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Abstract—In mobile edge computing (MEC), edge servers
are deployed at base stations to provide highly accessible com-
putational resources and storage capacities to nearby mobile
devices. Caching data on edge servers can ensure the service
quality and network latency for those mobile devices. However,
an app vendor needs to ensure that the data caching cost does
not exceed its data caching budget. In this paper, we present the
budgeted edge data caching (BEDC) problem as a constrained
optimization problem to maximize the overall reduction in data
retrieval for all its app users within the budget, and prove
that it is NP-hard. Then, we provide an approach named
IP-BEDC for solving the BEDC problem optimally based on
Integer Programming. We also provide an O(k)-approximation
algorithm, namely α-BEDC, to find near-optimal solutions to
the BEDC problems efficiently. Our proposed approaches are
evaluated on a real-world data set and a synthesized data set.
The results demonstrate that our approaches can solve the
BEDC problem effectively and efficiently while significantly
outperforming five representative approaches.

Keywords-mobile edge computing, data caching, low-latency
services, optimization, approximation algorithm

I. INTRODUCTION

The world is witnessing exponentially growing mobile
traffic, which is predicted to be 32 billion connected mobile
devices by 2023 [1]. This produces an enormous loads on
networks, as considerable network resources are required to
transmit those massive data. Two immediate consequences
are increased network latency and network congestion in
the mobile network. To address those issues, mobile edge
computing (MEC) has emerged as a new mobile computing
paradigm that allows the cloud’s computational resources
and storage capacities to be distributed to edge servers [2].
These edge servers, each powered by one or many physical
machines, are deployed at base stations that are geographi-
cally close to mobile devices [3]. Vendors of Mobile and IoT
applications (referred to as app vendors together hereafter)
can hire computational resources and storage capacities on
edge servers for hosting their apps to serve their near-by app
users with low latency and high throughput [4]. Computation

tasks from app users’ mobile devices can be offloaded to
nearby edge servers to ease the computation burden and
energy consumption on those resource-limited devices [5]–
[7].

As edge servers become most mobile devices’ entry points
to the Internet, a large proportion of the rapidly increasing
mobile traffic data will be transmitted through those edge
servers. Those edge servers provide the infrastructure for
caching popular data for app users, for example, popular
YouTube videos, which often accounts for a significant
percentage of the mobile traffic. If the requested data is
available on an edge server, a nearby app user does not
have to retrieve it from the remote app server in the cloud.
Caching popular data on edge servers can considerably
reduce the latency in app users’ data retrieval. From an app
vendor’s perspective, it can also largely reduce the volume
of data transferred from the cloud to its app users, which
may incur substantial data transfer costs [8].

Xia et al. first studied the edge data caching (EDC)
problem from the app vendor’s perspective. EDC aims to
cache data on edge servers to cover all the app users in a
specific area at minimum data caching cost [9]. A major
limitation in their work is that they did not consider edge
servers’ storage capacities. Unlike the virtually unlimited
computational resources and storage capacities in the cloud,
an edge server normally owns limited computational re-
sources and storage capacities for data caching due to its
size limit [7], [10]. In the open MEC environment, many
app vendors need to hire storage capacities on edge servers
for caching their data. This causes fierce competition among
app vendors and makes it impossible for every app vendor
to cache a huge amount of data on edge servers. In practice,
an app vendor must ensure that the data caching cost
does not exceed its data caching budget. Given a budget,
it is the most economic for the app vendor to cache the most
popular data on edge servers because it will accommodate
the most app users and produce the most data caching benefit
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Figure 1. An example BEDC scenario

for the app vendor.
Given a piece of popular data, from the app vendor’s

perspective, a straightforward solution is to cache it on all the
edge servers in an area for its nearby app users to retrieve.
This way, their data retrieval latency can be minimized.
However, this is not cost-effective, especially in an area with
a lot of edge servers. In the MEC environment where nearby
edge servers can communicate with each other [7], [11],
an app user can retrieve data from either its nearby edge
servers via zero hop or its neighbor edge servers via one
hop [9] to ensure its low data retrieval latency. Given a data
caching budget, the optimal data caching strategy must cache
data on edge servers to minimize the app users’ overall data
retrieval latency without exceeding the budget. This problem
is referred as the budgeted data caching (BEDC) problem
in this paper.

