

International Journal of Applied Software Technology, International Academic Publishing Company,
Vol. 2, No. 3/4, pp. 133-160

Constructing Integrated Software Development

Environments with MViews

John C. Grundy1 and John G. Hosking2

1Dept. of Computer Science, University of Waikato
Private Bag 3105, Hamilton, New Zealand

jgrundy@cs.waikato.ac.nz

2Dept. of Computer Science, University of Auckland
Private Bag, Auckland, New Zealand

john@cs.auckland.ac.nz

Abstract: MViews is a new approach to building Integrated Software
Development Environments (ISDEs). Graph-based representations of
software system data, and multiple views of this data, are kept consistent via
graph components responding to descriptions of changes made to other
components. This technique supports integrated, bi-directionally consistent
graphical (interactively-edited) and textual (free-edited) views of data, ISDE
integration, and version control and collaborative software development. An
object-oriented framework is specialised to construct new environments.
Experience using this framework to build and integrate several ISDEs is
discussed.

I. Introduction

Integrated Software Development Environments (ISDEs) provide tools for software
management tasks, such as analysis, design, implementation, debugging, maintenance and
versioning (Meyers 1991, Dart-et-al. 1987). ISDEs usually support both graphical and
textual representations, or views, of parts of a software system (Reiss 1987, Ratcliffe-et-al
1992). Support for many views and view types is often wanted, along with some form of
consistency management between views sharing data (Meyers, 1991).

ISDEs require a mechanism for integrating tools. Several kinds of integration are important
(Thomas and Nejmeh 1992; Bounab and Godart 1995), including: data integration (use of a
common data repository); control integration (propagation of and response to events

between tools); presentation integration (consistency of tool user interfaces); and process
integration (coordinating the use of tools). Supporting collaboration is a goal of most
ISDEs (Kaiser et al. 1987; Magnusson et al. 1993). This involves providing low-level
collaborative editing tools, and higher-level work coordination, project management and
process modelling tools.

This paper describes MViews, a new approach to building ISDEs which support multiple
views of software development, flexible environment integration mechanisms, and both
low and high-level collaborative work facilities. We start with a brief discussion of an
ISDE illustrating the general requirements this work aims to satisfy. The basic MViews
model and its novel approach to the support of multiple consistent views is then described.
ISDE integration is illustrated with an example. Collaboration facilities of MViews ISDEs
are discussed, and a description of ISDE design and implementation given. Experience with
MViews, and comparison with related work is described. A summary concludes the paper.

II. Support for General ISDE Requirements

A. An Example Environment

SPE (the Snart Programming Environment) (Grundy et al. 1995a) is an ISDE for Snart
(Grundy 1993), an object-oriented extension to Prolog. SPE demonstrates the kind of
environment that can be built using MViews. Figure 1 shows a screen dump from SPE
during the development of a drawing editor program. The several windows shown reflect
different program views. View 1, an analysis-level diagram, shows important inheritance
and aggregation (attribute type) structures for drawing program classes; view 2, a design-
level diagram, describes method calling protocols for rendering figures in windows. View 3
is a detailed class interface; and view 4 a method implementation. Graphical debugging and
textual documentation views are also provided.

Graphical views use an icon and connector representation. They include a palette, to select
tools to interactively manipulate the view contents. Textual views are free-edited and
parsed. Inter-view navigation is either via menus or an automatically constructed point and
click hyper-link system. There is no restriction on the number of views able to be
constructed. The contents and layout of each view are under user control.

SPE keeps all data shown in its views consistent under change. New tools need to share this
data, need a standard, consistent user interface, and need to respond to events occuring in
other tools.

Collaborative software development is supported by C-SPE (Grundy et al. 1995b), an
extension providing synchronous, semi-synchronous and asynchronous view editing, plus
version control and merging facilities. A work coordination and process modelling tool
(Grundy et al. 1995c) allows developers to define appropriate software processes and work
plans, and to coordinate their work using shared plan and process views.

1

2

3

4

Figure 1 A screen dump from the Snart Programming Environment (SPE).

B. General ISDE Requirements

Integrated Software Development Environments, such as SPE, require several key
capabilities, including:

• flexible software system data representation, supporting for both fine-grained and
coarse-grained software components (Ratcliffe et al. 1992);

• semamantic constraints between software components (Reps and Teitelbaum 1987);
• support for a diverse range of editable, graphical and textual views of software

system data (Reiss 1987; Ratcliffe et al. 1992);
• full consistency (or inconsistency) management between all software components

and views (Meyers 1991; Ratcliffe et al. 1992; Grundy et al. 1996a);
• tool integration, including data (repository), control (event), presentation (user

interface), and process (methods and procedure) integration (Thomas and Nejmeh
1992; Bounab and Godart 1995);

• and cooperative work support, including collaborative editors, version control,
merging and configuration management, and software process modelling facilities
(Grundy et al. 1995c).

We have developed MViews to provide a framework supporting such capabilities.

C. An Overview of MViews

We briefly overview MViews’ support for these general requirements of ISDEs. The core
of ISDEs like SPE is the representation of the shared data. MViews represents this data
using a graph-based form, with syntax, semantic attribute values and multiple views
represented as graph components. View graphs are rendered in graphical or textual forms,
and modified by user operations. View graph changes are translated into operations on the
underlying graphs, with other views updated to maintain consistency. Consistency
management is via a novel change propagation mechanism. Whenever a graph component
is modified, a description of the change to the component is propagated to all related graph
components. These respond by updating their own state to maintain consistency. The
response mechanism is often abstracted into the relationships between graph components,
resulting in a flexible, reusable consistency management mechanism.

Storage of change descriptions by graph components supports a wide range of other ISDE
functions, including a generic undo/redo facility, modification histories, version control and
merging, tool integration, and collaborative software development. Flexible environment
integration and extensibility are also supported. Broadcasting change descriptions between
multiple developers’ environments supports both low-level collaborative editing and
higher-level work coordination and process modelling and enactment.

MViews environments are built by specialising an object-oriented framework, which
provides a consistent, integrated user interface for all tools. Tools not built using MViews
can be integrated by building data and event translator views.

III. MViews Data and Multiple Views

A. Repository Data Representation

Component Attribute(Value)

...

