
White, P. and Grundy, J.C. Experiences Developing a Collaborative Travel Planning Application with .NET Web Services, In Proceedings of the
2003 International Conference on Web Services, Las Vegas, June 23-26 2003, CSREA Press.

Experiences Developing a Collaborative Travel Planning Application with
.NET Web Services

Philip White1 and John Grundy1, 2

1Department of Computer Science and 2Department of Electrical and Electronic Engineering,

University of Auckland, Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

Web services have the potential to provide much more
seamless, dynamic and open distributed applications than
earlier technologies. We describe our experiences
developing an integrated, collaborative travel planning
application using .NET, C# and web services. This
application provides a unified portal for customers and
travel agents to plan, revise and book travel itineraries,
with interaction with a wide range of travel provider
systems (airlines, hotels, rental cars, trains etc). We
describe the web services-based architecture of our
prototype solution and discuss some of the key issues of
using a web service-based approach for this application
domain, outlining key areas for future research and
development.

1. Introduction

Web services [18, 16, 10] provide an open, platform

and language independent technology for building
distributed systems. Such systems can be dynamic with
the run-time discovery and integration of various services
within an architecture. Many potential benefits of using a
web service-based approach to building systems exist: a
single integration technology is used to integrate all
systems; systems can be dynamically discovered and
integrated within an architecture; third-party remote
services can be added or removed seamlessly; and
multiple complementary services can be found and used
to provide best overall system functionality, performance
and reliability.

In previous work [4, 5, 12] we developed an
architecture and several prototypes of collaborative travel
planning applications. These used distributed components
connected by TCP, CORBA or COM interfaces, adaptive
user interfaces and architectures, multiple device user
interfaces, and collaborative work-supporting services and
infrastructures. While these prototype systems provided
useful travel planning applications, a number of
disadvantages existed: different architectures for

integration and presentation components of the system
had to be used; the architectures and integration
technologies used were generally difficult to design and
build; heterogeneous integration approaches and
technologies had to be supported; and dynamic discovery
and integration of remote travel planning provider
systems was very difficult. These are all similar to
problems found in similar systems using similar
technological approaches [19, 17, 3, 8].

In this paper describe a new web services-based travel
planning application prototype, built using the C#
programming language and Microsoft .NET™
implemented web services. We firstly motivate this work
with an overview of a desired travel planning application
and some key issues developers must face when
constructing such a system. We then outline our web
services-based architectural solution and describe
interesting aspects of our prototype application’s design
and implementation. We then summarise key experiences
gained when developing and evaluating this prototype,
outline the advantages and disadvantages of our web
services-based solution, and discuss key areas for future
research in developing web services-based applications.

2. Problem Domain

A collaborative travel planning application is one that

supports customers (intending travellers) and travel agents
in sketching, revising, specifying, booking and using a
travel itinerary [4, 5]. Figure 1 (a) shows a summary of
some of the important use cases that this system should
support. This includes customer profile management;
travel itinerary creation and maintenance; travel provider
searches; travel booking (which may include multiple
long transaction interactions with providers to book and
pay for items); and itinerary usage during travel. The
travel planner application must communicate with a
variety of travel providers: airline, hotel, rental car etc.
systems as well as third-party travel agents and electronic
payment services. These may use a wide variety of
different data formats, remote services and business
processes.

Search for Item

Create/Modify Itinerary

Chat

Customer

Annotation

Review Itinerary

Travel Agent

Book Itinerary

Make Bookings

Confirm Bookings

Remote Providers

Provide Travel Items

1

3

2

Figure 1. (a) Travel planner use cases; and (b) examples of travel planner user interfaces.

Figure 1 (b) shows some of the user interfaces that
customers and/or travel agents may require to perform
these tasks. View (1) shows a thick-client
(VisualBasic.NET-implemented) travel planner that may
be used by agents and some clients to search, build
itineraries and book travel.View (2) shows a web-based
interface for itinerary management, for customer usage
during travel or thin-client interface using travel
agencies. View (3) shows a mobile phone-hosted WAP
interface for customer itinerary modification and itinerary
viewing during travel.

