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Abstract: MViews is a new approach to building Integrated Software 
Development Environments (ISDEs). Graph-based representations of 
software system data, and multiple views of this data, are kept consistent via 
graph components responding to descriptions of changes made to other 
components. This technique supports integrated, bi-directionally consistent 
graphical (interactively-edited) and textual (free-edited) views of data, ISDE 
integration, and version control and collaborative software development. An 
object-oriented framework is specialised to construct new environments. 
Experience using this framework to build and integrate several ISDEs is 
discussed. 

 

I. Introduction 

Integrated Software Development Environments (ISDEs) provide tools for software 
management tasks, such as analysis, design, implementation, debugging, maintenance and 
versioning (Meyers 1991, Dart-et-al. 1987). ISDEs usually support both graphical and 
textual representations, or views, of parts of a software system (Reiss 1987, Ratcliffe-et-al 
1992). Support for many views and view types is often wanted, along with some form of 
consistency management between views sharing data (Meyers, 1991). 

ISDEs require a mechanism for integrating tools. Several kinds of integration are important 
(Thomas and Nejmeh 1992; Bounab and Godart 1995), including: data integration (use of a 
common data repository); control integration (propagation of and response to events 



 

between tools); presentation integration (consistency of tool user interfaces); and process 
integration (coordinating the use of tools). Supporting collaboration is a goal of most 
ISDEs (Kaiser et al. 1987; Magnusson et al. 1993). This involves providing low-level 
collaborative editing tools, and higher-level work coordination, project management and 
process modelling tools. 

This paper describes MViews, a new approach to building ISDEs which support multiple 
views of software development, flexible environment integration mechanisms, and both 
low and high-level collaborative work facilities. We start with a brief discussion of an 
ISDE illustrating the general requirements this work aims to satisfy. The basic MViews 
model and its novel approach to the support of multiple consistent views is then described. 
ISDE integration is illustrated with an example. Collaboration facilities of MViews ISDEs 
are discussed, and a description of ISDE design and implementation given. Experience with 
MViews, and comparison with related work is described. A summary concludes the paper. 

II. Support for General ISDE Requirements 

A. An Example Environment 

SPE (the Snart Programming Environment) (Grundy et al. 1995a) is an ISDE for Snart 
(Grundy 1993), an object-oriented extension to Prolog. SPE demonstrates the kind of 
environment that can be built using MViews. Figure 1 shows a screen dump from SPE 
during the development of a drawing editor program. The several windows shown reflect 
different program views. View 1, an analysis-level diagram, shows important inheritance 
and aggregation (attribute type) structures for drawing program classes; view 2, a design-
level diagram, describes method calling protocols for rendering figures in windows. View 3 
is a detailed class interface; and view 4 a method implementation. Graphical debugging and 
textual documentation views are also provided. 

Graphical views use an icon and connector representation. They include a palette, to select 
tools to interactively manipulate the view contents. Textual views are free-edited and 
parsed. Inter-view navigation is either via menus or an automatically constructed  point and 
click hyper-link system. There is no restriction on the number of views able to be 
constructed. The contents and layout of each view are under user control. 

SPE keeps all data shown in its views consistent under change. New tools need to share this 
data, need a standard, consistent user interface, and need to respond to events occuring in 
other tools. 

Collaborative software development is supported by C-SPE (Grundy et al. 1995b), an 
extension providing synchronous, semi-synchronous and asynchronous view editing, plus 
version control and merging facilities. A work coordination and process modelling tool 
(Grundy et al. 1995c) allows developers to define appropriate software processes and work 
plans, and to coordinate their work using shared plan and process views. 
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Figure 1 A screen dump from the Snart Programming Environment (SPE). 

B. General ISDE Requirements 

Integrated Software Development Environments, such as SPE, require several key 
capabilities, including: 

• flexible software system data representation, supporting for both fine-grained and 
coarse-grained software components (Ratcliffe et al. 1992); 

• semamantic constraints between software components (Reps and Teitelbaum 1987); 
• support for a diverse range of editable, graphical and textual views of software 

system data (Reiss 1987; Ratcliffe et al. 1992); 
• full consistency (or inconsistency) management between all software components 

and views (Meyers 1991; Ratcliffe et al. 1992; Grundy et al.  1996a); 
• tool integration, including data (repository), control (event), presentation (user 

interface), and process (methods and procedure) integration (Thomas and Nejmeh 
1992; Bounab and Godart 1995); 

• and cooperative work support, including collaborative editors, version control, 
merging and configuration management, and software process modelling facilities 
(Grundy et al.  1995c). 

 



 

We have developed MViews to provide a framework supporting such capabilities.  