Key: class
name(window)

class
name(drawing_window)

generalisations

features

type(attribute) type(method)
feature feature

name(figures) name(clicked)name(figure)
class

type

parent(s)

child(ren)

calls

Relationship

Abstract MViews Representation

class(window,
 features([
 ...
])).

class(drawing_wind
ow,
 parents([window]),
 features([

figures:list(figure),
 clicked,
 ...
])).

class(figure,
 features([
 ...
])).

Concrete Snart Representation

type(list)

Figure 2 Representing SPE data using MViews program graphs.

MViews represents ISDE data as a collection of (possibly disjoint) directed graphs, thus
supporting both tree-based textual languages and graph-based visual languages. Software
system data is represented as components (nodes) connected by relationships (labelled
edges). Each component has associated attributes (name/value pairs). Figure 2 shows an
MViews graph for part of the SPE drawing program of Figure 1. Relationships are
specialised forms of components that can be connected to other relationships and have
attributes. We collectively refer to all graph nodes and edges as components.

MViews graphs represent both system structure and semantic values. For example, the full
interface (signature) of a class in SPE is calculated from attributes and methods the class
defines and those it inherits. This interface is represented as a relationship from the class to
components representing each calculated interface feature.

class
name(window)

class
name(drawing_window)

generalisations

features

type(attribute) type(method)
feature feature

name(figures) name(clicked)

class(drawing_window,
 parents([window]),
 features([
 figures:list(figure),
 clicked,
 ...
])).

drawing_window::clicked(...Args...) :-
 ...
	

DrawingWindow@figures(FigureList),
	
 ...

calls

text forms

text

text forms

text

Figure 3 Coarse and fine-grained representations.

Fine-grained software system representation uses the graph structure, and coarse-grained
uses text components. The latter are nodes containing a sequence of characters. For
example, in Figure 3, the drawing_window class and clicked method have text
components corresponding to the formatted text of their concrete representations. Data
needing individual editing or semantic values is represented by graph components. Free-
edited data used only as a single component is represented in a coarse-grained fashion, for
greater efficiency. For example, method code and class documentation are represented only
as text components in SPE. Class interfaces are represented as both text components and
fine-grained graph components. This allows the format of the class definition, such as
comments and user-defined layout, to be kept. Consistency is maintained between the two
representations by the mechanism described below.

B. Multiple Views

MViews uses a three-layer architecture to provide multiple views (Figure 4). A base layer
(the ISDE repository) provides a shared graph representation of the software system. Views
are graphs representing information needed for each view, i.e. base layer components have
matching view components. Displays act as both renderers and interactive editors for view
components. External views provide an interface mechanism for tools not implemented
using MViews.

View relationships connect view and base components, permitting view components to
access base component data and supporting bi-directional propagation of changes between
base and view. MViews utilises free form editing of textual views, allowing existing editors
to be used for textual programming, and because this interaction style is preferred by
programmers (Welsh et al. 1991). MViews uses interactive editing for graphical views;
view components are modified by direct manipulation of their renderings. This, again, is
preferred by users (Arefi et al. 1990). This contrasts with other ISDEs which use restrictive
structure-oriented editing approaches for all views (although MViews can support such
views).

Displays/
External

Tools

Views

Base
Layer

class

class

generalisations

window

drawing_window text

text forms

features

class_icon

class_icon

gen_glue
class_text feature_text

text

drawing_window

window

external_class

External Interface
(Data/Event interchange)

External
Tool

...

feature

text forms

view rel. view rel.view rel. view rel. view rel.

Figure 4 Multiple views of an SPE program in MViews.

C. Graph Operations and Change descriptions

The MViews graph structure is based on the Change Propagation and Response Graph
(CPRG) model. Descriptions of changes made to CPRG components are propagated to
related components to maintain inter-component consistency. We briefly describe use of
this mechanism in MViews environments; further details are in (Grundy et al. 1996a).

Graphs are modified by operations applied to components. Components support basic
operations, add-component, establish-relationship, update-attribute, etc. Operations are of
the form Comp.Op(Arg1,Arg2,...) where component Comp has operation Op applied
with parameters Arg1, Arg2, etc. More complex macro operations can be defined, made
up of sequences of basic graph operations.

When a component is modified, components dependent on its state must be updated to
maintain consistency. MViews components use the CPRG change description mechanism
to broadcast a description of an operation’s effect on a component to all its attached
relationships. Change descriptions are tuples of the form
UpdateKind(Component,Value1, Value2,...), where: UpdateKind is the
operation applied (update attribute, establish relationship, delete component, etc.);
Component is the modified component which generated the change description; and
Value1 etc are operation-specific values describing exactly the change made to the
component. For example a Comp.update(Name, NewValue) operation (i.e. update of
attribute Name of component Comp) generates the change description
update(Comp,Name,OldValue,NewValue), where OldValue is the previous value of
Name for Comp.

Change descriptions are first propagated to the relationships attached to the modified
component, (its dependents). These relationships respond by: updating their own states, or
those of other connected components, by applying operations; propagating the change
description to other components participating in the relationship; or ignoring the change.
Components receiving change descriptions can interpret them in any way and may apply
further operations to maintain consistency with the changed component.

D. Consistency Management

An example of consistency management between MViews components and views
(implementing SPE) is shown in Figure 5. 1) An SPE user edits a graphical view
component, applying operations to it, or a textual view parser generates operations by
comparing updated view text to base information. 2) Resulting change descriptions are
propagated to the view component’s dependents, including its view relationship. 3) The
view relationship translates the view component change into operations on its base
component. If the update is view-specific, for example changing an icon’s location or text
font, the base component is unaffected by the change, so the view relationship does not
propagate it. 4) Base component operations generate change description(s) which 5) are
propagated to the base component’s dependents, including all of its view relationships. 6)
The view relationships translate the base component change descriptions into operations on
their view components. If the view component is unaffected by the base component change,

for example the view component doesn't use an updated attribute, the view relationship
does not propagate the change. 7) Updated view components re-render their displays;
external view components send messages to external tools or translate changed data into
external tool data.

MViews' generic view relationship translates changes to base component attributes to
changes to view component attributes of the same name (and vice-versa). This behaviour
can be modified by defining specialised view relationships supporting, for example,
automatic addition of view components when base components are added. Generic
aggregation relationships propagate change descriptions on child components to the
relationship parent. For example, changes to SPE feature components are propagated to the
owning class component. Generic attribute dependency relationships between components
use change descriptions for efficient incremental attribute recalculation. For example,
addition of a new feature to a class causes recalculation of a class interface. MViews, via
CPRGs, thus provides the speed and flexibility of an operational approach to the inter-
component consistency problem, yet al. lows generic, relationship-type-specific constraints
to be easily specified and reused.