A travel planning example application is often used by
those describing web services technologies, but our
example application also includes collaboration facilities
(collaborative editing, chat, annotation and co-ordination
facilities) and more stringent performance and reliability
requirements. Unlike many exemplar travel planning
applications used by others we aim to provide customers
and agents the ability to use the system even if some
remote provider systems are down, and to not greatly
constrain the performance of the system when many
remote systems must be interacted with.

Some of the key issues when developing such an
application will include:
• Supporting communication between the travel

planner and multiple remote travel provider systems

that use different data formats, remote service
interfaces, transactions and business processes

• Supporting dynamic location and integration to third
party travel provider systems

• Providing good travel planner performance and
reliability for customers and travel agents when
communication with several remote, highly
distributed systems is required

• Ideally providing a common, consistent infrastructure
for both remote system integration and multiple user
interface and collaborative work support
infrastructure for the travel planning application

3. Architecture

We have developed an architecture for our

collaborative travel planner prototype that uses web
services as the key integration and architectural
infrastructure. This architecture is quite different from
previous travel planner prototypes we have developed [4,
5] in terms of its use of a homogeneous communications
technology framework; its use of standardised dynamic
discovery and integration support; its incorporation of
flexible adaptors to support integration; and its use of data
replication and long running business transactions to
provide performance, reliability and scalability.

Web service-implementing
travel provider applications

SOAP call(s) to remote web service(s)
[Get travel data; make booking etc]

Advertising available web services
using UDDI registries

UDDI

(fire walls)

HTTP/WAP/SOAP to
multiple devices

Travel planner server –
SOAP to external/internal

systems

SOAP

Database
server

SQL

Figure 2. Architecture of our web-services based travel planner.

Figure 2 provides an outline of this architecture. The
travel planner is comprised of an application server,
database server (which can potentially be run on the same
host machine if desired) and various thick- and thin-client
interface devices (PCs, laptops, PDAs, WAP phones etc).
The thick-client travel planner can directly communicate
with the database via SQL or if preferred via a 3-tier
architecture using SOAP messages to the travel planner
server. The thin-client devices can also communicate with
this server using SOAP (if supported), or alternatively the
server can provide web servers providing HTTP, HTTPS
and/or WAP services.

The travel planner application provides customer
profile management, travel itinerary management,
maintains a copy of available provider travel services,
items (flights, cars, hotel rooms etc) and package deal
information, and travel bookings made. Remote travel
provider systems are located using UDDI registries which
provide a description of the remote web services they
provide. The travel planner application server
communicates via SOAP messages with located provider
web services via interface adaptors to obtain copies of
their travel items, to place bookings and to confirm
bookings. Remote providers can send messages back to
the travel planner asynchronously e.g. quote about to
expire, requested booking not longer available etc.

One of the key features of the interaction mechanism
of our travel planner with the remote travel providers is
the use of data replication and long running business
transactions to achieve high performance, availability and
scalability, a common issue with web service-based
systems [10]. Figure 3 outlines how the travel planner
locates, communicates with and supports long running
transactions across remote provider systems.

The provider e.g. an airline advertises its available
web services with a UDDI registry. The travel planner
locates these and either using an existing adaptor e.g.
ebXML adaptor to communicate with the provider or

builds or configures one to translate its web service data
and messages to/from the travel planner’s. The travel
planner then obtains a summary of flight information
provided e.g. dates/times/destinations of flights available,
caching it locally.

When a flight search is made this local cache is used.
An optional asynchronous check may be made with the
provider to check seat(s) are available for date requested
and a tentative commitment to hold the seat(s) made by
the provider. When a travel itinerary is booked, the travel
planner server asks the provider for a final commitment
for the seat(s). Subsequently, the provider may however
inform the travel planner of e.g. flight change, seat no
longer available, cost change (if not committed earlier).