C. An Overview of MViews  

We briefly overview MViews’ support for these general requirements of ISDEs. The core 
of ISDEs like SPE is the representation of the shared data. MViews represents this data 
using a graph-based form, with syntax, semantic attribute values and multiple views 
represented as graph components. View graphs are rendered in graphical or textual forms, 
and modified by user operations. View graph changes are translated into operations on the 
underlying graphs, with other views updated to maintain consistency. Consistency 
management is via a novel change propagation mechanism. Whenever a graph component 
is modified, a description of the change to the component is propagated to all related graph 
components. These respond by updating their own state to maintain consistency. The 
response mechanism is often abstracted into the relationships between graph components, 
resulting in a flexible, reusable consistency management mechanism. 

Storage of change descriptions by graph components supports a wide range of other ISDE 
functions, including a generic undo/redo facility, modification histories, version control and 
merging, tool integration, and collaborative software development. Flexible environment 
integration and extensibility are also supported. Broadcasting change descriptions between 
multiple developers’ environments supports both low-level collaborative editing and 
higher-level work coordination and process modelling and enactment. 

MViews environments are built by specialising an object-oriented framework, which 
provides a consistent, integrated user interface for all tools. Tools not built using MViews 
can be integrated by building data and event translator views. 

III. MViews Data and Multiple Views 

A. Repository Data Representation 
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Figure 2 Representing SPE data using MViews program graphs. 



 

MViews represents ISDE data as a collection of (possibly disjoint) directed graphs, thus 
supporting both tree-based textual languages and graph-based visual languages. Software 
system data is represented as components (nodes) connected by relationships (labelled 
edges). Each component has associated  attributes (name/value pairs). Figure 2 shows an 
MViews graph for part of the SPE drawing program of Figure 1. Relationships are 
specialised forms of components that can be connected to other relationships and have 
attributes. We collectively refer to all graph nodes and edges as components.  

MViews graphs represent both system structure and semantic values. For example, the full 
interface (signature) of a class in SPE is calculated from attributes and methods the class 
defines and those it inherits. This interface is represented as a relationship from the class to 
components representing each calculated interface feature. 
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Figure 3 Coarse and fine-grained representations. 

Fine-grained software system representation uses the graph structure, and coarse-grained 
uses text components. The latter are nodes containing a sequence of characters. For 
example, in Figure 3, the drawing_window class and clicked method have text 
components corresponding to the formatted text of their concrete representations. Data 
needing individual editing or semantic values is represented by graph components. Free-
edited data used only as a single component is represented in a coarse-grained fashion, for 
greater efficiency. For example, method code and class documentation are represented only 
as text components in SPE. Class interfaces are represented as both text components and 
fine-grained graph components. This allows the format of the class definition, such as 
comments and user-defined layout, to be kept. Consistency is maintained between the two 
representations by the mechanism described below. 



 

B. Multiple Views 

MViews uses a three-layer architecture to provide multiple views (Figure 4). A base layer 
(the ISDE repository) provides a shared graph representation of the software system. Views  
are graphs representing information needed for each view, i.e. base layer components have 
matching view components. Displays act as both renderers and interactive editors for view 
components. External views provide an interface mechanism for tools not implemented 
using MViews. 

View relationships connect view and base components, permitting view components to 
access base component data and supporting bi-directional propagation of changes between 
base and view. MViews utilises free form editing of textual views, allowing existing editors 
to be used for textual programming, and because this interaction style is preferred by 
programmers (Welsh et al. 1991). MViews uses interactive editing for graphical views; 
view components are modified by direct manipulation of their renderings. This, again, is 
preferred by users (Arefi et al. 1990). This contrasts with other ISDEs which use restrictive 
structure-oriented editing approaches for all views (although MViews can support such 
views). 
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Figure 4 Multiple views of an SPE program in MViews. 
 



 

C. Graph Operations and Change descriptions 

The MViews graph structure is based on the Change Propagation and Response Graph 
(CPRG) model. Descriptions of changes made to CPRG components are propagated to 
related components to maintain inter-component consistency. We briefly describe use of 
this mechanism in MViews environments; further details are in (Grundy et al. 1996a). 

Graphs are modified by operations applied to components. Components support basic 
operations, add-component, establish-relationship, update-attribute, etc. Operations are of 
the form Comp.Op(Arg1,Arg2,...) where component Comp has operation Op applied 
with parameters Arg1, Arg2, etc. More complex macro operations can be defined, made 
up of sequences of basic graph operations.  

When a component is modified, components dependent on its state must be updated to 
maintain consistency. MViews components use the CPRG change description mechanism 
to broadcast a description of an operation’s effect on a component to all its attached 
relationships. Change descriptions are tuples of the form 
UpdateKind(Component,Value1, Value2,...), where: UpdateKind is the 
operation applied (update attribute, establish relationship, delete component, etc.); 
Component is the modified component which generated the change description; and 
Value1 etc are operation-specific values describing exactly the change made to the 
component. For example a Comp.update(Name, NewValue) operation (i.e. update of 
attribute Name of component Comp) generates the change description 
update(Comp,Name,OldValue,NewValue), where OldValue is the previous value of 
Name for Comp. 