Views

Base
Layer

class

class

generalisations
features

class_icon

class_icon

gen_glue
class_text external_class

view rel. view rel.view rel. view rel.

1.

2.

3.

4.
5. 5.

5.

6.

6. 6.

7.

7. 7.
2.

Figure 5 Change propagation between components and views.

E. Multiple View Consistency

As any base layer component may be represented in several views, an ISDE like SPE must
keep these different views consistent. To achieve this:

• changes are propagated to all affected views, so no inconsistent information is used
• views are updated automatically (if possible)
• changes made to a view that can't be automatically applied to other views (eg

propagation of a design view change to a code view) are indicated in some way

For example, after editing an SPE graphical view, other graphical views are usually
automatically updated. If a method is renamed in one view, other graphical representations
of the method are updated automatically. Changes such as renaming classes or features,
adding or deleting features, and changing feature types can be automatically applied to
textual views. Other changes cannot. For example when a client-supplier relationship (to be
implemented by a method call) is added between classes in a graphical design view, the
required change to a textual view cannot be automatically inferred. In this case, a change
description is inserted into the view’s text, indicating it is affected, as seen in figure 6.
These unparsed change descriptions act as a visual cue for the programmer to manually
implement the change (for example, by adding an appropriate method call to the view).

Change
descriptions

inserted
into view's

text

Figure 6 Textual view consistency in SPE.

Changes from graphical view to graphical view, and from textual view to textual view, can
also be presented in this way. For example, figure 7 shows an Object-Z-like view in SPE
being kept consistent with a method implementation view (Grundy and Hosking 1995a).
Both views are textual, and changes to one type of view are shown in the other type by
change descriptions.

Environments can also present inconsistencies in more context-dependent ways. Figure 8 is
a screen dump from MViewsDP, an interface builder supporting graphical and textual
dialog specification (Grundy et al. 96a). The dialog control button ‘Ok’ in the graphical
view has been shifted, reflected in the textual view header by a change description. This
change description can also be shown in a dialog associated with the graphical view. A
semantic inconsistency resulting from the Ok button’s border overlapping that of its
enclosing dialog box has been created, however, which must be resolved. This
inconsistency is indicated by shading the Ok button icon, so the user of the environment is
drawn to this component. Other presentation techniques can be utilised to highlight
inconsistencies, including shading and colouring graphical icons, changing font, style, size
or colour of text, or more dynamic techniques, such as blinking affected icons (Grundy and
Hosking 1996b).

Figure 7 Keeping textual views consistent with one another.

IV. Tool Integration

In order to maximise reuse of ISDE tools, techniques for integrating different tools into an
ISDE have become an important research area. The MViews graph structure, base and view
layers, and its change description propagation mechanism supports flexible data and control
ISDE integration.

Figure 8 Indicating inconsistencies in graphical views.

→
→

→
→

→

→
→

Figure 9 Integrated OOA/D and EER views with bi-directional consistency management.

We illustrate ISDE integration with MViews, using OOEER, which integrates SPE and
MViewsER, an Entity-Relationship diagraming and textual relational schema modelling
tool. OOEER is thus an integrated environment for OOA/D and EER modelling (Grundy
and Venable 1995). Figure 9 shows a screen dump from OOEER. The OOA/D views are
kept consistent with all changes to the EER views, and vice-versa, even when a direct
translation is not possible by the environment. The dialog shown holds change descriptions
(the “modification history”) for the customer OOA class. The change descriptions
highlighted by ‘→’ were actually made to the EER view (diagram) and automatically
translated into OOA/D view updates (where possible) by OOEER. Unhighlighted items
were made by the designer to the OOA view to fully implement “indirect” translations that
could only partially by implemented by OOEER.

Views
feature icon

features

entity/object

relationship

entity

rel. icon

class icon

feature

class

entity icon

entity

entity/object

relationship

1.

2.

3. 4.

5.

6.

Displays

Separate
Base Layers

Integrated
Base Layer

class icon

class

entity icon

Figure 10 Integrating SPE and MViewsER to produce OOEER.

OOEER integration was achieved via an additional repository graph level below the base
layers of SPE and MViewsER (Grundy and Venable 1995). This layer translates changes

(where possible) between the different notations, and notifies tools where automatic
translations are not possible. Neither SPE nor MViewsER required any significant change
to achieve this integration. Figure 10 shows an example of the structure of OOEER. When
an SPE view is edited (1), the modification is translated into SPE repository updates (2),
generating change descriptions. Inter-repository relationships are sent change descriptions,
and respond by updating the integrated repository (3).

When integrated repository components change, the inter-repository relationships to
MViewsER’s repository components translate these change descriptions into updates on
MViewsER repository components (4). Indirect translations are defaulted where possible
and change descriptions displayed in views. Both SPE and MViewsER keep their multiple
views consistent (5 and 6).

Inter-repository relationships are implemented as specialisations of MViews’ generic
many-to-many relationships. On receiving a change description, inter-repository
relationships determine the change to make to related components. This might be a simple
update (automatic mapping), partial update (semi-automatic mapping) or storage of the
change description against the affected component(s) (no automatic mapping possible).
Using CPRG change description composition facilities (Grundy et al. 96a), relationships
can wait for receipt of several change descriptions, allowing more complex translations
mapping several updates from another model. CPRGs provide lazy processing capabilities
(Grundy et al. 96a) which are used to minimise response time delay. Much of the
translation and consistency management is performed on-demand when a view is selected
for editing, by caching change descriptions in an integrated data dictionary.

Interrepository relationships can be added directly between components in different tool
repositories, but this approach has the disadvantage of requiring further relationships if
other tools are to be integrated at a later date (Grundy and Venable 1995).

This example illustrates how MViews environments support both data integration (via
hierarchical, integrated repositories) and control integration (via the change description
broadcasting between tools). User interface integration is achieved by building tools from a
standard library of object-oriented classes (see Section 6).