Figure 1 presents an example BEDC scenario with 4 edge
servers and 13 users requesting a viral video. Each edge
server covers a specific geographical area. Adjacent edge
servers’ coverage areas partially overlap to avoid blank areas
not covered by any edge servers. An user in an overlapping
area can connect to one of the edge servers covering the user.
This is the server coverage constraint. If the video required
by a user is not cached on its nearby edge servers, this user
can retrieve this video from their neighbour edge servers
[9]. This is the server adjacency constraint. For example,
the users covered by v1 can also retrieve the video from the
cache on v2. The data retrieval latency is still much lower
than retrieving the video from the remote cloud server. In
Fig. 1, if the budget only can afford hiring one edge server
to cache this video, the data should be cached on v2 because
v2 can accommodate the most app users in this area via zero
or one hop over the edge server network.

In this paper, the key contributions of this research are as
follows:
• We formulate and model the BEDC problem as a con-

strained optimization problem from the app vendor’s
perspective and prove that it is NP-hard.

• We develop an optimal approach named IP-BEDC
for finding optimal solutions to BEDC problems, and

Table I
SUMMARY OF NOTATIONS

Notation Description

B app vendor’s data caching budget
Di,j distance from edge server vi to edge server vj
DT threshold of distance
E set of links between edge servers
G graph presenting a particular area
K total number of app users
M set of app users
Mi set of app users covered by server vi
N total number of edge servers
S set of binary variables indicating cache replicas on

edge servers
si binary variable indicating cache replica on edge server vi
V set of edge servers
vi edge server i
Zm maximum benefit for mobile device m

Zi
m benefit of caching replica on server vi for app

user m
Z(S) benefit achieved by caching strategy S

an O(k)-approximation approach named α-BEDC for
finding approximate solutions to large-scale BEDC
problems effectively and efficiently.

• We conduct extensive experiments on both a real-
world data set and a synthesized data set to evaluate
the proposed approaches against five representative
approaches.

The rest of this paper is organized as follows. Section II
formulates the BEDC problem and proves its NP-hardness.
Section III presents and analyzes our optimal approach and
approximation algorithm for solving the BEDC problem.
Section IV evaluates the proposed approaches experimen-
tally. Section V reviews the related work. Section VI con-
cludes this paper and points out the future work.

II. PROBLEM FORMULATION

In this section, we first formulate the BEDC problem
as a constrained optimization problem (COP), then proves
the NP-hardness of this problem based on the k-median
problem. The notations used in this paper are summarized
in Table I.

A. Problem Statement

In this research, the n edge servers in a particular area are
modeled as a graph. For each edge server v, the graph has
a corresponding node. For each pair of linked edge servers
(vi, vj), the graph has a corresponding edge ei,j . We use
G(V,E) to represent the graph, where V is the set of nodes
in G and E is the set of edges in G.

Similar to [9], we also model the BEDC problem gener-
ically: 1) measuring data caching cost and budget by the



number of cached data replicas; 2) measuring data retrieval
latency by the number of hops on the edge server network.
Take Fig. 1 as an example. The cost of caching one piece
of popular data the data on all the four edge servers in Fig.
1 is 4 replicas. If the data is only cached on edge server v2,
mobile device m1 can retrieve the data from its local edge
server v2 via 0 hop, while mobile device m2 can retrieve the
data from its neighbor edge server v2 via 1 hop. This way,
specific pricing models and network latency models can be
easily integrated to calculate the actual data caching cost and
data retrieval latency.

Given a piece of popular data, a caching strategy is
presented as a vector S =< s1, ..., sN >, where si ∈ {0, 1}
denotes whether that data is to be cached on edge server
vi, such that si = 1 if edge server vi is selected to cache
the data. As the app vendor has a finite budget for hiring
storage capacities on edge servers for data caching, the total
number of data replicas cached on edge servers ∀vi ∈ V
cannot exceed the budget B:∑

i∈V
si ≤ B (1)

We refer to this reduction in data retrieval latency as data
caching benefit, which is used to evaluate the advantage of
a data caching strategy. As mentioned above, the number
of hops is used to measure the benefit produced by the
strategy. As each edge server can only communicate with
their neighbour edge servers that are directly linked to it,
each app user can only retrieve cached data from an edge
server within one hop, either from a nearby edge server or
a neighbour edge server. Thus, the latency threshold can be
defined as DT = 2. However, this threshold can be relaxed,
i.e. DT = 3, 4, ..., if new techniques occur to allow data
transmission through multiple edge servers rapidly while the
app vendor can accept the relatively high latency. Denote Zim
as the data caching benefit produced by caching data on vi
for app user m covered by edge server vj (m ∈Mj), and it
is calculated as follows:

Zim = max{DT −Di,j , 0} (2)

where Di,j is the number of hops between edge server vi
and edge server vj .