Change descriptions are first propagated to the relationships attached to the modified 
component, (its dependents). These relationships respond by: updating their own states, or 
those of other connected components, by applying operations; propagating the change 
description to other components participating in the relationship; or ignoring the change. 
Components receiving change descriptions can interpret them in any way and may apply 
further operations to maintain consistency with the changed component. 

D. Consistency Management 

An example of consistency management between MViews components and views 
(implementing SPE) is shown in Figure 5. 1) An SPE user edits a graphical view 
component, applying operations to it, or a textual view parser generates operations by 
comparing updated view text to base information. 2) Resulting change descriptions are 
propagated to the view component’s dependents, including its view relationship. 3) The 
view relationship translates the view component change into operations on its base 
component. If the update is view-specific, for example changing an icon’s location or text 
font, the base component is unaffected by the change, so the view relationship does not 
propagate it. 4) Base component operations generate change description(s) which 5) are 
propagated to the base component’s dependents, including all of its view relationships. 6) 
The view relationships translate the base component change descriptions into operations on 
their view components. If the view component is unaffected by the base component change, 



 

for example the view component doesn't use an updated attribute, the view relationship 
does not propagate the change. 7) Updated view components re-render their displays; 
external view components send messages to external tools or translate changed data into 
external tool data. 

MViews' generic view relationship translates changes to base component attributes to 
changes to view component attributes of the same name (and vice-versa). This behaviour 
can be modified by defining specialised view relationships supporting, for example, 
automatic addition of view components when base components are added. Generic 
aggregation relationships propagate change descriptions on child components to the 
relationship parent. For example, changes to SPE feature components are propagated to the 
owning class component. Generic attribute dependency relationships between components 
use change descriptions for efficient incremental attribute recalculation. For example, 
addition of a new feature to a class causes recalculation of a class interface. MViews, via 
CPRGs, thus provides the speed and flexibility of an operational approach to the inter-
component consistency problem, yet al. lows generic, relationship-type-specific constraints 
to be easily specified and reused.  
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Figure 5 Change propagation between components and views. 

E. Multiple View Consistency 

As any base layer component may be represented in several views, an ISDE like SPE must 
keep these different views consistent. To achieve this: 

• changes are propagated to all affected views, so no inconsistent information is used 
• views are updated automatically (if possible) 
• changes made to a view that can't be automatically applied to other views (eg 

propagation of a design view change to a code view) are indicated in some way 



 

For example, after editing an SPE graphical view, other graphical views are usually 
automatically updated. If a method is renamed in one view, other graphical representations 
of the method are updated automatically. Changes such as renaming classes or features, 
adding or deleting features, and changing feature types can be automatically applied to 
textual views. Other changes cannot. For example when a client-supplier relationship (to be 
implemented by a method call) is added between classes in a graphical design view, the 
required change to a textual view cannot be automatically inferred. In this case, a change 
description is inserted into the view’s text, indicating it is affected, as seen in figure 6. 
These unparsed change descriptions act as a visual cue for the programmer to manually 
implement the change (for example, by adding an appropriate method call to the view). 

Change
descriptions

inserted
into view's 

text

 

Figure 6 Textual view consistency in SPE. 

Changes from graphical view to graphical view, and from textual view to textual view, can 
also be presented in this way. For example, figure 7 shows an Object-Z-like view in SPE 
being kept consistent with a method implementation view (Grundy and Hosking 1995a). 
Both views are textual, and changes to one type of view are shown in the other type by 
change descriptions. 



 

Environments can also present inconsistencies in more context-dependent ways. Figure 8 is 
a screen dump from MViewsDP, an interface builder supporting graphical and textual 
dialog specification (Grundy et al. 96a). The dialog control button ‘Ok’ in the graphical 
view has been shifted, reflected in the textual view header by a change description. This 
change description can also be shown in a dialog associated with the graphical view. A 
semantic inconsistency resulting from the Ok button’s border overlapping that of its 
enclosing dialog box has been created, however, which must be resolved. This 
inconsistency is indicated by shading the Ok button icon, so the user of the environment is 
drawn to this component. Other presentation techniques can be utilised to highlight 
inconsistencies, including shading and colouring graphical icons, changing font, style, size 
or colour of text, or more dynamic techniques, such as blinking affected icons (Grundy and 
Hosking 1996b). 

 

Figure 7 Keeping textual views consistent with one another. 