V. Collaborative Software Development

Computer-Supported Cooperative Work (CSCW) systems may use a multi-view editing
approach to sharing and modifying information (Ratcliffe et al. 1992; Reiss 1990a; Meyers
1991). Inconsistencies between views then become more difficult to resolve as different
users are affected. MViews provides support for multiuser asynchronous, semi-
synchronous and synchronous view editing (Grundy et al. 1995a). We have recently
developed a high-level work coordination and process modelling tool which supports the
coordinated use of integrated MViews tools (Grundy et al. 1995c; Grundy and Hosking
1996a).

A. Versioning and Asynchronous Development

Change descriptions can be used to describe changes between different versions of views
i.e. they form a view modification history (Grundy et al. 96a). A non-sequential undo/redo
facility is provided by reversing or reapplying view changes, and this supports version
merging (Grundy et al. 1995a; Grundy et al. 96a). An example merge from SPE is shown
in figure 11. The top two dialogues contain change descriptions for two versions of a
software component. The bottom dialogue shows structural and semantic conflicts in the
merged version, presented to the developer as a sequence of merge conflict change
descriptions.

B. Synchronous and Semi-synchronous Editing

Semi-synchronous collaboration is supported by broadcasting change descriptions between
different users’ environments. These are presented in a view or dialog. Figure 12 is an
example of semi-synchronous view editing in SPE. Synchronous collaboration allows users
to view and edit the same version of a view, with fine-grained locking on view components
(Grundy et al. 1995a).

(V1.1a) (V1.1b)

(V2.0)
structural
conflict

semantic
conflict

(merge)

Figure 11 Version merging with MViews.

Change descriptions inserted
into view text, dialog, and/or
icons highlighted (but only

collaborator name is shown)

Figure 12 Semisynchronous view editing via change description broadcasting.

C-MViews
environment

developer 1 repository

V1.0
V1.0 V1.1b V1.2

C-MViews
environment

developer 2 repository

V1.1a

Shared Repository
V1.2

V1.2

asynchronous
edits

change description
applied/displayed

change description
applied

change description
applied

change description
generated/appliedchange description

generated

synchronous
edits

Figure 13 Supporting collaborative editing in MViews ISDEs.

Figure 13 shows the architecture used to support collaborative view editing in MViews
environments. A central repository provides shared access to multiple versions of views
and components, supporting asynchronous software development. For semi-synchronous

editing, broadcast change descriptions are received by other developers environments and
cached in special version records. These are presented in dialogs or textual view headers to
inform other collaborators of changes. The change descriptions can be incrementally
merged into the receiving developers’ views using the merging techniques of 5.1. For
synchronous editing, no developer “owns” the shared version of a view. All updates
attempted are sent to the central server which updates the shared version and broadcasts
change description(s) to all collaborators, whose views are then re-rendered. The server
uses fine-grained locking so only one edit of the same component is accepted at a time.

C. Work Coordination and Software Process Modelling

ISDEs are large cooperative work systems, and so require support for process modelling,
enactment, and coordination of cooperative work (Krant and Streeter 1995). The
Serendipity environment provides this support for MViews ISDEs (Grundy and Hosking
1996a; Grundy et al. 1995c). Serendipity provides visual languages to describe process
models and specify flexible event processing for these models. Process model animation
allows collaborators to be aware of the work contexts of colleagues. Information about the
current enacted process stage is attached to change descriptions, recording the context of
work. These changes are also stored by the current enacted process stage, allowing
collaborators to review the work history for process stages. Serendipity’s visual event
processing language allows users to specify rules and actions triggered by enactment
events, process or work artefact modifications, or tool events.

Figure 14 shows a simple Serendipity process model for updating a software system
(“m1:model1-process”). The basic notation here is derived from Swenson’s Visual
Planning Language (VPL), although VPL does not support role, artefact or tool modelling,
nor arbitrary event filtering and actioning (Swenson 1993). Several stages describe steps in
the process of modifying a software system, with each stage containing a unique id, the role
which will carry out the stage, and the name of the stage. Enactment event flows link stages.
If labelled, the label is the finishing state of the stage the flow is from (e.g. “finished
design”). The shading of the “m1.2:implement changes” stage indicates that multiple
implementers can work on this stage (i.e. the stage has multiple subprocess enactments).
Other items include start stages,finish stages, AND stages, and OR stages (empty round
circle). Underlined stage IDs/roles mark presence of a subprocess model. For example,
“m1.1:design changes” has a subprocess model (“m1.1:design changes-subprocess”). The
italicised “check out design” stages in this subprocess model indicate stages reused from a
template process model.

During a project, stages in the model are enacted, with such stages highlighted by colour
and shading (Grundy and Hosking 1996a). As a stage completes in a given finishing state,
event flows with this state name (or no name) activate to enact linked stages. Enactments of
stages are recorded, as are work artefact changes made while a stage is a user's current
enacted stage (i.e. the user’s work context). Change descriptions are augmented with work
context information,. Stored change descriptions and those presented to collaborators thus
document the work context they were carried out in.

Serendipity has been integrated with SPE and MViewsER, without modification to these
pre-existing environments. MViews ISDEs and Serendipity are integrated by routing
change descriptions to the current enacted Serendipity stage. This stores the change
description in its artefact modification history and also forwards it to interested
collaborating users. Interest in change descriptions and enactment events is determined by a
filter and action visual language (Grundy and Hosking 1996a). Interest may be hierarchical,
so interest in a stage includes interest in its subprocess. Actions may forward change
descriptions to other users and/or present them to these users in views, dialogues, or via
shading view items. Actions may also enact, finish or modify other stage components, or
may carry out other arbitrary processing.

Figure 14 Simple software process models in Serendipity.

VI. Constructing ISDEs with MViews

MViews environments are constructed by reusing and refining classes from an object-
oriented framework. The MViews class hierarchy defines general component data and
behaviour, relationships, base and view/display components, and various supporting data
structures. Classes for a new ISDE, such as SPE, are specialised from classes in this
hierarchy, with most component data and behaviour being inherited.

ISDE implementers must define application-specific component data and functionality. For
example, SPE classes specify class names, kind (abstract or concrete), and various inter-
component relationships (the class’s generalisations, features, associations, etc.). Display
components require specification of rendering (e.g. how a class icon or an association glue
is to be drawn), or appropriate parsing/unparsing grammars for textual views. Default
editing facilities for views and view components are built in, but can be specialised by
ISDE implementers. All view edits are translated into operations on view components by
calling operation methods.