As discussed in Section I, an app user m might be covered
by multiple nearby edge servers. App user m can retrieve
the data from the cache on any of its nearby edge servers
or their neighbour edge servers if they have the data in the
cache. The data caching benefit produced by the data caching
strategy for app user m is the maximal number of reduced
hops from m to accessible edge servers that have the data
in the cache:

Zm = max{si · Zim, vi ∈ V } (3)

Take Fig. 1 as an example. If the data is cached on v2,
user m1 can directly access it from v2 and there is Zm1

= 2.

If the data is only cached on v1, m1 can access it from v1 via
1 hop and there is Zm1 = 1. Moreover, if user m2 cannot
retrieve the data from any neighbour edge servers, it will
access the remote cloud storage and there is Zm2

= 0.
Given a data caching budget, the optimization objective,

from the app vendor’s perspective, is to maximize the total
caching benefit Z of all app users produced by S based on
(3):

maximize Z(S) (4)

B. Problem Hardness

Now, we prove that the BEDC problem is NP-hard by
proving the following theorem.

Theorem 1. The BEDC problem is NP-hard.

Proof: To prove the BEDC problem is NP-hard, we
first introduce the classic k-median problem. The k-median
problem is well-known to be NP-hard, and can be defined
as follows. Given a set of points Set = {1, 2, ..., N}, Ai,j
means point i is attached to point j while Si presents point i
is selected as a center. P(i, j) is the function for calculating
the distance from point i to j based on the distance metric
MD. The formulation is displayed below:

object : min

n∑
i=1

n∑
j=1

Ai,jP(i, j) (5a)

s.t. : Ai,j ,Si ∈ {0, 1},∀i, j = {1, .., N} (5b)
n∑
i=1

Si ≤ k (5c)

n∑
i=1

Ai,j = 1,∀j = {1, .., N} (5d)

Ai,j ≤ Si,∀i, j = {1, .., N} (5e)

Now we prove that the k-median problem can be reduced
to an instance of the BEDC problem. The reduction can be
done as follows: 1) adding the remote cloud server vex as a
node into the graph; 2) set the caching benefit obtained from
vex as 0. Given an instance kMedian(Set,MD,P(i, j)), we
can construct an instance BEDC(V,ZNK , benefit(v,m))
with the reduction above in polynomial time where |Set| =
|V |, while ZNK is the benefit matrix that can be calcu-
lated from MD based on (2). Function benefit(v,m) can
be calculated from (3). This function can also project to
function P(i, j) because the latency can be projected to the
distance while the relationship between data caching benefit
and latency is defined in (2). In this case, any solution S
satisfying objective (5a) and constraint (5b), also satisfies
objective (4), while constraint (5c) is equivalent to constraint
(1). Moreover, app vendors who cannot access data from
edge servers are attached to vex. Thus, constraints (5d) and
(5e) are fulfilled.



In conclusion, any solution S always satisfies the reduced
BEDC problem if S satisfies the k-median problem. There-
fore, the BEDC problem is reducible from the k-median
problem and it is NP-hard.

III. STRATEGY FORMULATION

We formulate our optimization model based on the BEDC
problem described in the previous section. We then introduce
our O(k)-approximate algorithm named α-BEDC, where k
is a constant, and evaluate its performance theoretically.

A. Optimization Model

For a graph G = (V,E), where V = {v1, .., vN , }
and E = {e1, ..., eL}, there are a set of variables S =
{s1, .., sN}, where si = {0, 1},∀i ∈ {1, ..., N}, si being 1
if the a data replica is cached on the ith node, 0 otherwise.
The constraints for the COP model are:

Zm = max(si∗Zim),∀m ∈ {1, ...,K},∀i ∈ {1, ..., N} (6)

0 ≤ Zm ≤ DT ,∀m ∈ {1, ...,K} (7)

N∑
i=1

si ≤ B (8)

Constraint family (6) is converted from (3). It ensures
that every app user only retrieves the data from the nearest
possible edge server (within DT ) hops. Constraint family (7)
is calculated from (2). When an app user m cannot retrieve
the data from any edge server in the area, the caching benefit
of this app user bu is 0. Constraint (8) guarantees that the
total number of data replicas cached on the edge servers
in this area must not exceed the app vendor’s data caching
budget.