IV. Tool Integration 

In order to maximise reuse of ISDE tools, techniques for integrating different tools into an 
ISDE have become an important research area. The MViews graph structure, base and view 
layers, and its change description propagation mechanism supports flexible data and control 
ISDE integration. 



 

 

Figure 8 Indicating inconsistencies in graphical views. 
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Figure 9  Integrated OOA/D and EER views with bi-directional consistency management. 



 

We illustrate ISDE integration with MViews, using OOEER, which integrates SPE and 
MViewsER, an Entity-Relationship diagraming and textual relational schema modelling 
tool. OOEER is thus an integrated environment for OOA/D and EER modelling (Grundy 
and Venable 1995). Figure 9 shows a screen dump from OOEER. The OOA/D views are 
kept consistent with all changes to the EER views, and vice-versa, even when a direct 
translation is not possible by the environment. The dialog shown holds change descriptions 
(the “modification history”) for the customer OOA class. The change descriptions 
highlighted by ‘→’ were actually made to the EER view (diagram) and automatically 
translated into OOA/D view updates (where possible) by OOEER. Unhighlighted items 
were made by the designer to the OOA view to fully implement “indirect” translations that 
could only partially by implemented by OOEER. 
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Figure 10 Integrating SPE and MViewsER to produce OOEER. 

OOEER integration was achieved via an additional repository graph level below the base 
layers of SPE and MViewsER (Grundy and Venable 1995). This layer translates changes 



 

(where possible) between the different notations, and notifies tools where automatic 
translations are not possible. Neither SPE nor MViewsER required any significant change 
to achieve this integration. Figure 10 shows an example of the structure of OOEER. When 
an SPE view is edited (1), the modification is translated into SPE repository updates (2), 
generating change descriptions. Inter-repository relationships are sent change descriptions, 
and respond by updating the integrated repository (3). 

When integrated repository components change, the inter-repository relationships to 
MViewsER’s repository components translate these change descriptions into updates on 
MViewsER repository components (4). Indirect translations are defaulted where possible 
and change descriptions displayed in views. Both SPE and MViewsER keep their multiple 
views consistent (5 and 6). 

Inter-repository relationships are implemented as specialisations of MViews’ generic 
many-to-many relationships. On receiving a change description, inter-repository 
relationships determine the change to make to related components. This might be a simple 
update (automatic mapping), partial update (semi-automatic mapping) or storage of the 
change description against the affected component(s) (no automatic mapping possible). 
Using CPRG change description composition facilities (Grundy et al.  96a), relationships 
can wait for receipt of several change descriptions, allowing more complex translations 
mapping several updates from another model. CPRGs provide lazy processing capabilities 
(Grundy et al.  96a) which are used to minimise response time delay. Much of the 
translation and consistency management is performed on-demand when a view is selected 
for editing, by caching change descriptions in an integrated data dictionary.  

Interrepository relationships can be added directly between components in different tool 
repositories, but this approach has the disadvantage of requiring further relationships if 
other tools are to be integrated at a later date (Grundy and Venable 1995). 

This example illustrates how MViews environments support both data integration (via 
hierarchical, integrated repositories) and control integration (via the change description 
broadcasting between tools). User interface integration is achieved by building tools from a 
standard library of object-oriented classes (see Section 6). 

V. Collaborative Software Development 

Computer-Supported Cooperative Work (CSCW) systems may use a multi-view editing 
approach to sharing and modifying information (Ratcliffe et al. 1992; Reiss 1990a; Meyers 
1991). Inconsistencies between views then become more difficult to resolve as different 
users are affected. MViews provides support for multiuser asynchronous, semi-
synchronous and synchronous view editing (Grundy et al. 1995a). We have recently 
developed a high-level work coordination and process modelling tool which supports the 
coordinated use of integrated MViews tools (Grundy et al. 1995c; Grundy and Hosking 
1996a). 



 

A. Versioning and Asynchronous Development 

Change descriptions can be used to describe changes between different versions of views 
i.e. they form a view modification history (Grundy et al.  96a). A non-sequential undo/redo 
facility is provided by reversing or reapplying view changes, and this supports version 
merging (Grundy et al. 1995a; Grundy et al.  96a). An example merge from SPE is shown 
in figure 11. The top two dialogues contain change descriptions for two versions of a 
software component. The bottom dialogue shows structural and semantic conflicts in the 
merged version, presented to the developer as a sequence of merge conflict change 
descriptions. 

B. Synchronous and Semi-synchronous Editing 

Semi-synchronous collaboration is supported by broadcasting change descriptions between 
different users’ environments. These are presented in a view or dialog. Figure 12 is an 
example of semi-synchronous view editing in SPE. Synchronous collaboration allows users 
to view and edit the same version of a view, with fine-grained locking on view components 
(Grundy et al. 1995a). 
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Figure 11 Version merging with MViews. 
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Figure 12 Semisynchronous view editing via change description broadcasting. 
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Figure 13 Supporting collaborative editing in MViews ISDEs. 