The CPRG change description propagation mechanism is built into the MViews
framework, and the ISDE implementer need only define response methods. Many of these
are defined in generic relationhips (Grundy et al. 96a) which ISDE developers simply
reuse. Application classes can, however, override any response method to specify
additional or more specialised functionality.

MViews framework classes automatically handle most graphical view updates, as the
structure of rendered graphical view components is held in the view layer. It is more
difficult to keep free-edited textual views consistent with changes to other views, as the
structure of the view’s components must be recovered via parsing. By default, all change
descriptions potentially affecting the text of a view are automatically added to the view’s
text in the header section. ISDE implementers can, however, define textual view
component methods which update their view’s text. This uses a process we call incremental
unparsing, whereby regular expressions are specified to incrementally parse and extract
token data from the textual view. These tokens are modified as necessary to update the
view.

MViews environments use CPRG change descriptions to implement many other ISDE
facilities. As change descriptions are automatically generated by components after
modification, they are used to record changes to view components for an undo/redo facility
and for modification histories and version control. Their propagation can be delayed to
support lazy consistency management, and discrete change descriptions can be composed
into higher-level change descriptions.

MViews has been implemented using Snart, itself implemented in LPA MacProlog. Snart
classes implement component and relationship types, class attributes implement component
attributes and methods implement operations. Simple link relationships are implemented by
object list attributes for efficiency. Change descriptions are represented by Prolog terms,
and methods used to process change description terms are written in a declarative style, by
specifying change description patterns to respond to and methods for response.

Graphical component renderings are defined using LPA’s Graphics Description Language
(GDL). MViews provides an object-oriented interface to GDL, and building-blocks for
constructing graphical editors. The regular expressions used in incremental unparsing are
interpreted by Snart methods. Definite Clause Grammars (DCGs) are used to provide
parsing facilities to translate textual view changes into operations on base components.
MViews uses a standard Macintosh text window editor for displaying and editing textual
views.

Component persistency is supported via persistent Snart objects. Snart objects may be
dynamically saved to and loaded from a high-performance, single-user persistent object
store, requiring no programming by ISDE implementers. Text component data is saved as
complex object attributes, and an in-core caching scheme means the performance of
persistent Snart objects is almost the same as dynamic objects (Grundy 1993).

A C++ port of MViews is being implemented. This runs much faster than the Snart
framework but its functionality is as yet less developed.

VII. Experience with MViews

In addition to SPE, MViewsDP, MViewsER and OOEER, we have developed several other
ISDEs using MViews. MViewsNIAM provides NIAM modelling views, and has been
integrated with MViewsER to produce NIAMER (Venable and Grundy 1995). ViTABaL
(Grundy and Hosking 1995b) is a visual tool abstraction language. We have also integrated
MViewsDP, OOEER, and NIAMER to produce an integrated information systems
engineering environment (Grundy et al. 1996).

MViews has also been used by other researchers. Cerno-II (Fenwick et al. 94) is a graphical
debugger complementing SPE for visualising a running Snart program, providing graphical
object representations, and visualisation of collection structures, method calls and timing
diagrams. EPE is an environment for constructing EXPRESS specifications and
corresponding EXPRESS-G diagrams (Amor et al. 1995). Hyper-Pascal (Lyons et al. 1993)
is a visual Pascal-like language which provides a variety of graphical programming views
together with textual views for input/output format specification. Skin provides a
visual/textual functional language for constructing flexible user interface components and
prototyping their execution (Hosking et al. 1995).

SPE and MViews have been used to develop substantial, useful, and practical ISDEs and
software systems. The largest ISDEs, SPE and EPE, provide reasonable performance for
developing quite large applications. For example, the largest systems so far modelled in
SPE have been MViews and SPE themselves, which together consist of over 60 Snart
classes with 1100 class attributes and methods. 25 graphical views and nearly 200 textual
views make up the complete system definition in SPE. EPE has been used to model similar
sized systems (60-70 classes in 20-30 views representing a generic model of buildings).
EPE was constructed by specialising both SPE and Cerno-II, which involved the addition
of several relationships between classes not modelled in SPE and changes to the rendering
of both graphical and textual forms of classes. The developer of EPE did not need to
modify the SPE framework, but only needed to specialise SPE classes to redefine
renderings and add extra attributes and relationships.

Feedback from users of SPE and other MViews ISDEs indicates they find the degree of
integration in MViews environments useful. They like the way views are kept consistent,
particularly the way potential effects on textual view components are displayed as change
decriptions and the ability to trace back through the editing history of views and base
components. ISDE developers using MViews have found the framework concepts simple to
understand and straightforward to reuse.

VIII. Comparison to Other Approaches

Recent ISDE research has been concerned with abstract specification of software system
structure and semantics, providing integrated textual and graphical views, managing the
trade-off between integration and extensibility, and supporting collaborative software
development.

A. Generated ISDEs

Declarative specification and generation of language-based environments has usually been
based on an abstract syntax, together with attribute grammars for specifying semantic
information. Examples are the Cornell Program Synthesizer (Reps and Teitelbaum 1987),
MELD (Kaiser and Garlan 1987), and Mjølner environments (Magnusson et al. 1990).
These environments are, however, only text-based. LOGGIE (Backlund et al. 1990), Dora
(Ratcliffe et al. 1992), PECAN (Reiss 1985), and GLIDE (Kleyn and Browne 1993) use
structure editing of views of shared, graph-based program representations, and graphical
and textual view consistency is maintained by propagating editing changes between views.
Weaknesses are that some change propagation can not be supported, such as some changes
to design views which affect code views, and restrictive structure-editing is always used
(Welsh et al. 1991).

Environments can be specified and generated more quickly using these formal grammar
approaches than by framework specialisation. However, the usefulness and scalability of
Dora, PECAN and GLIDE environments appears considerably less than that of SPE and
EPE. These environments have less flexible view consistency mechanisms, as they use uni-
directional constraint propagation rather than change descriptions. MViews also supports
both fine-grained and coarse-grained storage of software system data making its data
storage and performance more efficient. Mjolner grammars can be modified by users to
support, for example, a different concrete syntax, whereas MViews environment classes
must be modified to achieve this effect. Thus more work must be done to adapt MViews
environments to individual developer’s requirements. Also, experience with MViews has
shown it takes new ISDE implementers longer to understand how to reuse the MViews
framework than to use environment generators.