From the app vendor’s perspective, the optimization ob-
jective must produce the maximal data caching benefit:

max

K∑
m=1

Zm (9)

The COP above can be solved with Integer Programming
problem solvers, such as IBM CPLEX Optimizer.

B. O(k)-approximation Algorithm

As the COP of BEDC is NP-hard, finding the optimal
solution to the COP discussed in Section III-A is intractable
in large-scale BEDC scenarios. This section presents an
O(k)-approximation algorithm, named α-BEDC, for finding
near-optimal solutions to large-scale BEDC problems effec-
tively and efficiently, where α is an input parameter in the
algorithm.

Algorithm 1 presents the pseudo-code of α-BEDC. The
algorithm starts with the input and initialization in Lines
1-3. Then, all possible options which first cache data on
min{α,B} edge servers are collected, and the algorithm

finds the candidate set with the maximal benefit (Lines 4
- 11). If the number of hired data cache spaces reaches
the budget B, this algorithm returns the results (Lines 12
- 14). Otherwise, an extra solution generated by Lines 16-
21 is added to the candidate set, which selects β edge
servers based on a greedy manner presented in Algorithm
2. This way, the algorithm collects those possible solutions
which have β edge servers in Line 22. After that, the
algorithm always selects the edge server which can produce
the maximal data caching benefit to cache the data for each
possible solution c ∈ C. This process iterates until the
budget limit is reached or no benefits produced by selecting
a new edge server to cache data (Lines 23-36).

In the α-BEDC algorithm, the computational overhead of
finding the β-optimal subsets in Line 11 is Cmin{α,B}

N . The
iteration in Lines 21-32 will calculate at most Cmin{α,B}

N

times as there are at most Cmin{α,B}
N subsets in C. For func-

tion getServerIdWithMax∆Benefit(), the algorithm al-
ways finds the edge server which can produce the most
data caching benefit from all the remaining edge servers.
Therefore, the computational overhead of this function is
O(KN). Thus, the computational complexity of this algo-
rithm is O(KNmin{α,B}+1).

Now, we prove that the α-BEDC algorithm is an O(k)-
approximation algorithm.

Theorem 2. The approximation factor of the α-BEDC
algorithm is 1 if the budget is less than or equal to α.

Proof: When the budget B is less than or equal to α,
Algorithm 1 terminates at Line 14. In this case, α-BEDC
first collects all possible options whose size is exactly B,
then returns the possible options with the maximum benefits,
which is equal to the benefits achieved by the optimal
solution. Thus, the approximation factor of α-BEDC is 1, if
B ≤ α.

Now, we only calculate the approximation ratio for B >
α. Let OPT present the optimal solution of the BEDC
problem, and St denote the current solution set when tth

edge server added by α-BEDC.
One possible solution St from Algorithm 1 contains edge

server set I (Lines 15-19). As the benefit produced by
solution S obtained by this algorithm is always equal to
or greater than St, we get:

Z(S) ≥ Z(St) (10)

Lemma 3. For the tth edge server added into St, the
increase in benefit, ∆Zt, follows:

∆Zt ≥
Z(OPT )−Z(St−1)

B
(11)

Proof: Since St selects the edge server with the maxi-
mum benefits, for each edge server in OPT but not in St−1,
the benefit is at most ∆Zt. Since the total remaining budget
is bounded by B, the total benefit produced by the edge



Algorithm 1 α-BEDC
1: Input V,M,D,B, α
2: S,C,Ops← ∅
3: maxBenefit = 0
4: if B ≤ α then
5: β = B
6: else
7: β = α
8: end if
9: Ops = {op : ∀op ∈ V & |op| = β}

