and 94.29% F1-score for CWE-399 and CWE-119
respectively.

In the explaining process described in the next section, we
aim to explain the reference model by specifying the most
important code statements in each function F that have the
most significant role for the reference model to make its
decision about the corresponding label y.

2) Explaining code vulnerability highlighting with selected
code statements in the unsupervised context: We compared the
performance of our ICVH method with L2X [14] and RSM in

the unsupervised context for explaining the reference model
and highlighting the vulnerable code statements. We wanted
to find out the top K statements that mostly influence the
decision of the vulnerability of each function. The number of
selected code statements for each function used in each method
is fixed equal to 10 (i.e., K = 10). When comparing L2X and
ICVH in the explainable or interpretable model, we not only
aim to obtain a high F1-score for a good explanation, but also
aim to measure how the selected and highlighted statements
cover the core vulnerable statements.

The experimental results in Table I show that our proposed
method (ICVH) achieved a higher performance for both VCP
and VCA measures, and F1-score compared with L2X on the
CWE-399 and CWE-119 data sets. In particular, for CWE-119,
our proposed method (ICVH) achieved 89.13% for VCP and
86.27% for VCA while L2X achieved 83.21% and 77.74% for
VCP and VCA respectively.

The higher F1-score that was achieved by ICVH shows that
it can approximate (or achieve better explainability of) the
reference model compared with L2X. The higher VCP and
VCA measures show that our method can detect vulnerable
code statements in vulnerable functions much more accurately
and effectively compared with L2X.

TABLE I
PERFORMANCE RESULTS ON THE TESTING SET OF CWE-399 AND

CWE-119 FOR RSM, L2X AND OUR ICVH METHODS (BEST
PERFORMANCE AMONG METHODS FOR EACH DATA SET IN BOLD).

Data sets K Methods VCP VCA F1-score

CWE-399 10
RSM 36.36% 30.87% NA
L2X 80.41% 71.00% 99.10%

ICVH (ours) 86.82% 80.46% 99.40%

CWE-119 10
RSM 40.37% 33.28% NA
L2X 83.21% 77.74% 97.30%

ICVH (ours) 89.13% 86.27% 99.23%

3) Explaining code vulnerability highlighting in the semi-
supervised context with the variation of K: We investigated
the performance of ICVH for two different contexts, including
the unsupervised (ICVH) and semi-supervised (S2-ICVH)
contexts for explaining the reference model and highlighting
the vulnerable statements. In the semi-supervised context,
we assume that there is a small portion of the training set
(i.e., 5% or 10%) having ground truth of vulnerable code
statements. We investigated the performance of ICVH from
both unsupervised and semi-supervised contexts with some
different values of K (i.e., K = 5, 10 code statements that are
highly relevant to the presence of a vulnerability).

The experimental results in Table II show that by using
a small portion of data having ground truth (i.e., 5% or
10%) of vulnerable code statements, the model performance
is significantly increased. For example, for CWE-399, in the
case of K = 10, the model performance in the unsupervised
context (ICVH) achieved 86.82% and 80.46% for VCP and
VCA respectively while the model performance in the semi-
supervised context for S2-ICVH-5 (5% of data in the training
process having ground truth of vulnerable code statements)
and S2-ICVH-10 (10% of data in the training process having
ground truth of vulnerable code statements) obtained (91.72%



TABLE II
PERFORMANCE RESULTS ON THE TESTING SET OF CWE-399 AND

CWE-119 FOR OUR PROPOSED METHOD IN THE UNSUPERVISED CONTEXT
(ICVH) AND SEMI-SUPERVISED CONTEXT (S2-ICVH) (BEST

PERFORMANCE AMONG METHODS FOR EACH VALUE OF K IN BOLD).

Data sets K Methods VCP VCA F1-score

CWE-399

5
ICVH 69.46% 54.65% 99.21%

S2-ICVH-5 89.05% 85.42% 100%
S2-ICVH-10 90.67% 88.57% 99.76%

10
ICVH 86.82% 80.46% 99.40%

S2-ICVH-5 91.72% 88.54% 100%
S2-ICVH-10 95.11% 92.86% 99.76%

CWE-119

5
ICVH 67.53% 58.72% 99.39%

S2-ICVH-5 90.53% 86.84% 99.52%
S2-ICVH-10 94.24% 91.73% 99.51%

10
ICVH 89.13% 86.27% 99.23%

S2-ICVH-5 95.10% 92.85% 99.51%
S2-ICVH-10 98.63% 98.03% 99.50%

for VCP and 88.54% for VCA) and (95.11% for VCP and
92.86% for VCA) respectively.

The experimental results in Table II show that the more
selected code statements we have, the higher performance in
two main measures including VCP and VCA we obtain. For
instance, to data set CWE-119, in the case with K = 5, ICVH
obtained 67.53% for VCP and 58.72% for VCA while with
K = 10, ICVH obtained 89.13% for VCP and 86.27% for
VCA respectively.

The high values of F1-score (over 99% for all cases
mentioned in Table II) show that our proposed methods can
approach very close to (or have a good explanation of) the
learning model while the high values of VCP and VCA show
that our proposed methods can effectively and efficiently detect
vulnerable code statements in vulnerable functions.