This approach to integration of the travel planner and
remote providers supports a range of desired
characteristics from the previous section. The use of web
service adaptors allows separation of travel planner server
data formats and business logic from web service SOAP
messages and different data/message formats and business
processes in remote travel provider systems. The caching
of summary information from providers allows customers
and travel agents to make and change bookings with
asynchronous communication with providers, supporting
high response time and reliability of the travel planner
functions. Even if a provider is down, users can modify
itineraries and have the modifications attempted on the
remote provider systems when they next become
available. A “three-phase” long transaction with providers
(asynchronously check desired item availability after find;
commitment to item during booking; and subsequent
asynchronous confirm/reject item after booking) provides
high flexibility in interaction with provider systems, along
with a scalable architecture and integration process.

4. Implementation

We have built a prototype travel planning application

and some example travel provider systems to validate the
architecture design from the previous section. We took an
existing travel planner implemented with
VisualBasic.NET and extended this by the use of C#-
implemented .NET web service interfaces to support the
communication, data replication, remote data update and
long running business transactions with remote travel
provider prototypes.

We implemented the remote provider systems using
C# and .NET technologies, along with MS Access™ and
SQL Server™ databases. The travel planner application
server provides ASP.NET thin-client interfaces to a subset

of itinerary and travel planning functionality for web
browsers (HTTP/HTTPS) and wireless (WAP) devices.

Key features of the design of the travel planner
prototype include the use of UDDI and WSDL to
describe, register and look-up the remote web service
interfaces of travel providers. SOAP web service
messages are then used to communicate with these
systems via an adaptor architecture which separates the
travel planner business logic and data management from
the details of the web service messages being exchanged.
Adaptors may be fixed for a particular SOAP message set
of business transactions of the provider, or may be
configurable and able to translate several different
provider message sets into the travel planner dialect.

Travel Planner
Server

Travel Planner
Database

UDDI Registry Provider #1 (e.g.
airline) Server

Adaptor for
Provider #1

register web services

look up travel provider web services

locate/build adators

Obtain fligjt info
Get flights

Cache flight info summaries in database

Find flights

Book flight
book flight via web service

confirm/deny booking(s)

notify change e.g. flight now unavailable/details changed
notify server

take action e.g. another flight

check available
asynchronous availability check...

confirm/deny available

Figure 3. Data replication and remote update in the travel planner application.

Configuration can be manual or automated by
examining WSDL descriptions of located provider web
services. Message and data mapping are supported by
value mappers, for simple data value mapping, and XSLT
transformations for complex message and data translation.

Data synchronisation with remote travel providers is
used to periodically refresh cached data and can support
pulled data and pushed data (via asynchronous SOAP
messages) data updates. A form of the Business
Transaction Protocol (BTP) [14] is used to co-ordinate
long transactions across the travel planner and multiple
providers, as outlined in the previous section. Travel
items can be asynchronously checked and commitment
requested during either itinerary creation or during
itinerary booking processes. Compensation transactions
via web service calls can be run to un-commit booked
items and notifications to change of status of booked
items are supported.

Figure 4 shows some examples of the travel planner
prototype in use. Views 1-3 are from the thick-client user
interface where a travel agent is reviewing a travel plan
and making a tentative hotel booking for a client. The
customer (or travel agent) first selects the kind of travel
item they wish to add or an existing travel item to modify
(1). For example, they may choose to add a new hotel
booking (2), and they specify date, time, room details etc
(3). The date and customer information can be defaulted

from the travel itinerary under construction and the
interaction of the user with the travel plan (in view 1).

View 4 shows a customer booking of an airline seat
via a thin-client, web browser-based interface. This
interface provides the same functions as the thick-client
interface, but uses a standard browser-based infrastructure
and HTML-encoded screen. This has the advantage of not
requiring any downloading nor installing of the travel
planner application, as required if using the thick-client
interface. The three views in 5 are an equivalent WAP-
device implemented user interfaces for modifying an
itinerary or viewing an itinerary during travel. These
interfaces allow a customer who is on the move, or even
has started their trip, to access and modify their travel
itinerary information.

We have also added some collaborative work facilities
similar to those in our previous work (chat, item
annotation, collaborative editing, item locking and change
notification) can all be provided via the travel planner
server with appropriate interface extensions [5]. All of the
interfaces – the thick-client, web browser-based and
WAP-based, have a web services-based infrastructure.
View 6 shows manual addition and configuration of a
travel provider’s web services via our UDDI registry
client. This is used to update the travel planner UDDI
registry with new or modified remote travel planning
services e.g. to add a new hotel, airline, etc.