10: maxBenefit = max{benefit(Ops)}
11: C = {op ∈ Ops : benefit(op) = maxBenefit}
12: if B ≤ α then
13: return C
14: end if
15: I ← ∅;
16: repeat
17: i = getServerIdWithMax∆Benefit(I)
18: if i ! = −1 then
19: I = I ∪ vi
20: end if
21: until |I| = β || i = −1
22: C = C ∪ I
23: for c ∈ C do
24: remaingBudget = B − |c|
25: candidate← c
26: repeat
27: i = getServerIdWithMax∆Benefit(c)
28: if i! = −1 then
29: candidate = candidate ∪ vi
30: end if
31: remaingBudget−−
32: until remaingBudget = 0 || i = −1
33: if benefit(S) ≤ benefit(candidate) then
34: S ← candidate
35: end if
36: end for
37: return S

servers in OPT but not St−1 is at most B∆Zt. Thus, the
above inequality holds.

Lemma 4. The benefit achieved by St satisfies the following
inequality:

Z(St) ≥

(
1−

(
1− 1

B

)t−1)
Z(OPT ) (12)

Proof: Based on Lemma 3, the benefit achieved by St
can be calculated by:

Z(St) = Z(St−1)+∆Zt ≥
(

1− 1

B

)
Z(St−1)+

1

B
Z(OPT )

(13)

Algorithm 2 Function used in α-BEDC
1: getServerIdWithMax∆Benefit(c):
2: id = −1
3: for vi ∈ V do
4: if benefit(c

⋃
{vid}) < benefit(c

⋃
{vi}) then

5: id = i;
6: end if
7: end for
8: return id

Thus, we can easily prove (12) by the inductive proof.
The details of the proof process are omitted here.

If we add the (t+ 1)
th edge server based on the α-BEDC

algorithm, we can obtain the following:

Z(St+1) ≥

(
1−

(
1− 1

B

)t)
Z(OPT ) (14)

When t = B, we obtain the performance of solution St+1:

Z(St+1) ≥

(
1−

(
1− 1

B

)t)
Z(OPT )

=

(
1−

(
1− 1

t

)t)
Z(OPT ) ≥

(
1− 1

e

)
Z(OPT )

(15)

However, the cost exceeds the budget when adding
(t+ 1)

th edge server into St+1. Now, we analyse the
approximation ratio of solution S provided by α-BEDC by
the following theorem.

Theorem 5. If the budget B is greater than α, the approx-
imation ratio is:

α+ 1

α

(
1 +

1

e− 1

)
Proof: From (15), we obtain the benefit achieved by

solution St:

Z(St) ≥
(

1− 1

e

)
Z(OPT )−∆Zt+1 (16)

For t = α + 1, ...,B, ∆benefitt is always no more than
the benefits produced by any edge server before st. Hence,

∆Zt ≤
1

α
Z(I) ≤ 1

α
Z(St) (17)

Thus, we obtain the benefit Z(S) produced by solution S
by combining (16), (17) and (10):

Z(S) ≥ Z(St) ≥
(

1− 1

e

)
Z(OPT )− 1

α
Z(S) (18)

Therefore, we have:

Z(S) ≥ α

α+ 1

(
1− 1

e

)
Z(OPT ) (19)



Table II
PARAMETER SETTINGS

n B d DS
Set #1 10, ..., 40 4 1 Real-World
Set #2.1 10, ..., 40 4 1 Synthetic
Set #2.2 20 4 1.0, ..., 3.0 Synthetic
Set #2.3 20 2, ..., 7 1 Synthetic

and the approximation ratio is calculated as:

ratio =
Z(S)

Z(OPT )
=

α

α+ 1

(
1− 1

e

)
(20)

Theorem 6. α-BEDC is an O(k)-approximation algorithm.

Proof: Based on Theorem 2 and Theorem 5, the benefit
achieved by the α-BEDC algorithm is at least α

α+1 (1 −
1
e )Z(OPT ), while α is a constant in the input. Thus, the
α-BEDC algorithm is an O(k)-approximation algorithm,
where k is a constant.

Based on (20), the solution found by α-BEDC is closer
to the optimal solution with a higher α. In Section IV, we
apply α = 2, where the approximation ratio is 42.14% in
the worst case, to evaluate its effectiveness.

IV. EXPERIMENTAL EVALUATION

We have experimentally evaluated the performance of our
IP-BEDC and α-BEDC. All experiments were conducted on
a Windows-10 machine equipped with Intel Core i7-8550
processor (8 CPUs, 1.80GHz) and 8GB RAM.