Figure 13 shows the architecture used to support collaborative view editing in MViews 
environments. A central repository provides shared access to multiple versions of views 
and components, supporting asynchronous software development. For semi-synchronous 



 

editing, broadcast change descriptions are received by other developers environments and 
cached in special version records. These are presented in dialogs or textual view headers to 
inform other collaborators of changes. The change descriptions can be incrementally 
merged into the receiving developers’ views using the merging techniques of 5.1. For 
synchronous editing, no developer “owns” the shared version of a view. All updates 
attempted are sent to the central server which updates the shared version and broadcasts 
change description(s) to all collaborators, whose views are then re-rendered. The server 
uses fine-grained locking so only one edit of the same component is accepted at a time. 

C. Work Coordination and Software Process Modelling 

ISDEs are large cooperative work systems, and so require support for process modelling, 
enactment, and coordination of cooperative work  (Krant and Streeter 1995). The 
Serendipity environment provides this support for MViews ISDEs (Grundy and Hosking 
1996a; Grundy et al. 1995c). Serendipity provides visual languages to describe process 
models and specify flexible event processing for these models. Process model animation 
allows collaborators to be aware of the work contexts of colleagues. Information about the 
current enacted process stage is attached to change descriptions, recording the context of 
work. These changes are also stored by the current enacted process stage, allowing 
collaborators to review the work history for process stages. Serendipity’s visual event 
processing language allows users to specify rules and actions triggered by enactment 
events, process or work artefact modifications, or tool events.  

Figure 14 shows a simple Serendipity process model for updating a software system 
(“m1:model1-process”). The basic notation here is derived from Swenson’s Visual 
Planning Language (VPL), although VPL does not support role, artefact or tool modelling, 
nor arbitrary event filtering and actioning (Swenson 1993). Several stages describe steps in 
the process of modifying a software system, with each stage containing a unique id, the role 
which will carry out the stage, and the name of the stage. Enactment event flows link stages. 
If labelled, the label is the finishing state of the stage the flow is from (e.g. “finished 
design”). The shading of the “m1.2:implement changes” stage indicates that multiple 
implementers can work on this stage (i.e. the stage has multiple subprocess enactments). 
Other items include start stages,finish stages,  AND stages, and OR stages (empty round 
circle). Underlined stage IDs/roles mark presence of a subprocess model. For example, 
“m1.1:design changes” has a subprocess model (“m1.1:design changes-subprocess”). The 
italicised “check out design” stages in this subprocess model indicate stages reused from a 
template process model. 

During a project, stages in the model are enacted, with such stages highlighted by colour 
and shading (Grundy and Hosking 1996a). As a stage completes in a given finishing state, 
event flows with this state name (or no name) activate to enact linked stages. Enactments of 
stages are recorded, as are work artefact changes made while a stage is a user's current 
enacted stage (i.e. the user’s work context). Change descriptions are augmented with work 
context information,. Stored change descriptions and those presented to collaborators thus 
document the work context they were carried out in. 



 

Serendipity has been integrated with SPE and MViewsER, without modification to these 
pre-existing environments. MViews ISDEs and Serendipity are integrated by routing 
change descriptions to the current enacted Serendipity stage. This stores the change 
description in its artefact modification history and also forwards it to interested 
collaborating users. Interest in change descriptions and enactment events is determined by a 
filter and action visual language (Grundy and Hosking 1996a). Interest may be hierarchical, 
so interest in a stage includes interest in its subprocess. Actions may forward change 
descriptions to other users and/or present them to these users in views, dialogues, or via 
shading view items. Actions may also enact, finish or modify other stage components, or 
may carry out other arbitrary processing. 

 

Figure 14 Simple software process models in Serendipity. 

VI. Constructing ISDEs with MViews 

MViews environments are constructed by reusing and refining classes from an object-
oriented framework. The MViews class hierarchy defines general component data and 
behaviour, relationships, base and view/display components, and various supporting data 
structures. Classes for a new ISDE, such as SPE, are specialised from classes in this 
hierarchy, with most component data and behaviour being inherited.  



 

ISDE implementers must define application-specific component data and functionality. For 
example, SPE classes specify class names, kind (abstract or concrete), and various inter-
component relationships (the class’s generalisations, features, associations, etc.). Display 
components require specification of rendering (e.g. how a class icon or an association glue 
is to be drawn), or appropriate parsing/unparsing grammars for textual views. Default 
editing facilities for views and view components are built in, but can be specialised by 
ISDE implementers. All view edits are translated into operations on view components by 
calling operation methods. 