B. Framework ISDEs

A framework approach, as used by MViews, is less abstract, and generally involves more
effort, than grammar-based ISDE generation. However, frameworks provide both a
reusable model and also greater flexibility, as they provide general-purpose programming
languages as well as specific abstractions for ISDE construction. With frameworks,
environment implementers can code data management and user interface mechanisms
differing in style from those envisaged by a framework's designers. In contrast, generated
environments are restricted to capabilities offered by the generator language, usually less
powerful than framework programming languages.

FIELD environments (Reiss 1990b) give the appearance of tight integration with
extensibility via selective broadcast of events between Unix tools. However, building

“wrappers” around tools to integrate them requires much work and the definition of
broadcast events is complex and ad hoc (Meyers 1991). Garden is an environment for
conceptual programming and for prototyping visual languages (Reiss 1987). It has limited
support for multiuser software development via a shared repository based on an object-
oriented database, but has no support for textual view consistency.

Unidraw (Vlissides and Linton 1990) is a framework for building domain-specific
graphical editors, supporting multiple graphical (not textual) views. Rendezvous (Hill et al.
1994) and Garnet (Meyers 1991) are frameworks for building constraint-based graphical
editors and user interfaces. Garnet uses unidirectional constraints. Rendezvous uses
bidirectional constraints and also supports multiuser editing. Neither supports the flexible
graphical or textual view consistency MViews provides.

FormsVBT (Avrahami et al. 1990), built using the Zeus framework (Brown 1991), supports
interactive editing of graphical views and free-editing of textual views. View consistency is
via token substitution in textual views and incremental redisplay of graphical views.
Graphical view updates must be locked out when a textual view is edited, however, and
only a simple S-expression language can be supported for the textual “program”.
MViewsDP has similar functionality to FormsVBT, but MViewsDP's textual view
consistency is more powerful, as information which does not overlap with graphical view
information can be represented.

Escalante (McWhirter and Nutt 1994) supports both generation (via the GrandView
environment) and framework specialisation approaches to visual environment construction.
However, Escalante environments are small, single-user systems, compared to complex
MViews environments such as SPE, EPE, Serendipity and ViTABaL.

C. Collaborative ISDEs

Many collaborative environments and CASE tools only support low-level editing
mechanisms (Aean et al. 1992), including most Groupware systems (Ellis et al. 1991),
Mercury (Kaiser et al. 1987), and Mjølner (Magnusson et al. 1993). Unlike Serendipity,
these systems neither facilitate coordination of work, nor capture and presentation of work
context information. Thus effective collaborative work on large systems is impossible.
Some groupware systems support limited group awareness capabilities, such as multiple
cursors (Roseman and Greenberg 1992), but these usually only inform collaborators about
the work artefacts collaborators are immediately interested in and do not provide the
context of others' work.

Process-centred environments utilise information about software processes to enforce or
guide development. Examples include Marvel (Barghouti 1992), CPCE (Lonchamp et al.
1995), and ConversationBuilder (Kaplan et al. 1992) Computer-Aided Method Engineering
(CAME) tools, such as Decamerone (Harmsen and Brinkkemper 1995) and Method Base
(Saeki et al. 1993), provide support for configuring development processes and tools to a
particular application. These approaches usually provide low-level text-based descriptions
of work rationale, and often do not effectively handle restructuring of development
processes while in use (Swenson 1993).

Table 1

Environment Software
Component

Representation

Constraint
Representation

Multiple
Views

Consistency
Management

Tool
Integration

Collaborative
Work Support

How New
ISDEs are

Built
MViews CPRGs CPRGs Yes - via

CPRGs
Change

Description
Propagation

Inter-
repository

rels.

Async., sync.
editing;

Serendipity

Toolkit
(reuse Snart

classes)

CPS Abstract syntax
trees

Attribute
grammars

No Attribute
recalculation

Limited None Generated
from

grammar
GLIDE Abstract syntax

graph
? Limited ? Limited Limited Generated

FIELD Unix files ? Limited message
passing

message
passing
server

Limited Coded in C

Rendezvous Objects Constraints Yes - via
ALV
model

constraint
propagation

Limited Async., sync.
editing

Coded

Zeus Objects ? Yes Event
propagation

Event
propagation

Limited Coded in
Modula-3

Escalante Objects Simple
constraint

expressions

Yes MVC-style Limited None Partial
generation

Mjølner Abstract syntax
trees

Object-oriented
attributes

No Attribute
recalculation

backbone
architecture

Async., sync.
editing

Generated
from

grammars
Conversation

Builder
Objects ? Limited Event

propagation
Via event

propagation
Async., sync.

editing,
workflow

Coded

Marvel/Oz Rule-based
system data

Rules on data Limited Rule
application

via rules,
database

concurrent
transactions,

work
coordination

Rule-based
system

languages

Decamerone Method
fragments

Rules Yes Rule
application

Yes Limited MEL
language

Workflow-based systems, such as Active Workflow (Medina-Mora et al. 1992) and
Domino (Kreifelts et al. 1991), attempt to coordinate work by describing the flow of
documents between collaborators. This approach has proven to be inadequate for most real-
world coordination activities. Exceptions to the workflows usually outnumber cases when
they are useful, and the workflows often need to be modified while in use (Swenson 1993).
Such systems usually do not model nor facilitate collaboration on the coordination
(planning) activity itself (Swenson 1993). Serendipity provides high-level software process
models for MViews ISDEs, and supports flexible event handling using an abstract visual
language. Unlike most process-centred environments and workflow systems, Serendipity is
tightly integrated with other MViews ISDEs.

D. Summarised Comparison

Table 1 shows a comparison of the facilities of the MViews toolkit for building ISDEs to a
variety of other toolkits and environment generators. Being a toolkit, MViews enables
ISDE developers to build more complex, flexible environments, but takes more effort to
use than ISDE generator approaches.

IX. Summary

MViews provides a new approach to constructing integrated, extensible ISDEs with
multiple textual and graphical views of software development. MViews represents software
system data and multiple views of this data as dependency graphs. Discrete change
descriptions to graph components are propagated to related components which then respond
to these changes to maintain consistency. This mechanism supports environment
integration and extensibility, as views (tools) share a common base data representation and
new views and base components can be added without affecting existing components.
Integrated, multiple textual and graphical views of software development are supported
with bi-directional consistency management. A generic undo/redo facility, efficient
incremental attribute recalculation, lazy consistency management, version control and
collaborative software development facilities are also supported. Reuse of the object-
oriented MViews framework allows flexible, practical ISDEs to be quickly constructed and
maintained.