A. Experiment Settings

1) Comparison Approaches: In this section, we evaluate
the performance of our approaches, i.e., IP-BEDC and α-
BEDC, against five representative approaches:
• IP-BEDC: IP-BEDC finds the optimal solution defined

by Section II. It solves the COP defined in Section III-A
with IBM’s CPLEX Optimizer.

• 2-BEDC: α-BEDC finds the near-optimal solution with
Algorithm 1, where α = 2 in the experiments.

• CDN [12]: This approach origins from the collaborative
data caching approach in content delivery network.

• NC-BEDC: This approach finds the optimal non-
collaborative data caching solution, where app users
can only access data from their nearby edge servers.
Other than that, it is formulated and implemented in a
similar way to IP-BEDC.

• Greedy-Connection (GC): This approach always selects
the edge server that has the most neighbours to cache
data under the budget constraint (8).

• Greedy-Covered-Devices (GD): This algorithm keeps
selecting the edge server with the most app users under
the budget constraint (8).

• Random: This algorithm keeps selecting the edge server
randomly under the budget constraint (8).

2) Experiment data: Two sets of experiments were con-
ducted on two data sets (DS), Set #1 on a real-world data
set and Set #2 on a synthetic data set. The real-world data
set is the widely-used EUA data set [2], [13], [14], [15].
This data set contains the geographical locations of 125
base stations and 816 mobile users in the Melbourne CBD
area. The second data set is synthesized to simulate more
general BEDC scenarios. In Set #2, a certain number of
edge servers are randomly distributed within a particular area
with app users also generated randomly. Edges are randomly
generated to ensure the edge servers constitute a connected
graph.

3) Experiment parameters: To simulate different BEDC
scenarios, three parameters are varied in the experiments.
• The total number of edge servers (n = |V |). In

experiment Set #1 and Set #2.1, this number varies from
10 to 40 in steps of 5.

• Edge density (d = |E|/|V |). In experiment Set #2.2,
this number varies from 1 to 3 in steps of 0.4.

• Budget (B). In experiment set 2.3 this parameter varies
from 2 to 7 in steps of 1.

4) Performance Metrics: Three metrics are employed to
evaluate all approaches, two for effectiveness and one for
efficiency:
• Data caching benefit (Z), measured by the number of

hops reduced by caching strategy, the higher the better.
• Data hit ratio (hr), inspired by hit ratio used in [12]

[16], measured by the percentage of app users served
by caching strategy, the higher the better.

• Computational overhead (time), measured by the time
taken to find the solution, the lower the better.

Table II summarizes the parameter settings. Every time
the value of a parameter varies, the experiment is repeated
for 100 times and the results are averaged. According to
(9), the data caching benefit is evaluated by summing the
benefits of all app users. Thus, to stabilize the impact of the
number of app users, we always select or generate a total
of 100 app users in experiment Set #2.1, Set #2.2 and Set
#2.3.

B. Experimental Results

The effective results are shown in Fig. 2, Fig. 3 and the
efficient results are shown in Fig. 4.

1) Effectiveness: The experimental results based on the
real-world EUA data set are presented in Fig. 2(a), Fig.
3(a) and Fig. 4(a). Overall, IP-BEDC achieves the highest
data caching benefit and the highest data hit ratio,
while the performance of 2-BEDC is very close to that
of IP-BEDC. The data caching benefits achieved by IP-
BEDC and 2-BEDC in Fig. 2(a) are much higher than other
five approaches. The advantages of IP-BEDC are 10.52%
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against CDN, 9.40% against NC-BEDC, 21.28% against
GC, 16.46% against GD and 42.93% against Random on
average. 2-BEDC also outperforms those approaches signif-
icantly, by an average of 9.37%, 8.26%, 20.02%, 15.24%
and 41.44% respectively. Fig3 (a) shows that the data hit
ratio of 2-BEDC is almost same as that of IP-BEDC. Both
IP-BEDC and 2-BEDC achieve much higher average data
hit ratio than other approaches, i.e., 85.50% (IP-BEDC)
and 85.45% (2-BEDC) versus 76.21% (CDN), 70.07% (NC-
BEDC), 76.23% (GC), 67.96% (GD) and 61.62% (Random).