The CPRG change description propagation mechanism is built into the MViews 
framework, and the ISDE implementer need only define response methods. Many of these 
are defined in generic relationhips (Grundy et al.  96a) which ISDE developers simply 
reuse. Application classes can, however, override any response method to specify 
additional or more specialised functionality. 

MViews framework classes automatically handle most graphical view updates, as the 
structure of rendered graphical view components is held in the view layer. It is more 
difficult to keep free-edited textual views consistent with changes to other views, as the 
structure of the view’s components must be recovered via parsing. By default, all change 
descriptions potentially affecting the text of a view are automatically added to the view’s 
text in the header section. ISDE implementers can, however, define textual view 
component methods which update their view’s text. This uses a process we call incremental 
unparsing, whereby regular expressions are specified to incrementally parse and extract 
token data from the textual view. These tokens are modified as necessary to update the 
view. 

MViews environments use CPRG change descriptions to implement many other ISDE 
facilities. As change descriptions are automatically generated by components after 
modification, they are used to record changes to view components for an undo/redo facility 
and for modification histories and version control. Their propagation can be delayed to 
support lazy consistency management, and discrete change descriptions can be composed 
into higher-level change descriptions. 

MViews has been implemented using Snart, itself implemented in LPA MacProlog. Snart 
classes implement component and relationship types, class attributes implement component 
attributes and methods implement operations. Simple link relationships are implemented by 
object list attributes for efficiency. Change descriptions are represented by Prolog terms, 
and methods used to process change description terms are written in a declarative style, by 
specifying change description patterns to respond to and methods for response. 

Graphical component renderings are defined using LPA’s Graphics Description Language 
(GDL). MViews provides an object-oriented interface to GDL, and building-blocks for 
constructing graphical editors. The regular expressions used in incremental unparsing are 
interpreted by Snart methods. Definite Clause Grammars (DCGs) are used to provide 
parsing facilities to translate textual view changes into operations on base components. 
MViews uses a standard Macintosh text window editor for displaying and editing textual 
views. 



 

Component persistency is supported via persistent Snart objects. Snart objects may be 
dynamically saved to and loaded from a high-performance, single-user persistent object 
store, requiring no programming by ISDE implementers. Text component data is saved as 
complex object attributes, and an in-core caching scheme means the performance of 
persistent Snart objects is almost the same as dynamic objects (Grundy 1993). 

A C++ port of MViews is being implemented. This runs much faster than the Snart 
framework but its functionality is as yet less developed. 

VII. Experience with MViews 

In addition to SPE, MViewsDP, MViewsER and OOEER, we have developed several other 
ISDEs using MViews. MViewsNIAM provides NIAM modelling views, and has been 
integrated with MViewsER to produce NIAMER (Venable and Grundy 1995). ViTABaL 
(Grundy and Hosking 1995b) is a visual tool abstraction language.  We have also integrated 
MViewsDP, OOEER, and NIAMER to produce an integrated information systems 
engineering environment (Grundy et al. 1996). 

MViews has also been used by other researchers. Cerno-II (Fenwick et al. 94) is a graphical 
debugger complementing SPE for visualising a running Snart program, providing graphical 
object representations, and visualisation of collection structures, method calls and timing 
diagrams. EPE is an environment for constructing EXPRESS specifications and 
corresponding EXPRESS-G diagrams (Amor et al. 1995). Hyper-Pascal (Lyons et al. 1993) 
is a visual Pascal-like language which provides a variety of graphical programming views 
together with textual views for input/output format specification. Skin provides a 
visual/textual functional language for constructing flexible user interface components and 
prototyping their execution (Hosking et al. 1995). 

SPE and MViews have been used to develop substantial, useful, and practical ISDEs and 
software systems. The largest ISDEs, SPE and EPE, provide reasonable performance for 
developing quite large applications. For example, the largest systems so far modelled in 
SPE have been MViews and SPE themselves, which together consist of over 60 Snart 
classes with 1100 class attributes and methods. 25 graphical views and nearly 200 textual 
views make up the complete system definition in SPE. EPE has been used to model similar 
sized systems (60-70 classes in 20-30 views representing a generic model of buildings). 
EPE was constructed by specialising both SPE and Cerno-II, which involved the addition 
of several relationships between classes not modelled in SPE and changes to the rendering 
of both graphical and textual forms of classes. The developer of EPE did not need to 
modify the SPE framework, but only needed to specialise SPE classes to redefine 
renderings and add extra attributes and relationships. 

Feedback from users of SPE and other MViews ISDEs indicates they find the degree of 
integration in MViews environments useful. They like the way views are kept consistent, 
particularly the way potential effects on textual view components are displayed as change 
decriptions and the ability to trace back through the editing history of views and base 
components. ISDE developers using MViews have found the framework concepts simple to 
understand and straightforward to reuse. 