The MViews framework is being extended to provide more abstract support for attribute
dependency specification and recalculation, specification of change description
composition, and support for improved non-sequential undo/redo for version control.
Generation of framework classes from a more abstract visual and textual specification of
MViews environments is planned, which will allow further specialisation of generated
classes, combining the advantage of a framework with the advantages of (partial) ISDE
generation (Grundy and Venable 1996).

References

Aean, I., Siltanen, A., Sørensen, C., and Tahvanainen, V.P. (1992). “A Tale of Two

Countries: CASE experiences and expectations.” In Proceedings of the IFIP WG8.2.
Working Conference on The Impact of Computer Supported Technologies on
Information Systems Development (Minneapolis, June 14-17), Kendall, K.E.,
DeGross, J.I., and Lyytinen, K. Eds, North-Holland.

Amor, R., Augenbroe, G., Hosking, J.G., Rombouts, W., and Grundy, J.C. (1995).
“Directions in modelling environments,” Automation in Construction, vol. 4, pp. 173-
187.

Arefi, F., Hughes, C.E., and Workman, D.A. (1990). “Automatically Generating Visual
Syntax-Directed Editors,” Communications of the ACM, vol. 33, no. 3, pp. 349-360.

Avrahami, G., Brooks, K.P., and Brown, M.H. (1990). “A Two-View Approach to
Constructing User Interfaces,” ACM Computer Graphics, vol. 23, no. 3, 137-146.

Backlund, B., Hagsand, O., and Pherson, B. (1990). “Generation of Visual Language-
oriented Design Environments,” Journal of Visual Languages and Computing , vol. 1,
no. 4, pp. 333-354.

Barghouti, N.S. (1992). “Supporting Cooperation in the Marvel Process-Centred SDE,” in
Proceedings of the 1992 ACM Symposium on Software Development Environments
(Virginia, USA, December 9-11), ACM Press, pp. 21-31.

Bounab, M. and Godart, C. (1995). “A Federated Approach to Tool Integration,” In
Proceedings of CAiSE'95 (Finland, June 13-16), Lecture Notes in Computer Science
932, Springer-Verlag, pp. 269-282.

Brown, M.H. (1991). “Zeus: A System for Algorithm Animation and Multi-View Editing,”
In Proceedings of the 1991 IEEE Symposium on Visual Languages (Kobe, Japan, Oct
9-11), IEEE Computer Society Press, pp. 4-9.

Dart, S.A., R.J., E., Feiler, P.H., and Habermann, A.N. (1987) “Software Development
Environments,” COMPUTER, vol. 20, no. 11, pp. 18-27.

Ellis, C.A., Gibbs, S.J., and Rein, G.L. (1991). “Groupware: Some Issues and Experiences,”
Communications of the ACM, vol. 34, no. 1, pp. 38-58.

Fenwick, S., Hosking, J.G., and Mugridge, W.B. (1994). “Visual debugging of object-
oriented systems,” In Technology of object-oriented languages and systems TOOLS
15 (Melbourne, November), Prentice Hall, pp. 9-19

Grundy, J.C. (1993). Multiple textual and graphical views for Interactive Software
Development Environments, Ph.D. thesis, University of Auckland, Department of
Computer Science, June 1993.

Grundy, J.C., and Hosking, J.G. (1995a). “Support for Integrated Formal Software
Development,” In Proceedings of the 1995 Asia-Pacific Conference on Software
Engineering (Brisbane, Australia, Dec 6-9), IEEE CS Press, pp. 264-273.

Grundy, J.C. and Hosking, J.G. (1995b) “ViTABaL: A Visual Language Supporting Design
By Tool Abstraction,” In Proceedings of the 1995 IEEE Symposium on Visual
Languages (Darmsdart, Germany, September 5-9), IEEE CS Press, pp. 53-60.

Grundy, J.C. and Venable, J.R. (1995). “Providing Integrated Support for Multiple
Development Notations,” In Proceedings of CAiSE'95 (Finland, June 19-24), Lecture
Notes in Computer Science 932, Springer-Verlag, pp. 255-268.

Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge, W.B. (1995a). “Connecting the
pieces”, Chapter 11 inVisual Object-Oriented Programming, Burnett, M., Goldberg,
A., and Lewis, T. Eds, Manning/Prentice-Hall, Greenwich, Conneticut.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor, R. (1995b). “Support for
Collaborative, Integrated Software Development,” In Proceeding of the 7th
Conference on Software Engineering Environments (Noordwijkerhout, Netherlands,
April 5-7), IEEE CS Press, pp. 84-94.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Apperley, M.D. (1995c). “Coordinating,
capturing and presenting work contexts in CSCW systems,” In Proceedings of
OZCHI'95 (Wollongong, Australia, Nov 28-30), University of Wollongong Press, pp.
146-151.

Grundy, J.C. and Hosking, J.G. (1996a). Keeping textual and graphical views of
information consistent, Working Paper, Department of Computer Science, University
of Waikato.

Grundy, J.C. and Hosking, J.G. (1996b). Serendipity: integrated environment support for
process modelling, enactment and improvement, Working Paper, Department of
Computer Science, University of Waikato.

Grundy, J.C. and Venable, J.R. (1996) “Towards an environment supporting integrated
Method Engineering,” In Proceedings of the IFIP TC8 WG8.1/8.2 Working
Conference on Method Engineering (Atlanta, August 26-28), Capman-Hall, pp. 45-
62.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1996a) “Supporting flexible consistency
management via discrete change description propagation,” Software - Practice &
Experience, vol. 26, no. 9, 1053-1083.

Grundy, J.C., Venable, J.R., Hosking, J.G., and Mugridge, W.B. (1996b) “Coordinating
collaborative work in an integrated Information Systems engineering environment,”
in Proceedings of the 7th Workshop on the Next Generation of CASE tools (Crete, 20-
21 May), Norwegian University of Science and Technology.

Harmsen, F., and Brinkkemper, S. (1995). “Design and Implementation of a Method Base
Management System for a Situational CASE Environment,” In Proceedings of the
2nd Asia-Pacific Software Engineering Conference (Brisbane, Australia, Dec 6-9),
IEEE CS Press, pp. 430-438.