4) Visualization of detected and highlighted code state-
ments: Here we illustrate how we can visualize the high-
lighted code statements in vulnerable functions, in order to
demonstrate the ability of our method to detect and highlight
core vulnerable code statements in vulnerable functions to aid
security auditors and code developers. We set K = 5 for the
function in Fig. 6 and K = 10 for the functions in Fig. 7. In
these figures, the colored lines (i.e., the green and red lines)
highlight the detected code statements obtained when using
our ICVH in the unsupervised learning context. In addition,
each red line specifies the core vulnerable statement obtained
from the ground truth, and these lines are detected by our
method.

For example, in Fig. 6, the corresponding function has two
core vulnerable statements including “memset ( var1 , str ,
100 - 1 ) ;” and “memmove ( var3 , var1 , strlen ( var1 )
* sizeof ( char ) ) ;”, which lead to a vulnerability, because
in this case we initialize var1 as a large buffer that is larger
than the small buffer used in the sink (i.e., var1 is larger than
var3). Our ICVH method with K = 5 can detect these core
vulnerable statements that make the corresponding function
vulnerable. In Fig. 7, the function has some core vulnerable
code statements including “if ( fgets ( var2 , var3 , stdin ) !=
NULL )”, which is a potential vulnerability because we read
data from the console using fgets(), and “if ( var1 >= 0 );
var7 [ var1 ] = 1” which are also a potential vulnerability in
the case we attempt to write to an index of the array that is

True label: vulnerable and predicted label: vulnerable

Fig. 6. The predicted label from the model and the true label are shown in the
first row. The source code function and selected code statements highlighted
relevant to vulnerabilities are shown with K = 5. The colored lines (i.e., the
green and red lines) highlight the detected code statements while red lines
specify the core vulnerable statements obtained from the ground truth, and
these lines are detected by our method.

True label: vulnerable and predicted label: vulnerable

Fig. 7. The predicted label from the model and the true label are shown in the
first row. The source code function and selected code statements highlighted
relevant to vulnerabilities are shown with K = 10. The left-hand and right-
hand figures are the first and second parts of the function, respectively. For
demonstration purpose, there are some parts of the function omitted for
the brevity. The colored lines (i.e., the green and red lines) highlight the
detected code statements while red lines specify the core vulnerable statements
obtained from the ground truth, and these lines are detected by our method.

above the upper bound. Our ICVH method with K = 10 can
detect all of these core potential vulnerable code statements
that make the corresponding function vulnerable.

Interestingly, we can use the vulnerability relevance prob-
ability µk associated with each statement to visualize a heat
map over the source code as shown in Fig. 8. This is intuitive
and informative as it shows which statements or blocks of
statements are highly relevant to the vulnerabilities.

5) Investigation of misclassification of the non-vulnerable
functions: In this section, we investigate the case when some
non-vulnerable functions are predicted as vulnerable functions
as depicted in Fig. 9. These functions appear as non-vulnerable
in the ground truth. However, the reference model predicted
them as vulnerable. Using K = 5, for the left-hand function
shown in Fig. 9, the green selected code statements “for (
var4 = 0 ; var4 < var5 ; var4 ++ )” and “var3 [ var4 ]
= var2 [ var4 ] ;” can in some cases (e.g., if var2 is larger
than var3) lead to a potential vulnerability. For the right-hand
function shown in Fig. 9, the green selected code statement
“wmemset ( var1 , str , 50 - 1 ) ;” will be a vulnerable code
statement if we change “50 - 1” into “100 - 1”, because in
this case we would initialize the source buffer as a buffer that



Fig. 8. An example heat map that represents the vulnerable relevance
probabilities over the given source code function.

is larger than the buffer used in the sink (i.e., “wcsncat ( var4
, var1 , wcslen ( var1 ) ) ;”). These are some typical examples
for the case when non-vulnerable functions are predicted as
vulnerable functions. The main reasons are likely due to: i)
the key contributed code statements for marking the label of a
function can be a potential vulnerability in some specific cases
(e.g., depending on behaviour in the calling functions), or ii)
the key contributed code statements for marking the label of
a function can be a potential vulnerability if we have a minor
code change effected in them.

True label: non-vulnerable and predicted label: vulnerable

Fig. 9. The predicted label from the model and the true label are shown in
the first row. The two source code functions and selected code statements in
each function are shown with K = 5. The colored lines (i.e., the green lines)
highlight the detected code statements by our method.

V. CONCLUSIONS

We have proposed a new method to detect software vulner-
abilities at a fine-grained level than the function or program
levels in both unsupervised and semi-supervised contexts. Our
proposed method aims to maximize the mutual information
between selected code statements and the response variable of
a function or program offered by the reference model trained
in the learning phase. By maximizing this mutual information,
the selected statements are expected to strongly correlate with
the existence of a vulnerability, hence potentially containing
the core vulnerable statements. In addition, our proposed
model is able to play the role of an explanatory model that
explains which statements in a given source mostly contribute
to the prediction of the reference model. Our experimental
results on real-world data sets showed that by using our

proposed method we can detect software vulnerabilities at a
fine-grained level effectively and accurately.
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