Fig. 2(b), Fig. 3(b) and Fig. 4(b) show the results of
experiment Set #2.1. It shows that the data caching benefit
and data hit ratio achieved by IP-BEDC and 2-BEDC
outperform all the other approaches. When the number
of edge servers increases from 10 to 40, the data caching
benefit decreases for all seven approaches, from 175.32 to
91.93 by 47.56% for IP-BEDC, from 173.1 to 91.19 by
47.32% for 2-BEDC, from 165.21 to 83.87 by 49.23% for
CDN, from 172.38 to 79.2 by 54.05% for NC-BEDC, from
146.52 to 73.22 by 50.03% for GC, from 155.3 to 71.8

by 53.77 % for GD and from 143.19 to 55.85 by 61.00%
for Random. However, the trends of all approaches in Fig.
2(b) are different from those in Fig. 2(a). This is because
the number of app users is fixed as 100 in experiment Set
#2, while the number of app users in Set #1 is changed
based on the real-world data set. With the increase in the
number of edge servers, the average number of app users
served by each edge server decreases. Thus, the data caching
benefits achieved by all those approaches decrease. Fig. 3(b)
demonstrates that the data hit ratio of 2-BEDC is nearly the
same as that of IP-BEDC again. The advantages of IP-BEDC
are 0.31% against 2-BEDC, 14.31% against CDN, 23.32%
against NC-BEDC, 13.86% against GC, 30.98% against GD
and 41.31% against Random.

Fig. 2(c), Fig. 3(c) and Fig. 4(c) depict the results obtained
in Set #2.2 where the edge density varies. In terms of
data caching benefit and data hit ratio, IP-BEDC and 2-
BEDC outperform the other approaches with significant
margins. For data caching benefit in Fig. 2(c), the average
advantages of IP-BEDC are 1.39% against 2-BEDC, 10.33%



against CDN, 6.97% against NC-BEDC, 18.56% against
GC, 16.54% against GD and 30.01% against Random. Fig.
2(c) and Fig. 3(c) also show that the edge density impacts
all approaches in a different way from the number of edge
servers. When the edge density increases from 1.0 to 3.0,
the data caching benefit of IP-BEDC increases from 132.7
to 146.5 while its data hit ratio increases from 88.62% to
99.03%. The main reason for the increase is that the app
users have more chance to retrieve data from an edge server
via one hop. Thus, more benefits and higher hit ratio can be
achieved. Moreover, the margins between our approaches
and other five approaches become smaller in both data
caching benefit and hit ratio as the edge density increases.

In experiment Set #2.3, IP-BEDC achieves the highest
data caching benefit and hit ratio again, followed by
2-BEDC. When the budget increases from 2 to 7, the data
caching benefit increases, as demonstrated in Fig. 2(d), from
87.47 to 169.48 for IP-BEDC, from 87.47 to 166.95 for
2-BEDC, from 84.78 to 151.03 for CDN, from 74.36 to
164.28 for NC-BEDC, from 73.04 to 141.57 for GC, from
68.97 to 145.17 for GD and from 56.43 to 131.25 for
Random. In terms of data hit ratio, the advantages of IP-
BEDC are 0.14% against 2-BEDC. Comparing with the
performance gap between IP-BEDC and 2-BEDC, the gaps
between 2-BEDC and other approaches are much larger. 2-
BEDC averagely outperforms CDN by 12.99%, NC-BEDC
by 20.78%, GC by 11.22%, GD by 28.53% and Random by
35.35%.

Overall, our IP-BEDC and 2-BEDC significantly and
consistently outperform CDN, NC-BEDC, GC, GD and
Random in formulating cost-effective data caching strate-
gies in different BEDC scenarios. As an approximate ap-
proach, the effectiveness of 2-BEDC is about 98.63% to
99.98% of IP-BEDC in all the experiments. This is accept-
able in most, if not all, cases, especially in large-scale BEDC
scenarios where finding the optimal solutions is impractical
for IP-BEDC.