Hill, R. D. and Brinck, T. and Rohall, S. L. and Patterson, J. F. and Wilner, W. (1994).
“The Rendezvous Architecture and Language for Constructing Multi-User
Applications,” ACM Transactions on Computer-Human Interaction, vol. 1, no. 2, pp.
81-125.

Hosking, J.G., Fenwick, S., Mugridge, W.B., and Grundy, J.C. (1995). “Cover yourself
with Skin,” in Proceedings of OZCHI'95 (Nov 28-30, Wollongong, Australia,
University of Wollongong Press, pp. 101-106.

Kaiser, G.E., Kaplan, S.M., and Micallef, J. (1987a). “Multiuser, Distributed Language-
Based Environments,” IEEE Software, vol. 4, no. pp. 11, 58-67.

Kaiser, G.E. and Garlan, D. (1987b). “ Melding Software Systems from Reusable Blocks,”
IEEE Software, vol. 4, no. 4, pp. 17-24.

Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P., and Bignoli, C. (1992) “Supporting
Collaborative Software Development with ConversationBuilder,” In Proceedings of
the 1992 ACM Symposium on Software Development Environments (Virginia, USA,
December 9-11), ACM Press, pp. 11-20.

Kleyn, M.F. and Browne, J.C. (1993). “A High Level Language for Specifying Graph
Based Languages and their Programming Environments,” In Proceedings of the 1993
International Conference on Software Engineering, IEEE CS Press, pp. 324-334.

Krant, R.E. and Streeter, L.A. (1995). “Coordination in Software Development,”
Communications of the ACM, vol. 38, no. 3, pp. 69-81.

Kreifelts, T., Hinrichs, E., and Klein, H.K. (1991). “Experiences with the Domino Office
Procedure System,” In Proceedings of the Second European Conference on
Computer Supported Cooperative Work, Kluwer Academic Publishers, Amsterdam,
pp. 117-130.

Lonchamp, J. (1995). “CPCE: A Kernel for Building Flexible Collaborative Process-
Centred Environments,” In Proceedings of the 7th Conference on Software
Engineering Environments (Noordwijkerhout, Netherlands, April 5-7), IEEE CS
Press, pp. 95-105.

Lyons, P., Simmons, C., and Apperley, M. (1993). “HyperPascal: Using visual
programming to model the idea space,” In Proceedings of the 13th New Zealand
Computer Society Conference (Auckland, New Zealand, August 1993), Auckland
University Press, pp. 492-508.

Magnusson, B., Bengtsson, M., Dahlin, L. (1990). “An Overview of the Mjølner/ORM
Environment: Incremental Language and Software Development,” In Proceedings of
TOOLS ‘90 (Paris, France), Prentice-Hall, pp. 635-646.

Magnusson, B., Asklund, U., and Minör, S. (1993). “Fine-grained Revision Control for
Collaborative Software Development ,” In Proceedings of the1993 ACM SIGSOFT
Conference on Foundations of Software Engineering (Los Angeles CA, December
1993), ACM Press, pp. 7-10.

McWhirter, J.D. and Nutt, G.J. (1994). “Escalante: An Environment for the Rapid
Construction of Visual Language Applications,” In Proceedings of the 1994 IEEE
Symposium on Visual Languages, IEEE CS Press, pp. 15-22.

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). “The Action Workflow
Approach to Workflow Management Technology,” In Proceedings of CSCW'92
(Toronto, Canada, Oct 31-Nov 4), ACM Press, pp. 281-288.

Meyers, S. (1991). “Difficulties in Integrating Multiview Editing Environments,” IEEE
Software, vol. 8, no. 1, pp. 49-57.

Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R. (1992). “Dora - a structure
oriented environment generator,” IEE Software Engineering Journal, vol. 7, no. 3, pp.
184-190.

Reiss, S.P. (1985). “PECAN: Program Development Systems that Support Multiple
Views,” IEEE Transactions on Software Engineering, vol. 11, no. 3, pp. 276-285.

Reiss, S.P. (1987). “Working in the GARDEN Environment for Conceptual Programming,”
IEEE Software, vol. 4, no. 11, pp. 16-26.

Reiss, S.P. (1990a). “Interacting with the Field environment,” Software – practice &
Experience, vol. 20, no. S1, pp. S1/89-S1/115.

Reiss, S.P. (1990b). “Connecting Tools Using Message Passing in the Field Environment,”
IEEE Software, vol. 7, no. 7, pp. 57-66.

Reps, T. and Teitelbaum, T. (1987). “Language Processing in Program Editors,”
COMPUTER, vol. 20, no. 11, pp. 29-40.

Roseman, M. and Greenberg, S. (1996). “Building Real Time Groupware with GroupKit, A
Groupware Toolkit” , ACM Transactions on Computer-Human Interaction, vol. 3, no.
1, pp. 1-37.

Saeki, M., Iguchi, K., and Wen-yin, K. (1993). “A Meta-model for representing software
specification and design methods,” in Proceedings of the IFIP WG8.1 Conference on
Information Systems Development (Como, Italy), Prakash, N., Rolland, C., and
Pernici, B. Eds.

Swenson, K.D. (1993). “A Visual Language to Describe Collaborative Work,” in
Proceedings of the 1993 IEEE Symposium on Visual Languages (Bergen, Norway,
August 24-27), IEEE CS Press, pp. 298-303.

Thomas, I. and Nejmeh, B. (1992). “Definitions of tool integration for environments,” IEEE
Software, vol. 9, no. 3, pp. 29-35.

Venable, J.R. and Grundy, J.C. (1995). “Integrating and Supporting Entity Relationship and
Object Role Models,” In Proceedings of the 14th Object-Oriented and Entity
Relationship Modelling Conferece (Gold Coast, Australia, December 13-16), Lecture
Notes in Computer Science 1021, Springer-Verlag, pp. 318-328.

Vlissides, J.M. and Linton, M. (1990). “Unidraw: A framework for building domain-
specific graphical editors,” In ACM Transactions on Information Systems, vol. 8, no.
3, pp. 237-268.

Welsh, J., Broom, B., and Kiong, D. (1991). “A Design Rationale for a Language-based
Editor,” Software - Practice and Experience, vol. 21, no. 9, pp. 923-948.

Acknowledgements

The authors gratefully acknowledge the helpful comments of the anonymous reviewers on
an earlier draft of this paper. We also thank our colleagues Rick Mugridge and John
Venable for helpful comments on various aspects of this work.