1

2
3

4

5

6

Figure 4. Examples of the travel planner in use.

We found .NET web services to provide a good
infrastructure and technology for building these facilities.
The existing thick-client travel planner had its database
synchronised with remote systems via a .NET server,
which used web services to communicate with the remote
systems. We used a simple infrastructure to translate
remote SOAP protocol messages to and from our server’s
protocol. We used UDDI registry entries to locate
appropriate travel planning service providers and WSDL
descriptions of these services to construct adaptors to
communicate with them.

We developed a simple adaptor mechanism which
allows properties of travel itinerary items (flights, hotel
rooms, rental cars, train and bus rides, customer
information and provider information) to be accessed and
updated, with a set of design patterns used to implement
simple property-based mappings between different
formats for this data. In future XSLT-style message
transformations would be necessary to implement
complex mappings but we found this unnecessary for our
travel planner prototype.

We have built simple web and WAP-based user
interfaces in previous work [5] and used our infrastructure
to integrate these with our web services-based travel
planner architecture. As in previous work where we
generally hard-coded these interfaces to work on a
particular platform [12]. However, we plan to investigate
the use of our new Adaptive User Interface Technology []
to build a single version of these thin-client user interfaces
and with run-time adaptation to different display devices
and users [6]. This would allow us to design and specify a
single interface for e.g. booking hotel rooms, and provide
an adaptation mechanism to support multiple device
display of the interface and multiple user/task adaptation
e.g. extra facilities for travel agency staff vs. ordinary
customer users.

5. Discussion

A wide range of technologies and architectures have

been developed for building systems such as the one
described here. Commonly used technologies include
CORBA and COM [15, 19], EDI and XML messaging [3,
11, 16], and data and message integration tools [8, 3, 2].
Recently various business process integration-based
systems have been developed to support both the
development and integration of heterogeneous systems [2,
1, 9].The main disadvantages with all of these approaches
include the difficultly in building and adapting interfaces
(CORBA, EDI); the complexity of translating data and
message sets or agreeing on standards for messages
(XML, EDI and ebXML); and the need to support
heterogeneous integration technologies and wide ranges
of different business processes (BPM).

We have carried out a combination of usability,
performance and flexibility evaluations of our travel
planner prototype. Test users have indicated that the
cross-organisational business process embodied by the
travel planner are appropriate to the travel planning tasks
they wish to undertake. Performance evaluations have
indicated that the travel planner prototype provides
consistently high performance and availability even under
very high loading (both travel planner users and remote
application users). We have integrated several different
travel provider systems with the travel planner, each using
quite different travel item data formats, SOAP message
formats and embodying different business processes
(some immediate commit to requested items; some
deferred commitment; some immediate payment and
others invoiced payment).

The main limitations to date with our travel planning
application prototype have related to issues of
generalising the adaptors so that programming is seldom
required to integrate new systems, suitably identifying
advertised travel provider web services, and providing
tailorable travel planning business process
implementations in the travel planner itself. Generalising
and providing automatically generated web service
adaptors is important to support flexible integration
infrastructure and more dynamic remote system
interoperation. This will require improved advertising of
functional and non-functional characteristics of web
services, and improved cross-web service business
transaction description than currently provided by WSDL,
UDDI and BPEL4WS solutions [13].

We are currently looking at two further areas of
research and development relating to the travel planner –
improved web service design, characterisation and
dynamic discovery and integration, and using web
services to build adaptive, multi-device user interface and
collaborative work support infrastructure. We are
applying aspect-oriented software development
techniques to the problem of designing, identifying and
adapting to web services, and using a message
transformation server architecture to address the problem
of supporting adaptive user interfaces and collaborative
work support with web services infrastructure. We are
also working on developing a generic integration system
using the data replication/data update/long running
transaction model used in this work [7]. This will be used
to provide not only a web services-based integration
infrastructure but also to support seamless integration
with non-web services legacy systems in the future.