 

VIII. Comparison to Other Approaches 

Recent ISDE research has been concerned with abstract specification of software system 
structure and semantics, providing integrated textual and graphical views, managing the 
trade-off between integration and extensibility, and supporting collaborative software 
development. 

A. Generated ISDEs 

Declarative specification and generation of language-based environments has usually been 
based on an abstract syntax, together with attribute grammars for specifying semantic 
information. Examples are the Cornell Program Synthesizer (Reps and Teitelbaum 1987), 
MELD (Kaiser and Garlan 1987), and Mjølner environments (Magnusson et al. 1990). 
These environments are, however, only text-based. LOGGIE (Backlund et al. 1990), Dora 
(Ratcliffe et al. 1992), PECAN (Reiss 1985), and GLIDE (Kleyn and Browne 1993) use 
structure editing of views of shared, graph-based program representations, and graphical 
and textual view consistency is maintained by propagating editing changes between views. 
Weaknesses are that some change propagation can not be supported, such as some changes 
to design views which affect code views, and restrictive structure-editing is always used 
(Welsh et al. 1991). 

Environments can be specified and generated more quickly using these formal grammar 
approaches than by framework specialisation. However, the usefulness and scalability of 
Dora, PECAN and GLIDE environments appears considerably less than that of SPE and 
EPE. These environments have less flexible view consistency mechanisms, as they use uni-
directional constraint propagation rather than change descriptions. MViews also supports 
both fine-grained and coarse-grained storage of software system data making its data 
storage and performance more efficient. Mjolner grammars can be modified by users to 
support, for example, a different concrete syntax, whereas MViews environment classes 
must be modified to achieve this effect. Thus more work must be done to adapt MViews 
environments to individual developer’s requirements. Also, experience with MViews has 
shown it takes new ISDE implementers longer to understand how to reuse the MViews 
framework than to use environment generators. 

B. Framework ISDEs 

A framework approach, as used by MViews, is less abstract, and generally involves more 
effort, than grammar-based ISDE generation. However, frameworks provide both a 
reusable model and also greater flexibility, as they provide general-purpose programming 
languages as well as specific abstractions for ISDE construction. With frameworks, 
environment implementers can code data management and user interface mechanisms 
differing in style from those envisaged by a framework's designers. In contrast, generated 
environments are restricted to capabilities offered by the generator language, usually less 
powerful than framework programming languages. 

FIELD environments (Reiss 1990b) give the appearance of tight integration with 
extensibility via selective broadcast of events between Unix tools. However, building 



 

“wrappers” around tools to integrate them requires much work and the definition of 
broadcast events is complex and ad hoc (Meyers 1991). Garden is an environment for 
conceptual programming and for prototyping visual languages (Reiss 1987). It has limited 
support for multiuser software development via a shared repository based on an object-
oriented database, but has no support for textual view consistency. 

Unidraw (Vlissides and Linton 1990) is a framework for building domain-specific 
graphical editors, supporting multiple graphical (not textual) views. Rendezvous (Hill et al. 
1994) and Garnet (Meyers 1991) are frameworks for building constraint-based graphical 
editors and user interfaces. Garnet uses unidirectional constraints. Rendezvous uses 
bidirectional constraints and also supports multiuser editing. Neither supports the flexible 
graphical or textual view consistency MViews provides. 

FormsVBT (Avrahami et al. 1990), built using the Zeus framework (Brown 1991), supports 
interactive editing of graphical views and free-editing of textual views. View consistency is 
via token substitution in textual views and incremental redisplay of graphical views. 
Graphical view updates must be locked out when a textual view is edited, however, and 
only a simple S-expression language can be supported for the textual “program”. 
MViewsDP has similar functionality to FormsVBT, but MViewsDP's textual view 
consistency is more powerful, as information which does not overlap with graphical view 
information can be represented. 

Escalante (McWhirter and Nutt 1994) supports both generation (via the GrandView 
environment) and framework specialisation approaches to visual environment construction. 
However, Escalante environments are small, single-user systems, compared to complex 
MViews environments such as SPE, EPE, Serendipity and ViTABaL. 

C. Collaborative ISDEs 

Many collaborative environments and CASE tools only support low-level editing 
mechanisms (Aean et al. 1992), including most Groupware systems (Ellis et al. 1991), 
Mercury (Kaiser et al. 1987), and Mjølner (Magnusson et al. 1993). Unlike Serendipity, 
these systems neither facilitate coordination of work, nor capture and presentation of work 
context information. Thus effective collaborative work on large systems is impossible. 
Some groupware systems support limited group awareness capabilities, such as multiple 
cursors (Roseman and Greenberg 1992), but these usually only inform collaborators about 
the work artefacts collaborators are immediately interested in and  do not provide the 
context of others' work. 