2) Efficiency: The efficiency is evaluated by the aver-
age computational overhead when finding a solution to
the BEDC problem. The results are presented in Fig. 4.
As demonstrated by Fig. 4(a) and Fig. 4(b), IP-BEDC
is much more computationally expensive than all the
other approaches. This validates the NP-hardness of the
BEDC problem - excessive computational overheads are
inevitable for finding the optimal solution to large-scale
BEDC problems. In BEDC scenarios with the most number
of edge servers, IP-BEDC takes 7.87 seconds to find the
optimal solution in Set #1, as shown by Fig. 4(a), and 2.88
seconds in Set #2.1, as shown by Fig. 4(b). Interestingly,
the computation overheads of both IP-BEDC and NC-BEDC
decrease when the edge density exceeds 2.5 in Fig. 4(c).
The reason is that it is more likely to cover all edge servers
via one hop. This way, the corresponding computation time
decreases. Similar in Fig. 4(d), the computational overheads

of both IP-BEDC and NC-BEDC increase when the budget
increases from 2 to 6, then decrease after that, as illustrated
in Fig. 4(d). The reason is that a budget of 6 allows IP-BEDC
to find a solution to accommodate all the app users. The
extra budget makes it easier for IP-BEDC to find any one
of the multiple optimal solutions. In comparison with IP-
BEDC, 2-BEDC is much more efficient, with an average
of at most 0.39 seconds to find the near-optimal solutions
in all the scenarios.

V. RELATED WORK

As an extension of cloud computing, the computing
resources and services are distributed by Mobile Edge Com-
puting (MEC) [17]. The problem of computation offloading
arises, which has been well studied with consideration of
edge servers’ energy efficiency, offloading cost and joint
service with caching [5] [18] [19].

Recently, the challenges raised by data caching are inves-
tigated in the MEC environment. Existing approaches from
conventional networking environments and cloud computing
cannot be directly implemented in the MEC environment
with new characteristics. Thus, researchers have proposed
and investigated new ideas and techniques of data caching.
In [20], the authors proposed their approaches for ensuring
the quality of time-sensitive multimedia transmissions over
the 5G wireless network by integrating in-network caches
and edge caches. Zhang et al. [21] proposed a coopera-
tive edge caching architecture to improve the function of
edge caches by utilizing computation resources. A caching
scheme was introduced by the authors as well to provide
edge caching services with implementation of the smart
vehicles. Zhang et al. [20] integrated in-network caching
and edge caching to ensure the latency requirements of
time-sensitive transmissions over the 5G network. Drolia
et al. [22] proposed a caching system, namely Cachier, to
minimize the data retrieval latency. They implemented a
coordinating mechanism to balance the loads between the
cloud server and edge servers dynamically. The authors
of [21] introduced a new edge caching architecture with
improved resource utility by using smart vehicles as external
edge caches.

Edge computing inherits the pay-as-you-go pricing model
from cloud computing. Thus, the cost incurred for app
vendors is critical to the success of edge computing because
they are the main users of the edge servers. However, all
the above work tackle the data caching problem from the
mobile network operator’s or the app user’s perspective. We
made the first attempt to tackle the data caching problem
from the app vendor’s perspective in the edge computing
environment with the aim to cover all the app users in an
area [9], [23]. However, due to app vendors’ competition
for the limited computational resources on edge servers,
it is unrealistic to always accommodate all the app users’
requests regardless of the data caching cost or budget. In



this work, we solves the new BEDC problem from the app
vendor’s perspective to maximum its data caching benefit,
while fulfilling the budget constraint, the server coverage
constraint and the server adjacency constraint.

VI. CONCLUSION

In this paper, we formulated the new Budgeted Edge Data
Caching (BEDC) problem in the mobile edge computing
environment as a constrained optimization problem from
the app vendor’s perspective. We proved that the BEDC
problem is NP-hard. To solve this problem, we proposed
an optimal approach named IP-BEDC based on the Integer
Programming technique to maximum the data caching ben-
efit measured by the overall reduction in app users’ data
retrieval latency. As the BEDC problem is NP-hard, we
also provided an approximate approach named α-BEDC for
finding sub-optimal solutions to large-scale BEDC problems
more efficiently. Extensive experiments were conducted on
a widely-used real-world data set and a synthetic data set
to evaluate the performance of the proposed approaches.
The results showed that our approaches significantly out-
performed five representative approaches in various BEDC
scenarios.

This research has established the foundation for the BEDC
problem and opened up a number of future research di-
rections. In our future work, we will consider the mobility
of mobile devices, dynamic data popularity, real-time cache
updating scenarios, security constraints and data regulation.
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