6. Summary

We have designed a web service-based architecture

for a collaborative travel planning application. This uses

web services as an integration infrastructure with remote
travel provider systems and is being extended to use web
services to provide multi-device interface and
collaborative work infrastructure. A key feature of our
prototype is its use of data replication, caching, remote
update and long running business transactions with
asynchronous messaging to support a high performance,
reliable and scalable solution. We have developed a
prototype travel planner with C# and .NET-based web
services to realise this architecture.

References

1. Alvarez, M., Pan, A., Raposo, J., Cacheda, F., Vina, A.

FINDER: a mediator system for structured and semi-
structured data integration, In Proceedings 13th
International Workshop on Database and Expert Systems
Applications, IEEE. CS Press, 2002, pp.847-851.

2. eXcelon Corp, eXcelon B2B Integration Server White
Paper, www.exceloncorp.com.

3. Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML. E-Business Strategies & Solutions,
Sept. 1999, 10-14.

4. Grundy, J.C., and Hosking, J.G. Developing Adaptable
User Interfaces for Component-based Systems, Interacting
with Computers, Elsevier, May 2002.

5. Grundy, J.C. and Jin, W. Experiences developing a thin-
client, multi-device travel planning application, In
Proceedings of the 2002 New Zealand Conference on
Human-Computer Interaction, , July 12-13, Hamilton, New
Zealand.

6. Grundy, J.C. and Zou, W. An architecture for building
multi-device thin-client web user interfaces, In Proceedings
of the 14th Conference on Advanced Information Systems
Engineering, Toronto, Canada, May 29-31 2002, Lecture
Notes in Computer Science.

7. Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and
Amor, R. An architecture for efficient, flexible enterprise
system integration, In Proceedings of the 2003
International Conference on Internet Computing, Las
Vagas, June 23-26 2003, CSREA Press.

8. Gupta, A. Harinarayan, V. Rajaraman, A. Virtual database
technology, Proceedings of the 1998 14th International
Conference on Data Engineering, 23-27 Feb 1998, 297 –
301.

9. Hanson, J.E., Nandi, P., Kumaran, S. Conversation support
for business process integration. In Proceedings Sixth
International Enterprise Distributed Object Computing
Conference, IEEE. CS Press, 2002, pp.65-74.

10. Litoiu, M. Migrating to Web services - latency and
scalability. In Proceedings Fourth International Workshop
on Web Site Evolution, IEEE CS Press, 2002, pp.13-20.

11. McGarr, M.S., Transforming business processes with EDI.
Electronic Commerce World, vol.12, no.4, May 2002,
pp.22-29.

12. Petrovski, A. and Grundy, J. Web-enabling an integrated
health informatics system, In Proceedings of the 7th
Conference on Object-oriented Information Systems,
Calgary, Canada, August 27-30 2001, Springer LNCS, pp.
477-486.

13. Piccinelli, G., Emmerich, W., Zirpins, C., Schutt, K. Web
service interfaces for inter-organisational business
processes an infrastructure for automated reconciliation. In
Proceedings Sixth International Enterprise Distributed
Object Computing Conference, IEEE CS Press, 2002,
pp.285-292.

14. Oasis Group, OASIS Business Transaction Protocol,
Committee Specification 1.0, June 2002, www.oasis-
open.org.

15. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

16. Sonh, E.J., Lee, H.S., Kwon, T.G. Design and
implementation of a message service handler for ebXML.
In Proceedings of the Fourth International Conference on
Enterprise Information Systems, vol 2, ICEIS Press,
pp.1064-1069.

17. Swatman, P.M.C., Swatman, P.A., Fowler, D.C. A model
of EDI integration and strategic business reengineering.
Journal of Strategic Information Systems, vol.3, no.1, 1994,
pp.41-60.

18. Wiedemann, M. Web Services and collaborative
commerce. Information Management & Consulting, vol.17,
no.3, Aug. 2002, pp.57-60.

19. Wu, E. A CORBA-based architecture for integrating
distributed and heterogeneous databases, In Proceedings
Fifth IEEE International Conference on Engineering of
Complex Computer Systems, IEEE CS Press, 1999, pp.143-
152.