Process-centred environments utilise information about software processes to enforce or 
guide development. Examples include Marvel (Barghouti 1992), CPCE (Lonchamp et al. 
1995), and ConversationBuilder (Kaplan et al. 1992) Computer-Aided Method Engineering 
(CAME) tools, such as Decamerone (Harmsen and Brinkkemper 1995) and Method Base 
(Saeki et al. 1993), provide support for configuring development processes and tools to a 
particular application. These approaches usually provide low-level text-based descriptions 
of work rationale, and often do not effectively handle restructuring of development 
processes while in use (Swenson 1993). 



 

Table 1 
 

Environment Software 
Component 

Representation 

Constraint 
Representation 

Multiple 
Views 

Consistency 
Management 

Tool 
Integration 

Collaborative 
Work Support 

How New 
ISDEs are 

Built 
MViews CPRGs CPRGs Yes - via 

CPRGs 
Change 

Description 
Propagation 

Inter-
repository 

rels. 

Async., sync. 
editing; 

Serendipity 

Toolkit 
(reuse Snart 

classes) 

CPS Abstract syntax 
trees 

Attribute 
grammars 

No Attribute 
recalculation 

Limited None Generated 
from 

grammar 
GLIDE Abstract syntax 

graph 
? Limited ? Limited Limited Generated 

FIELD Unix files ? Limited message 
passing 

message 
passing 
server 

Limited Coded in C 

Rendezvous Objects Constraints Yes - via 
ALV 
model 

constraint 
propagation 

Limited Async., sync. 
editing 

Coded 

Zeus Objects ? Yes Event 
propagation 

Event 
propagation 

Limited Coded in 
Modula-3 

Escalante Objects Simple 
constraint 

expressions 

Yes MVC-style Limited None Partial 
generation 

Mjølner Abstract syntax 
trees 

Object-oriented 
attributes 

No Attribute 
recalculation 

backbone 
architecture 

Async., sync. 
editing 

Generated 
from 

grammars 
Conversation 

Builder 
Objects ? Limited Event 

propagation 
Via event 

propagation 
Async., sync. 

editing, 
workflow 

Coded 

Marvel/Oz Rule-based 
system data 

Rules on data Limited Rule 
application 

via rules, 
database 

concurrent 
transactions, 

work 
coordination 

Rule-based 
system 

languages 

Decamerone Method 
fragments 

Rules Yes Rule 
application 

Yes Limited MEL 
language 

Workflow-based systems, such as Active Workflow (Medina-Mora et al. 1992) and 
Domino (Kreifelts et al. 1991), attempt to coordinate work by describing the flow of 
documents between collaborators. This approach has proven to be inadequate for most real-
world coordination activities. Exceptions to the workflows usually outnumber cases when 
they are useful, and the workflows often need to be modified while in use (Swenson 1993). 
Such systems usually do not model nor facilitate collaboration on the coordination 
(planning) activity itself (Swenson 1993). Serendipity provides high-level software process 
models for MViews ISDEs, and supports flexible event handling using an abstract visual 
language. Unlike most process-centred environments and workflow systems, Serendipity is 
tightly integrated with other MViews ISDEs. 

D. Summarised Comparison 

Table 1 shows a comparison of the facilities of the MViews toolkit for building ISDEs to a 
variety of other toolkits and environment generators. Being a toolkit, MViews enables 
ISDE developers to build more complex, flexible environments, but takes more effort to 
use than ISDE generator approaches. 



 

IX. Summary 

MViews provides a new approach to constructing integrated, extensible ISDEs with 
multiple textual and graphical views of software development. MViews represents software 
system data and multiple views of this data as dependency graphs. Discrete change 
descriptions to graph components are propagated to related components which then respond 
to these changes to maintain consistency. This mechanism supports environment 
integration and extensibility, as views (tools) share a common base data representation and 
new views and base components can be added without affecting existing components. 
Integrated, multiple textual and graphical views of software development are supported 
with bi-directional consistency management. A generic undo/redo facility, efficient 
incremental attribute recalculation, lazy consistency management, version control and 
collaborative software development facilities are also supported. Reuse of the object-
oriented MViews framework allows flexible, practical ISDEs to be quickly constructed and 
maintained. 

The MViews framework is being extended to provide more abstract support for attribute 
dependency specification and recalculation, specification of change description 
composition, and support for improved non-sequential undo/redo for version control. 
Generation of framework classes from a more abstract visual and textual specification of 
MViews environments is planned, which will allow further specialisation of generated 
classes, combining the advantage of a framework with the advantages of (partial) ISDE 
generation (Grundy and Venable 1996). 
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